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Abstract

We introduce the notions of control and communication structures for PRAM’s and relate
them to the concept of data-independence. Our main result is to characterize differences
between unbounded fan-in parallelism AC*, bounded fan-in parallelism NC*, and the
sequential classes DSPACE (logn) and LOG DCFL in terms of a PRAM’s communication
structure and instruction set. Further characterizations are given for parallel pointer
machines and the semi-unbounded fan-in circuit classes SAC*. In particular, we obtain
the first characterizations of NC* and DSPACE(logn) in terms of PRAM’s. Finally,
we introduce Index-PRAM’s — in some sense they have “built-in data-independence.”
We propose Index-PRAM’s as a tool for the development of data-independent parallel
algorithms. Index-PRAM’s serve for studying the essential differences between the above
mentioned complexity classes with respect to the underlying instruction set used.



1 Introduction

Parallel random access machines (PRAM’s) are the favorite model for design and anal-
ysis of parallel algorithms. Until recently the PRAM has been viewed as a purely the-
oretical model far from realization. To bridge the seemingly large gap between theory
(PRAM’s) and practice (bounded degree networks with distributed memory) there are
basically two main approaches. One deals with the realization of full general purpose
machines [26, 40] on bounded degree networks, using techniques like hashing and slack-
ness [1, 2, 45, 54|, having to fight against problems like hardware costs, scalableness,
and interconnect length [17, 59]. The other approach is to restrict the PRAM models in
use [10, 27|, that is, to consider restricted forms of PRAM’s [3, 4, 28] or to propagate even
weaker models [17]. The idea to consider restricted models is additionally supported by
the observation that many of the current tasks requiring a large amount of computational
power (e.g., most of the Grand Challenges [39, 50]) seem to be of a simple nature without
a need for the general purpose overhead that is necessary to simulate a full PRAM. Their
communication and control structures are simple enough that an efficient implementa-
tion on existing architectures working with distributed memories and message passing
mechanisms is possible.

This paper is devoted to the investigation of restricting concepts relevant for an efficient
realization of PRAM algorithms on existing distributed memory machines (thus, we follow
the second approach described above) and to convert them into a formal notion. So we
study the concept of data-independence of communication and control and make use of
it to obtain subclasses of conventional PRAM complexity classes. We do not do this by
introducing new models and classes, but by applying our formal notion to existing PRAM
classes. The surprising fact is that these restrictions again lead to well-known classes of
complexity theory. In particular, this enables the comparison of these classes with respect
to various PRAM restrictions to be applied.

A communication and control structure independent of the input (other authors, espe-
cially in automata theory, also use the term oblivious) is an important criterion for efficient
realization on distributed memory machines [24, 34, 51, 58]. Here by data-independence
we mean independence of the concrete input word except for its length. Let us consider
graph problems as an illustration: There are two simple representations of graphs. One
are adjacency matrices and the other one are edge lists. Algorithms working on adjacency
matrices usually show data-independent behavior (e.g., Warshall algorithm), whereas al-
gorithms using edge lists (e.g., pointer jumping or list ranking problem) show inherent
dependence of the communication structure in the underlying data — the addresses of
global memory cells used strongly depend on the list structure.

We study data-independence from a complexity theoretical point of view. We dis-
tinguish between the two aspects reading and writing of a communication structure and
introduce data-independence for control flow such that we can separate three aspects of
dynamic, but input-independent behavior: Data-independence of control means that the
statement executed by a processor of a PRAM only depends on time, processor iden-
tification number (PID for short), and length of the input, but not on the input itself.
Data-independence of communication structure means that in global read accesses (resp.,
the receipt of messages) or write accesses (resp., the sending of messages) the addresses
of shared memory cells only depend on time, PID, and input length.

The main result of this work is the characterization of several complexity classes within
the unified framework of data-independence: Unbounded fan-in parallelism, represented



by the classes AC*, is characterized by a data-dependent control or write structure in
combination with a data-independent read structure. Bounded fan-in parallelism, repre-
sented by the classes NC¥, is characterized by computations where all three structures
have to be data-independent. The remaining case, where we have a data-dependent
read structure but data-independent control and write structures, leads to characteri-
zations of the sequential classes DSPACE(logn), LOGDCFL, and, as an intermediate
class defined by a parallel device, of Cook’s parallel pointer machines [13, 16] operating
in logarithmic time. Eventually, we discuss the power of Akl's concurrent write OR-
feature for PRAM’s [5] and obtain a characterization of LOGCFL and, more generally,
of Venkateswaran’s semi-unbounded fan-in circuit classes SAC* [56] by monotonic, fully
data-independent OR-PRAM’s.

To summarize, the gist of our work is that with respect to accessing global shared
memory of PRAM’s,

1. unbounded fan-in parallelism corresponds to data-dependent writes,
2. bounded fan-in parallelism corresponds to data-independent reads and writes, and

3. sequential computations correspond to data-dependent reads and data-independent
writes.

We obtain the above results not only for PRAM’s with structurally restricted control
and communication structures, but also for some new type of PRAM’s that are “data-
independent by construction.” The basic idea is to consider PRAM’s where the indexing
of global memory cells only is possible through special local index registers. The value
of index registers only depends on time, PID, and input length, but not the actual input
data. In such a way, we present a concrete machine model, called Index-PRAM, that
offers the prospect of developing algorithms that are efficiently implementable on exist-
ing distributed memory machines. In addition, within the framework of Index-PRAM’s
it is possible to study the essential differences between various complexity classes with
respect to the instruction set used by the underlying Index-PRAM. For example, it will
turn out that the fundamental difference between DSPACE(logn) and parallel pointer
machines [16] operating in logarithmic time is that for the first only a restricted form of
conditional assignments may be used — the condition may only depend on the value of a
bit of the input word and must not depend on a result of a previous computation.

The paper is organized as follows. In the next section we provide basic definitions and
concepts relevant for our work. In the third section we present the notion of structural
data-independence of communication and control. This enables the characterizations
discussed above. In the fourth section we define Index-PRAM’s. We give characterizations
by Index-PRAM’s that parallel those of the third section. Finally, we conclude this paper
with a discussion of the main benefits of our work with respect to a more practical parallel
complexity theory and some directions for future research.

2 Preliminaries

We assume familiarity with the basic concepts and notations of computational complex-
ity theory [8, 30, 32, 43, 61]. By DSPACE(logn) (DTIME(logn)) we denote the class
of languages accepted by deterministic Turing machines whose working space (resp. run-
ning time) is bounded by logn. We refer to the class of languages logspace many-one



reducible to context-free languages (deterministic context-free languages) as LOGCFL
(LOGDCFL). In the following we shortly review some concepts and facts of parallel
complexity theory. For more details we refer to the literature [14, 22, 31, 33, 44].

2.1 Uniform circuits

A Boolean circuit C' is a finite, acyclic, directed graph. Nodes of in-degree (out-degree)
zero are inputs (outputs). Inner nodes with non-zero in-degree are labeled by boolean
functions, throughout this paper by negations, disjunctions, and conjunctions. We call the
inner nodes gates and the edges wires. Given an assignment of boolean values to all inputs,
each gate evaluates to either true (or 1) or false (or 0) according to the interconnection
structure of C'. If C' has just one output, we use C' to recognize binary languages, defining
L(C) to be the set of assignments to the inputs which let the output evaluate to true.
The size of C'is the number of its gates, not counting the inputs. The depth of C' is the
length of the longest path connecting an input node with an output node.

A circuit family C is a set {Cy|n > 0} of circuits, where C,, has exactly n inputs.
Family C has polynomial size if for some polynomial p(-), the size of each C,, is bounded
by p(n). Similarly, the depth of C is bounded by log*n if for some constant ¢ > 0 the
depth of each C,, is less than c-logfn. If for some constant integer m (usually m = 2) the
in-degree of each gate in each (), is bounded by m, then C' is of bounded fan-in. If there
is no bound on the in-degrees, then C' is of unbounded fan-in.

In order to relate classes of languages defined by circuits with standard complexity
classes, it is necessary to consider uniform circuit families by requiring that the members
of a circuit family are “sufficiently similar” to each other. There are several uniformity
conditions which fortunately turned out to be equivalent in most cases [48].

For the uniformity notion used in this paper we have to shortly introduce alternating
Turing machines (ATM’s) [9]. ATM’s are a generalization of nondeterministic TM’s:
states are partitioned into “existential” and “universal” states. All computation paths
starting in a universal configuration paths have to lead to an accepting configuration.
Existential configurations are the same as we know for NTM’s.

Throughout the paper we use the notion of Ug«-uniformity for circuits [48]. A circuit
family of size z(n) and depth ¢(n) is called Ug+-uniform if there is an ATM M recognizing
the extended connection language Ly in time O(t(n)) and space log(z(n)). Herein, M is
called the uniformity machine and Lo essentially describes the interconnection structure
of two gates of the circuit each time. The details, which are unimportant for this paper,
can be found in Ruzzo’s work [48]. If not stated otherwise, we always assume that Lgc can
even be recognized by a logarithmically time bounded ATM, that is, in ATIME (logn).
The main thing of importance for us is that the uniformity machine only is provided with
the length of the input word, and not the concrete input word itself. Thus for fixed input
length n always one particular circuit is constructed.

