On the Complexity of Iterated Insertions

Markus Holzer and Klaus-Jorn Lange

Wilhelm-Schickard-Institut fur Informatik, Universitat Tibingen
Sand 13, D-72076 Tibingen, Germany
email: {holzer,lange}@informatik.uni-tuebingen.de

Abstract. We investigate complexities of insertion operations on for-
mal languages relatively to complexity classes. In this way, we introduce
operations closely related to LOG(CFL) and NP. Our results relativize
and give new characterizations of the ways to relativize nondeterministic
space.

1 Introduction

There are many close connections between the theory of formal languages and
structural complexity theory [14, 17]. While it is obvious to express the complex-
ity of classes of formal languages in terms of completeness results, it is another
question to classify the complexity of operations on formal languages [4, 11, 13].
Our approach is to determine relatively to a base complexity class A. In this way,
we consider two constructions: on the one hand we analyze the complexity of a
single application of an operator op to A. This leads to the class APPL(A, op)
of all languages reducible to op(L) for some L € A. The drawback of this class
is that it is not necessarily closed under op, even if op is idempotent. Therefore,
we consider also the class HULL(A, op) which is the smallest class containing A
and closed under op as well as downward under logspace many-one reducibility.
In this notation, for example the relation between the Kleene star (STAR),
nonerasing homomorphism (HOM) and the complexity classes NSpace(logn),
NP, and 1DSpace(logn) (the class of languages recognizable by logarithmically
space bounded deterministic Turing machines with one-way input tape) are:

NSpace(logn) = APPL(1DSpace(logn), STAR)
= HULIL(1DSpace(logn), STAR),

whereas for nonerasing homomorphisms we find

NSpace(logn) = APPL(1DSpace(logn), HOM) and
NP = HULL(1DSpace (log n), HOM).

There are many more relations like this, nearly all pertaining to the classes
NSpace(logn) and NP. We remark that LOG(CFL), the complexity class gen-
erated by the context-free languages, has not been characterized in this way.

One of the main results of this paper will be the construction of an operation
on formal languages filling this gap. The key observation to do this will be to

consider operations which are iterations of simpler operations. As an example,
Kleene’s star operation may be regarded as the iterated application of the oper-
ation of concatenation. We will now replace concatenation by the more complex
operation of (monadic) insertion of languages. A similar approach was made in
[6, 7, 10, 15] in terms of iterated substitution. The difference is that we here are
interested in complexity theoretical aspects.

Since insertion is not associative there are several possibilities to iterate the
operation of insertion. One is to do it outside-in (OI), i.e., to insert atomic words
into composed ones, while inside-out (10) iteration of insertion inserts composed
words into atomic ones. It will turn out that outside-in iterated insertion charac-
terizes NP, while inside out iterated insertion characterizes NSpace(logn). The
anticipated operation characterizing LOG(CFL) is now obtained by iterating the
operation of binary insertion. Again the outside-in iteration of binary insertion
characterizes NP, while the inside-out iteration now characterizes LOG(CFL).
In particular we obtain the following equations:

1. NSpace(logn) = APPL(1DSpace(logn), IOMON)
= HULL(NSpace(logn), IOMON),
. LOG(CFL) = APPL(1DSpace(logn), [051x) = HULL(LOG(CFL), I05IN),
. LOG(CFL) = APPL(1DSpace(logn), OI),
. NP = APPL(DSpace(logn), OI) = HULL(NP, OI), and
. NP = HULL(1DSpace(logn), OI).

O o W N

In a second part we show that all these relations relativize. It i1s interest-
ing to see how the different ways to iterate insertions characterize the different
ways to equip space bounded complexity classes with oracles: the two most
important possibilities to relativize nondeterministic space are that of Ladner
and Lynch [12] and that of Ruzzo, Simon, and Tompa [18]. These two notions
carry over in a natural way to time and space bounded auxiliary pushdown au-
tomata. It turns out that the outside-in iteration of insertion corresponds to
LL-relativizations while inside-out iterations pertain to RST-relativizations.

