
Set Automata

Klaus-J�orn Lange and Klaus Reinhardt

?

Wilhelm-Schickhard Institut f�ur Informatik, Universit�at T�ubingen

Sand 13, D-72076 T�ubingen, Germany

e-mail: flange,reinhardg@informatik.uni-tuebingen.de

Abstract

In order to characterize certain formal languages capturing some syntactic as-

pects of higher programming languages we introduce automata with the storage

type set, called set automata. We show the corresponding language class to have

an NP-complete membership problem and a decidable emptiness problem.

1 Introduction

One of the main issues of formal languages is to model the syntax of higher

programming languages or parts of it. This leads for instance to grammars gen-

erating parenthesis expressions or representing recursive structures. A limit of

these approaches has often been the existence of certain constraints which have

to be full�lled by the syntactical objects. A very typical example is the prob-

lem of declaring variables in programs written in languages like PASCAL. In

its most simple form without concerning recursive or block structures it can be

formulated as: Each variable used in a program has to be declared exactly once!

Formally, this means that there exists a mapping from the set of all occurrences

of variables being used in a program to the set of all declarations of variables in

that program. This condition of being a mapping can be split into the two sub-

conditions totality on the domain and uniqueness on the range, i.e. �rst, that for

each element of the domain (here the set of all occurences of variables) there is

a corresponding element in the range (here the corresponding declaration), and

second, that for no element in the domain there are two or more correspond-

ing elements in the range (which here means that no variable is declared twice

or more). These two conditions can be expressed in terms of the following two

formal languages:

L

td

=

�

x

1

cx

2

� � �cx

n

dy

1

cy

2

� � �cy

m

�

�

�

�

m;n � 1; x

i

; y

j

2 fa; bg

�

;

V

1�i�n

W

1�j�m

x

i

= y

j

�

and L

ur

=

8

<

:

y

1

cy

2

� � �cy

m

�

�

�

�

�

�

m � 1; y

i

2 fa; bg

�

;

^

i 6=j

y

i

6= y

j

9

=

;

:

?

This research has been supported by the DFG Project La 618/3-1 KOMET.

The set L

ur

is also known as the problem of Element Distinctness. On the

one hand, being elements of AC

0

both languages have a very simple member-

ship problem. On the other hand, capturing them in terms of formal languages,

that is describing by grammars or automata seems to be quite di�cult. Fis-

cher,addressing the problem of well-declaration, was able to construct an indexed

grammar generating L

td

([2]). In fact, L

td

is even an element of ETOL. But both

these grammar types have in general an NP-complete membership problem.

It is the aim of this work to represent L

ur

by an automaton type sharing

typical properties of formal languages. In particular, we look for an automaton

type generating a class of languages constructively closed under morphisms,

inverse morphisms, and intersection with regular sets and having a decidable

emptiness problem enabling the existence of pumping or copying results.

For this reason we introduce set automata which are automata with access

to a datastructure of type set. A set automaton has a read-only one-way input

tape, a �nite set of states, and write-only one-way output tape, called the query

tape. It can perform three di�erent kind of steps: reading the next symbol from

the input tape, writing another output symbol on the query tape, and asking a

question, which means that the word currently written on the query tape (called

the query) is compared with all queries asked previously in this computation. If

it coincides with a previous query, the answer is yes, otherwise no. The answer

is given to the automaton in terms of its �nite states. Simultaneously, the query

tape is erased.

It turns out that the class SET of all set languages, that is of all languages

accepted by set automata, forms a trio, i.e. is closed under morphisms, inverse

morphisms , and intersection with regular sets and that these closure properties

are constructive. As our �rst main result of this work we show the decidability

of the emptiness problem for set automata. Our second main result proves the

NP-completeness of the membership problem even if we restrict the automaton

to accept only if all queries have been answered negatively.

We assume the reader to be aquainted with the basic notions and results

of formal language theory as they are contained for instance in the books of

Hopcroft and Ullman or by Salomaa ([3,4]). Throughout of this paper we denote

the empty word by � and the cardinality of a set M by jM j.

For lack of space we can only give indications for most of our constructions

and proofs.

2 Set automata

This section starts with the formal de�nitions of set automata and of set lan-

guages. After some results concerning formal language aspects it continues with

questions of decidability and complexity.

