
A Language-Theoretical Approach
to Descriptive Complexity

Michaël Cadilhac, Andreas Krebs, and Klaus-Jörn Lange

Wilhelm-Schickard-Institut, Universität Tübingen, Sand 13, Tübingen, Germany
michael@cadilhac.name, mail@krebs-net.de, lange@informatik.uni-tuebingen.de

Abstract. Logical formulas are naturally decomposed into their sub-
formulas and circuits into their layers. How are these decompositions
expressed in a purely language-theoretical setting? We address that ques-
tion, and in doing so, introduce a product directly on languages that
parallels formula composition. This framework makes an essential use of
languages of higher-dimensional words, called hyperwords, of arbitrary
dimensions. It is shown here that the product thus introduced is asso-
ciative over classes of languages closed under the product itself; this
translates back to extra freedom in the way formulas and circuits can be
decomposed.

Keywords: Logic, languages, descriptive complexity, hyperwords, cir-
cuits

1 Introduction

The theory of constant-depth polysize unbounded-fan-in circuits (hereafter simply
circuits) abounds in fine classes of languages and open problems about their
relationships. Some of the main classes of focus in the literature are:
– AC0, the class of languages recognized by circuits with Boolean gates;
– TC0, based on AC0 circuits with additional threshold gates, which output 1

if the majority of their input bits is 1;
– NC1, which, while being usually defined with log-depth, polysize, bounded-

fan-in Boolean circuits, is also characterized by AC0 circuits with additional
regular oracle gates, which output 1 if their input is in a prescribed regular
language.

Strikingly, all these classes admit characterizations that rely on language recog-
nition by first-order logic formulas—these are the classical results of [5, 1], that
we recall in Proposition 16 (see [10] for a lovely account). In this framework,
the variables of a logical formula range over the positions in an input word,
and the language described by the formula is the set of words satisfying it.
Similarly, algebraic characterizations of AC0 and NC1 relying on programs over
finite monoids [1] and of TC0 relying on recognition by typed monoids [6] are
known. This however is not a mere coincidence, and tokens of the pervasiveness of
this interplay between logic, circuits, and algebra were unveiled in more general
settings [10, 7, 12, 2], including in restrictions of these classes to a linear number

2 M. Cadilhac, A. Krebs, and K.-J. Lange

of gates [3]. Each time, these results are shown inductively by identifying building
blocks (simple formulas, simple circuits, etc.) and an appropriate composition
operation (substitution, stacking of circuits, etc.).

There is, however, a missing link in this picture: a purely language-theoretical
construct that would unify these frameworks. As they all are used in fine as
language specifications, this calls for a better understanding of their building
blocks and compositions, without appeal to a specific model of computation. This
is what we aim for in this article.

Higher dimensions. A prominent feature of our study is its reliance on words of
higher dimension, that we call hyperwords. Contrary to previous works where
pictures are 2-dimensional, i.e., mappings from {1, 2, . . . ,m} × {1, 2, . . . , n} to
some alphabet [9], our hyperwords are labeled squares, cubes, etc., and more
generally, mappings from {1, 2, . . . , n}d to an alphabet. Going to higher dimen-
sions constitutes a severe change that is prompted by multiple considerations:
1. In the logical framework, composition of formulas (the so-called “substitution”)
is a process that replaces letter predicates ca(x), asserting that there there is
an a at position x in the input, by a formula with one distinguished variable.
Generalizing this substitution to a greater number of variables naturally leads
to consider letter predicates of the form ca(x1, x2, . . . , xd), hence formulas rec-
ognizing d-dimensional hyperwords. 2. In the circuit framework, one can speak
of the language accepted by a circuit with n inputs. However, a layer of the
circuit may have a polynomial number of input gates, say nd, and thus accepts a
hyperword of dimension d. 3. Since the early stages of descriptive complexity,
there has been a great interest in quantifiers that bind more than one variable.
For instance, the majority of pairs quantifier, (Maj2 x, y)[ϕ], asserts that there
is a majority of positions (i, j) of the input word making ϕ(x := i, y := j) true.
Barrington, Immerman, and Straubing conjectured in the seminal paper [1] that
Maj2 is more powerful than the majority quantifier over a single variable, and
this was proven in [8]. A quantifier of that type, a so-called Lindström quantifier,
is entirely described by a set of hyperwords; for instance, the truth value of
(Maj2 x, y)[ϕ] depends solely on whether the 2-dimensional hyperword mapping
(i, j) to the truth value of ϕ(x := i, y := j) contains a majority of “true.” Thus
again, quantifiers are determined by hyperword languages.