2 Preliminaries

We assume the reader to be familiar with the basics of complexity theory as
contained in [1, 9, 20]. In particular, we will deal with the well-known sequence
of complexity classes:

1DSpace(logn) C DSpace(logn) C NSpace(logn) C P C NP.

Here 1DSpace(logn), DSpace(logn), NSpace(logn), P, and NP, respectively,
denote the set of all problems recognizable in one-way logarithmic space, loga-
rithmic space, nondeterministic logarithmic space, polynomial time, and nonde-
terministic polynomial time, respectively.

Completeness and hardness results are always meant with respect to deter-
ministic logspace many-one reducibilities, unless otherwise stated. L <% M is

used to denote the fact that L is reducible to M. For a class A let LOG(A) :=
{L|3area : L <% M} In addition, we use A to denote the empty word, |w|
for the length of a word w, and w® for the mirror image of w.

In the following, we will often make use of the concept of auxiliary pushdown
automaton [2, 9]. Let NauzPDA- TimeSpace(t(n), s(n)) denote the set of all prob-
lems accepted by O(t(n)) time- and O(s(n)) space-bounded nondeterministic
pushdown automata. The importance of this automaton model is demonstrated
by its ability to represent the classes

P = NauzPDA-TimeSpace(2°") logn) [2] and
LOG(CFL) = NaumPDA-TimeSpace(nO(l),log n) [19].

Throughout this paper, we will consider complexities of operations on formal
languages. In this context, we introduce a “measure” for the complexity of an
operation relative to a complexity class.

Definition1. Let op be an operation on formal languages and A some class,
then op(A) :={op(L) | L € A}.

We define APPL(A, op) to be the logspace many-one closure of op(A4), i.e.,
APPL(A, op) is the set LOG(op(A)). For iterating the APPL-operation on a
class A of languages we define APPLY (A, op) == A and APPLi+1(A, op) =
APPL(APPL'(A, op), op).

Finally, let HULL(A, op) be the smallest complexity class closed under op
that contains A. In other words HULL(A, op) == U;>, APPLi(A, op).

Obviously APPL(A,op) C HULL(A, op) and sometimes we refer to A in
APPL(A,op) or HULL(A, op) as the base class.

3 Iterated Insertions

We show that several nondeterministic complexity classes can be characterized
in terms of formal language theoretical operations. One of the main results of
this section will be the characterization of LOG(CFL). The formal language
operations which will be studied in this section are natural generalizations of
the concatenation operation, the so called insertion operations. Thus we define:

Definition2. Let L; and Ly be arbitrary languages. The monadic insertion
of Ly into Ly is defined as Ly — Ly := { wivws | v € Ly and wyws € La }.

In contrast to operations like concatenation or shuffle, the above operation is
not associative. Hence, there are several ways to iterate it. The first possibility
1s to insert composed words into “atomic words,” 1.e., to make the iteration in
an instde-out manner. Thus, for monadic insertion we define

Inside-Out monadic insertion
1. Let IOmon(L,0) := {A} and IOmoN(L, (i + 1)) := IOmoN(L,i) — L.
2. Finally set IOMoN(L) := ;5o IOMON(L,).

The other possibility to iterate the insertion process is in a so called outside-in
manner, 1.e., to insert “atomic words” into composed ones. Thus, for the monadic
insertion we define:

Outside-in monadic insertion
1. Set OImon(L,0) := {A} and OImon(L, (1 + 1)) := L — OImon(L,i).
2. Finally set OImon(L) :=|J,5, OImon(L,1).

Ezample 1. Let F' be the finite set {()}. Then IOmon(F) is a linear language
generated by the grammar G = ({S},{(,)}, P, S) with the productions P =
{S=> X5 —=(59),5—> 50,5 = (5,5 = ()} On the other hand one readily
verifies that OImon(F) equals to the Dyck set D.

In next subsections, we will see that the complexity of these two iterated
monadic insertions lead not to the class LOG(CFL), but again to NSpace(logn)
and NP, only. Thus, in order to find a complete operation for LOG(CFL) we
have to define a more “complicated” version of insertion.