Clearly, each ATIME (log n)-uniform circuit is also DSPACE (log n)-uniform, because
ATIME(logn) € DSPACE(logn). The classes NO* (AC*, respectively) denote the fam-
ilies of languages recognizable by ATIME (logn)-uniform, polynomial sized, O(log* n)-
depth bounded circuit families of bounded (unbounded, respectively) fan-in. Recently,
Venkateswaran [56] introduced the classes SAC* of languages recognized by ATIME (log n)-
uniform, polynomial sized, O(log" n) depth bounded circuits of semi-unbounded fan-in.
That is, only OR-gates may have unbounded fan-in and negations are forbidden except



for the input gates. The inclusions
NC* C SAC* C AC* C NC**!

and
NC' C DSPACE(logn) C SAC*

are well-known [32, 33, 56].

2.2 Parallel Random Access Machines

A PRAM is a set of Random Access Machines, called processors, that work synchronously
and communicate via a global shared memory. Each PRAM computation step takes one
time unit regardless whether it performs a local or a global (i.e., remote) operation. We
assume the standard definition of PRAM’s [31, 33]. All processors execute in parallel
the same sequence of statements Sy, Ss, ..., Sk, which is independent of the input. In
fact, allowing conditional jumps for PRAM’s only guarantees a single program, multiple
data modus instead of the single instruction, multiple data modus [6, pages 111-112,466]
we are assuming here. But due to the constant program size of the PRAM it is easy to
always achieve the single instruction, multiple data modus. For the ease of presentation,
we assume throughout the paper that each processor only has a constant number of local
memory cells. This is no restriction, since we can use global memory instead. Hence our
model of a PRAM has no indirect addressing of local memory. Let each processor have
a constant amount of local memory cells Ly, La, ..., Lp, and let Gy, G, ..., Gyn) be
the cells of global memory, where n is the length of the input and ¢ is some polynomial.
The input is given bitwise in G, ...,G,. A usual instruction set is shown below. We do
not fix the instructions yet, but stress that it is always of finite size. (Subsequently, a, b,
and ¢ denote some constants, LENGTH denotes the length of the input n, and NOOP
means “no operation.”)

Constants : L, := (constant), L, := LENGTH, or L, := PIN,
Global Write : G, = Ly,

Global Read : L, = Gyp,,

Local Assignment : Lg := Ly,

Conditional Assignment : if L, > 0 then (assignment),

Binary Operations : L, := Lyo L.,

Jumps : goto S, or if L, > 0 then goto Sy,

Others : if L, > 0 then HALT or if L, > 0 then NOOP.

All PRAM’s in this paper do not use more than a polynomial number of processors.
In order to get a reasonable hardware cost measure for PRAM’s, we demand that they to
have (as usual) logarithmically bounded word length. This means that a PRAM working
on inputs of length n, generates and uses only numbers of size polynomial in n. For
the sake of simplicity of presentation, we use PRAM’s only to accept languages and not
to compute functions. The contents of global memory cell G; determines acceptance or
rejection at the end of the computation.

We consider two types of write access to global memory. A machine with Concurrent
Write access allows simultaneous writing of several processors into the same memory
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cell. We assume that the value of an arbitrary writer is actually stored (ARBITRARY-
CRCW-PRAM). A machine with Owner Write access is more restricted by assigning to
each cell of global memory a processor, called write-owner, that is the only one allowed
to write into this memory cell [20]. More common than the owner concept in formulating
algorithms is exclusive access, where we only demand that for each point of time there
is at most one processor writing into a cell. Exclusive write PRAM’s are intermediate in
computational power between owner write and concurrent write PRAM’s and the same
holds for read access. While the owner and the concurrent concept are closely related to
determinism and nondeterminism [20, 37, 52|, the concept of exclusiveness corresponds
to unambiguity [36, 37, 42], which explains the unconstructive features of this concept.
Correspondingly, we get two ways to manage read access: Concurrent Read and Owner
Read. In this way we get four versions of PRAM’s, denoted as XRYW-PRAM’s with
X,Y € {0,C}, XR specifying the type of read access and YW that of the write access.

We denote the class of languages recognizable in time O(f) by XRYW-PRAM’s with
a polynomial number of processors by XRYW-TIME(f(n)). For XRYW -TIME (log" n)
we shortly write XRYW*. We know the relationships (for & > 1)

CRCW* = AC* [52],

NC* C OROW" C CROW* C SAC* [47, 56],
CROW' = LOGDCFL [20], and
DSPACE(logn) € OROW! [47].

In CRCW-PRAM’s, global memory behaves like a shared memory, since each proces-
sor can access each cell of global memory. In the most restricted model, the OROW-
PRAM, however, the global memory is deteriorated to a set of one-directional channels
between pairs of processors. Thus an OROW-PRAM is something like a completely con-
nected synchronous network. Although this model seems to be much more restricted than
CRCW-PRAM'’s, the relation

NC* C OROW* C CROW* C SAC* C CRCW* = AC* C NC**!

indicates that it is a model “as parallel as” a CRCW-PRAM. With respect to the imple-
mentation of algorithms on existing parallel machines, results of this work demonstrate
that even OROW-PRAM’s are a parallel model that in some sense is still too power-
ful. That means algorithms efficiently realizable on OROW-PRAM’s still lack some of
the features (that is, restrictions) that are necessary for an efficient implementation on
distributed memory machines.

2.3 Parallel Pointer Machines

Parallel pointer machines (PPM’s) were introduced by Cook [13] and are studied in
several papers [16, 18, 19, 29, 35]. In earlier papers [13, 18, 29, 35] the PPM is called
hardware modification machine (HMM). A PPM consists of a finite collection of finite
state transducers, which are called units. Each unit is connected to a constant number of
other units (points to other units). The units operate synchronously. Each unit receives a
constant number of input symbols from other units via the pointer connection, produces
according to the inputs read and the current state a constant number of outputs, and
changes its state according to the transition function, which is the same for all units.
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In each step, a unit may modify its pointers to other units. That is, it may change its
pointers to show to units that are reachable via pointers by paths of length at most two.
Initially, a single unit Uy is the only one active, starting in some state qp. At each time
step an active unit may activate another one. An input word w is accepted by a PPM
if Uy enters an accepting state. A PPM accesses an input word w in the following way.
The starting unit U, points to the root of a fixed, complete binary tree of special units
that do not count for the hardware costs of the PPM. The input word w is stored from
left to right in the leaf nodes of the tree. Leaf nodes point to their neighboring leaf nodes
and to a parent node. Each inner node of the tree has pointers to its parent and its two
children nodes.

An essential property of PPM’s according to Lam and Ruzzo [35] is that they capture
formally the notion of parallel computation by pointer manipulation. In addition, PPM’s,
in contrast to e.g. PRAM’s, have the advantage that the unit of hardware is a finite state
transducer of constant size [16, 18]. So PPM’s are a parallel model less powerful than
PRAM’s and have the flavor to be a more realistic model for existing parallel computers
than PRAM’s are. By PPM-TIME((t(n)) we denote the class of languages recognizable
in time O(t(n)) by PPM’s using a polynomial amount of hardware, i.e., a polynomial
number of units. We write PPM* for PPM -TIME (log" n).

Lam and Ruzzo [35] showed that PPM’s and an arithmetically restricted form of
CROW-PRAM’s (rCROW'’s for short) are equivalent. More precisely, arithmetic restric-
tion means that the arithmetic capabilities of the CROW-PRAM are limited to incre-
mentation (“+17) and doubling (“x2”). Recently, Dymond, Fich, Nishimura, Ragde, and
Ruzzo [19] demonstrated that any step-by-step simulation of a full n-processor CROW-
PRAM by a PPM requires time ©(loglogn) per step. This strongly suggests a separation
between CROW-PRAM’s and PPM’s and thus of LOGDCFL and DSPACE((logn), be-
cause CROW -TIME(log n) = LOGDCFL [20] and DSPACE(logn) C PPM" [16, 18].

2.4 Simple PRAM’s

In this subsection we introduce two PRAM properties that restrict the power of PRAM’s,
leading to so-called simple PRAM’s. Investigating Stockmeyer and Vishkin’s [52] proof
of equivalence between CRCW-PRAM’s and circuits of unbounded fan-in, we show that
each language in AC* can be accepted by such simple CRCW-PRAM’s in time O(log" n).
This result is a base for considerations in the next section.

Definition 1 We call a PRAM simple if its instruction set fulfills two restrictions:
M: All operations f used to modify data are monadic, i.e., of the form “L, := f(L;).”

S: All operations are computable by an ATIME(log n)-uniform, bounded fan-in circuit
of constant depth. We call these operations NC"-computable or simple.

A predicate “L, > 07 in the previous instruction set is not NC’-computable, since we
would have to compute the AND of all bits of L,. We overcome this problem by using
hence-forward the predicate “L, is odd”, i.e., look whether the last bit of L, is 1. We
write this predicate “L, > 0”. In essence, this restriction is only important for the char-
acterization of NC* (k > 0). In other cases as e.g. the characterization of DSPACE (logn)
this requirement plays no role. Although the above restrictions are apparently very severe
— neither addition nor incrementation could be done directly by such a simple PRAM in



constant time — nevertheless they do not restrict decisively the power of CRCW-PRAM’s
with at least logarithmic running time.

