The Boolean Formula Value Problem as Formal
Language

Klaus-Jorn Lange

WSI, Universitiat Tiibingen,
Sand 13, D72076 Tiibingen, Germany
email: lange@informatik.uni-tuebingen.de

Abstract. The Boolean formula value problem asks for the Boolean
output value of a given input formula. We code it as a formal language
D+ C {a,b}*. Dy is a nonregular, visibly pushdown language. We give
automata for D4 which enable us to derive some of its syntactic equa-
tions. It is unknown whether the given list of equations is complete. Using
these equations some algebraic properties of the syntactic monoid of Dy
are sketched.

Keywords: Boolean formula value problem, syntactic monoid, word
equations, algebraic approach, TC°® vs NC*!

1 Introduction

The Boolean formula value problem (BFVP) consists in evaluating Boolean for-
mulas. Compared to the P-complete circuit value problem it is of rather low
complexity; depending in the coding of the input formula the evaluation can be
done in NC! if the formula is given in a parenthesized way (or in polish normal
form) or deterministically in logarithmic space if the input formula is given as a
tree coded by nodes and edges. In this paper we will be interested in the first of
these two possibilities. It is quite easy to show the NC!-hardness of the Boolean
evaluation problem for formulas given by parenthesized words or expressions in
polish normal form. On the other hand,the construction to prove membership
in NC! is quite involved [5].

The class NC! is quite attractive from the formal language viewpoint since
Barrington showed, that each regular set, whose syntactic monoid contains an
nonsolvable group is NC!-complete ([3]). Thus there exist regular sets whose
word problem is NC!-complete.

The aim of this investigation is to consider the Boolean formula evaluation
problem from the algebraic formal language view-point despite the fact that it
is nonregular and hence its syntactic monoid is infinite. This short note comes
without proofs. Just the constructions and some examples are given. Proofs for
the correctness of the automata constructions can be found in the Studienarbeit
of Bernd Brumm ([4]).

This paper is structured as follows: we first express (a special version of)
the Boolean formula value problem via the Dyck language D over one pair of

2 Klaus-Jorn Lange

parenthesis. Then we present automata constructions. Finally, some first alge-
braic properties of BFVP are given including a list of defining equations which
are not known to be complete.

1.1 Preliminaries

Let L C {a,b}*. We say that two words =,y € {a,b}* are congruent modulo L if
and only if we have
222 € L <= zyz' € L

for all z, 2" € {a,b}*. By [z]r we denote the congruence class of # modulo L. For
the resulting notions and results concerning the syntactic monoid of L we refer
to [6].

In our investigations of the Boolean formula value problem we will use the
notion of visibly pushdown automata and languages as introduced by Alur ([1]).
These were known before as input-driven languages and are characterized by the
restriction that the modification of the stack in terms of push or pop moves are
not dependent in the state but only in the input symbol. While the one-sided
Dyck languages are visibly pushdown languages, the two-sided ones are not.

2 Coding the Boolean Formula Value Problem

The coding of a problem, i.e.: its representation as formal language containing
words which code problem instances, can usually be done in different ways with-
out affecting the complexity of the problem. But the resulting formal languages
will differ signifcantly in their algebraic properties expressed in their syntactic
monoids. For instance will a parenthesis-language contain a zero in its syntac-
tic monoid, while in the corresponding polish normal form language arbitrary
words are subwords of valid expressions, which means that there is no zero in
the syntactic monoid.

Our aim is to choose a representation of BFVP which leads to a syntactic
monoid as simple as possible. That is why we will represent boolean formulas
by the N AN D-operation, we will use a polish normal form instead of using
parentheses, and we will represent binary trees by dyck words and not by the
more usual Lukasiewicz words.

It is well known that every Boolean function can be expressed by the (bi-
nary) NAN D-function together with the Boolean constant TRUE. The con-
version is possible by replacing AND(z,y) by NAND(TRUE,NAND(z,vy)),
OR(xz,y) by NAND(NAND(TRUE,z), NAND(TRUE,y)), and NOT (z) by
NAND(TRUE, z). The size of the resulting N AN D-formula is linear in the size
of the original AN D, O R-formula.

Hence we will consider as input formulas, which are to be evaluated, com-
plete binary trees labelled with NAND-function, i.e.; all inner nodes have two
predecessors and are labelled by the NAND-function, while the remaining nodes
are leaves of indegree zero labelled by the Boolean constant TRUE.

Boolean Formula Value Problem 3

As mentioned before, coding these formulas as graphs, with vertices and
edges, leads to evaluation problems which are hard for deterministic logarithmic
space.

The well-known alternative is to use parentheses to express the tree structure.
Throughout of this paper we will represent the opening paranthesis by the letter
a and the closing one by the letter b.