Definition3. Let Ly, Lo, and L3z be arbitrary languages. The binary insertion
of L1 and L, into L3 1s defined as

(L1, L2) = Lz = {wiuwovws | w € L1, v € Lo, and wywaws € L3 }.
Again, we have to possibilities to iterate the insertion process:

Inside-Out binary insertion
1. Set I0BIN(L,0) :={A}, IOBIN(L,1) := L, and
10BIN(L, (i + 1)) == Up<;<;(I0BIN(L, j), IOBIN(L, (i — j))) = L.
2. 10BIN(L) := ;> IOBIN(L,1).

Outside-In binary insertion
1. Let OIBIN(L,0) :={A}, IOBIN(L,1) := L, and
I0BIN(L, (1 + 1)) :=
Uo<j<i (OIBIN(L, j), OIBIN(L, (1 = j))) = OIBIN(L, 7).
2. OIBIN(L) := ;5o OIBIN(L,1).

For the outside-in binary insertion OIBIN(L) one shows that this insertion
process coincides with the outside-in monadic one. Thus, we have:

Lemmad4. OImon(L) = OIBIN(L) for arbitrary language L.

Because of this lemma, we deal only with one outside-in operation in the
sequel, and define OI(L) := OImon(L) for an arbitrary language L. Let us give
a further example.

Ezrample 2. Let F' be the set of the previous example. By Lemma4 and the
definition of the OI-operation we have OI(F) = D; and an easy induction on
the iteration process shows that JOBIN(F) = Dy, too.

3.1 Closure under iterated insertion

In this subsection, we show that several complexity classes are closed under
iterated insertion. First, we consider inside-out iterated monadic and binary
insertion. In both cases, the main idea for an algorithm to check IOmon(L) or
TOBIN(L) is the same. The machine that checks IOmon (L) membership works
as follows: on input w it guesses a decomposition w = wiuws, checks whether
wyws € L, and recursively verifies that v belongs to IOmon(L). Then following
proposition is easy to see:

Proposition5. If s(n) > logn, then IOMoN(NSpace(s(n))) C NSpace(s(n)).
O

In case of binary inside-out iterated insertion we do similarly, but now using
an auxiliary pushdown automaton. On input w the machine guesses a decompo-
sition wy uwsvws, checks whether wiwsws € L, and recursively verifies whether
both words u and v belong to 7OBI~N(L). To do so the machine stores the be-
gin and end of the subwords u and v on its pushdown. If the nondeterministic
auxiliary pushdown automaton that accepts L is O(¢(n))-time and O(s(n)) space
bounded, then the machine that checks JOBIN(L) membershipis O(n-t(n))-time
and O(s(n)) space bounded.

Theorem 6. Let s(n) > logn and t(n) > n®W. IfL is a member of the
class NaurPDA-TimeSpace(t(n), s(n)), then the language IOBIN(L) belongs to
NauzPDA-TimeSpace(n - t(n), s(n)). O

Observe that with a little bit more advanced algorithm we can even check
OI(L) membership in NauzPDA- TimeSpace (2°0(™) s(n))if L € 1DSpace(s(n)).
The only modification in the construction is, that the automaton which ac-
cepts OImMon(L), guesses a decomposition ugtw uwatia . . . Us—1 Wtz while the
input head scans the input from left to right, and checks by simulating the one-
way nondeterministic O(s(n)) space bounded Turing machine whether wyws ... w;
belongs to L. Then the machine recursively verifies—as described above—whether
the words u;, for 0 < i <t + 1, belong to OImon(L).

As an immediate consequence of the characterization of LOG(CFL) and P
in terms of nondeterministic auxiliary pushdown automata [2, 19] we get the
closure of both classes under inside-out iterated binary insertion.

Corollary 7. IOBIN(LOG(CFL)) C LOG(CFL) and IOBIN(P) C P. O

At this point we want to mention two things: (1) The construction presented
to check 1O BIN-membership can be generalized to IO-membership for insertions
where the possible insertion points into a word is constantly bounded. Hence,
e.g., LOG(CFL) is also closed under iterated inside-out ternary insertion. (2)
Moreover, we want to point out that DSpace(log2 n) is closed under both types
of inside-out iterated insertion.