Proposition 2 Fork > 1, we have L € AC* if and only if L can be accepted by a simple
CRCW-PRAM in time O(log" n).

Proof. The inclusion from right to left is obvious, since every simple CRCW-PRAM
can trivially be simulated by a (non-simple) CRCW-PRAM. Thus the characterization of
AC* by CRCW-PRAM’s [52] yields the desired result.

The idea of the proof for the reverse inclusion is to look at Stockmeyer and Vishkin’s
[52] simulation of an AC*-circuit by a CRCW-PRAM. For this purpose, we have to take
care of two parts. First, assume that we are given a pointer structure in global memory
representing the interconnection structure of the circuit. The pointer structure permits
the usual simulation of a circuit of unbounded fan-in [52]. With each wire of C there
is associated a processor P. Processor P gets the addresses of two global memory cells
representing the source and the sink of a wire corresponding to P. The gist of the
simulation of C' is that each P asks O(log"n)-times the value of its source and updates
correspondingly the value of its sink. This can be done alone with global reads and writes
and a conditional assignment.

It remains to be shown how a simple CRCW-PRAM can construct a description of
the circuit in global memory. In order to set up a pointer structure representing an
ACF-circuit C, the simple CRCW-PRAM A has to simulate the uniformity machine B
of C' in time O(log®n). This is done by interpreting the PIN (processor identification
number) of a processor as a configuration of B. Then one makes use of the fact that the
one-step-successors of a configuration of an alternating Turing machine can be computed
by an NC°-circuit [8, Volume I, pages 104-109] Thus it is possible to determine the suc-
cessor configurations of a given configuration (i.e., the PIN’s of constantly many PRAM
processors) with the monadic NC%operations a simple PRAM is equipped with. This
enables A to compute for each configuration the uniquely determined processors repre-
senting the successor configurations. In this way, A constructs the configuration forest
of B in constant time. Then A simply evaluates the configuration forest of B in logarith-
mic time making use of the evaluation technique used for circuits of bounded fan-in [33]:
Associate processors with configurations. A processor reads sequentially in constant time
all “inputs” of its configuration (like e.g. predecessor configurations or bits of the input
word of the circuit).

In a messy but straightforward way, the simulation of a language recognizing ATM by
the simple CRCW-PRAM can be generalized to the simulation of the uniformity machine.
This eventually yields a pointer structure in global memory representing the AC*-circuit.
O

The simulation of the uniformity machine of the circuit only depends on length n
of input word w. The actual simulation of an AC*-circuit by a simple CRCW-PRAM
essentially consists of repeating O(log"n) times an instruction of the form “if G; ->
0 then G; := 17, which can be simulated by “L, := G;; if L, > 0then G; :=1". So the
control flow of the simulating PRAM does not depend on the input word w except for its
length n. The indirect reading of GG; in the above instruction also is done independent
of w — address 7 does not depend on w. The only thing that depends on w is whether
the write on G; takes place. Altogether, this will lead to notions of data-(in)dependent
control, read, and write structures, respectively. In the next section we will formally
introduce these notions.
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3 Data-Independences of control and communica-
tion structures

Motivated by the problem to characterize the class of problems that are efficiently im-
plementable on existing, asynchronous parallel machines with distributed memory, the
criterion of data-independence has been considered in an informal way [24, 34, 51]. The
underlying idea is the fact that an algorithm with simple, data-independent communica-
tion pattern can be easier partitioned and desynchronized at compile time than one with
a more dynamic behavior. Vishkin and Wigderson [58] studied the prospects of data-
independence in the context of reducing the size of global memory used during a PRAM
algorithm. Cook, Dwork, and Reischuk [15] considered oblivious (i.e., data-independent)
and semi-oblivious PRAM’s in order to prove lower bounds.

3.1 Structural definition of data-independence

In order to formally introduce data-independence, it is first of all necessary to formalize
notions like communication pattern or dynamic behavior. We distinguish between three
aspects of dynamic, input-dependent behavior:

i) flow of control,
ii) read access (or the receipt of messages), and
iii) write access (or the sending of messages).

Data-independence of control means that the statement executed by a processor of a
PRAM depends on the time, the processor identification number, and the length of the
input, only, but not on the input itself. If we knew the control flow of each processor
in advance, we could determine every direct read and every direct write. In order to
determine indirect reads and writes we need to know the content of the participating
indexing register. That is why we are mainly interested in indirect reads and indirect
writes.

Before we come to the formal definitions of these three aspects, we have to separate
the control aspect from the communication aspect. Consider the following conditional
assignment.

(%) Sy if Ly > 0then G, := L;
Syt

It is possible to simulate the conditional assignment S, with the help of conditional jumps.
The following sequence of instructions has the same effect as ().

() Sy if Ly > 0then goto S, o3
Sﬂ+1/3 . gOtO SM+1;
Su+2/3 : GLb = L¢;

Slﬁ”l .

In (%x) the problem whether the indirect write takes place is a question whether the
control structure, that is, the index of a statement executed at a certain point of time,
is data-dependent. It depends on the value of L, whether the PRAM executes S,;1/3
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or Syt2/3. On the other hand, (*) has a data-independent control structure. Thus (x)
transfers this question into the communication structure. In order to clearly separate
communication and control aspects, we will handle those cases always in the manner
of (%) and not in that of (xx). So we always get data-independent control structures in
the following.

Definition 3 Let A be a T'(n) time bounded PRAM with p(n) processors and a program
of length k. For any input w of length n we consider the following sets, where 1 < 1,7 <
p(n),1<t<T(n),and 1 <I<k:

a) By the control structure CS 4 and the execution structure ES 4 we refer to the flow
of control of A:

CSa(w) = {(n,t,i,1)| in step t processor i executes statement [. },

ESs(w) := {(n,t,i,1,b) | in step t processor i executes statement [ and
if [ is a conditional assignment, then b contains the truth
value of the condition, and contains true, otherwise }.

b) By the read structure RS, the write structure WS 4, and the semi-write struc-
ture SWS 4 we refer to the communication structure of A:

RS 4(w) :== {(n,t,i,7) | in step ¢ processor i executes a (conditional)
indirect read assignment of the form “(if L. > 0 then)
L,:=Gyr,” (L. > 0is true) and L, contains value j },
WS a(w) :== {(n,t,i,7) | in step ¢ processor i executes a (conditional)
indirect write assignment of the form “(if L. > 0 then)
Gr, = Ly” (L. > 0is true) and L, contains value j },
SWSa(w) := {(n,t,i,7) | in step ¢ processor i executes a (conditional)
indirect write assignment of the form “(if L. > 0 then)
Gr, = Ly” and L, contains value j}.

¢) A structure XS4, X € {C, E, R,W,SW} is called data-independent if for all input
words w and w’ of same length, X5 4(w) and XS 4(w’) coincide. In this case we set

XSA = U XSA(U)).

weX*

When we speak of communication structure we address to both the read and the write
structure. Note that the only difference between semi-write and write structure is that
in the latter we know whether the if-part of a conditional assignment evaluates to true.
There is a close connection between semi-write structures and what Cook, Dwork, and
Reischuk [15] call semi-oblivious PRAM’s. For semi-oblivious PRAM’s also only whether
or not a processor writes into a cell may depend on the input. We close this subsection
with a fundamental problem of parallel algorithmics and exemplify herein the notions of
Definition 3.

Example 1 (Pointer Jumping, List Ranking) Let’s have two arrays S[1...N] of suc-
cessor and P[1...N] of predecessor nodes describing a set of acyclic chains for nodes in
{1,..., N}. Assume that each node is member of a chain beginning in some starting node
that is marked by P[i] = i, and ending in some final node that is marked by S[j] = j.
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That is we have “If k # [ then S[k] = [ < P[l] = k”. The task is to determine for
each node both the final node in the chain of its successors and the first node in the chain
of its predecessors. There are intricate algorithms that solve this problem in optimal
O(log N) steps on a PRAM with O(N/log N) processors [7, 11]. To illustrate the notion
of data-independence, we sketch two simple algorithms that use O(N) processors:

a) Assign to each index 1 < i < N two processors QY and QF that execute log N
times S[i] := S[S[i]] resp. P[i] := P[P][i]]. Both the control structure and the write
structure of this algorithm are data-independent. On the other hand, we use the
inputs S[i] and P[i] as index values, i.e., addresses, and thus the read structure is
data-dependent.

b) Another possibility is to use a variation of Rossmanith’s OROW-algorithm [47].
Its underlying idea is that now @QF and QF execute log N times the statements
S[P[i]] := S[i] resp. P[S[i]] := PJi]. Here both the control structure and the read
structure are data-independent, whereas the write structure is data-dependent.

Above we solved the pointer jumping problem either with a data-independent read or
with a data-independent write structure. To give a logarithmic time algorithm with data-
independent read and write structure would mean a major breakthrough in complexity
theory, because (as will be proved in the next subsection) as a consequence we had NC*! =
DSPACE (logn) and thus ATIME(n) = DSPACE(n).

If we assume, however, that the input for the list ranking problem is given in a different
way, namely in form of an adjacency matrix instead of a pointer list, we can obtain
a logarithmic time algorithm that has data-independent control, read, and semi-write
structure:

Example 1 (continued) Now assume that global memory cell G; jy initially contains the
value true if there is a connection from node i to node j within the list and contains
value false, otherwise. We use the repeated squaring technique. The processor whose
PID is (i, k, j) mainly repeats a logarithmic number of times an instruction

if Gigy NGy then G g = true.

