
Unambiguity and Fewness

for Logarithmic Space

�

(Preliminary Version, January 1991)

Gerhard Buntrock

y

Birgit Jenner

z

Klaus-J�orn Lange

z

Peter Rossmanith

z

Abstract

We consider various types of unambiguity for logarithmic space bounded Turing

machines and polynomial time bounded log space auxiliary push-down automata.

In particular, we introduce the notions of (general), reach, and strong unambiguity.

We demonstrate that closure under complement of unambiguous classes implies

equivalence of unambiguity and \unambiguous fewness". This, as we will show,

applies in the cases of reach and strong unambiguity for logspace. Among the many

relations we exhibit, we show that the unambiguous linear contextfree languages,

which are not known to be contained in LOGSPACE, nevertheless are contained

in strongly unambiguous logspace, and, consequently, in LOGDCFL. In fact, this

turns out to be the case for all logspace languages with reach unambiguous fewness.

In addition, we show that general unambiguity and fewness of logspace classes can

be simulated by reach unambiguity and fewness of auxiliary push-down automata.

1 Introduction

Although the power of nondeterminism for space classes has been demonstrated by the

development of skillful techniques like inductive counting, [Imm88], [Sze88], the long open

LBA-problem \DSPACE(n) = NSPACE(n)?" accompanied by its logarithmic version

\L = NL?" remains unsolved.

For the area of logarithmic space, various interesting approaches have been made

to gain insight into properties of complexity classes de�ned by taking the number of

acceptable computations of nondeterministic Turing machines into account. In [AJ90],

�

This research was supported by DFG-SFB 342, Teilprojekt A4 \KLARA".

y

Institut f�ur Informatik, Universit�at W�urzburg, D-8700 W�urzburg, Germany. This research was

started while this author was a guest of SFB-342, A4, at the Technische Universit�at M�unchen, Institut

f�ur Informatik.

z

Technische Universit�at M�unchen, Institut f�ur Informatik, Arcisstr. 21, D-8000 M�unchen 2, Germany

1

[BDHM91] e.g., counting classes, like e.g. #L, MOD

k

L, have been considered and shown

to be related to parallel complexity classes like the NC-hierarchy. On the other hand, by

imposing bounds on the number of paths leading to con�gurations of logspace bounded

nondeterministic Turing machines classes of bounded nondeterminism have been de�ned

in [BHS90], where some insights into the possibilities of removing nondeterminism were

gained.

Both of these approaches were conducted by similar approaches in the area of poly-

nomial time and the P = NP? question. There, properties of counting classes like #P ,

�P , MOD

k

P, are ongoing research topics, and various of classes with bounded nonde-

terminism have been considered. The �rst such class was UP, de�ned by Valiant as the

class of languages that are unambiguously acceptable by NP machines, that is, with at

most one accepting computation [Val76]. This class is of particular importance in rela-

tion with one-way functions and cryptography [GS88]. By allowing an NP machine up

to polynomially many accepting computations, the class FewP, introduced by Allender

[All86], is obtained. This class has been shown to be contained in MODZ

k

P [CH89].

In this paper we want to investigate properties of various language classes that are

characterizable by nondeterministic logspace space Turing machines and simultaneously

logspace and polynomial time bounded auxiliary push-down automata (AuxPDA) that

obey similar ambiguity restrictions as UP and FewP machines. While many known

methods approved for the treatment of general nondeterminism remain suitable for our

purpose, some techniques like inductive counting, which respects the existence but not

the number of accepting computations, in general turn out to be inadequate.

First we will consider the logspace bounded analog of the polynomial time classes UP

and FewP. This leads to the two classes UL and FewL, and, to the auxiliary push-down

automata classes UAuxPDA and FewAuxPDA. But we will consider further restrictions

of these classes, which arise from ambiguity requirements that are w.l.o.g. ful�lled for

the corresponding time classes UP and FewP, and seem to be in particular appropriate

in the case of logspace classes. Since nondeterministic polynomial time Turing machines

can protocol their computation, we can w.l.o.g. assume that for such machines there

is at most one path between any two arbitrary con�gurations. (This is true for any

purely time bounded Turing machine.)Due to lack of freely accessible space, logspace

machines and AuxPDA cannot store their computation. Therefore, here the classes

FewUL and FewUAuxPDA are of interest. These consist of FewL and FewAuxPDA

languages, respectively, acceptable by machines which satisfy for all inputs that there

exists at most one path from the initial to an accepting con�guration. The class FewUL

has already be demonstrated to be the more appropriate logspace equivalent to FewP,

since the inclusion FewP � MODZ

k

P for all k � 2 translates to FewUL but does not

seem to translate to FewL, as shown in [BDHM91].