2.1 De�nition of the set-automaton

A set-automaton has a nondeterministic �nite control, a one-way input-tape

and a one-way output-tape, which we call the query-tape. There are three kinds

of elementary operations: The reading of an input symbol (�

r

{transitions), the

writing of a symbol to the query-tape (�

w

{transitions) and the posing of a query

(�

q

{transitions). This posing of a query means that the following state depends

on whether the word on the query-tape is in the set of words, which have been

asked before. Simultaneaously the word is included in this set and the query-tape

is cleared. Accordingly we have two special kinds of states: the query-states and

the (positive and negative) answer-states. For technical reasons, we regard both

the initial state and the �nal states as answer-states.

De�nition 1. A set-automaton is a 8-tuple A = (Z;�; �; �;Q; S;E; z

0

), where

{ Z is a �nite set of states

{ � is a �nite input-alphabet,

{ � is a �nite query-alphabet,

{ Q � Z is a set of query-states

{ S � Z nQ is a set of answer-states,

{ E � S is a set of accepting states,

{ z

0

2 S is an initial state and

{ � = �

r

[�

b

[�

q

with

�

r

� (Z nQ)� � � (Z n S); �

w

� (Z nQ)� � � (Z n S); �

q

� Q� S � S

is a �nite set of transitions.

To describe calculations of a set-automaton, we have to de�ne the notion

of a con�guration. A con�guration consists of the actual state, the rest of the

input-tape, the part of the query-tape written so far and the set of the priviously

asked queries.

De�nition 2. Let A = (Z;�; �; �;Q;E; S; z

0

) be a set-automaton.

a.) A con�guration of A is an element of Z ��

�

� �

�

� 2

�

�

.

b.) A con�guration (z

0

; v

0

; �

0

;M

0

) of A is the successor of a con�guration

(z; v; �;M) (written as (z; v; �;M) ` (z

0

; v

0

; �

0

;M

0

)) if and only if one of

the following holds:

Reading an input-symbol: There is a transition (z; a; z

0

) 2 �

r

and it holds v = av

0

, � = �

0

and M = M

0

,

Writing to the query-tape: There is a transition (z; x; z

0

) 2 �

w

and it holds �x = �

0

, v = v

0

and M =M

0

, or

Asking a question: There is a transition (z; z

+

; z

�

) 2 �

q

and it

holds either (positive answer) � 2 M , M = M

0

and z

0

= z

+

or

(negative answer) � 62 M , M

0

= M [f�g and z

0

= z

�

. In both

cases we have v = v

0

and �

0

= �.

We use `

�

for the transitive closure of the relation `.

c.) The language accepted by A is

L(A) =

(

w 2 �

�

�

�

�

�

�

_

z2E

_

�2�

�

_

M��

�

(z

0

; w; �; ;) `

�

(z; �; �;M)

)

:

In the following we call a laguage accepted by a set automaton a set language.

The class of all set languages is denoted by SET .

2.2 Formal laguage properties

From the description of set-languages based on automata, we get directly some

closure properties, which we state here without proof. We mention in passing that

they are constructive in the sense that given descripitons of a set automaton A

and of a morphism h or of a regular set R, the description of a set automaton

accepting h(L(A)), h

�1

(L(A)), or L(A)\R is computable by a recursive function.

Theorem 3. The family SET of set languages forms a TRIO, which means,

they are closed under (possibly erasing) homomorphisms, inverse homomor-

phisms, and intersections with regular languages.

In the following we present a generator playing the same rôle for SET that

the Dyck sets have for the context-free languages. Just as the Dyck sets re
ect

the proper use of a push down store in terms of matching push- and pop-moves,

we consider the set of all correct set computations with matching positive and

negative queries to a set built by these queries.

De�nition 4. The language of correct set computations is de�ned by:

L

+;�

=

(

y

1

�

1

cy

2

�

2

� � � cy

m

�

m

�

�

�

�

�

m � 1; y

i

2 fa; bg

�

; �

i

2 f+;�g;

V

1�i�m

(�

i

= +),

�

W

j<i

y

j

= y

i

�

)

Let us observe, that the original language L

ur

as considered in the introduc-

tion corresponds to the subset of those words in L

+;�

where no + appears, this

means that no question is answered positive. By converting positive and nega-

tive answers we could view L

ur

as conjunctive restriction of L

+;�

, if we regard

set-automata as oracle machines with set oracles.

Theorem 5. L

+;�

is a trio-generator of the class of set-languages, this means

for every set-language L there are two homomorphisms f and g and a regular

language R such that L = f(g

�1

(L

+;�

) \R).