After that for each node we may easily determine whether there are connections to the
starting or the final node of the list.

We get, however, the additional data-independence of the semi-write structure at the
expense of a cubic instead of a linear number of processors. On the other hand, the above
algorithm is monotonic in the sense that a value true of a global cell is never overwritten
by a value false. If we allow that a value true is overwritten by a false, then, together with
the feature of conditional writes where only the value of the condition is data-dependent,
we already can simulate AC*-circuits. This will become important when we later on
consider PRAM’s with OR write conflict resolution [5] instead of CRCW-PRAM’s with
ARBITRARY write conflict resolution.

3.2 Characterizing complexity classes by PRAM’s with data-
independent communication structures

In this subsection we will develop characterizations of the complexity classes AC*, NC*,
DSPACE(logn), LOGDCFL, PPM*, and SAC* in terms of the “structural sets” intro-
duced in Definition 3.
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Proposition 2 in Subsection 2.4 gives a characterization of AC* by simple CRCW-
PRAM’s. Its proof reviews the inclusions CRCW — TIM E(log"n) C AC* C CRCW —
TIME (logk n) of Stockmeyer and Vishkin [52]. We now can easily classify AC* making
use of the new notions given in Definition 3.

Theorem 4 For k > 1, we have L € AC* if and only if L is recognized by a simple
CRCW-PRAM A in time O(logk n), the control, read , and semi-write structure of which
all are data-independent, and CS 4, RS 4, and SWS 4 are in ATIME(logn).

Proof. In Proposition 2 we already showed that each language in AC* can be recognized
by a simple CRCW-PRAM in time O(logk n). In addition, in the remarks following
Proposition 2 we pointed out that the simulation of an AC*-circuit can be done with data-
independent control and read structures. The only thing depending on the concrete input
word was whether the if-part of a conditional global write instruction evaluated to true
or false. Thus we also get a data-independent semi-write structure. Due to the simplicity
of the circuit simulation we immediately have CS 4, RS 4, SWS 4 € ATIME (logn) for this
part of the simulation. So it remains to consider the construction of the circuit in global
memory of PRAM A that is, the simulation of the circuit’s uniformity machine by A.
Because the simulated uniformity machine is an ATIME (logn)-machine, we also have
CSa, RS A, SWS4 € ATIME(logn) for the construction phase. The data-independence
of the control, read, and semi-write structures for this phase follows from the “data-
independent definition” of a uniformity machine. O

The next theorem yields the first characterization of NC* in terms of PRAM’s. Re-
cently, Regan [46] gave another characterization of N C* by a parallel vector model, using
a quite different approach.

Theorem 5 For k > 1,we have L € NC* if and only if L is recognized by a simple
CRCW-PRAM A in time O(logk n), the control, read, and write structures of which all
are data-independent, and CS 4, RS 4, and WS 4 are in ATIME (logn).

Proof. “if”: To simulate a PRAM by a circuit, we work with recursion constructions
similar to those in several other papers [20, 21, 23, 36, 42]. We consider functions GLOBAL
and LOCAL,, stating

i) GLOBAL(t,i) = j < global memory cell ¢ contains after step ¢ value j, and
ii) LOCAL,(t,p) = j < local memory cell a of processor p after step ¢ contains value j.

In the circuit we will construct to each such function value we assign a bunch of
logarithmically many gates that represent the value. The main work is hidden in the
interconnection structure of the circuit and is done by the uniformity machine.

We go through the instructions of the PRAM (see Subsection 2.2 for the underlying
instruction set) and show how to compute LOCAL, and GLOBAL for all possible cases.
Because the central ideas apply to several similar contexts, we only present the typical
and most difficult cases.
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Computation of GLOBAL(t,i):

To compute the interconnection structure for GLOBAL(t,i)-gates, the uniformity ma-
chine U determines in alternating, logarithmic time whether there is an element (n, t, p,7)
in WS 4. This is done in the following way. First, U existentially guesses in logarithmic
time the logarithmically many bits of a polynomially bounded value p. Since n, t, and
are already known to U, the question whether (n,t,p,i) € WS4 holds can subsequently
be answered by U in alternating, logarithmic time. If (n,t,p,i) ¢ WS 4, then each bit of
GLOBAL(t, i) is connected with GLOBAL(t — 1,i). If (n,t,p,i) € WSy, then U deter-
mines the uniquely existing p such that (n,t,p, u) € C'S4. Now U knows that statement
S,, executed by processor p at time ¢ is either “G, := Ly” or “if L, > 0then Gy, = Ly”,
where L. > 01is true. In either case we connect GLOBAL(t, i) with the gates representing
LOCALy(t — 1,p).

Computation of LOCAL,(t,p):

To compute LOCAL,(t,p), we first let the uniformity machine U determine the uniquely
existing p such that (n,t,p, ) € CS4. Let S, be the statement executed at time ¢ by
processor p. We have to consider several cases.

1. 5, = “L, :== Gp,”: Here U searches for the uniquely existing index j such that
(n,t,p,7) € RSa. Then U connects LOCAL,(t,p) with GLOBAL(t —1,5).!

2.8, = “f L. > 0then L, := Ly”: The uniformity machine builds two interme-
diate bunches of gates. Each gate of LOCAL,(t — 1,p) is conjoined with the last
bit of LOCAL.(t — 1,p), giving the bunch LOCAL}“(t — 1, p). This coincides with
LOCALy(t—1,p) if LOCAL.(t—1,p) > 0andis (0,...,0) otherwise. Correspond-
ingly, U conjoins each gate of LOCAL,(t — 1,p) with the negation of the last bit
of LOCAL.(t — 1,p), yielding the bunch LOCAL_“(t — 1,p). This coincides with
LOCAL,(t —1,p) if not LOCAL,(t —1,p) > 0, and is (0,...,0) otherwise. Even-
tually, U connects LOCAL,(t,p) with the bitwise disjunction of LOCAL_“(t — 1,p)
and LOCALS(t — 1,p).

3.8, = “L, := f(Ly)”: We know that function f is computable in NC°. Thus
U connects LOCALy(t — 1, p) with the input gates of the NC"-circuit for f and lets
the outputs of this circuit be LOCAL,(t,p).

4. Other cases: If, for example, S, = “L, := PID,” then U connects LOCAL,(t,p)
to the binary coding of p. The other cases “L, := LENGTH,” “L, := (constant),”
“L, = L;” are of similar simplicity. If S, is a statement where we have no assign-
ment to L,, then U connects LOCAL,(t,p) to LOCAL,(t —1,p).

So U constructs an ATIME (logn)-uniform circuit of bounded fan-in of depth O(log* n).
Hence L(A) is in NC*.
“only if”: Consider the proofs of Proposition 2 and Theorem 4. If the simulated circuit is
of bounded fan-in, we can replace the statement if G; > 0 then G; := 1 used there by a
program part executed by a single processor attached with each gate, asking sequentially
all inputs. This additionally results in a data-independent write structure. Observe that

I'We simulate the conditional global read statement if L, > 0then L, := G, by the two instructions
Ly =Gr,;if L. > 0then L, := Lg. This trick does not work for conditional global write statements.
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uniformity machines (and thus their simulations) work data-independent. The inclusion
of CS4, RSa, WS4 in ATIME (log n) works in the same way as in the proof of Theorem 4.
|

Let us shortly recapitulate what made the fundamental difference between the char-
acterizations of AC* and NC*. For NC* we had to “fix everything.” Neither the read
nor the write structure are allowed to be data-dependent. By way of contrast, for AC*
“everything is free.” Both read and write structure may be data-dependent. But it is not
necessary to allow so much in order to get AC*. As we saw in Theorem 4, we can even
demand for data-independent read and semi-write structures. For write instructions this
meant that we used conditional assignments of the form “if L. > 0then G, := L;,” where
everything was data-independent except for the value of the condition. On the contrary,
we can get by on without any conditional assignment if we have statements of the form
G, = Ly, where now the indexing value L, is data-dependent: Assume that L. only
contains values 0 or 1. The basic idea is to simulate

if Le > 0then G = Ly

by the two instructions
Ly, =7+ L.—1,Gp, = Ly.

Note that if L. > 0 is false, then a write into G,_; occurs. This requires that G;_; is a
cell without importance for the computation.

Now it’s only natural to ask what happens if we do not allow data-dependent writes,
but data-dependent reads instead. Does that also suffice to get AC*? No. Data-dependent
reads only are enough for a characterization of DSPACE (logn). This may indicate that
in parallel computations writing is more powerful than reading.

Theorem 6 L € DSPACE(logn) if and only if L is recognized by a simple CRCW-
PRAM A in O(logn) time, A has data-independent control and write structures, a data-
dependent execution structure, and CS4, WS4, and ES(w) (on input word w) are in

ATIME (logn).