Finally, we mention the closure of NP under OI-operation. This proof is
straight-forward and is left to the reader.

Proposition8. OI(NP) C NP. O

3.2 Hardness of iterated insertion

For technical reasons we introduce a notation, the so-called insertion tree, which
is helpful in analyzing inside-out iterated monadic and binary insertion.

Definition9. An insertion tree over a terminal alphabet T is a construct I =

(V, h, 2o, label, T'), where

1. (V, h,) is a tree rooted in xg € V, i.e., h : V — V points every node to
its father, h(zg) = o and for all # € V there exists an n > 0 such that
h™(x) = xo.

2. label : V — T*(VT*)* is the labelling function.

For an insertion tree I we define the functions

1. word : V. — T* by word(x) := wowy ... wy, if label(x) = woxiwy ... wi_1xpwy,
2. yield : V — Tx inductively by yield(z) = woyield(x1)wy . .. we_yyield (x)w,
if label(x) = woziwy .. Wi 2wy

An insertion tree I is called (1) monadic if the mapping label only takes
images in T*UT*VT™* and (2) binary if it only takes images in T*UT*VT*VT*.
Obviously, for any language we have:

Lemmal0. Let L C T and w € T*. The wordw belongs to I0OMonN(L)
(I0BIN(L), OI(L), respectively) if and only if there exists a monadic (binary,
arbitrary, respectively) insertion tree I = (V) h, zg, label) such that yield(zq) = w
and for all ® € V we have word(z) € L U{A}. O

Hardness of the /Omon-operation The following theorem shows close rela-
tion of JOmon and NSpace(log n). We state it without proof, since it is very sim-
ilar to that on showing the analogous results of the Kleene star operation [4, 16].

Theorem 11. There is a language Lyr in 1DSpace(logn) such that IOMoN(Lys)
is NSpace(logn)-complete. O

Essentially the strings in Ly; are of the form 5" $(a*$56*$)* #($a*$0*)*$a™.
The Kleene closure of this language is NSpace(log n)-complete. But the power
of the IOMonN-operation makes it necessary to extend the construction in order
to avoid “wrong” insertion. The details are similar to, although less extensive
than, those provided in Theorem 14. Using Proposition 5 we get:

Corollary 12. NSpace(logn) = APPL(1DSpace(logn), IOMON)
= HULIL(NSpace(logn), IOMON). O

This implies the following equalities: APPL(1DSpace(logn), IOMoON) =
APPL(DSpace(logn), IOmon) = HULL(1DSpace(logn), IOMonN). Later we
will see that the OI-operation is much more sensitive with respect to this differ-
ence.

Hardness of the /O Brn-operation Before we come to one of the main results
of this paper establishing a close link between iterated binary insertion and
polynomially time bounded auxiliary pushdown automata we need the following
lemma.

Lemma13. There exists a LOG(CFL)-complete context-free language which is
generated by a context-free grammar G = (N, T, P,S), with nonterminals N,
terminals T', ariom S, and production set P C N x (TUTN?).

Observe, that context-free grammars which satisfy P C N x (T'UTN?) can
only generate words of odd length. Hence such a normal-form for context-free
grammars does not exist in general.

Proof. Without loss of generality one can assume that the LOG(CFL)-complete
context-free language L is generated by a grammar G = (N, T, P,S) being in
2-standard Greibach normal-form, i.e.,

PCN x (TUT(N \{S}) UT(NV \ {s}))?).

We will use new symbols #, X with subscripts which are not contained in N
and T'. We first modify the production set P in the following way:

P={A—-aa|A—-aeP}U{A—>aaB|A—>aBeP}U
{A—> aaBC|A—>aBCeP}.

Observe that the language G1 = (N, T, P1, S) is LOG(CFL)-complete, too. Then
let us construct a grammar Go with L(G2) = L(G1){#}. Every word that be-
longs to L(G1){#} has odd length. Set

Py={Xoe—alacT}U
{ Xy = aXa Xy, Xpa — bXaXa, Xopa — bXpaXe | A — aa € P} U
{Xap = aXoXpp, Xoa = 0XoXep, Xopa = 0XpoXaB |
A— aaB € P} U
{Xap = aXupXcw, Xoa = 0XaXape, Xopa = 0XpaXape |
A= aaBC € P}

and let
Gy = (NU{XS#}U{XG,XGB,XGBC | a €T and B,C € N},TU{#},PQ,XS#).