Our contributions are the following:

1. We adapt the traditional logic framework to the description of hyperword
languages, and define a notion of substitution that extends the one for single
variable formulas (see Section 4);

2. We introduce a purely language-theoretical framework, relying on hyperword
languages, and a product over languages (“block product”) that allows to
express logic-defined languages (and thus ultimately languages of circuit
families) independently of a model (see Sections 3 and 6);

3. We show that the product thus defined verifies a certain associativity property:
there is a trade-off between the possible bracketings of an expression and the
dimensions of the languages therein (see Theorem 21).

A Language-Theoretical Approach to Descriptive Complexity 3

2 Preliminaries

For an integer n, we write [n] for the set {1, 2, . . . , n}. For a function f : X → Y ,
and for a set X ′, we write f�X′ for the function from X ∩X ′ to Y that agrees
with f on its domain. If x1, x2, . . . , xe are some variables, we write x for the
vector (x1, x2, . . . , xe), and if i is a vector of same length, then x = i is to be
understood component-wise.

In the following, A and B will be alphabets, i.e., finite sets of symbols, and V
will be a finite set of variable symbols included in1 {. . . , v−2, v−1, v0, v1, v2, . . .},
and we will use x, y, x1, x2, . . . to refer to these variables. Such sets V are naturally
ordered, and we will often speak of the i first variables of V.

A stripped hyperword over A of dimension d ≥ 0 and length n ≥ 0 is a map
from [n]d to A; the set of stripped hyperwords of dimension d for any length
is written Hd(A), and in particular, we have that A∗ = H1(A). We will also
naturally identify A with H0(A).

Hyperwords will always be paired with valuations of a (possibly empty) finite
set of variables: we let Hd(A) ⊗ V be the set of pairs W = (strW , valW) such
that strW ∈ Hd(A) and valW : V → {1, . . . , n}, with n the length of strW . These
objects will be called simply hyperwords, and we define the length of W , written
|W |, to be that of strW , its strip to be strW , and its valuation to be valW . A
language of dimension d is then a set of hyperwords of this dimension, and we
identify subsets of Hd(A) with languages in Hd(A)⊗∅. Further, for a hyperword
W ∈ Hd(A) ⊗ V and i ∈ [|W |]d, we write W (i) for the letter strW (i), and if
x ∈ V, then W (. . . , x, . . .) denotes W (. . . , valW (x), . . .). For a variable x that
may or may not be in V and i ∈ [|W |], we write Wx=i for the hyperword with
strip strW and valuation valW modified so that x is mapped to i (hence x is
added to the domain of valW if x /∈ V). Hyperwords of dimension 1 will usually
be called words. For a language L ⊆ Hd(A) ⊗ V, we denote its characteristic
function by χL : Hd(A)⊗ V → {0, 1}.

3 Composing Languages

We begin with an intuitive presentation. Suppose we are given a language
L ⊆ Hd(A)⊗ {v1}, and we wish to extract from it the language L′ ⊆ Hd(A) of
hyperwords in L that have an even valuation of v1. In symbols, we want to define
L′ = {W | (∃i ∈ 2N)[Wv1=i ∈ L]}. When checking whether W ∈ L′, we are thus
interested in the different values of χL(Wv1=i) for i ranging from 1 to |W |; indeed,
if K is the set of words over {0, 1} having at least one 1 in an even position, then
W ∈ L′ if and only if:

χL(Wv1=1) · χL(Wv1=2) · · ·χL(Wv1=|W |) ∈ K .

1 We only make scarce use of the variables with nonpositive indexes explicitly, with
the notable exception of the first part of the proof of Theorem 21.

4 M. Cadilhac, A. Krebs, and K.-J. Lange

This construction is a particular example of the block product2 of two languages,
and we shall later write L′ = K � L. Our definition of the block product follows
the definition of Lindström quantifiers (e.g., [1]) by making the following three
generalizations:

1. We extend the valuation of v1 to a set of variables; for instance, for two
variables v1 and v2, rather than checking whether the word whose i-th letter
is χL(Wv1=i) belongs to K, it should be checked whether the hyperword
whose letter at position (i, j) is χL(Wv1=i,v2=j) belongs to K;

2. The membership tests χL(Wv1=i) are allowed to range over a finite number
of different languages L; this implies that K in our example is not simply a
language over {0, 1}, but over {0, 1}k for some k > 0;

3. We introduce mappings from the truth values of these membership tests to
different alphabets; in other words, we implement a mechanism to let K be
over any alphabet.

Definition 1 (Simple join). Let (Li)i∈[k] be languages. When (and only when)
all the Li’s share the same alphabet A, dimension d, and variable set V, we write
L = [L1, L2, . . . , Lk] to denote the vector whose i-th component is Li.