Proof. “if”: Again the simulation of PRAM A works with recursive constructions.
We use functions GLOBAL(t,i) and LOCAL,(t,p), where GLOBAL(t,i1) = j if global
memory cell ¢ contains after step ¢ value j and LOCAL,(t,p) = j if local memory cell a
of processor p contains after step ¢ value j. The main idea is to compute the values
of GLOBAL and LOCAL, by a recursion of logarithmic depth that stacks only items of
constant length. Thus we can keep the stack on the logarithmically bounded working tape.
The working tape of the simulating, logarithmically space bounded Turing machine M
is organized as follows. First, M has a stack of logarithmic depth that stores statement
numbers and certain markings concerning the progress of the simulation. The number of
statements is bounded by a constant, and thus the stack fits onto the working tape. Then
M has space to store the parameters (step number, cell number, processor number) and
the intermediate result of the last recursive call. We proceed in the same way as in the
proof of Theorem 5. We begin with the computation of GLOBAL(t,i). Remember that
a cell of global memory can only be affected by indirect writes.
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Computation of GLOBAL(t,i):

To find out the value of GLOBAL(t,i) in logarithmic space, M exhibits whether there
exists a p such that (n,t,p,i) € WS,4. This is possible due to the well-known inclu-
sion ATIME(logn) € DSPACE(logn). If there is no such p, then M knows that no
processor tried to write into G; and M recursively computes GLOBAL(t — 1,4) by stack-
ing a symbol “no write.” Otherwise M computes the unique statement number p such
that (n,t,p, u,v) € ESa(w). Statement S, must be either of the form “Gy, = Ly” or
“if L. > 0then Gp, := Ly” and in the latter case we have L. > 0 (resp. v = true). So
M recursively computes LOCAL(t — 1, p), stacking the statement number .

Computation of LOCAL,(t,p):

To compute LOCAL,(t,p), M first determines an index p such that (n,t,p,p,v) €
ES o(w). The recursion is now guided by the type of statement S,,.

—

1. S, = “L, := Gp,”: The simulating machine M goes into the recursion by computing
LOCALy(t — 1,p) and stacking index p, which is marked as “undone.” When M
returns from the recursion with a result j = LOCALy(t — 1,p), it recognizes the
stack entry p to denote an indirect read. Thus M transfers j on the parameter
place. Then M continues with the computation of GLOBAL(t — 1,j) and u is
unmarked. Should M later on return from a higher level of recursion, it will pass
this level and simply hand through the result, popping entry p.

2. S, = “if L. > 0then L, := L,”: Since ES 4(w) also provides the value v (true or
false) of the if-part, M simply does the following. If v evaluates to true, then go
into the recursion LOCALy(t — 1,p) and go into the recursion LOCAL,(t — 1,p),
otherwise. Thus no branching of the recursion occurs.

3. All the other cases can be led back to the above two ones or are handled similar
easily as in the proof of Theorem 5.

“only if”: This inclusion follows along the lines of the proof of Proposition 2 and The-
orem 4: The configuration graph of a DSPACE (logn)-machine is a forest of polynomial
size. The reachability problem can be solved by pointer jumping — we could directly
apply Example 1, part a), if we consider the Euler-tours generated by the configuration
forest. The claim that we have data-independent control and write structures contained
in ATIME (logn) follows in a way analogous to previous proofs. The essential point why
the execution structure ES 4(w) has to be data-dependent, but is in ATIME(logn), can
be seen as follows. Since only monadic operations are allowed in the construction of
the computation tree of a DSPACE (log n)-machine, we need to have “input-conditional”
assignments in order to compute the successor of a configuration. So we have a data-
dependent execution structure. On the other hand, we still have ES 4(w) € ATIME (logn)
because of the simplicity of input-conditional local assignments. Note that these input
conditional assignments are the only conditional assignments needed (also cf. Theorem 13
in Subsection 4.2). O

Theorem 6 implies that if there was a completely data-independent algorithm for the
DSPACE (log n)-complete list ranking problem, then we had the equality of NC* and
DSPACE((logn) and hence of ATIME(n) and DSPACE(n).
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Reviewing the fundamental properties of the characterizations of AC*, NC*, and
DSPACE((logn), it appears that the essential differences lie in the distinct communication
possibilities with respect to data-(in)dependence. Unbounded fan-in parallelism allows
for data-dependent writes, bounded fan-in parallelism restricts reads and writes to be
data-independent, and DSPACE (logn) allows for data-dependent reads, but demands for
data-independent writes.

In the above proof it is possible to drop the request that the operations of the
CRCW-PRAM have to be NC°-computable. We can allow operations computable in
logarithmic space. On the other hand it is essential that all operations are monadic,
because this led to the linear recursion structure. If we drop the request for monadic
NC°-computable operators and further on do not require ES 4(w) € ATIME (logn), then
we get LOGDCFL, the class of languages logspace many-one reducible to deterministic
context-free languages [53].

Theorem 7 L € LOGDCFL if and only if L is recognized by a CRCW-PRAM A with
standard PRAM operation set® in O(logn) time, A has data-independent control and write
structures, and C'Sy and WSy are in ATIME(logn).

Proof. “if”: We use the same recursion as in Theorem 6. But now we have to augment
the DSPACE (logn) Turing machine with an auxiliary push-down store (thus yielding a
so-called auxiliary pushdown automaton [12]), since the recursion is no longer linear. More
precisely, the data-flow of the recursion is no longer linear. Since each recursive predicate
GLOBAL and LOCAL, is of constant “branching-width,” the total amount of recursion
calls is polynomially bounded. By results of Sudborough [53] we get L € LOG DCFL. Ob-
serve that now also the use of conditional assignments of the form “if L. > OthenL, := Ly’
does not require any more ES 4(w) € ATIME (logn), because a branching of the recursion
no longer needs to be avoided.

“only if”: This direction follows from the equation LOGDCFL = CROW —TIME(logn)
of Dymond and Ruzzo [20]. Since CROW-PRAM’s w.l.o.g. have logarithmic word length,
DSPACE (logn)-computable operations, and write-owner functions restricted to be the
identity function (that is, write-owner(i,n) = 7), it remains to be shown that CS 4, WS4 €
ATIME(logn). An inspection of Dymond and Ruzzo’s simulation of deterministic aux-
iliary pushdown automata by CROW-PRAM'’s reveals that the CROW-PRAM can be
assumed to have a very regular flow of control. To see WS4 € ATIME(logn), notice that
CROW-PRAM instructions of the form “i¢f L. > 0 then G, := Ly” can be replaced by
the equivalent sequence of instructions “Ly := Gy _; if L. > 0then Ly := Ly; G, = Lg”
avoiding any conditional writes to global memory cells. The sequence really is equivalent
to the conditional global write due to the owner write restriction. The simplicity of the
write-owner function and CS, € ATIME(logn) now yield WS, € ATIME(logn) in a
straightforward way. O

Next, we come to the characterization of parallel pointer machines or, equivalently,
rCROW-PRAM’s [35]. Cook and Dymond [16, 18] showed the inclusion DSPACE (logn) C
PPM-TIME (logn). Dymond, Fich, Nishimura, Ragde, and Ruzzo [19] recently proved
that any step-by-step simulation of CROW-PRAM’s by PPM’s needs time O(loglogn).
Thus we have some evidence for a separation of the corresponding complexity classes. In
our setting the difference appears in the requirement for simple PRAM’s (similar to Lam
and Ruzzo [35]) in the case of PPM’s, whereas for the CROW-PRAM’s the operation set
is unrestricted (compare Theorem 7 with Theorem 8).

2More precisely, an operation set as used for CROW-PRAM’s by Dymond and Ruzzo [20] suffices.
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Theorem 8 For k > 1, we have L € PPM-TIME (log* n) if and only if L is recognized
by a simple CROW-PRAM A in time O(log®n), the control and write structures are
data-independent, and CS 4 and WS 4 are in ATIME (logn).

Proof. “if”: For this direction we make decisive use of Lam and Ruzzo’s [35] equality
PPM-TIME (log" n) = rCROW -TIME (log* n). So we perform a simulation of the simple
CRCW-PRAM A, which is data-independent in the above required way, by an rCROW-
PRAM. The only subtle point herein is the question how to convert the concurrent write
of A into the owner write of the rCROW-PRAM. Here we make use of the restricted write
structure of A.

We proceed in two main steps. First, we demonstrate how a concurrent write can
be simulated by an rCROW-PRAM with time-dependent owner function. Second, we
explain how to convert the latter into a time-independent one.

Let us turn to the first step. By the help of WS4 € ATIME(logn), for each point
of time t, for each processor p, and for each global memory cell i of the CRCW-PRAM,
the simulating rCROW-PRAM finds out whether p writes into 7 at time ¢. Afterwards,
the rCROW-PRAM determines for each ¢ and each i some p writing into ¢ at . This p
then is the write-owner of ¢ at time ¢. This information is stored in a look-up table.
An rCROW-PRAM does all these computations in time O(logn), using no more than a
polynomial number of processors.