Then P; has the expected normal-form, and obviously L(G3) is LOG(CFL)-
complete. a

Theorem 14. There is a set Lp in 1DSpace(logn) such that both OImon(Lg)
and IOBIN(Lp) are LOG(CFL)-complete.

Proof. We start with a LOG(CFL)-complete language L; which is generated by
a context-free grammar G = (N, T, P, S) satisfying the requirement of the above
lemma.

Observe that we do not require Ly to be a hardest language in the sense
of Greibach [6], but only to be LOG(CFL)-complete. Our construction closely
follows that one of Greibach although we have to be more careful due to the
nonsequential nature of iterated insertion (compared to inverse homomorphism).

In the following we will need new symbols $, #, 0, 2, and F contained in
neither N nor 7. In addition, let N := { A | A€ NU{F}} be a disjoint copy of
NU{F}.

For an arbitrary a € T consider all productions pq,...,pr such that p; €
N x (aUaN?) for each 1 < i < k. For each i > 0 and each 1 < j < k define

£20) = f:l?C'B$i if pj equals A — aBC!
)= Aogi if p; equals A — a

and

£00) = A ' if p; equals A = aBC
! T A2FF$ if p; equals A — a.

Further on we set

gt =S A2) .. (k) and gl = STAY) FY2) . 14 (k).
For a word w = ay ...a,, € T with a; € T we define

h(ay ... an) = SHgS #9524 . Frgo T g/ #$TLFOS T I$ T2 0.

Obviously, the mapping is computable in deterministic logarithmic space.
Now we define the language Lg. First let

R:={A0| A€ NU{F}}U{A2BC |A€ N and B,C € NU{F}}
and for i > 0 set R; := $'(R$%)*. Finally, define
Lp :={Aa#BAc|Fi>1:a € Ri-1,B€ R;;Ae NU{F};ce {0,2} }.

Obviously, Lp is a member of 1DSpace(logn).

The idea underlying this construction is to translate a derivation tree of G
into an insertion tree as follows: if A is a nonterminal labelling the root of a
subderivation tree D and B and C' are the root-labels of the left and right sub-
trees Dy, and Dg, there will be three elements of Lg, namely wy := Aa#5A2,
wp = Ba'#F' Be', and we = Ca’’#3"Cc”. The corresponding part of the in-
sertion tree will consist of w4 on top, we inserted at the very right end of wy,
and we inserted after the first symbol of we, which is the symbol C'. That is
left brothers become the left sons of the right brothers. This is illustrated in
Figure 1.

9 Observe the inversion of B and C.

| A | a BAc

1 1
|C|o¢#ﬁ Ce

D Dr

Fig. 1. The conversion of a derivation tree into an insertion tree.

Now we have to prove w € L; if and only if h(w) € OI(Lp) if and only if
h(w) € I0BIN(Lp). It is easy to show that w € Ly implies h(w) € IOBIN(Lg)
and hence h(w) € OI(Lp). The converse makes use of the many additional
features which we added to Greibach’s construction [6].

Let us assume h(w) € OI(Lp). Then there exists an insertion tree [=
(V, h, xg, label) with yield(zg) = h(w) and word(z) € Lp for all # € V. We

proceed in several stages:

Step 1 Let € V and label(z) = woziw; . ..z we. Due to the increasing length
of the $-blocks it is easy to see that for a typical element Aa#BAc € Lp
there are only three places to perform insertion: before A, behind A, or after
the ¢. Otherwise the resulting word could no longer be a subword of h(w).

Step 2 We can rearrange I in the following way: First, I no longer has nodes
inserting the empty word, and second whenever two nodes in [are directly
neighboured, i.e., the concatenation of the yields is a subword of h(w), the
right one is inserted as a son at the very right end of the left one. The way
to rearrange [is indicated in the Figures 2 and 3.