We will state various closure properties of the classes UL, FewUL, and UAuxPDA,

FewUAuxPDA. In particular, we will show that the two few classes are exactly the

closure of the corresponding unambiguous classes under logspace disjunctive Turing re-

ductions or equivalently, under logspace bounded existential quanti�cation.

We furthermore consider stronger notions of ambiguity, reach unambiguity and strong

2

unambiguity, for both logspace machines and AuxPDA. While the usual unambiguity

notions pertain to accepting computations only, that is, computations starting in the

initial con�guration and ending in accepting con�gurations, reach unambiguity puts the

corresponding restrictions to each computation path starting in the initial con�guration

and ending in any (reachable) con�guration. In addition, strong unambiguity requires

the corresponding conditions to hold even for arbitrary computations between any pair of

con�gurations. These concepts may be compared with those used within formal language

theory. There, usually, unrestricted unambiguity is studied, but since it is possible to

remove both the unreachable and the unproductive nonterminals of a grammar, strong

unambiguity and unrestricted unambiguity of formal languages are coincident. This

is reected by the recognizability of unambiguous contextfree languages by strongly

unambiguous push-down automata, which could recently be shown (see [LR90]). It is

stressed by the inclusion of all unambiguous linear contextfree languages in the class of

strongly unambiguous logspace languages, which we show below. We furthermore will

show that for both|reach unambiguity and strong unambiguity|unambiguous fewness

and unambiguity coincide.

The reader is assumed to be familiar with basic facts and de�nitions of structural

complexity theory as e.g. stated in [HU79] or [BDG88], [BDG90]. In general, more

speci�c concepts and notations are introduced just before used.

2 Logarithmic Space

In this section we will introduce and investigate various ambiguity and fewness notions

for nondeterministic logarithmic space NL.

2.1 Unambiguous Computations and Few Computations

A direct logspace analogon of Valiant's class UP [Val76] is given with the following

de�nition.

De�nition 1 We de�ne the class UL as the class of all sets accepted by nondeterministic

logarithmic space bounded Turing machines for which there exists at most one accepting

computation for all inputs x.

Generalizations of UL

1

can be obtained by bounding the potentially exponential num-

ber of accepting computations by (non-constant) functions (depending on the length of

the input). Of primary interest in the case of polynomial time classes are here polyno-

mial bounds on the number of accepting paths, leading to the class FewP introduced

and investigated in [All86], [CH89]. Again, we get a direct logspace analogon of this

class FewP, by simply exchanging polynomial time bounded nondeterministic Turing

machines by logarithmic space bounded machines.

1

We understand the letter \U" as an abbreviation for the fact that the underlying machines accept

unambiguously .

3

De�nition 2 The class FewL is de�ned as the class of sets accepted by nondeterministic

logarithmic space bounded Turing machines M for which there is a polynomial p

M

such

that for all inputs x there are fewer than p

M

(jx j) accepting computations of M on x.

In the case of polynomial time classes, clearly, any of the computations on an arbitrary

input x can be made \unambiguous" in the sense that no two computations on x lead

to the same accepting con�guration. This can be achieved simply by storing the whole

computation. In the case of logarithmic space, no complete computation can be recorded.

Therefore here, too, the following (weaker) generalization of the class UL is of interest,

which nevertheless still has the spirit of \fewness".

De�nition 3 De�ne the class FewUL as the class of all sets accepted by nondetermin-

istic logarithmic space bounded Turing machines which satisfy for all inputs x that there

is at most one computation from the start con�guration to any accepting con�guration.

Note that a polynomial bound on the number of paths is induced by the polynomial

bound on the number of di�erent con�gurations.

Clearly, it holds L � UL � FewUL � FewL. Furthermore, it is easily veri�ed that

UL, FewUL, and FewL satisfy the following closure properties.

A language class A is closed under join, if for all A;B 2 A, the language 1 �A[0 �B is

contained inA. A language class A is closed under disjunctive (respectively, conjunctive)

logspace Turing reductions, i� for all B 2 A, the language accepted by a deterministic

logspace oracle machine with oracle B that immediately accepts (respectively, rejects)

when a query is answered positively (respectively, negatively) is contained in A (this

notion goes back to [LL76]; see [JKL89] for various properties of such reductions).

Proposition 4 (1) UL, FewUL, FewL are closed under join.

(2) UL, FewUL, and FewL are closed under logspace many-one reductions.

(3) UL and FewL are closed under conjunctive logspace Turing reductions L

c

(�), and

thus under intersection and marked concatenation.

(4) FewUL and FewL are closed under disjunctive logspace Turing reductions L

d

(�),

and thus under union.2

The class FewUL has been proposed in [BDHM91] (named there LogFewL) as a more

adequate logspace equivalent of FewP than FewL, since it satis�es some of the properties

known to hold correspondingly for polynomial time classes. The following statement of

[BDHM91] parallels the result FewP � MODZ

k

P shown in [CH89]. We give a simple

proof.