This vector L is called a simple join of length k over Hd(A) ⊗ V, and we
naturally extend the characteristic functions to such objects by letting, for any
W ∈ Hd(A)⊗ V, χL(W) =

(
χL1(W), χL2(W), . . . , χLk

(W)
)
∈ {0, 1}k.

Definition 2 (Block product). Let K be a language in He(B)⊗ V and L be
a simple join of length k over Hd(A) ⊗ (X ∪ V) with X = {x1, x2, . . . , xe} the
first e variables of X ∪ V, in order. Further, let g : {0, 1}k → B.

Let W ∈ Hd(A)⊗V. The transcript τ(W) ∈ He(B)⊗V of W is the hyperword
with strip:

[|W |]e → B

(i1, i2, . . . , ie) 7→ g(χL(Wx=i)) ,

and valuation valW . The block product of K and L (with alphabet replacement g)
is then K �g L = {W ∈ Hd(A)⊗ V | τ(W) ∈ K}.

Notation 3. We will often use alphabet replacements from {0, 1}k to {0, 1}. In
this case, we see 0, 1 as Boolean values, and use the notations ∧,∨,↔, . . . directly
in the list L. For instance, L = K � [L1 ∨ (L2 ↔ L3)] defines g : {0, 1}3 → {0, 1}
by g(i, j, k) = i ∨ (j ↔ k), and then L = K �g [L1, L2, L3]. Further, we omit the
alphabet replacement when it is the identity, and if L is a language, we write
K � L for K � [L].

The following operators do not directly relate to the block product. However,
they will be part of our elementary set of tools to define more complex languages.
2 This nomenclature stems from the algebraic operation bearing the same name. There
is a precise relationship between block products of monoids and block products of
languages of words (Definition 2) that will be made explicit in an extended version
of this article.

A Language-Theoretical Approach to Descriptive Complexity 5

Definition 4 (Variable operators). Let L ⊆ Hd(A) ⊗ V. The following two
operators respectively decrease and increase the number of variables used.

The variable renaming identifies and renames variables of V. Let σ : V → V ′
be a given partial map, for a set V ′ of variables. First, extend σ to all of V by
letting σ(x) = x if σ was undefined on x. Then for a valuation val of σ(V), write
σ−1(val) for the valuation of V mapping x to val(σ(x)). The variable renaming
of L by σ is ren(L, σ) = {W ∈ Hd(A)⊗ σ(V) | (strW , σ−1(valW)) ∈ L}.

The variable extension augments the set of variables V with untested vari-
ables. Let V ′ be a finite set of variables, the variable extension of L by V ′ is
var-ext(L,V ′) = {W ∈ Hd(A)⊗ (V ∪ V ′) | (strW , valW�V) ∈ L}.

4 The Descriptive Complexity Framework

We present a generalized version of the classical framework of descriptive com-
plexity for expressing languages (e.g., [1, 10]). The generalization lies essentially
in the ability for a formula to recognize a language of hyperwords. A logic will
be given by the set of allowed quantifiers and numerical predicates, which will
have a preset semantics. As an example, we want to be able to write formulas
such as (Maj2,1 v1, v2)[ca(v1, v2)], expressing that there is a majority of pairs of
positions (i, j) such that the 2-dimensional input hyperword has an a in position
(i, j). As usual (e.g., [1, 8]), we also allow multiple formulas under the scope of a
quantifier.

Definition 5 (Quantifier, numerical predicate). An (e, k)-ary quantifier is
a pair (L, g) where L ⊆ He(A)⊗ V, for some alphabet A and variable set V, and
g : {0, 1}k → A. Intuitively, e will be the number of variables quantified and k the
number of formulas over which the quantifier ranges.

An e-ary numerical predicate is a subset of H1({a})⊗ {v1, v2, . . . , ve}.

Definition 6 (Logic). Given a set of quantifiers Q and a set of numerical
predicates N , we define the logic Q[N] as the set of following formulas with the
provided semantics:
– Syntax. A formula of dimension d over the alphabet A is built from the

following syntax, where the xi’s are variables that are not necessarily distinct,
except in Case 3:

ϕ ::= ca(x1, x2, . . . , xd) where a ∈ A (1)
| N(x1, x2, . . . , xe) for any N ∈ N of arity e (2)
| (Q x1, x2, . . . , xe)[ϕ1, ϕ2, . . . , ϕk] for any Q ∈ Q of arity (e, k) (3)
| ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ1 (4)

We rely on the usual vocabulary concerning variables: a variable used in a
formula is bounded if it always appears after being quantified, otherwise it is
free. This includes the variables that may appear within a quantifier, e.g.,
if Q = (L, g) is a quantifier where L ⊆ H1(A) ⊗ V, then all variables of V

6 M. Cadilhac, A. Krebs, and K.-J. Lange

are free in (Q x)[ϕ]. If {vi1 , vi2 , . . . , vin} are the free variables of ϕ, with
i1 < i2 < · · · < in, we write ϕ(x1, x2, . . . , xk), with k ≤ n, for the formula ϕ
with vij

replaced by xj, for all j ∈ [k]; we let the formulas obtained in this
fashion also belong to Q[N].