Now it remains to explain how to convert an rCROW-PRAM with time-dependent

write owners into one with time-independent ones. The basic idea is to replace the various
time-dependent write-owners by only one fixed write-owner that communicates with the
respective (time-dependent) write-owners and then writes by itself the value the previous
write-owner wanted to write. To do that, this particular write-owner has to know for each
point of time the original write-owner. Here the look-up table generated before comes into
play. Thus the new, fixed write-owner may look up the current write-owner, communicate
the value to be written and, eventually, writes the value by itself.
“only if”: For the reverse direction we simulate a parallel pointer machine by a PRAM
in the usual way [35]. Each processor simulates one PPM unit, using a block of constant
many cells of global memory to hold the state, output and taps of the simulated unit plus
some additional housekeeping information. The simulation works as follows. Each PRAM
processor reads the outputs of the neighbors of the unit it is simulating and updates
the state, output, and pointers stored in its block according to the PPM’s transition
function. The case whenever a PPM unit spawns new units requires some care (especially
a “cleanup” phase every logn steps to re-balance the tree of processors simulating the
active PPM units is necessary), but is basically straightforward. Further details can be
found in Lam and Ruzzo’s work [35].

From the above simulation of a PPM by a PRAM it is easy to conclude that the
control structure of the simulating PRAM, which essentially consists of one main loop,
is data-independent and contained in ATIMFE (logn). To see that the simulating PRAM
also has a data-independent write structure contained in ATIME (logn), observe that for
the above described simulation of a PPM we may w.l.o.g. lay down that each PRAM
processor always (unconditionally) writes in a fixed order into the block of constant many
global memory cells it is responsible for. Furthermore, the updating of the pointer, state,
and output information can be done in each processor’s local memory, thus avoiding any
conditional global writes. The computation of the transition function of the PPM is done
by the help of the conditional assignment “if L, -> 0 then L, := L. in a basically
straightforward manner. Lam and Ruzzo [35] use incrementation to address cells within
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the global memory blocks. We can avoid the use of the incrementation operation and
stick to NC°-computable ones. If we lay down that the addressing within memory blocks
works with with a base address where only the least significant bits have to be modified
to address a cell within a block, then this can be done by NC’-operations without the
need for incrementation. Obviously this addressing scheme can be used without loss of
generality. Thus NC-operations suffice. O

Theorem 6 and Theorem 8 show that the essential difference between DSPACE (logn)
and PPM-TIME (logn) is that for the latter we need not demand for a data-dependent
execution structure contained in ATIME(logn). Up to now only DSPACE(logn) C
PPM-TIME (logn) C DSPACE(log®n) is known [16, 18].

Until now all our characterizations worked with CRCW-PRAM’s using the ARBI-
TRARY resolution protocol for write conflicts. Let us shortly consider an enhanced
CRCW-PRAM model, Akl’'s OR-PRAM [5]. The OR-PRAM resolves write conflicts by
writing the bitwise OR of all data to be written. This seemingly slight revision of the
underlying CRCW-PRAM model has drastic consequences for our “data-(in)dependent
world.” A fully data-independent OR-PRAM suffices to get AC*: In the characteriza-
tion of AC* (Theorem 4), the decisive, data-dependent write instruction was “if G; >
0 then G := 1,7 where the value of the if-part depended heavily on the input, but
the indexing values ¢ and j were data-independent. In an OR-PRAM this instruction
can be replaced by an instruction “G; := G;,” using only the last bit of G;. So we get
data-independent control, read and write structures for the simulation of AC*-circuits.
Remember that in our standard model of simple CRCW-PRAM’s, this is a very strong
restriction decreasing the computational power from AC* to NC*.

An essential property of the above, fully data-independent simulation of AC*-circuits
by OR-PRAM’s is the need for non-monotonic operations: The OR-feature for concurrent
writes directly applies only to unbounded OR-gates. For AND-gates, we make use of de
Morgan’s law by x Ay = (T V7). As a consequence, ones may be overwritten by zeroes.

By way of contrast, in a monotonic PRAM global memory cells shall only contain
values 0 or 1 and an 1 is never overwritten by a 0. Monotonicity of a PRAM algorithm
can be an important criterion concerning implementation on asynchronous machines. A
monotonic algorithm may tolerate processors that make different progress in the course of
the computation. If the slower processor needs data from the faster one, in a monotonic
algorithm it can be avoided to store data of the faster processor that have the time stamp
the slower processor has currently reached. The slower processor simply can use the newest
data delivered from the faster one, it can work with “data from the future.” This avoids
synchronization overhead. For example, consider the (parallel version of the) Warshall
algorithm computing the transitive closure of graphs given as adjacency matrices. Here
an existing 1, signaling the existence of a path between two nodes, never is overwritten
by a 0 — the algorithm is monotonic. It does no harm to the Warshall algorithm that
one processor works with matrix entries that are produced by another one that is ahead.

We get AC* if we demand for monotonic OR-PRAM’s, but allow data-dependent
writes: It is clear how to simulate OR~gates, but what’s about the AND-gates? The trick
is to simulate AND-gates just like OR-gates by interpreting an input 1 as a 0 and vice
versa. Then output 1 of such computed AND-function in fact means 0 and 0 means 1.
Data-dependent conditional write instructions are necessary to realize such opposite in-
terpretations of values for AND-gates.

What happens if we demand for a fully data-independent OR-PRAM to be monotonic?
We get SAC*, the classes of languages recognized by semi-unbounded fan-in circuits of
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polynomial size and O(log" n) depth [56]. Venkateswaran [56] proved SAC' = LOGCFL,
the class of languages logspace many-one reducible to context-free languages [53].

Theorem 9 For k > 1, we have L € SAC* if and only if L is recognized by a simple,
monotonic OR-PRAM A in time O(logk n), the control, read, and write structures of
which are data-independent and CS 4, RS 4, and WS 4 are in ATIME (logn).

Proof. “if”: We again make use of the recursive functions GLOBAL and LOCAL, in
order to construct a semi-unbounded fan-in circuit for the simulation of PRAM A. The
construction works analogous to Theorem 5, so we will only describe the changes compared
with there.

The computation of LOCAL,(t,p) is the same as in Theorem 5. It is decisive here

that A only uses monotonic operations, because in SAC*-circuits negating gates are not
admissible. The computation of GLOBAL(t, ) is the same as in Theorem 5 except for the
following. For each bit of cell i we have an unbounded fan-in OR-gate. The inputs of these
OR-gates are the respective bits of LOCAL,(t — 1,p), where p stands for all processors
writing into ¢ by an instruction “Gp, := L;” or “if L. > 0 then G, := L;.” This reflects
the OR concurrent write feature of A. If no processor writes, we connect GLOBAL(t, 1)
with GLOBAL(t — 1,1).
“only if”: For the reverse direction we refer to Theorem 4 and Theorem 5. Again we just
state the main changes we have to observe here. For the evaluation of bounded fan-in
OR-gates proceed as in Theorem 5 — sequentially read all inputs of the gate. For the
evaluation of unbounded fan-in gates A makes use of its OR feature in order to avoid the
necessity for data-dependent conditional writes. The simulation of the circuit’s uniformity
machine works as in Theorem 5. Note that Venkateswaran’s SAC*-circuits [56] are even
DTIME (logn)-uniform. Altogether, in each case monotonic instructions are sufficient.
Data-independence follows in the same way as in Theorem 5. O

4 Index-PRAM’s

In the previous section we obtained our results by demanding several structural restrictions
for CRCW-PRAM’s. By way of contrast, Index-PRAM’s in some sense possess “built-in
data-independence.” There are several additional features to the basis model of an Index-
PRAM, which are to be chosen by the programmer. The rough idea behind is that the
lesser deviations from the basis model are necessary, the easier the implementation on
parallel machines with distributed memory will be.

In the first subsection we introduce our basis model. In the second subsection we
provide results analogous to the structural characterizations of the preceding section.

4.1 The model and its features

The central point in the definition of Index-PRAM’s is the introduction of index registers.
Index registers are exclusively used for addressing global memory cells. Consequently, we
distinguish between three kinds of registers for PRAM’s: By G we refer to global registers,
by L to local data registers, and by [ to local index registers. In general, local data
registers are not used any longer to index global memory cells, but for this purpose are
replaced by index registers. We still have, however, a constant number of local data and
index registers per processor. We allow index registers only to access the length of the
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input and the processor identification number, but not to depend on the concrete input
word. A usual instruction set for Index-PRAM’s is shown below. Compare this one to
that of (general) PRAM’s given in Subsection 2.2.

Constants: L, := (constant), L, := LENGTH, or L, := PIN,
I, := (constant), 1, :== LENGTH, or I, :== PIN,

Global Write: Gy, := Ly,

Global Read: L, := Gy, ,

Local Assignment: L, := Ly, L, :== I, or I, := I,

Conditional (Local) Assignments: if (INPUT-BIT) then L, := Ly,
if I. > 0then L, := Ly, or if I. > 0then I, := Iy,

Monadic Operations: L, := f(Lp),

Binary Operations: 1, := I o 1.,

Jumps: goto S, or if I, > 0 then goto Sy,

Others: if 1. > 0then HALT or if I. > 0 then NOOP .

The condition “(INPUT-BIT)” in the above input conditional local assignment means
that here we specify a position 7 in the input word w, where 1 < i < |w|, and the condition
is true iff the bit has a given value.

Our basis model of an Index-PRAM is as follows.

e As can be seen in the given instruction set, binary operations only are allowed for
index registers, otherwise monadic operations are obligatory.

e Only NC°-computable operations are admissible.

e The flow of control is regular: The statement executed at time ¢ by all PRAM
processors can be determined by a data-independent ATIME (log n)-computation.

e Each processor only reads from and writes into a constant number of global memory
cells.