Proof: Obviously, L

+;�

is a set language. Thus, Theorem 3 implies the inclusion

TRIO(L

+;�

) � SET . Now, it su�ces to show that every set-language L can be

reduced to L

+;�

by a �nite transducer. Such a �nite transducer simulates the

set-automaton accepting L by writing the symbols which it writes to the query

tape to the output tape. If the set-automaton enters the query state, the �nite

transducer nondeterministically guesses the answer and either it writes a + to

the output tape and continues the simulation in the positive answer state or

it writes a � to the output tape and continues the simulation in the negative

answer state. Obviously, the nondeteministic transducer can output an element

of L

+;�

if and only if its input word belongs to L.

It is easy to see that SET is closed under union and catenation, as well.

Closure under union is provided by the machine's nondeterminism. The simple

idea to prove closure under catenation is to use two disjoint query-alpabets when

simulating the two underlying set automata. But this method does not work for

the operation of Kleene's closure. We leave it as an open question whether SET

is closed under Kleene's star which would make SET a full AFL. A possible

counterexample is the language (L

+;�

$)

�

, i.e. the marked Kleene's closure of

L

+;�

.

3 Decidability and Complexity

Theorem 6. The emptyness problem for set automata is decidable.

Proof: The gist of the following construction is to separate in a computation

of a set automaton the query transitions from the pure reading and writing steps.

The later, without access to the storage medium, can be described by rational

transductions.

Let A = (Z;�; �; �;Q;E; S; z

0

) be a set-automaton. Let in the following m

be the size of S � Q, i.e. m := jSj � jQj. Obviously we can regard A without the

�

q

-transitions as a �nite automaton with input and output, calculating a rational

transduction �

A

� Z � �

�

� �

�

� Z (see e.g. [1]). The relation �

A

consists of

exactly those tuples (z; w; �; z

0

) such that there is a path from z to z

0

of �

r

{ and

�

w

{transitions reading w and writing �. For every answer-state s 2 S, and every

query-state q 2 Q, the set

R

s;q

=

(

� 2 �

�

�

�

�

�

�

_

w2�

�

(s; w; �; q) 2 �

A

)

is regular. Therefor for every subset N � S � Q the following set is regular as

well:

R

N

=

8

<

:

� 2 �

�

�

�

�

�

�

�

^

(s;q)2S�Q

� 2 R

s;q

, (s; q) 2 N

9

=

;

:

The 2

m

(possibly empty) sets R

N

; N � S �Q, form a partition of �

�

.

Let F = fN � S � Q jR

N

is �niteg and I := (S�Q)nF . We now de�ne the

set of global states:

K := S � f0;1g

jIj

�

Y

N2F

f0; 1; � � �; jR

N

jg:

Observe, that K is �nite. We let the global start state be (z

0

;

m�times

z }| {

0; 0; � � �; 0). A global

end state is a global state (s; i

1

; � � � ; i

m

) with s 2 E. If the set-automaton M

is in an answer state s after asking a question, then the global state not only

contains the state s but also for every N � S�Q the number of previously asked

words which are in R

N

. For the case of an in�nite R

N

, we just store whether no

(i

N

= 0) or at lest one (i

N

=1) word of R

N

was asked.

We now regard the elements of K as nodes of a directed graph having the

following edges:

(s; i

1

; i

2

; � � � ; i

m

) �! (s

0

; i

0

1

; i

0

2

; � � � ; i

0

m

)

if and only if there is a (q; s

1

; s

2

) 2 �

q

with:

Case 1: `Query with positive answer'

s

0

= s

1

^

^

N�S�Q

(i

0

N

= i

N

^ [(s; q) 2 N) i

N

6= 0])

or

Case 2: `Query with negative answer'

s

0

= s

2

^

^

N�S�Q

((s; q) 2= N) i

0

N

= i

N

)^

^

N�S�Q

[((s; q) 2 N ^N 2 I)) i

0

N

=1]^

^

N�S�Q

[((s; q) 2 N ^N 2 F)) (i

N

< jR

N

j ^ i

0

N

= i

N

+ 1)] :

The idea behind this construction is that we represent valid computations of A

by paths in a graph. Sequences of reading and writing steps are captured by the

sets R

s;q

and R

N

. Query steps leading from s via q to s

1

or S

2

lead to an update

of the counters. Positively answered queries, for instance, mean that all counters

remain unchanged since nothing is inserted in the history of asked questions, but

that for each set N containig (s; q) the counter for R

N

must be nonzero, since

there must exist a query leading from s to q which was posed previously. Hence,

there is an accepting calculation of A if and only if there is a way in the graph of

global states from the global start state to a global end state. The decidability

follows from the �niteness of the set K.