– Semantics. Let ϕ be a formula of dimension d over the alphabet A, and V a
set containing all its free variables. A hyperword W ∈ Hd(A)⊗ V is said to
be a model of ϕ, written W |= ϕ, when (the cases refer to the above syntax):
• (Case 1) W (x1, x2, . . . , xd) = a, recalling our use of W (. . . , xi, . . .) as
short for W (. . . , valW (xi), . . .).
• (Case 2) The word (a|W |, {vi 7→ valW (xi)}i∈[e]) is in N .
• (Case 3) W ′ ∈ L, where Q = (L, g) with L ⊆ He(B) ⊗ V ′, and W ′ is
defined as the hyperword with strip:

[|W |]e → B

(i1, i2, . . . , ie) 7→ g
(

(Wx=i |= ϕ1) · (Wx=i |= ϕ2) · · · (Wx=i |= ϕe)
)
,

and valuation valW�V′ .
• (Case 4) For ∧, when W |= ϕ1 and W |= ϕ2, and likewise for ∨ and ¬.

Finally, we let L(ϕ), the language of ϕ, be {W ∈ Hd(A)⊗ V |W |= ϕ}, with V
the set of free variables of ϕ, and also identify Q[N] with the class of languages
of its formulas.
Example 7 (Some standard quantifiers). The first-order quantifiers FO = {∃,∀}
are defined as follows. The (1, 1)-ary quantifier ∃ consists of the pair (L, g) where
g is the identity over {0, 1}, and L the set of words {0, 1}∗ · 1 · {0, 1}∗. The
quantifier ∀ is defined similarly with L = 1∗.

The (e, k)-ary majority quantifier Maje,k is the pair (L, g) where g : {0, 1}k →
{−k, . . . , k} computes the difference of the number of 1’s and 0’s and L consists
of hyperwords of He({−k, . . . , k}) such that the sum of all letters appearing is
greater than 0. The counting quantifier ∃=v1 can be expressed correspondingly.
Example 8 (Some standard numerical predicates). The 2-ary numerical predi-
cate = is the set of words w such that valw(v1) = valw(v2); we always assume
that this predicate belongs to N when defining a logic. The 2-ary numerical
predicate < is defined similarly. Next, + is a 3-ary numerical predicate for which
valw(v1) + valw(v2) = valw(v3). The 2-ary numerical predicate +1 is the one for
which the words verify valw(v1) + 1 = valw(v2). The 1-ary numerical predicate
max is the set of words w for which valw(v1) = |w|.
Definition 9 (Substitution). Let ϕ ∈ Q[N] be a formula of dimension e over
the alphabet B, and ϕ1, ϕ2, . . . , ϕk ∈ Q[N] be formulas of dimension d over
the alphabet A. Further let g : {0, 1}k → B. The formula ϕ ◦g [ϕ1, ϕ2, . . . , ϕk] is
obtained from ϕ by replacing its atomic formulas ca(x1, x2, . . . , xe), a ∈ B, by:∨

v∈g−1(a)

(∧
i:vi=1

ϕi(x1, x2, . . . , xe) ∧
∧

i:vi=0
¬ϕi(x1, x2, . . . , xe)

)
.

This results in a formula of Q[N] of dimension d over the alphabet A called a
substitution of ϕ.

A Language-Theoretical Approach to Descriptive Complexity 7

5 Examples

Example 10 (Existential quantification, logical and). Let Li ⊆ Hd(A)⊗ {v1}, for
i = 1, 2, be defined as {W |W |= ϕi} for some formulas ϕi of dimension d with
free variable v1. We wish to express L defined by the formula (∃v1)[ϕ1 ∧ ϕ2]
using the block product. To this end, let E = {0, 1}∗ · 1 · {0, 1}∗, we claim that:

L = E � [L1 ∧ L2] .