Step 3 After the rearrangement, each node of I is either a leaf or has at most
two sons, one inserted at the right end of word(x) and one after the first
symbol of word(x). Let # be in V and word(x) = Aa#tBAc € Ly. Then we
set nonterminal(z) := A and index(z) := iif f € R; (and o € R;_1). Tt is
not hard to work out that nonterminal(zo) = S.

Step 4 The structure of the mapping h enforces the following claim:

Claim1. If x € V with word(z) = Aa#BAc possesses a right son y, in-
serted after the symbol ¢, then (1) ¢ = 2 and (2} y possesses a left son z
inserted after the first symbol of word(y).

— N\
[T won

Fig. 2. First rearrangement of the insertion tree I.

Proof. If word(y) = Ca”#3"Cc", then AcC must be a subword of h(w),
since otherwise nothing is inserted left of C'. Hence ¢ cannot be 0, but must
be 2. But then we need a second nonterminal following the symbol 2. This
can be only provided by the insertion of a left son z after symbol c. a

Step 5 Inductively we define the mapping derive : V- — T by derive(z) := a;,
if # does not possess a right son in I. Here i := index(z). If ¢ > n 4+ 1,
we set a; := A. If z possesses a right son y we know by the previous step
that y in turn possesses a left son z. In this case we define derive(z) :=
a;derive(z)derive(y). The reader may verify that derive(zg) = w!

Step 6 For each # € V with index(z) < n we have A =7, derive(x). In partic-
ular S = nonterminal (xo) =& w, e, w € Ly.

Proof. Tf x has no right son, then word(z) = Aa#BA0 for some o € R;_1,
B € R;, and i := index(x). Hence, $' A0 is a subword of h(w) and gf*. This
implies that A — a; is in P. Hence A =L a1 = derive(z).

If & possesses a right son y with nonterminal(y) = C, then by Step 4 the
node y has a left son z with nonterminal(z) = B. Then we have that $'A2CB
is a subword of i (w) and hence of ¢;'*. This implies A — a; BC'isin P. Hence,
by induction A =, a;BC =% a;derive(z)derive(y) = derive(z). O

Using Corollary 7 we get:

Corollary 15. 1. LOG(CFL) = APPL(1DSpace(logn), IOBIN)
= HULL(LOG(CFL), I05IN).
2. LOG(CFL) = APPL(1DSpace(logn), OI). O

tree B

Fig. 3. Second rearrangement of the insertion tree I.

Hardness of the Ol-operation In this sub-subsection, we will exhibit some
crucial differences in the structural behaviour of O compared with IOmonN
and IOBIN.

Theorem 16. NP = APPL(DSpace(logn), OI)
= HULL(1DSpace(logn), OI) = HULL(NP, OI).

Proof. We first show the inclusion NP C APPL(DSpace(logn), OI). Let L; and
Lo bet the sets:

Ly := {$a1%$%a2%% . . . $%ar$#0# | a1, ..., ak, b are binary numbers
with Zle a; =b} and

Lo :={a | a is a binary number }.

Now set Loy := L1 U L. Obviously, Loy belongs to DSpace(logn) and language
OI(Lor)N((${0,1}*$)*#{0, 1}*#) is the NP-complete subset-sum problem (see,
e.g., [20]). Hence, OImonN(Loy) is NP-complete, too.

The inclusion APPL(DSpace(logn), OI) C HULL(1DSpace(logn), OI) fol-
lows since the former class is included in APPL*(1DSpace(logn), OI). Finally,
HULL(1DSpace(logn), OI) C HULL(NP, OI) is trivial and to close the circle we
use Proposition 8 and the fact that NP is closed under deterministic logarithmic
space bounded reducibilities, which gives us HULL(NP, OI) C NP. O

We want to mention that the above given construction even works with an
“unbounded” variant of insertion, i.e., the number of insertion points are not
bounded any more. Moreover, if one modifies set Ls to be { $a;$$a2%% . .. $%ax$ |

ai,as, ..., a are binary numbers }, then one obtains subset-sum with the shuffle
operation (SHU). Since NP is closed under shuffle it equals the complexity class
APPL(DSpace(logn), SHU). This strengthens a result in [8].