Because w 2 L(A) holds if and only if L(A) \ fwg is not empty, we get as a

consequence of the e�ective closure of the set-languages under intersection with

regular sets:

Corollary 7. The word problem for set-languages is decidable.

Theorem 8. There exist NP-complete set languages. Hence the membership

question for set languages is NP-hard.

Proof: From the coding F of a boolean formula in conjunctive normal form

we can compute (in logarithmic space) the word V $F where V is a list of all

variables occuring in F . A set automaton A �rst reads the partial word V and

guesses for every variable x

i

its value by either posing the query x

i

1 or x

i

0,

which, of course, are all answered negatively. Afterwards A reads the formula

F and guesses for every clause the ful�lling literal. A proves the correctness by

posing queries of the form x

i

1 or x

i

0, which now all have to be answered positive.

In this case A accepts, otherwhise A rejects.

Theorem 9. The word problem for set automata is NP-complete.

Proof: Because of Theorem 8 it su�ces to show that if the set automaton A

accepts an input x, then it can do so making only p(jxj) steps for a polynomial p.

Then a nondeterministic polynomial timebounded Turing machine can simulate

A.

We use the terminology and parameters of Theorem 6. Let n = jxj be the

length of the input x. Continuing the construction of Theorem 6 let g := jKj be

the number of global states. In the following, we distinguish in a computation

of A between special queries which are generated by both reading and writing

transitions and normal queries which are built using writing steps, only. During

an accepting calculation of A on x, A can ask at most n special queries. For

each positively answered special query asking the word �, we regard that query

which asked this query word � the �rst time as a special query, as well. This

means we have to consider at most 2n special queries. If the calculation of A on

x reaches a global state twice without asking a special query inbetween, then

this part of the calculation can be skipped and later positive queries related to

negative queries in this part can be replaced by an earlier query in the same R

N

.

(Such a query must already exist in the set, otherwise the global state would

have changed.) In this way we can reduce an accepting calculation of A on x to

making at most 2gn = O(n) queries.

Let (�

i

)

1�i�m

for some m = O(n) be the sequence of queries asked by A

during an arbitrary, but �xed successful computation on input x. Now let
 :=

f�

i

j1 � i � ng be the set of di�erent query words. For each
 2
 let index(
)

be the index of the �rst query asking for
 which inserted
 into
 and had

been answered negatively, i.e.: index(
) := MINfij�

i

=
g. We now decompose

each query �

i

into pieces such that no input symbol has been read while writing

a piece. Then we decompose each
 2
 into
 =

0

1

� � �

t

by overlaying the

decompositions of all queries �

i

with �

i

=
. Since there are at most n input

symbols to be read, we have t = O(n).

For each z; z

0

2 Z and for each M � Z � Z we consider the sets:

T

z;z

0

= f� 2 �

�

j(z; �; �; z

0

) 2 �

A

g

and

T

M

=

\

(z;z

0

)2M

T

z;z

0

:

We partition Z �Z into the two parts FIN:= fM � Z �ZjT

M

is �niteg and its

complement INF:= fM � Z �ZjT

M

is in�niteg. We now let c

1

be the length of

the longest word in some �nite T

M

, i.e.: c

1

:= MAX

M2FIN

MAX

v2T

M

jvj. Further

on, we let c

2

be the minimal integer such that the minimal period of the word

length of each in�nite T

M

is a divisor of c

2

, i.e. there exists an wrt. c

2

minimal

positive integer c

3

such that for all M 2 INF and for all v 2 T

M

with jvj > c

3

there exist words v

0

; v

00

2 T

M

such that jv

0

j = jvj � c

2

and jv

00

j = jvj + c

2

. We

now let c be the maximum of c

1

; c

2

; and c

3

.

The decomposition
 =

0

1

� � �

t

induced by the decomposition of some

queries �

i

1

; � � � ; �

i

r

means for each

j

the existence of pairs (z

1

; z

0

1

); � � � ; (z

r

; z

0

r

)

such that

j

has to be a member of T

z

i

;z

0

i

for each 1 � i � r. For each

j

let

M

j

be the set of these pairs of states. That is, the decomposition of
 asks

for

j

2 T

M

j

for each j. If now M

j

2 FIN for each 0 � j � t then we know

j
j � (t+ 1) � c

1

= O(n). Now let us assume, that M

j

2 INF for some 0 � j � t.

By the de�nition of c

2

we can replace each

j

for which T

M

j

is in�nite by some

0

j

of length j

0

j

j � c

3

. This would result in a query candidate

0

of length

j

0

j � (t+ 1) � c = O(n). The problem is that this modi�ed query could interfere

with other modi�ed or unmodi�ed elements of
. To avoid this we will increase

the length of

0

again such that we can be sure that all pumped queries have

di�erent length. So let i := index(
). We now simply increase the length of

0

in steps of length c

2

until we have (n + j) � c < j

0

j � (n + j + 1) � c. This

prevents any interference of the modi�ed queries with each other while keeping

j

0

j � (n + index(
) + 1) � c = O(n).