Theorem 5 [BDHM91] FewUL � MODZ

k

L for any k � 2.

4

Proof. Let M be a FewUL machine that accepts a language A with f(x) accepting

computation paths on input x such that x 2 A () f(x) > 0. Then a logspace machine

M

0

with exactly k

f(x)

� 1 accepting computation paths on input x can be constructed

for any k � 2. Since k

f(x)

� 1 is not divisible by k if f(x) > 0 and equals 0 if f(x) = 0,

M

0

is a MODZ

k

L machine for A.

M

0

works as follows: On input x,M

0

cycles through all accepting con�gurations ofM

in lexicographical order. Each of these con�gurations is nondeterministically chosen to

be selected up to k�1 times or not to be selected. Any time a selection of a con�guration

c occurs, M

0

ver�es by simulation of M that c is reachable from the start con�guration

c

0

. If this is not the caseM

0

rejects. Clearly, then, any accepting path of M

0

corresponds

to a (non-empty) subset of the reachable accepting con�gurations of M with up to k� 1

occurences of each con�guration. Since there are exactly k

f(x)

� 1 (non-empty) of such

subsets, M

0

will have so many accepting paths if f(x) > 1 and none if f(x) = 0. 2

A similar result for FewL appears di�cult to achieve, since there seems to be no way

to di�erentiate between more than a constant number of computation paths. In fact, no

nontrivial relationship of FewL to any other complexity class is known.

In the proof of Theorem 5, for the class FewUL it could be made use of the fact that

each computation path of a FewUL machine has a short description by the con�guration

in which the paths ends. Thus, by cycling through all con�gurations in some ordering

a logspace machine has the capacity to di�erentiate between a polynomial number of

paths.

The availability of a short description of paths furthermore enables us to show that

FewUL is just the closure of UL under disjunctive logspace Turing reductions L

d

(�), or

alternatively expressed, that any language L

1

2 FewUL can be obtained from a language

L

2

2 UL by logspace Turing reductions and log space bounded existential quanti�cation

is very close. For any class of languages A closed under log space many-one reductions,

it holds: L

d

(A) = 9

log

A. A dual relationship holds between conjunctive log space Turing

reductions and log space bounded universal quanti�cation.

Theorem 6 FewUL = L

d

(UL) = 9

log

UL.

Proof. For the inclusion FewUL � L

d

(UL) construct for a given FewUL machine M a

deterministic log space Turing machine M

0

that queries the following oracle A for each

accepting con�guration in lexicographical order and accepts if and only if one of the

queries is answered positively:

A := f(x; c) j c is an accepting con�guration of M , and

there exists a computation path of M on input x ending in cg

Thus, M

0

works disjunctively.

SinceM is a FewUL machine, it is easy to see that A is contained in UL. Furthermore,

ifM accepts an input x, then there exists a smallest accepting con�guration which leads

5

to acceptance. This con�guration will eventually lead to a positively answered query of

M

0

. Conversely, if M

0

accepts, then only because one of its queries (x; c

i

) is answered

positively, i.e.,`when the con�guration c

i

is reachable by M on input x. (In fact, it is the

�rst reachable con�guration in lexicographic order that is reachable by M on input x.)

Thus, M and M

0

accept the same language.

The inclusion L

d

(UL) � FewUL follows from the fact that FewUL is closed under

disjunctive log space Turing reductions (Proposition 4(4)).

Since UL is closed under log space many-one reductions Proposition (4(2)), it holds

L

d

(UL) = 9

log

UL, too. 2

It is questionable whether UL or FewUL are closed under complementation. Note that

the inductive counting technique developed by Immerman and Szelepcs�enyi for showing

that NL is closed under complementation [Imm88], [Sze88] does neither maintain the

unambiguous nor the few accepting requirement, and can thus not be applied to UL

or FewUL. For the procedure of counting the con�gurations on a certain level of the

computation tree, reachability questions have to be solved, which we can only assume to

be solved unambiguously, or, respectively, with a few number of paths, for con�gurations

lying on accepting paths.

But since FewUL is exactly the closure of UL under disjunctive log space Turing

reductions, and UL is closed under conjunctive log space Turing reductions, the closure

of UL under complementation already implies the equality of UL and FewUL. This

follows from the fact that for any language class A it holds: L

d

(A) = CoL

c

(CoA)

([JK89]).

Corollary 7 If UL = CoUL, then UL = FewUL.

Proof. The assumption together with Theorem 6 and Proposition 4 imply FewUL =

L

d

(UL) = CoL

c

(CoUL) = CoL

c

(UL) = CoUL = UL. 2

Another consequence of Theorem 6 is that we cannot hope for the closure of UL under

(unmarked) concatenation unless we believe UL = FewUL, since the concatenation of

UL with UL is FewUL-complete:

Corollary 8 FewUL = LOG(UL �UL).