In the light of construction following Theorem 6 we should not hope to find a
language L in 1DSpace(logn) with an NP-complete set OI(L), since this would
imply LOG(CFL) = P = NP.

This sensitivity of the OI-operation with respect to the used base class
leads to surprising phenomena: OI compared to IOMoON is idempotent, i.e.,
OI(OI(L)) = OI(L) while in general IOmon(L) C IOMoN(IOMon(L)) for a
language L. But on the other hand, we have APPL(1DSpace(logn), IOMoN) =
APPL*(1DSpace(logn), IOmon) while APPL(1DSpace (logn), OI) = LOG(CFL)
seems to be different from the class APPL*(1DSpace(logn), OI) = NP.

3.3 Relativizations

We show that all the relations found in the previous section relativize. For space
bounded complexity classes, there are two main possibilities to relativize them,
1.e., to equip space bounded machines with an oracle mechanism. In the approach
of Ladner and Lynch [12], further called LL-relativization, the machine may use
all of its power to generate oracle queries, while in the approach of Ruzzo, Si-
mon, and Tompa [18], further called RST-relativization, the queries have to be
generated deterministically. As usual, the use of parentheses is reserved for the
LL-mechanism, while the use of the RST-relativization is indicated by using an-
gles. Hence, for an arbitrary oracle set A one gets, e.g., in case of nondeterminis-
tic logspace bounded Turing machines the LL-relativized class NSpace(log n)(A)
and the RST-relativized version NSpace(log n)(A), respectively. Observe that in
case of deterministic logspace bounded machines both relativizations coincide.
In [13] it was shown that the relations

. NP = APPL(DSpace(logn), HOM) = HULL(DSpace (logn), HOM),
. NSpace(logn) = APPL(1DSpace(logn), HOM),
. NP = HULL(1DSpace(logn), HOM), and
. NSpace(logn) = APPL(DSpace(logn), STAR)
= HULL(DSpace(logn), STAR)

R

relativize, i.e, for an arbitrary oracle set A we have:

1. NP = APPL(DSpace(logn)A, HOM) = HULL(DSpace (logn)4) | HOM),
NSpace(logn)4) = APPL(1DSpace(logn)4), HOM),
NPW = HULL(1DSpace(logn)*) | HOM), and
NSpace(log n)(A) = APPL(DSpace(log n)(A), STAR)
= HULL(DSpace (logn)(4) STAR).

Observe that in the fourth relation the RST- and and in the second relation the
LL-relativization is used.

We will see this pattern again, when replacing nonerasing homomorphism
by outside-in iterated insertion and the Kleene closure by inside-out iterated
insertion. Before we can state our theorem, we need the following definition:

e

Definition17. A doubly RST-restricted nondeterministic polynomially time
bounded logspace auxiliary oracle pushdown automaton is a nondeterministic
polynomially time and logspace bounded pushdown automaton equipped with
an oracle mechanism (tape, query- and answer states), which is not allowed to
use nondeterminism or its pushdown store while writing on its oracle tape?.

The class of languages reducible to an oracle set A via a doubly RST-restricted
nondeterministic polynomially time bounded logspace augmented oracle push-
down automaton is denoted by NaumPDA-TimeSpace(nO(l),log n)(A).

Theorem 18. For an arbitrary oracle set A we have:

1. NP = HULL(1DSpace(logn)), OI).
2. NP = APPL(DSpace(logn)®), Oy = HULL(DSpace (logn)4) | OI).
3. NSpace(logn){4) = APPL(1DSpace(logn)4) I0moN)
= HULL(1DSpace(logn)4) IOMoN).
4. NauzPDA-TimeSpace (n®) logn){4) = APPL(1DSpace(logn)) I0BIN)
= HULL(1DSpace(logn)4) IO BIN).