Thus we know, that if there is an accepting computation, there is also one

with O(n) queries of length O(n) which can be guessed in time bounded polyn-

imial in n.

Theorem 10. The word problem for set languages accepted by set automata

with only negative answers which is the trio generated by L

ur

is NP-complete.

Proof: Let F be the coding of a formula in KNF. By a log-reduction we can

construct the word x

1

$x

1

$$x

1

$$$:::x

1

$

k

1

x

2

$:::x

n

$

k

n

F

0

,where k

i

= #

x

i

(F) is the

number of occurances of the variable x

i

in F and F

0

is formula F modi�ed in a

way that the jth occurence of variable x

i

is coded by x

i

#

j

. While reading the �rst

part of the input, a set automaton A guesses an assignement for every variable

x

i

and either puts all the strings x

i

1; � � � ; x

i

1

k

i

into the set if the assignement

is false or all the strings x

i

0; � � � ; x

i

0

k

i

if the assignement is true. While reading

F

0

, for every clause A guesses the ful�lling literal and veri�es the correctness by

puting the query x

i

1

j

or x

i

0

j

, where j is given by the coding. So if and only

if for example x

i

is true, then it is possible to ask negatively for x

i

1

j

, which is

still not in the set. The automaton A only accepts if all answers to queries are

negative.

Finally, we mention without proof that in the deterministic case we get a

P-complete word problem:

Theorem 11. The word problem for deterministic set automata is P-complete.

4 Discussion

In designing the notion of a set automaton it was essential to restrict the model

severely in order to end up with a decidable emptiness problem. On the other

hand, this led to a rather `uncomfortable' model. It is still open, whether SET

is closed under Kleene's star. One possibility to gain a full AFL is to give set

automata the possibility of emptying the sets of asked queries. In this way we

come to the trio generated by the set (L

+;�

$)

�

. Here the symbol $ indicates the

operation of emptying the set of old queries. This trio is obviously closed under

the �{operation while still having a decidable emptiness problem.

On the other hand, with an NP-complete membership problem set automata

are of a rather high complexity. If we enhance the model by allowing to put a

query without puting the word into the set of previous questions, the complexity

results remain the same. But if we also allow to delete the word on the query

tape from the set, then the in�nite sets R

N

constructed in the proof of Theo-

rem 6 behave like counters without zero test which means that the word and the

emptyness problem become equivalent to the reachability problem in Petri nets.

Things change if we allow the set automata to put a query without em-

tying the query tape (and afterwards continue the query word). In this case

the word and the emptyness problem become undecidable since it is possi-

ble to simulate automata with two counters by set automata of the extended

type, even if there is only a single query symbol: The contents n

c

of counter

c 2 f0; 1g is represented by the set containing the words a

c

; a

c+4

; :::a

c+(o

c

)4

and

a

c+2

; a

c+6

; :::a

c+(o

c

+n

c

)4+2

. To perform a zero test of counter c, the set automa-

ton asks all queries a

c

; a

c+2

; :::a

c+(o

c

+1)4+2

, where exactly the last two must be

answerded negative. To perform a decrement of counter c, the set automaton

asks all queries a

c

; a

c+2

; :::a

c+(o

c

+1)4+2

, where exactly the query a

c+(o

c

+1)4

must

be answerded negative. To perform a increment of counter c, the set automaton

asks all queries a

c+2

; a

c+6

; :::a

c+(o

c

+n

c

)4+6

, where only the last query must be

answerded negative.

References

1. J. Berstel. Transductions and Context-Free Languages. Teubner Verlag, Stuttgart,

1979.

2. M.J. Fischer. Grammars with macro-like production. Ph.d. thesis, Harvard Univ.,

1968.

3. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Language, and Com-

putation. Addison-Wesley, Reading Mass., 1979.

4. Arto Salomaa. Formale Sprachen. Springer Verlag, 1974.