Proof. Inga Niepel showed L

d

(A) = LOG(LOG(A) � LOG(A)), if LOG(A) is closed

under intersection (see [Nie91]). Setting A = UL the result follows from Proposition 4.

2

The preceding results show that conjunctive and disjunctive log space Turing reduc-

tions applied in taking turns, build up a hierarchy. The �rst �-level of this hierarchy is

just FewUL. This hierarchy collapses to UL i� UL is closed under L

d

(�), or to FewUL i�

FewUL is closed under L

c

(�). But it is not clear whether UL is even closed under union

or FewUL under intersection.

Due to the lack of knowledge whether UL or FewUL are closed under complementation

various questions concerning the relativizations L

1

(UL), L(UL), UL(UL), FewUL(UL),

6

FewL(UL), FewUL(FewUL), FewL(UL) etc. of these classes arise. Are there any non-

trivial upper bounds for any of these classes? Here, L

1

(�) denotes the closure of UL under

Turing reductions computed by log space oracle Turing machines that query at most once.

Note that it is even unclear whether this \smallest" of these classes is contained in the

\biggest" class FewL.

Clearly, considering conjunctive and disjunctive restrictions of these relativizations

we can say something more. Here Theorem 6 can be generalized. We de�ne these

reductions by requiring the machines realizing the conjunctive (disjunctive) reduction

to immidiately reject (accept) on a computation path as soon as a query on this path

has been answered negatively (positively). Furthermore, we require the machines to

write on the oracle tape deterministically (this is the Ruzzo-Simon-Tompa restriction of

the original Ladner-Lynch log space oracle machine model; see [LL76], [RST84]). The

number of admissible accepting paths is guided by the type of reduction, as in the case

of the machines without oracle.

Proposition 9 (1) UL = UL

c

(UL).

(2) FewUL = FewUL

d

(FewUL) = UL

d

(UL).

(3) FewL = FewL

d

(FewUL)

Proof. (1) It su�ces to show that UL

c

(UL) � UL. For this, construct a UL machineM

0

that simulates the UL

c

(UL) machineM step by step. Before each query made byM , M

0

guesses the result 0 or 1, and stops the simulation with a reject if it has guessed 0 and

veri�es the query if it has guessed 1. Clearly, M

0

will accept i� M accepts. Furthermore

it is easily veri�ed that M

0

is a UL machine.

The proof of (2) and (3) is analog to (1). Here, dually, after guessing 0 or 1 M

0

goes

on with the simulation, if it has guesses a 0 and veri�es the query if it has guessed 1. 2

These results can be compared with corresponding results concerning unrestricted

nondeterministic relativizations. Also the crucial distinction between Ruzzo-Simon-

Tompa relativization and that of Ladner-Lynch appears in this context. Here we have,

indicating with the index \ll" the Ladner-Lynch relativization, where the oracle machine

is allowed to write nondeterministically onto a polynomially bounded oracle tape:

Proposition 10 FewL

d

(L)

ll

= FewP.

Proof. The inclusion FewL

d

(L)

ll

� FewP holds since a FewP machine can completely

simulate the FewL

d

(L) machine. Conversely, an FewP machine can be simulated by a

FewL

d

(L)

ll

that guesses a computation path onto its oracle tape and veri�es the correct-

ness of the path with the help of its oracle. 2

It should be remarked here that even one question su�ces.

Note that some of the properties stated here for logspace bounded classes hold for

polynomially time bounded classes as well.

7

Proposition 11 (1) P

c

(UP) = UP

c

(UP) = UP;

(2) P

d

(FewP) = UP

d

(FewP) = FewP

d

(FewP) = FewP;

(3) P

d

(UP) � FewP. 2

One of the properties not likely to hold for polynomial time is the reverse inclusion

of Proposition 11 (3).

2.2 Unambiguous Reachability

The fact that the whole computation of polynomial time bounded Turing machines

can always be recorded not only ensures that for FewP machines w.l.o.g. it can be

excluded that there are two computations leading to the same accepting con�guration.

It furthermore ensures that in general it can be excluded that there are more than two

paths between any two con�gurations, whether reachable or not. For logarithmic space

classes such di�erences give rise to a variety of subclasses of UL and FewL. With the

requirement that each reachable con�guration is unambiguously reachable we get the

two classes ReachUL and ReachFewUL.

2

De�nition 12 The classes ReachUL and ReachFewUL are de�ned as the subclass of

languages in UL, and, resp., FewUL, for which there exists a nondeterministic log space

Turing machine, which satis�es for any input x and for any con�guration c that there

is at most one path from the start con�guration to c.

It holds L � ReachUL � ReachFewUL. Note that expressed in the terminology used

in [BHS90] the class ReachFewUL is the class NSPACE-AMBIGUITY[logn; 1].