We code complete binary trees as follows: the tree consisting of a single
(root) vertex is coded by the empty word A. If a vertex has two outgoing edges
leading to its predecessors the left edge is labelled by a and the right one by b.
The tree is then read in-order from left to right. Thus the word aabb represents
the binary tree with 3 leaves, the left subree containing 2 leaves, and the right
one containing one leave. Switching the left and right subtree yields the tree
represented by abab. This gives a one-to-one corrspondence between complete
binary trees and the Dyck language D C {a,b}*.

We decided in favour of labelling the edges and against the more usual la-
belling of the vertices, which would lead to the well known representation of
complete binary trees by the Lukasiewicz language.

While (contextfree) grammars are in general easier to construct for the
Lukasiewicz language, in the Dyck case the resulting syntactic (bicyclic) monoid
is more simple. For instance D is generated by the single equation ab = A whereas
the Lukasiewicz language results in the equations aba = a,abb = b, and aab = a.

A tree labelled by Boolean functions and constants evaluates either to TRUE
or to FALSE. In this way the Dyck set D is divided into the two disjoint sub-
sets D = Dy U D_ where D, consists in those elements of D which represent
a tree (labelled with the NAND-function and the constant TRUE) which eval-
uates to TRUE and D_ contain those which evaluate to FALSE. Thus D is
a special formulation of the Boolean formual value problem which makes D,
NC!-complete.

In the following, we are going to investigate the properties of the formal
language D .

3 Properties of D

It is easy to see that D, is a context-free language. For instance, the set D b!
is generated by the grammar with the rules S — @aSS5S|aSaSS|aaSSaSS|b.

Obviously, D is a visibly push-down language as defined by Alur([1]), i.e. for
each element of the terminal alphabet it is determined whether the stack of an
push-down automaton accepting D is pushed (here by the symbol a) or popped
(here by the symbol b).

Alur et al. showed that a language is visibly push-down if and only if a certain
congruence relation is of finite index ([2]).

A close inspection shows that the resulting congruence relation divides the
set D into four classes

D=FUNUPUT.

! This set might be regarded as the Lukasiewicz-version of D

4 Klaus-Jorn Lange

This was explicated in [4].

These four classes might be explained in the following way: 7' consists in
those Dyck-words w which represent formulas, which evaluate to TRUE and if
we add a suffix v such that wv is still a Dyck word, wv evaluates to TRUE, as
well.

F consists of the dual class of words representing fomulae evaluating to
FALSE regardless how they are completed by a Dyck suffix.

P and N are represent those formulas which evaluate to TRUE (respectively,
FALSE) whose value can be changed by a suffix.

The shortest member of these four classes are A € P,ab € N,aabb € T, and,
abaabb € F. We have

Dy =TUP and D_=FUN.

These four classes can be characterized in the following way: every w € D
admits a unique decomposition w = aw;baws - - - aw,b for some n > 0 and some
w; € D. We then have

— w € P iff nis even and for all 1 < j < n we have w; € Dy,
— w € N iff nis odd and for all 1 < j < n we have w; € Dy,
— w € T iff there exists some i < n/2 such that wg; 41 € D_ and for all

1 <j <2i we have w; € D4, and

— w € F iff there exists some i < n/2 such that we; € D_ and for all 1 < j <
2i — 1 we have w; € Dy.

Thus w € D4 iff w consists in a concatenation of an even number of words
avb,v € Dy, followed by a word aub,u € D_, or followed by nothing. If that
number is odd,we have w € D_.

3.1 Automata for D

Alur showed how to construct a push-down automaton out of the congruence
whose classes serve both as stack alphabet and as set of states. In the case of D
the resulting automaton can be simplified by keeping as set of states { F, N, P, T}
but shrinking the stack alphabet to I' := { P, N} with the pushing transitions

Ta— F,P
Pa— PP
Na— PN

Fa—FN

)

and the popping transitions

T,Pb— N
P,Pb— N
N,Pb—T
FPb—T
T,Nb—P°
PNb—P
N,Nb— F
FNb—F

Boolean Formula Value Problem 5

The resulting automaton has a very regular structure like an infinite binary
tree. It is thus possible to represent uniquely each combination of state and
stack content of this automaton as a binary string in a way, that configurations
connected by transitions are of a very similar shape. A pushing transition, i.e.
reading an a, acts on a binary string ending in the bits zy, x,y € {0,1}, by
appending the second to last bit which makes the string now ending in zyz.
A popping transition, i.e. reading a b, acts on a binary string ending in the
bits zyz, z,y,z € {0,1}, by deleting the last bit z and then exchanging the
remaining last two bits which makes the string now ending in yx. Interpreting
these strings as binary numbers, the four pushing and eight popping rules can be
given by the following rules: The automaton has infinitely many states labelled
by natural numbers greater or equal to 4. The starting state is state 6. If the
(one-way) input reads an a and the automaton is in state 4n + ¢ for some n and
some i < 4 it goes to state 8n + j where ¢ and j are given by:

In+0—-8n—+0
dn+1—8n—+2
n+2—->8n+5"
Nn+3—-8n+7

If a b is read we have the following rules:

8 +0—4n+0
&qn+1—-4n+0
8qn+2—4n+2
8qn+3—4n+2
8n+4—4n+1°
8 +5—4dn+1
8 +6 —4n+ 3
8qn+7—4n+ 3

Since D, is NC!-completeit is thus an NC!-complete task to read a Dyck
word and make according to the input letters the corresponding modulo com-
putations and then to determine whether the result is 6 or 7 (corresponding to
Dy) or 4 or 5 (corresponding to D_).