Indeed, the transcript of a hyperword W has a 1 in position i iff, by definition,
χ[L1,L2](Wv1=i) = (1, 1), that is, iffWv1=i ∈ L1∩L2. The language E then checks
that there exists one position of the transcript that contains a 1.

Example 11 (Identities). Example 10 seems to indicate that Boolean operations
on languages ought to be expressed under the scope of a quantifier (existential in
the example). This is correct, but does not come at the expense of introducing
new variables, since we may speak about 0-dimensional hyperwords, that is,
letters. Thus any language L is equal to {1}� L, where the left-hand side is of
dimension 0.

Now let L ⊆ Hd(A) ⊗ V, we wish to express L by using it as the left-hand
side of a block product. Let V ′ = {v1, v2, . . . , vd}, and define for all a ∈ A the
language Ca ⊆ Hd(A)⊗V ′ to be the set of hyperwordsW withW (v) = a. Finally,
with A = {a1, a2, . . . , a`}, let g : {0, 1}` → A map (b1, b2, . . . , b`) to ai if bi = 1
for some unique i—the other values of g being irrelevant. It then holds that:

L = L�g [var-ext(Ca1 ,V), var-ext(Ca2 ,V), . . . , var-ext(Ca`
,V)] .

Example 12 (Boolean operations). Now given a Boolean expression on k variables,
that is, a function g : {0, 1}k → {0, 1}, and a simple join [L1, L2, . . . , Lk], the
language obtained by combining the languages using the expression is:

{1}�g [L1, L2, . . . , Lk] .

In particular, we have:

L1 ∪ L2 = {1}� [L1 ∨ L2] , L1 ∩ L2 = {1}� [L1 ∧ L2] .

6 Logics and their Language Classes

In this section, we show that, given a logic, the class of languages recognized
by its formulas is the closure, under mainly block product, of a set of languages
associated with its quantifiers and numerical predicates.

Definition 13 (Block closure). A class of languages C is block-closed if it is
closed under block products, variable extension, and variable renaming. Further,
for a class of languages C, we let �∗ (C) be the smallest block-closed class that
contains C and the languages CA,d

a , defined for any alphabet A, a ∈ A, and d ≥ 0,
as:

CA,d
a = {W ∈ Hd(A)⊗ {v1, v2, . . . , vd} |W (v1, v2, . . . , vd) = a} .

8 M. Cadilhac, A. Krebs, and K.-J. Lange

For a map g : A→ B and a hyperword W ∈ Hd(A)⊗ V, write g(W) for the
hyperword W where each letter a ∈ A of strW is replaced by g(a).

Theorem 14. Let Q be a set of quantifiers and N be a set of numerical predi-
cates. Let Q′ = {g−1(L) | (L, g) ∈ Q}. Then Q[N] = �∗ (Q′ ∪N).

Proof. (Q[N] ⊆ �∗ (Q′ ∪N).) This is proved by induction; let ϕ ∈ Q[N] over A
with free variables in V, then:
– If ϕ ≡ ca(x1, x2, . . . , xd), then L(ϕ) = ren(CA,d

a , σ), with σ = {vi 7→ xi}i∈[e];
– If ϕ ≡ N(x1, x2, . . . , xe) for N ∈ N of arity e, then L(ϕ) = ren(N, σ) with
σ = {vi 7→ xi}i∈[e];

– If ϕ ≡ (Q x1, x2, . . . , xe)[ϕ1, ϕ2, . . . , ϕk], with Q = (L, g) ∈ Q of arity (e, k),
then let by induction Li = L(ϕi) ∈ �∗ (Q′ ∪N), for i ∈ [k]. Further, rename
the variables of all the Li’s and K = g−1(L) so that x1, x2, . . . , xe appear
first among all the variables used, and extend these languages to a common
set of variables. Then L(ϕ) = K � [L1, L2, . . . , Lk];

– If ϕ ≡ ϕ1 ∧ ϕ2, then, noting that {1}, as 0-dimensional, is C{0,1},0
1 , and by

Example 12, L(ϕ) = C
{0,1},0
1 � [var-ext(L(ϕ1),V) ∧ var-ext(L(ϕ2),V)];

– The cases ϕ ≡ ϕ1 ∨ ϕ2 and ϕ ≡ ¬ϕ1 are similar to the previous one.
Additionally, renaming of variables is achieved through ren. In each case, we

inductively have that L(ϕ) ∈ �∗ (Q′ ∪N).
(�∗ (Q′ ∪N) ⊆ Q[N].) Again, this is done by induction; let L ∈ �∗ (Q′ ∪N),

with L ⊆ Hd(A)⊗ V, then:
– If L = N for N ∈ N of arity e, then L = L(ϕ) for ϕ ≡ N(v1, v2, . . . , ve) seen

as a formula of dimension 1 over {a};
– If L = g−1(L′) for Q = (L′, g) ∈ Q, then A = {0, 1}k for some k. We then

have that L = L(ϕ) with:

ϕ ≡ (Q v1, v2, . . . , vd)
[∨

u∈{0,1}k:u1=1

cu(v1, v2, . . . , vd),

...∨
u∈{0,1}k:uk=1

cu(v1, v2, . . . , vd)
]

;

– If L = CA,d
a , then L = L(ϕ) with ϕ ≡ ca(v1, v2, . . . , vd) seen as a formula

over A;
– If L = var-ext(L′,V ′), then with ϕ′ such that L′ = L(ϕ′), define ϕ as the

formula ϕ′ ∧
∧

x∈V′ x = x. We thus have that L(ϕ) is L(ϕ′) over the variables
V ∪ V ′, hence L = L(ϕ);

– If L = ren(L′, σ), then we simply apply the renaming σ to the formula defining
L′;

– Finally, if L = K �g [L1, L2, . . . , Lk], let ϕi such that L(ϕi) = Li for all i,
and ϕK such that L(ϕK) = K, then L = L(ϕK ◦g [ϕ1, ϕ2, . . . , ϕk]). ut

A salient property of this characterization is that there is no syntactic differ-
ence made between the languages coming from quantifiers, and those coming from

A Language-Theoretical Approach to Descriptive Complexity 9

numerical predicates. From this, we naturally derive the following restatement of
Theorem 14 starting from languages:

Theorem 15. Let C be a class of languages containing the numerical predicate =.
Let Q be the set of quantifiers (L, g) such that L ∈ C. It holds that Q[=] = �∗ (C).

We note that Theorem 14 immediately implies that some complexity classes
can be expressed as the block-closure of simple languages, namely:

Proposition 16. The following equalities hold:
– DLOGTIME-uniform TC0 = �∗ ({Maj2,1, <});
– DLOGTIME-uniform NC1 = �∗ ({Maj2,1, S5, <}), with S5 the symmetric
group on 5 elements, seen as the language of words σ1σ2 · · ·σn, with each
σi ∈ S5, that evaluate to the identity permutation;

– P = �∗ ({Maj2,1,CVP, <}), where CVP is the circuit valuation problem, that
is, encoding of Boolean circuits that evaluate to one.

7 Associativity of the Block Product

In the context of the block product of algebraic structures,3 it is well known
that parenthesizing plays a crucial role. Indeed, the composition (M �N) �K
is sometimes called the weak product [11, 3], by opposition to the strong one
M � (N �K), and it can be proved that the former recognizes, in general, less
languages than the latter. Similarly—equivalently in fact [11, 12]—the classical
notion of formula substitution (akin to our definition but with formulas of
dimension one) depends intrinsically on the parenthesizing: ϕ1 ◦ (ϕ2 ◦ (ϕ3 ◦ · · ·))
can express all formulas starting from formulas of depth 1 (i.e., formulas with
one quantifier), while ((· · · (ϕ1 ◦ ϕ2) ◦ ϕ3) ◦ · · ·) can only express formulas with
two variables (that may be reused). Here, we show that we can get more freedom
in the parenthesizing, provided that we allow products of languages of higher
dimensions. We place this result in a purely language-theoretical framework (i.e.,
with languages and block products), and by Theorem 14 and its proof, it would
carry over to the logical setting (i.e., with logical formulas and substitutions).

Naturally, as products of one-dimensional languages are nonassociative, we
cannot hope for K � (L1 � L2) to be equal to (K � L1) � L2 in general. We will
however see in the proof of the forthcoming Theorem 21, that it is enough to
provide a dimensional jump of L1:

Definition 17 (Dimensional jump). Let L ⊆ Hd(A) ⊗ V. For 0 < c ≤ |V|,
we let JLKc, the c-dimensional jump of L, be the language of hyperwords W in
Hc+d(A)⊗ V defined as copies of L in the following sense. Let {x1, x2, . . . , xc}
be the c first variables of V. For v ∈ [|W |]c, define W (v, •) as the d-dimensional
hyperword of strip mapping u ∈ [|W |]d to W (v,u), and of valuation valW . Then:

W ∈ JLKc ⇔ W (x1, x2, . . . , xc, •) ∈ L .

3 The reader not versed in that topic can think of block products of monoids as block
products of the languages of dimension 1 recognized by them.

10 M. Cadilhac, A. Krebs, and K.-J. Lange

If [L1, . . . , Lk] is a join, we let JL1, . . . , LkKc = [JL1Kc, . . . , JLkKc].