The further requirement

3

that also the non-reachable con�gurations reach any other

con�guration unambiguously leads to the following subclasses of ReachUL and ReachFewUL.

De�nition 13 The classes StrongUL and StrongFewUL are the subclasses of UL and

FewUL for which there exist nondeterministic log space Turing machines which satisfy the

even stronger requirement that there is at most one path between any two con�gurations.

Again, it holds L � StrongUL � StrongFewUL.

Note that both de�nitions imply the very tight restriction that the computation tree

of an arbitrary ReachUL or StrongUL machine M is polynomially sparse, that is of

polynomial size. The computation tree can only contain a polynomial number of nodes,

2

We understand the pre�x \Reach" of \UL" and \FewUL" as an abbreviation for the further re-

striction of these classes that any reachable con�guration for the underlying machines is unambiguously

reachable.

3

We have chosen the pre�x \Strong" for this strong requirement to indicate that the unambiguous

acceptance requirement here extends to an unambiguous reachability for any two con�gurations between

which there exists a path, whether they are reachable or not.

8

each node representing a con�guration c of M and the path leading to c from the start

con�guration.

The class ReachUL can be shown to be closed under complementation by using the

counting techniques developed by Immerman/Szelepcs�enyi. Here now by de�nition the

unambiguous reachability of any reachable con�guration is guaranteed by de�nition. Un-

fortunately, this does not work for StrongUL, since usage of inductive counting produces

multiple paths between not reachable con�gurations. Nevertheless, StrongUL is closed

under complementation, too, which can be shown by a di�erent proof technique.

Theorem 14 StrongUL and ReachUL are closed under complementation.

Proof. For the proof of StrongUL = CoStrongUL, �rst note that, as shown in Propo-

sition 9 (1) for the class UL, an UL oracle accessed conjunctively does not increase the

power of a UL machine. The same holds true for a StrongUL machine with a StrongUL

oracle. Since the whole computation tree of a StrongUL machine has only polynomial

size, we will do a depth-�rst traversal through it. The problem of erroneously leaving

this tree when climbing up, and getting lost in the area of not reachable con�gurations,

can be solved by always checking the reachability of the current node. Clearly, this can

be done by questions conjunctively to a StrongUL oracle.

For the class ReachUL the proof is analog. Alternatively, the inductive counting

technique described for NL in [Imm88] can be applied. 2

For classes ReachUL, ReachFewUL on the one hand, and the classes StrongUL, and

StrongFewUL on the other, Proposition 4 and Theorem 6, and Corollary 7 remain valid.

Thus, with Theorem 6 we see that ReachUL and ReachFewUL on the one hand, and

StrongUL and StrongFewUL on the other, in fact are equal. Furthermore, with Theorem

14 it is then easily shown that ReachUL and StrongUL are closed under (arbitrary) log

space Turing reductions.

Corollary 15 (1) ReachUL = ReachFewUL.

(2) StrongUL = StrongFewUL.

(3) ReachUL and StrongUL are closed under log space Turing reductions. 2

The class ReachUL is interesting in a di�erent respect, too. It is a candidate for

a class not known to coincide with L but contained in LOGDCFL, the closure of the

deterministic context-free languages under log space many-one reductions, see [Sud78].

The latter class is known to be characterizable by CROW-PRAMs ([DR86]). It holds

ReachUL � LOGDCFL. This result will be generalized in the following subsection to

those UL languages that have polynomial ambiguity.

The strongly unambiguous classes considered so far|in particular StrongUL|may

seem to be very restricted and one might argue that these classes coincide with L. But the

following result shows that the unambiguous linear languages, which are not known to

9

lie in L, are contained in StrongUL. In fact, we will see that the usual nondeterministic

logspace algorithm to recognize linear languages behaves strongly unambiguous when

simulating elements of ULIN.

Theorem 16 ULIN � StrongUL.

Proof. Let G = (N;T; P; S) an unambiguous linear context-free grammar. Without loss

of generality we assume every nonterminal A 2 N to be both reachable and productive.

Let w 2 T

�

be an arbitrary, but �xed input of length n := jwj, i.e., w = a

1

a

2

: : : a

n

for

some a

i

2 T . For 0 � i � j � n we set

i

w

j

:= a

i+1

: : : a

j

. Thus we have

i

w

i

= � and

0

w

n

= w.

We now describe the behavior of a nondeterministic logspace algorithm M which will

accept L(G). The con�gurations ofM are triples hi; j; Ai with 0 � i � j � n and A 2 N .

The initial con�guration is h0; n; Si. All triples hi; j; Ai with A!

i

w

j

2 P are accepting

con�gurations. M now works, as follows, when in a nonaccepting con�guration hi; j; Ai

M guesses i

0

, j

0

with i � i

0

� j

0

� j, and B with B 2 N such that A!

i

w

i

0

B

j

0

w

j

2 P . If

no i

0

, j

0

, and B exists with this property, there is no following con�guration for hi; j; Ai

in M , thus M would stop rejecting. If M �nds adequate i

0

, j

0

, and B, it enters the

con�guration hi

0

; j

0

; Bi.