If in subsequent characterizations the Index-PRAM has to be enhanced by removing one
or another restriction or by allowing some additional feature, we shall always explicitly
indicate the deviations from the basis model.

4.2 Characterization results

As in the previous section we start with a characterization of AC*.

Theorem 10 For k > 1, we have L € AC* if and only if L is recognized by an Index-
CRCW-PRAM in time O(logk n) that additionally is equipped with the instruction “if L. >
0 then Gy, :== Ly.”

Proof. “if”: This direction is clear, because a CRCW-PRAM can trivially simulate an
Index-CRCW-PRAM. The characterization of AC* by CRCW-PRAM’s [52] now yields
the desired result.

“only if”: Two things have to be done. First, by simulating the uniformity machine we set
up a pointer structure in global memory representing the circuit to be simulated. Second,
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we simulate the actual circuit making use of the pointer structure. Due to Stockmeyer
and Vishkin [52], whose circuit construction for the simulation of CRCW-PRAM’s is
DTIME (log n)-uniform, we can assume that the AC*-circuit is DTIME (logn)-uniform.

We simulate the uniformity machine locally in each processor of the PRAM such that
after the simulation the index registers of the processors contain the addresses of the
source and the sink gate of the interconnection wire represented by the processor. Since
the uniformity machine only works on the input length n as its input and since a processor
of an Index-PRAM can simulate in logarithmic time a DTIME (logn)-TM making use
of its constant many index registers of logarithmic word length, this first point follows.
Observe that the successors of TM-configurations (represented by the PID’s of processors)
can be computed with NC°-operations [8, Volume I, pages 104-109].

The simulation of the AC*-circuit represented by a pointer structure now works in the
well-known way [52]. Each wire between two gates gets a processor. The processor log® n
times reads the value from the source gate and executes a conditional write depending on
the value read and the type of the sink gate.

It remains to be shown that we keep the restrictions required for Index-PRAM’s.
Except for the regular flow of control all other restrictions follow immediately. Observe
that the actual circuit simulation only consists of the above described loop repeated log® n
times. The simulation of the uniformity machine in essence also just requires a simple
loop repeated logn times. Thus the the static flow of control is obvious. O

For the proof of the subsequent theorem the following result of Ruzzo [48] is necessary.

Proposition 11 [48] For k > 1, DTIME(logn)-uniform NC* is equal to NC*-uniform
NC*, where the latter is defined as ATIME, SPACE (log" n,log n)-uniform NC*.

Now a characterization of NC* by Index-PRAM'’s can be given.

Theorem 12 For k > 1, we have L € NC* if and only if L is recognized by an Index-
CRCW-PRAM in time O(logk n) that additionally is equipped with the instruction “if L. >
0 then L, := Ly.”

Proof. Let A denote the Index-PRAM, C' the NC*-circuit, and U its “uniformity cir-
cuit.”

“if”: As in the proof of Theorem 5, the simulation of the PRAM by a NC-circuit works
with the recursive functions GLOBAL and LOCAL,. We additionally have recursive func-
tions INDEX , with INDEX ,(t,p) = j iff the local index register a of processor p after
step t contains value j. We assign to each of these functions a bunch of logarithmically
many gates that represent the values of GLOBAL(t,i), LOCAL,(t,p), and INDEX ,(t,p),
respectively. The main work is done by the uniformity circuit U in computing the in-
terconnection structure between gates. In what follows, we construct an NC*-uniform
NC*-circuit. Application of Proposition 11 then provides the if-direction of the proof. To
do the construction, we go through all possible instructions of our Index-CRCW-PRAM
and show how to compute GLOBAL, LOCAL,, and INDEX ,. Before we come to the
details, we first describe a precomputation common to all three cases: For arbitrary point
of time ¢ the uniformity circuit U finds out the statement A is executing at time ¢. This is
possible due to the regular control flow of the Index-PRAM. Let S, denote the statement
executed at time ¢ in all PRAM processors.
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Computation of GLOBAL(t,i):

The only way G; may be affected at time ¢ is when S, = “Gj, := L;” (cf. instruction set
of Index-PRAM’s). In all other cases GLOBAL(t, i) is connected to GLOBAL(t —1,1). If
S, = “Gy, := Ly,” then GLOBAL(t, i) is an OR-gate connected to two conjunctions. In
the first conjunction, LOCAL(t — 1, p) is conjoined with a gate computing INDEX ,(t —

1,p) ~ 4. For this purpose, U computes INDEX ,(t — 1,p) and then has a circuit of
depth O(loglogn) to do the comparison with i. In the second conjunction, U conjoins

GLOBAL(t — 1,i) with the negation of INDEX ,(t — 1,p) ~ i. It remains open how to
determine the processor p writing into G;. The NC* uniformity circuit U computes for
each processor p the value of INDEX ,(t — 1,p) and ascertains some (e.g, the smallest) p
such that INDEX,(t — 1,p) = i. Due to the way of using index registers in Index-
PRAM’s, the value of all INDEX ,(t — 1,p) functions can be ascertained without making
use of any LOCAL, or GLOBAL values. Therefore, the computation of p can be done
by U independent of the input word except for its length.

Computation of LOCAL,(t,p):

We have to distinguish between two main cases.

1. S, = “L, := Gy,”: Here U computes INDEX(t — 1,p) = j and uses the resulting
value j to connect LOCAL,(t,p) with GLOBAL(t — 1, 7).

2. All the other cases for LOCAL,(t, p) are completely analogous to their corresponding
counterparts in Theorem 5.

Computation of INDEX ,(t,p):

The uniformity circuit U does the whole computation of INDEX (¢, p) values. The dif-
ferent cases are analogous to the ones considered for the computation of LOCAL, in
Theorem 5. In the computation of INDEX ,(t,p) the processor number p always remains
the same because only processor local computations determine the values of index regis-
ters.

“only if”: Due to Proposition 11 it suffices to prove the inclusion of DTIME (log n)-uniform
NC* in Index-CRCW- TIME(logk n). As usual, we have to deal with two parts, that is
the construction of a pointer structure in global memory representing the NC*-circuit C
and the actual circuit simulation. The first point is completely analogous to the simu-
lation of the uniformity machine in Theorem 10. But for the circuit simulation we now
associate with each gate of C' a processor and a cell in global memory. Each processor
sequentially reads the values of the global memory cells representing the inputs of the
gate and accordingly updates the value of its memory cell. Here we use the instruction
“if L. > O then L, := Ly.” To check that all the other Index-PRAM restrictions are
fulfilled is done in a way akin to Theorem 10. O

Compare Theorem 10 to Theorem 12. The only difference between AC* and NC*
within the framework of Index-PRAM’s is that for AC* we are allowed to use conditional
global write instructions of the form “if L. > 0 then G, := L;,” whereas for NC* we
only have “if L. > 0 then L, := L;.”

We proceed with a characterization of DSPACE(logn). In order to do this, it is
necessary to relax the fundamental concept of Index-CRCW-PRAM’s. Up to now no
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data registers were allowed as indexing registers. Now we loosen this by admitting that
global reads may be data-dependent, that is we additionally have an instruction of the
form “L, := Gp,” instead of only “L, := Gy,.”

Theorem 13 L € DSPACE(logn) if and only if L is recognized by an Index-CRCW-
PRAM in time O(logn) that additionally is equipped with the instruction “L, = Gr,”
and that allows the processors to read from a non-constant number of global memory cells.

Proof. Let A denote the Index-PRAM and M the DSPACE (logn)-TM.

“if”: The simulation of A by M follows the ideas in the proofs of Theorem 6 and Theo-
rem 12. We again use the recursive functions GLOBAL, LOCAL,, and INDEX ,. In any
case, M first finds out the statement S, PRAM A is executing at time ¢ making use of
the regular control flow of A.

Computation of GLOBAL(t,i):

The only case of interest is when S, = “G;, := L;.” We do this in a manner analogous
to the proof of the preceding Theorem 12. The main difference in comparison with there
is that the things that are done there by the NC* uniformity circuit are now done by M
itself.

Computation of LOCAL,(t,p):
We consider three cases.

1. S, = “L, :=Gyp,”: First M computes the value j of LOCALy(t —1,p) and then j is
fed into the recursive call GLOBAL(t — 1, j). Clearly, we have no branching of the
recursion at this point.

2. S, = “if (INPUT-BIT) then L, := L,”: First M takes a look at the considered input
bit. Then depending on its value M performs a recursive call either to LOCAL,(t —
1,p) or to LOCAL(t — 1,p) and any branching of the recursion is avoided.

3. All the other cases are straightforward (also cf. proof of Theorem 6) and are omitted,
therefore.

Computation of INDEX ,(t,p):

In a recursive call INDEX ,(t,p) the parameter p always remains the same in the subse-
quent recursive calls that are necessary to compute INDEX ,(t,p). For the straightfor-
ward details only simple modifications to the proofs of Theorem 6 resp. Theorem 12 are
required.