Further, to treat simple lists, we will need the following symmetric operators
that increase the dimension of hyperwords by a constant, the original hyperwords
appearing in the first or the last components. With the notations of Definition 17:

Definition 18 (Dimensional extensions). The right dimensional extension
of L ⊆ Hd(A) ⊗ V for any e > 0, written dim-ext(L, e), is defined as the set
{W ∈ Hd+e(A)⊗ V | (∀v ∈ [|W |]e)[W (v, •) ∈ L]}.

Similarly, its left dimensional extension dim-ext(e, L) is the set of hyperwords
{W ∈ He+d(A)⊗ V | (∀v ∈ [|W |]e)[W (•,v) ∈ L]}.

Finally, we will need to be able to “enlarge” the alphabets at hand:

Definition 19 (Alphabet product extension). Let L ⊆ Hd(A) ⊗ V and
B be an alphabet. The right alphabet product extension of L by B, written
alph-prod(L,B), is the set of hyperwords in Hd(A×B)⊗V such that dropping the
second component of each letter gives a hyperword in L. The left alphabet product
extension alph-prod(B,L) is defined symmetrically, resulting in hyperwords in
Hd(B ×A)⊗ V.

Lemma 20. Any block-closed class �∗ (C) containing the language 1∗ is closed
under dimensional jump, dimensional extensions, and alphabet product extensions.

The aforementioned associativity property of the block product is then:

Theorem 21. Every language of a block-closed class �∗ (C) can be written from
the languages of C and the languages CA,d

a using block products, variable exten-
sions, variable renaming, dimensional jump and extensions, and alphabet product
extensions, in such a way that no right-hand side of a block product contains a
block product.

Proof. Any language of �∗ (C) can be written, by definition, from the languages of
C and the languages CA,d

a using block products, variable extension, and variable
renaming. It is not hard to show that the variable related operators and the
dimensional jump can be pushed to the language level, so that a block product
is never under the scope of such operators.

To show the main claim, we proceed inductively on the structure of the
expression defining a language L of �∗ (C), assuming that the variable operators
are at the language level. The claim is true for languages of C, their jumps, and
their variable extensions and renaming.

We consider first a simplified situation. Let K,L1, L2 be languages of dimen-
sions i, j, and k respectively. We claim that K � (L1 � L2) = (K � JL1Ki) � L2,
assuming that the left-hand side is well-defined.

Indeed, let W be a hyperword; we show that the transcript of W at the
outermost product of the left-hand side is the same as the transcript of W at
the innermost product of the right-hand side. This proves the equality, as the
membership of W to either side depends only on this transcript.

A Language-Theoretical Approach to Descriptive Complexity 11

The transcript W ′ of W at the outermost product of the left-hand side is the
i-dimensional hyperword whose strip maps v to 1 iff W ′′ = Wx=v ∈ L1 � L2,
where x denotes the i first variables of L1. In turn, this holds iff the transcript
of W ′′ at the innermost product of the left-hand side is in L1; define U as the
(i+ j)-dimensional hyperword such that U(v, •) is that transcript, for any v of
dimension i, and valuation valW . We have that W ′(v) = 1 iff U(v, •)x=v ∈ L1,
that is, iff Ux=v ∈ JL2Ki. Now U is precisely the transcript of W at the outermost
product of the right-hand side. Thus the transcript of U at the innermost product
of the right-hand side is an i-dimensional hyperword whose strip maps v to 1 iff
Ux=v ∈ JL2Ki, and this transcript is W ′. This shows the equality.

We now introduce simple lists in two steps. Writing [L1, L2] �g L for the
simple list [L1 �g L, L2 �g L], first note that:

K �f

(
[L1, L2] �g L

)
= (K �f JL1, L2Ki) �g L .

Now to treat the general case and conclude this proof, consider the expression
K �f [L1 �g L, L2 �g′ L′]. Clearly, for it to be well-defined, L1 and L2 must have
the same set of variables, thus write Li ⊆ Hdi(Ai)⊗ V, i = 1, 2. Further, define
L′1 = alph-prod(L1, A2) and L′2 = alph-prod(A1, L2). Using techniques similar
to the above, we may assume that all the languages in L and L′ are over the
variables X] V and X ′] V, respectively, so that: 1. |X | = d1, |X ′| = d2; 2. All
the variables in X are smaller than those in X ′; and 3. All the variables in X ′ are
smaller than those in V. Finally, write g′′(u,v) = (g(u), g(v)). It then readily
holds that the above expression is equal to:

K �f

([
dim-ext(L1, d2), dim-ext(d1, L2)

]
�g′′

[
var-ext(L,X ′), var-ext(L′,X)

])
,

where var-ext is applied component-wise to all languages of L and L′. This
concludes the proof, as this is of the simpler above form. ut

Example 22 (Majorities). As already alluded to, the majority of pairs quantifier,
Maj2,1, is in general more powerful than the simple majority quantifier, Maj1,1,
even when the latter is nested. Thus, it is interesting to see what kind of quantifiers
arises from the parenthesizing given by Theorem 21.