Obviously, M is a nondeterministic logspace algorithm. Further on, the following

equivalence holds for arbitrary A;B 2 N , and i � i

0

� j

0

� j:

(�)

hi; j; Ai

�

7��

M

hi

0

; j

0

; Bi

if and only if

A

�

�!

G

i

w

i

0

B

j

0

w

j

:

Hence, the unambiguity of G assures the unambiguity of M . Assume now M is not

to be strongly unambiguous. Then there exist computations hi; j; Ai

1

7��

M

hi

1

; j

1

; A

1

i

�

7��

M

hi

0

; j

0

; Bi and hi; j; Ai

1

7��

M

hi

2

; j

2

; A

2

i

�

7��

M

hi

0

; j

0

; Bi such that hi

1

; j

1

; A

1

i 6= hi

2

; j

2

; A

2

i.

By (�) this gives rise to two di�erent derivations from A to

i

w

i

0

B

j

0

w

j

in G. Since A is

reachable and B productive there exist v

1

; v

2

; v

3

2 T

�

with S

�

�!

G

v

1

Av

3

and B

�

�!

G

v

2

.

But then the word v

1i

w

i

0

v

2j

0

w

j

v

3

possesses more than one derivation in G, contradicting

our assumption of the unambiguity of G. 2

Theorem 16 leaves open the question for the StrongUL-completeness of the fam-

ily ULIN.

By Theorem 16 this gives us the inclusion ULIN � DAuxPDA and thus by Sud-

boroughs result (see [Sud78]) LOGULIN � LOGDCFL, which is remarkable since there

are unambiguous linear context free languages, like the mirror language, which are not

deterministic context-free. LOGDCFL coincides with the class of languages accepted

by CROW-PRAMs in logarithmic time (see [DR86]), which exhibits OROW-PRAM

languages (see [Ros91]) as another class between L and LOGDCFL. Its relations to

StrongUL, ReachUL, and ReachFewL remain open.

10

2.3 Few Reachability

We considered restrictions ReachUL and ReachFewUL of UL by requiring all reachable

con�gurations to be unambiguously reachable instead of only accepting ones. The same

restriction applied to FewL leads to the class ReachFewL, which is denoted by NSPACE-

AMBIGUITY(log n; n

O(1)

) in the terminology of [BHS90].

4

De�nition 17 The class ReachFewL is de�ned as the subclass of languages in FewL for

which there exists a nondeterministic log space Turing machine, which satis�es for any

input x and for any con�guration c that there are at most polynomially many paths from

the start con�guration to c.

Proposition 18 ReachFewL � LOGDCFL.

Proof. A deterministic auxiliary push-down automaton can test reachability in a com-

putation tree of an NL machine by a simple depth-�rst search. In general, this will take

more than polynomial time, since this tree can have exponential size, but if each con�g-

uration is reachable by only polynomially many paths, the size of this tree will also stay

polynomial. 2

This result improves the upper bound of ReachFewL in terms of unambiguous aux-

iliary push-down automata UAuxPDA, see [BHS90].

3 Push-down Automata with Auxiliary Logarithmic

Space

In this section we will deal with auxiliary push-down automata introduced by Cook

in [Coo71]. An auxiliary push-down automaton is a space bounded Turing machine

with an additional push-down store that does not count for the space bound. Historicly,

we consider only auxiliary push-down automata that are simultaneously logarithmically

space bounded and polynomially time bounded, which accept with empty push-down

store (see [Sud78]). The power of these machines lies between NL and NP, since auxiliary

push-down automata can use more space than NL machines. Actually they can use

as many space as any NP machine, but since the bulk of space can be accessed only

in a very limited way, NP machines might be a lot more powerful. It is well-known

that nondeterministic auxiliary push-down automata accept exactly LOGCFL, i.e., the

closure of context free languages under log space many-one reductions [Sud78].

Many of the above de�ned log space classes coincide for polynomial time since a

P machine can store its whole computation. Again, this is not possible for auxiliary

4

With pre�xing \Reach" to \FewL" we want to indicate that the polynomial bound on the number

of acceptance paths extends to a polynomial bound on the number of paths between two arbitrary

con�gurations.

11

push-down automata, so it makes sense to consider AuxPDA classes that are de�ned

analogously to the log space classes of Section 2.

However, only few results for log space classes hold literally for AuxPDAs, too, but

in most cases a similar, but somewhat weaker, result will be obtained.

3.1 Unambiguous Computations and Few Computations

We begin with a de�nition of unambiguous auxiliary push-down automata, analogous to

UP and UL.