“only if 7: To simulate TM M by Index-PRAM A, processor identification numbers
(PID’s) of processors of A are interpreted as configurations of M and each processor lo-
cally computes in its index registers the respective successor configuration. Herein, A
makes use of input conditional local assignments “if (INPUT-BIT) then L, := L;.” Iden-
tifying global memory cells (resp. their numbers) with PID’s now enables A to build a
pointer structure in global memory representing the computation graph of M. The reach-
ability problem can be solved by pointer jumping of type a) in Example 1 of Section 2,
where we make essential use of operations of the form “L, := G,” and “Gy, := L;.” The
global write instruction in this pointer jumping algorithm is data-independent.
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The regular control flow derives from the constant time construction of the compu-
tation graph of M and the simplicity of the pointer jumping algorithm (which mainly
consists of one loop, cf. Example 1). The remaining Index-PRAM properties are obvi-
ously fulfilled. O

Relaxing some of the restrictions in the characterization of DSPACE(logn), we gain
a characterization of LOGDCFL in terms of Index-PRAM’s.

Theorem 14 L € LOGDCFL if and only if L is recognized by an Index-CRCW-PRAM
in time O(logn) that additionally is equipped with the instructions “L, = Gr,” and
“if Lo > 0then L, := Ly,” a standard PRAM operation set with binary operations, and
allows the processors to read from a non-constant number of global memory cells.

Proof. “if”: We use the same recursion as in Theorem 13, simulating the given Index-
PRAM by polynomially time and logarithmically space bounded deterministic auxiliary
push-down automata. Due to Sudborough’s [53] equivalence between those deterministic
auxiliary push-down automata and LOG DCFL the claim follows. Again (cf. Theorem 7)
we need the additional push-down store in order to deal with the branching of the recur-
sion.

“only if”: Dymond and Ruzzo [20] showed LOGDCFL = CROW -TIME(logn). They
pointed out that this can even be done by CROW-PRAM’s where the write-owner func-
tion is restricted to be identity, that is, write-owner(i,n) = i (write owner of global
memory cell 7 is processor 7). That means that the indexing values for global writes in
the simulating Index-PRAM can be computed by each processor simply by first perform-
ing “I, := PID” and replacing all global writes “G, := L;” of a CROW-PRAM by
“Gp, := Ly (L, has to have value PID). The global reads of a CROW-PRAM trans-
fer directly. Finally, analogously to Theorem 7 a careful inspection of the simulation of
LOGDCFL by CROW-PRAM'’s shows the regularity of the control flow. Altogether, this
enables the simulation of a logarithmically time bounded CROW-PRAM by an Index-
PRAM in the required way. O

In the above proof it is crucial that global writes “G;, := L;” of the Index-PRAM are
data-independent. The data-dependent instruction “Gy, := L;” would lead to a recursion
requiring running time n°0°€™ for the simulating AuxPDA. But such an AuxPDA can
already simulate AC'-circuits [48].

Again the difference between CROW-PRAM’s and PPM’s lies in the operation set
used, as Lam and Ruzzo [35] already demonstrated.

Theorem 15 For k > 1, we have L € PPM-TIME (log" n) if and only if L is recognized
by an Index-CRCW-PRAM in time O(logk n) that additionally is equipped with the in-
structions “L, := Gp,” and “if L. > 0then L, := L;” and that allows the processors to
read from a non-constant number of global memory cells.

Proof. The proof works basically in the same way as the proof of Theorem 8 and is
omitted, therefore. O

We see, the only difference between PPM-TIME(logn) and DSPACE(logn) with
respect to the Index-PRAM characterization is that for the first we may use conditional

instructions of the form “i¢f L. > 0 then L, := Ly,” whereas for the latter we may only
use “if (INPUT-BIT) then L, := Ly.”
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We conclude this section with an Index-PRAM characterization of the semi-unbounded
fan-in circuit class SAC*. This parallels the structural characterization given in Theo-
rem 9. Again we use monotonicity and Akl’s OR-PRAM’s [5], resulting in a natural way
in monotonic Index-OR-PRAM’s.

Theorem 16 For k > 1, we have L € SAC* if and only if L is recognized by a mono-
tonic Index-OR-PRAM in time O(log® n) that additionally is equipped with the instruction
“f L. > 0then L, := Ly.”

Proof. The proof is a straightforward combination of the arguments in the proofs of
Theorem 9 and Theorem 12. O

5 Conclusion

Data-independence of parallel algorithms appears to be a fundamental prerequisite for an
efficient implementation on existing distributed memory machines. Data-independence
of communication and control gives the opportunity to optimize parallel algorithms with
respect to their communication pattern at compile time. It is an application-oriented con-
cept that nevertheless fits into the groundwork of parallel complexity theory. Unbounded
fan-in parallelism, bounded fan-in parallelism, and sequential computations correspond
to various degrees of data-(in)dependence.

At this point let us discuss the practical applicability of current parallel complexity
theory. As a parallel analogue of the fruitful notion of NP-completeness and its opposition
to P-membership, parallel complexity theory offers the opposition of P-completeness to
NC-membership. The former as a demonstration of a problem being inherently sequential
and the latter as proof of a problem being efficiently parallelizable. But in reality not
all NC-algorithms are efficient [34] and there are P-complete problems that are in a very
intuitive sense efficiently parallelizable [60].

The main reason for this problem lies in the fact that all notions of reducibility used
so far allow for a polynomial growth of the output [34]. Hence the resulting complexity
classes are closed under “polynomially bounded padding.” But in order to be able to
distinguish for example between a quadratic and a cubic resource bound or to work with
an appropriate notion of speedup and work load, we would need reducibilities that are
based on a linear or quasilinear growth of the output length [25, 41, 49]. Eclipsed by
this problem of polynomial growth is the question of choosing an appropriate machine
model. Our result gives further evidence that in current parallel complexity theory both
the machine model to define classes (e.g., PRAM’s and circuits of unbounded fan-in) and
the machine model to define reducibilities (e.g., space-bounded Turing machines) are not
appropriate.

So the comparison of Theorem 5 with Theorem 6 specifically shows that DSPACE (logn)
reductions spoil the communication structure: The current notions of reducibility are
based on sequential machines and thus by Theorem 6 are burdened with a data-dependent
communication structure. Hence they cannot distinguish between data-dependence and
data-independence of communication structures. In particular, it is possible to reduce
a data-dependent computation to a data-independent one. This defect doesn’t matter
when working with PRAM’s or circuits of unbounded fan-in, but should bother when
working with more realistic models. That underpins for the field of efficient parallel com-
putation the importance of the development of reducibility notions that are finer than
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DSPACE(logn) reductions. As a consequence of our work, these reducibilities should
have (quasi)linear output length and be based on Index-PRAM’s or circuits of bounded
fan-in.

But our results also shed some light on the classification of PRAM’s according to
their read and write access to global memory. In Subsection 2.2 we gave the current
classification scheme for PRAM’s and presented the OROW-PRAM as the weakest model.
Following the same argumentation as before, Rossmanith’s inclusion DSPACE (logn) C
OROW -TIME (log n) [47] expresses the inadequacy of the XRYW classification scheme
of PRAM’s as a criterion with respect to implementability on existing parallel machines.
This is due to the observation that even DSPACE (logn) seems to be too powerful for a
simulation by fully data-independent PRAM’s in logarithmic time. With the presence of a
concrete machine model like the Index-PRAM the possibility arises to develop algorithms
that are efficiently implementable on existing and foreseeable parallel machines.

In Table 1 we summarize the main results of our work. The purpose of this table is to
highlight the main differences between various complexity classes within our framework
of data-independence and Index-PRAM’s.

One direction for further research emerging from our work is to investigate far more
combinations of the restrictions applicable to PRAM’s. It would be interesting to find
further classification criteria besides data-independence and monotonicity that play an
important role for the transfer of PRAM algorithms to realistic parallel machines. Among
the many ideas in this direction we refer the reader to the papers [3, 4, 10, 17, 27, 38, 51, 57|
and many others. A matter of special interest could be to analyze and classify from a
complexity theoretic point of view various degrees of synchronization that are necessary
to implement parallel algorithms in a distributed environment, i.e., in a concurrent system
without a global clock as it is still present in the Index-PRAM.

Acknowledgement Thanks to Carsten Damm, Markus Holzer, and Peter Rossmanith
for stimulating discussions and helpful comments.
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Table 1: Structural characterizations: The PRAM type refers to the definition of sim-
ple PRAM’s in Section 2; we always presuppose a data-independent control structure
contained in ATIME (logn); a letter “I” means that the corresponding structure is data-
independent and contained in ATIME(logn); in the other case “D” stands for data-
dependence. Index-PRAM characterizations: The term “unbounded reads” shall mean
that processors may read from a non-constant number of global memory cells.

Class Structural Characterizations || Index-PRAM characterizations with
PRAM type | RS | WS | deviations from the basis model
NC* simple I I “if Lo > 0then L, := Ly”
DSPACE(logn) simple® D I “Lo := G1,” and unbounded reads
k . “of Lo > 0then L, := Ly,”
PPM simple b I “L, :== Gp,,” and unbounded reads
“if Lo > 0then L, := Ly,”
LOGDCFL full D I “L, := Gp,,” unbounded reads, and
binary DSPACE (log n)-operations
SACH monotonic + I I “of Lo > 0then L, := Ly,”
OR-write monotonic, and OR-write
AcC* simple I D | “if L. > 0then Gy, := Ly’

*Here, in contrast to all other cases, we also have to demand that the execution structure ES(w)
is contained in ATIME (logn).
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