4 The Syntactic Monoid of D

We now investigate the infinite syntactic monoid of D,. To do so, we first con-
sider equations fulfilled by the syntactic congruence of D, . After that we give a
few algebraic properties of D,..

4.1 Equations

It is easy to check the validity of the following equations fulfilled in {a,b}* by
D either directly or using the automata given in the previous section:

6 Klaus-Jorn Lange

. abab =\,

. aabbb = b,

. aabaabb = aabba,

. abbabb = babb,

. aabba’ab = aabba® for all 4 > 0, and
. abb*abaabb = blabaabb for all i > 1.

Oy UL W N~

The last two (sets of) equations express that to the right of the word in
aabba™ respectively to the left of the word in b*babaabb the D, -evaluation is
simply just a D-evaluation, i.e.: the reduction of the subword ab to A.

It is unclear, whether these equations are complete, i.e.: whether there are
new equations not implied by the given ones, or independent, i.e.; whether one
of them is implied by the others.

Another interesting question is, whether these equations can be directed in
either way (either from left to right or from right to left) such that each sequence
of applications of the bidirectional equations could be simulated by a sequence
of applications of the unidirectional versions of these equations.

The last question is closely connected to the search for rewriting systems
converting each w € {a,b}* into a normal form w’ (for instance a shortest
word w.r.t. some ordering) such that w’ and w are congruent modulo D,. An
application of the Knuth-Bendix-procedure to (unidirectional versions of) the
given equations didn’t give new ones.

4.2 Algebraic Properties of the D

We finally give a few algebraic properties of the syntactic monoid Mp, of D.

A standard tool to investigate the structure of a monoid are Green’s rela-
tions (see for instance [6]). For finite monoids the D- and the J-relation allways
coincide. This can hold in the infinite case, as well; an example is the syntactic
monoid of the language D which is the bicyclic monoid. In contrast to that the
syntactic monoid of D4 has one J-class (i.e. for all z,y € {a,b}* there exist
z,z" € {a,b}* such that z is congruent zyz’ modulo D), but more then one
D-class, since aabb and the empty word A are not D-equivalent, i.e.: there is no
WS {a, b}* such that both [aabb]L./\/lD+ = [:L']L./\/IDJr and ./\/lD+ [:C]L = ./\/lD+ [/\]L-

We finally mention, that the syntactic monoid of D is regular. That is, for
all x € {a,b}* there exists some y (called an inverse of) such that zyz is
congruent with x and yry with y modulo D,.

If that inverse element y is uniquely determined by x, such a monoid is called
inverse. While the syntactic monoid of D is inverse, that of D is not; for instance
the word bab has the two different inverses a and aaabb.

These algebraic differences between D and D, express their differences in
complexity. While D is in TC® (and complete w.r.t. Turing reducibilities), D,
is NC!-complete(w.r.t. many-one reducibilities).

Compared to Dy a totally different NC!-complete problem is the word prob-
lem of Aj (or of any other regular set whose syntactic monoid contains a nonsolv-
able group ([3])). In the proof of this fact the action of a Boolean gate with inputs

Boolean Formula Value Problem 7

x and y is in some sense simulated by evaluating the commutator z='y~'xy of

the algebraic simulations of x and y. The proof makes uses of the fact, that
a nonsolvable group contains arbitrarily long, nonvanishing commutatorchains.
This leads to the question whether we can find in the syntactic monoid of Dy,
which is regular and has only one J-class, a similar algebraic simmulation of the
action of Boolean gates, which would give a new proof of the NC!-hardness of
the Boolean formula value problem.

Acknowledgement

I would like to thank the referees for their careful reading of this note.

References

1. R. Alur. Visibly Pushdown Languages. In Proc. 36th ACM Symp. on Theory of
Computing, pages 202-211, 2004.

2. R. Alur, V. Kumar, P. Madhusudan, and M. Viswanathan. Congruences for Visibly
Pushdown Languages. In Proc. ICALP, pages 1102-1114, 2005.

3. D.A. Barrington. Bounded-width polynomial-size branching programs can recognize
exactly those languages in NC*. J. Comp. System Sci., 38:150-164, 1989.

4. B. Brumm. Das Auswertungsproblem als formale Sprache. Private Communication,
2011.

5. S. R. Buss. The Boolean formula value problem is in ALOGTIME. In Proc. 19th
Ann. ACM Symp. on Theory of Computing, pages 123—131, 1987.

6. J. E. Pin. Varieties of Formal Languages. Plenum, London, 1986.