De�nition 19 UAuxPDA is the class of sets accepted by auxiliary push-down automata

for which there exists at most one accepting computation for all inputs x.

Next we de�ne the class FewAuxPDA as a direct analogon of FewP and FewL.

De�nition 20 The class FewAuxPDA is de�ned as the class of sets accepted by non-

deterministic logarithmic space and polynomially time bounded auxiliary push-down au-

tomata M for which there is a polynomial p

M

such that for all inputs x there are fewer

than p

M

(jx j) accepting computations of M on x.

Just as in the case of FewL, the class FewAuxPDA does not reect all properties of

FewP in a way we would expect. Again, this is a reason to consider FewUAuxPDA as

an alternative to FewAuxPDA to de�ne a class that reects \fewness" in a nice way.

De�nition 21 De�ne the class FewUAuxPDA as the class of all sets accepted by non-

deterministic logarithmic space and polynomially time bounded auxiliary push-down au-

tomata which satisfy for all inputs x that there is at most one computation from the

start con�guration to any accepting con�guration.

A polynomial number of accepting paths is automatically guaranteed by De�nition 21.

This follows from the at most polynomial number of accepting con�gurations due to

acceptance with empty push-down store.

We can show the same closure properties for UAuxPDA and FewAuxPDA as were

shown in Proposition 4 for UL and FewUL.

Proposition 22 (1) UAuxPDA is closed under conjunctive log space Turing reduc-

tions L

c

(�) | and thus under intersection and marked concatenation.

(2) FewAuxPDA is closed under disjunctive log space Turing reductions L

d

(�) | and

thus under union.

(3) Both UAuxPDA and FewUAuxPDA are closed under join.

The possibility to identify accepting computations by accepting con�gurations for

UAuxPDA and FewUAuxPDA allows us to prove Theorem 6 and thus Corollary 7 for

AuxPDA classes, too.

12

Proposition 23 FewUAuxPDA = L

d

(UAuxPDA) = 9

log

UAuxPDA.

Proof. Analog to Theorem 6. 2

Corollary 24 If UAuxPDA = CoUAuxPDA, then UAuxPDA = FewUAuxPDA.

Proof. Analog to Corollary 7. 2

Just as it is not possible to apply the Immerman/Szelepcs�enyi inductive counting

technique to UL, it is not possible to transfer the proof technique of [BCD

+

88] from

nondeterministic to unambiguous auxiliary push-down automata. (Of course, actually

this proof has �rst to be translated from circuits to auxiliary push-down automata.)

3.2 Unambiguous Reachability

In subsection 2.1 we introduced log space classes with the additional restriction that

each language is accepted by some log space bounded Turing machine which reaches

each of its con�gurations with only one computation path. In this subsection we will

examine AuxPDAs that are restricted in the same way. Here we use the notion of

Cook [Coo71] and denote by an con�guration of an auxiliary push-down automaton the

instantaneous description of the state, the input tape position, the work tape(s) content,

the work tape(s) head(s) position(s), and the topmost symbol of the push-down store.

This information can be stored with O(log n) space.

De�nition 25 The classes ReachUAuxPDA and ReachFewUAuxPDA are de�ned as

the subclass of languages in UAuxPDA and FewUAuxPDA resp., for which there exists

a nondeterministic auxiliary push-down automaton, which satis�es for any input x and

for any con�guration c that there is at most one path from the start con�guration to c.

Neither log space bounded Turing machines nor auxiliary push-down automata are

able to store their whole computation. However, an auxiliary push-down automaton

can simulate a log space machine and simultaneously use its push-down to store the

computation of the log space machine. Of course, this works only for rejecting com-

putations, since an auxiliary push-down automaton is required to accept with empty

push-down store. This means that an additional push-down enables a log space machine

to reach unambiguously each of its con�gurations which are not part of some accepting

computation.

Theorem 26 (1) UL � ReachUAuxPDA,

(2) FewUL � ReachFewUAuxPDA.

Proof. Simulate a UL (resp. FewUL) machine with some AuxPDA and store its com-

putation on the push-down store. When an accepting con�guration is reached, empty

the push-down store and accept. 2

13

De�nition 27 The classes StrongUAuxPDA and StrongFewUAuxPDA are de�ned as

the subclass of languages in UAuxPDA, and, resp., FewUAuxPDA, for which there exists

a nondeterministic auxiliary push-down automaton, which satis�es for any input x and

for any two con�guration c

1

and c

2

that there is at most one path between c

1

and c

2

.