Idea of Proof. In the cases 1 till 3 it is possible to put oracle queries in the
sets constructed in the Theorem 12 and 16, very similar to the methods used
in [13]. The idea to prove 4 is a bit more complicated since one has to deal with
pushdown automata instead of grammars. That is, one has to combine the triple-
construction with the inside-out iterated binary operation. a

4 Conclusions

We investigated the computational power of operations on formal languages
with respect to simple complexity classes. We introduced two new operations
which were closely related to LOG(CFL) and NP. We mention in passing that
similar results can be obtained when iterating the operation of deletion, defined
in correspondence to that of insertion.

There are several questions left open. An interesting aspect is the treatment
of abstract storage types. Most results concerning context-free languages and
pushdown automata have been shown to remain valid if we replace in the au-
tomaton the pushdown store by another arbitrary storage device. For languages
this led to the notions of abstract families of automata or of automata with
abstract storage [3, b]. Essentially this led to the construction of permissible se-
quences of basic instructions of a storage type. For instance, the Dyck sets are
the languages of correct computations of a pushdown store. In our framework
this leads to the task to construct to an abstract storage type X a characteristic
operation opyx, which would play for X that role which inside-out iterated binary
insertion plays for the context-free languages. The advantage of this approach is
that all results obtained in this way would relativize.

2 This is equivalent to a logarithmic bound on the oracle queries, if the oracle has
access to the input word.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

J. L. Balcazar, J. Diaz, and J. Gabarré. Structural Complexity I, volume 11 of
EATCS Monographs on Theoretical Computer Science. Springer, 1988.

S. A. Cook. Characterizations of pushdown machines in terms of time-bounded
computers. Journal of the ACM, 18:4-18, 1971.

J. Dassow and K.-J. Lange. Complexity of automata with abstract storages. In
Proceedings of the 8th Fundamentals of Computing Theory, number 529 in LNCS,
pages 200-209. Springer, 1991.

P. Flajolet and J. Steyaert. Complexity of classes of languages and operators. Rap.
de Recherche 92, IRIA Laboria, 1974.

. S. Ginsburg. Algebraic and Automata- Theoretic Properties of Formal Languages.

North-Holland, Amsterdam, 1975.

S. A. Greibach. The hardest context-free language. SIAM Journal on Computing,
2(4):304-310, December 1973.

J. Gruska. A characterization of context-free languages. Journal of Computer and
System Sciences, 5:353-364, 1971.

D. Haussler and M. K. Warmuth. On the complexity of iterated shuffle. Journal
of Computer and System Sciences, 28:345-358, 1984.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979.

L. Kari. Insertion operations: closure properties. Bulletin of the Furopean Associ-
ation for Theoretical Computer Science, 51:181-191, 1993.

K.-I. Ko. On some natural complete operations. Theoretical Computer Science,
37:1-30, 1985.

R. Ladner and N. Lynch. Relativization of questions about log space computabil-
ity. Mathematical Systems Theory, 10:19-32, 1976.

K.-J. Lange. Decomposition of nondeterministic reductions. Theoretical Computer
Science, 58:175-181, 1988.

K.-J. Lange. Complexity structure in formal language theory. In Proceedings of
the 8th Annual Structure in Complexity Theory, pages 224-238. IEEE Computer
Society Press, May 1993.

[. P. McWhirter. Substitution expressions. Journal of Computer and System Sci-
ences, 5:629-637, 1971.

B. Monien. About the deterministic simulation of nondeterministic (log n)-tape
bounded Turing machines. In 2-te GI Fachtagung Automatentheorie und Formale
Sprachen, number 33 in LNCS, pages 118-126. Springer, 1975.

B. Monien and I. Sudborough. The interface between language theory and com-
plexity theory. In R. V. Book, editor, Formal Languages— Perspectives and Open
Problems, pages 287-324, New York, 1980. Academic Press.

W. L. Ruzzo, J. Simon, and M. Tompa. Space-bounded hierarchies and probabilis-
tic computations. Journal of Computer and System Sciences, 28:216-230, 1984.

I. H. Sudborough. On the tape complexity of deterministic context-free languages.
Journal of the ACM, 25:405-414, 1978.

K. Wagner and G. Wechsung. Computational Complexity. Mathematics and its
applications (East Europeans series). VEB Deutscher Verlag der Wissenschaften,
Berlin, 1986.

This article was processed using the ¥TEX macro package with LLNCS style