Consider the language M of words over {0, 1} containing more 1’s than 0’s.
Let L′ = M � (var-ext(M, {v1}) � L) be a well-defined language, where v1 is the
first variable of L. Then L′ = (M � Jvar-ext(M, {v1})K1) � L, by the proof of
Theorem 21. Let Z = (M � Jvar-ext(M, {v1})K1), which is a subset of H2({0, 1});
we describe Z. A hyperword W ∈ H2({0, 1}) is in Z iff its transcript is in M ,
by definition. This transcript has a 1 in position i ∈ [|W |] iff W (i, •) ∈ M .
Thus, seeing two-dimensional hyperwords as arrays, a hyperword W is in Z iff
there is a majority of rows of W that contain a majority of 1. There lies the
intrinsic difference with Maj2,1, a quantifier that would translate to a language
of two-dimensional hyperwords having more 1’s than 0’s.

For two block-closed classes C and D, write C�D for the smallest block-closed
class containing the languages L�L′ for all L ∈ C and L′ a simple join of languages
in D. We then have for any block-closed classes C, D, E : �(D � E) = (C �D)�.

12 M. Cadilhac, A. Krebs, and K.-J. Lange

8 Conclusion

We presented a novel purely language-theoretical framework to express classes
of languages described by logics. This addresses two shortcomings of the simi-
lar algebraic theory of typed monoids [6, 7]. First, quantifiers on tuples can be
expressed, providing for instance a shorter, arguably more compelling charac-
terization of TC0, and thus overcoming the limitation of “linear fan-in.” Second,
by allowing words of higher dimensions, we obtain a product mimicking the
classical block product of algebraic structures that exhibits a property reminiscent
of associativity—this may allow to translate techniques than only applied to
weak parenthesizing (e.g., [4]) to a more general setting.

We believe that the results herein advocate for the use of hyperwords, leading
to a unified framework in which the freedom of speaking of partial formulas (and
hence partial circuits) is balanced by the dimensions used in expressing their
composition.
Acknowledgments. The first author thanks Charles Paperman for stimulating dis-
cussions.

References

1. Barrington, D.A.M., Immerman, N., Straubing, H.: On uniformity within NC1. J.
Comput. Syst. Sci 41(3), 274–306 (1990)

2. Behle, C., Lange, K.J.: FO[<]-Uniformity. In: Proc. 21st Annual IEEE Conference
on Computational Complexity (CCC’06). pp. 183 – 189 (2006)

3. Behle, C., Krebs, A., Mercer, M.: Linear circuits, two-variable logic and weakly
blocked monoids. In: Mathematical Foundations of Computer Science. LNCS, vol.
4708, pp. 147–158. Springer-Verlag (2007)

4. Behle, C., Krebs, A., Reifferscheid, S.: Regular languages definable by majority
quantifiers with two variables. In: Developments in Language Theory. pp. 91–102.
LNCS, Springer (2009)

5. Immerman, N.: Expressibility and Parallel Complexity. SIAM Journal on Computing
18(3), 625–638 (1989)

6. Krebs, A., Lange, K.J., Reifferscheid, S.: Characterizing TC0 in terms of infinite
groups. Theory Comput. Syst. 40(4), 303–325 (2007)

7. Krebs, A.: Typed semigroups, majority logic, and threshold circuits. Ph.D. thesis,
Eberhard Karls University of Tübingen (2008)

8. Lautemann, C., McKenzie, P., Schwentick, T., Vollmer, H.: The descriptive com-
plexity approach to LOGCFL. J. Comput. Syst. Sci. 62(4), 629–652 (2001)

9. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, Vol. 3: Beyond
Words. Springer-Verlag New York, Inc., New York, NY, USA (1997)

10. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser,
Boston (1994)

11. Straubing, H., Thérien, D.: Weakly Iterated Block Products of Finite Monoids. In:
LATIN 2002: Theoretical Informatics. pp. 91–104. LNCS, Springer (2002)

12. Thérien, D., Wilke, T.: Nesting until and since in linear temporal logic. Theory
Comput. Syst. 37(1), 111–131 (2004)