The strongly unambiguous logspace class StrongUL which equals StrongFewUL by

Corollary 15 play only a minor role in this paper since most results of Section 2 that

could be shown for these classes, could be shown also for the more general classes

ReachUL = ReachFewUL. For strongly unambiguous AuxPDA classes this is not the

case. For example, the technique of inductive counting can only be applied to strongly

unambiguous push-down automata. On the other hand, inductive counting does not

maintain strong unambiguity. In contrast to ReachUL we cannot prove closure under

complementation for these reasons, but a weaker result:

Proposition 28 [NR90] CoStrongUAuxPDA � ReachUAuxPDA.

An implication of closure under complement of ReachUL and StrongUL was that

ReachUL and ReachFewUL, resp. StrongUL and StrongFewUL coincide. Since we have

complementation results for neither ReachUAuxPDA nor StrongUAuxPDA, we can

again only prove a weaker proposition for auxiliary push-down automata.

Theorem 29 CoStrongFewUAuxPDA � ReachUAuxPDA.

Proof. Since CoStrongUAuxPDA � ReachUAuxPDA, and the latter class is closed

under conjunctive log space many one reductions, we have L

c

(CoStrongUAuxPDA) �

ReachUAuxPDA. Clearly, L

c

(CoStrongUAuxPDA) equals Co(L

d

(StrongUAuxPDA)),

which coincides with CoStrongFewUAuxPDA by an analog of Proposition 23. 2

It should be noted that by a modi�cation of the proof of Proposition 28 also the

following result can be obtained:

Corollary 30 StrongFewUAuxPDA � ReachUAuxPDA.

Both ReachUL and StrongUL are contained in LOGDCFL. This means that they

can be simulated deterministically with time bound remaining polynomial and only a

moderate increase of space usage. In some sense ReachUL and StrongUL have a \de-

terministic avor". The next proposition shows that this is unlikely to hold also for

ReachUAuxPDA or StrongUAuxPDA.

Theorem 31 [LR90] LOGUCFL � StrongUAuxPDA.

14

3.3 Few Reachability

As for log space machines in Subsection 2.3 we generalize the classes ReachUAuxPDA

and StrongUAuxPDA from one computation path to any con�guration (resp. between

any two con�gurations) to a polynomial number of paths.

De�nition 32 The class ReachFewAuxPDA is de�ned as the subclass of languages in

FewAuxPDA for which there exists an auxiliary push-down automaton, which satis�es

for any input x and for any con�guration c that there are at most polynomially many

paths from the start con�guration to c.

De�nition 33 The class StrongFewAuxPDA is de�ned as the subclass of languages in

FewAuxPDA for which there exists an auxiliary push-down automaton, which satis�es for

any input x and for any two con�gurations c

1

and c

2

that there are at most polynomially

many paths between c

1

and c

2

.

StrongFewAuxPDA is called NAPDA-SPACE,AMBIGUITY(log n; n

O(1)

) in [NR90].

Though a ReachFewL machine can have up to polynomially many computation paths

to any con�guration, it can be simulated deterministically in polynomial time. The price

that must be paid is an additional push-down store. An even more surprising result can

be obtained for the analog class StrongFewAuxPDA. Languages of this class can be

recognized by AuxPDAs with at most one accepting computation. The price that has

to be paid is that polynomial reachability of rejecting con�gurations is lost.

Theorem 34 [NR90] StrongFewAuxPDA � UAuxPDA.

Finally, by storing its computation on a push-down store, a FewL machine can be

simulated by some ReachFewAuxPDA machine.

Theorem 35 FewL � ReachFewAuxPDA.

An overview of the inclusion relationships of the classes investigated can be found on

the following page.

Acknowledgement

We thank Inga Niepel for helpful discussions and suggestions.

References

[AJ90] Carme

�

Alvarez and Birgit Jenner. A very hard log space counting class. In

Proc. of 5th Conference on Structure in Complexity Theory, pages 154{168,

1990.

[All86] E. W. Allender. The complexity of sparse sets in P. In Proc. of 1st Structure

in Complexity Conf., number 223 in LNCS, pages 1{11. Springer, 1986.

15

L

FewUAuxPDA

StrongFewAuxPDA

Theo. 29

Cor. 30

CoStrongFewUAuxPDAStrongFewUAuxPDA

Theo. 31

LOGDCFL

Theo. 26

Theo. 26

ReachFewUAuxPDA

FewUL

Theo. 35

NL

NAuxPDA

FewAuxPDA

FewL

ReachUAuxPDA

ReachFewAuxPDA

UAuxPDA

StrongUAuxPDA

LOGUCFL

UL

CoStrongUAuxPDA

ReachFewLCoReachFewL

Theo. 18Theo. 18

LOGULIN

= (Co)StrongUL

(Co)StrongFewUL

= (Co)ReachUL

(Co)ReachFewUL

Theo. 14

Theo. 14

Theo. 15

Theo. 15

Theo. 16

16

[BCD

+

88] A. Borodin, S. A. Cook, P. Dymond, W. L. Ruzzo, and M. Tompa. Two

applications of complementation via inductive counting. In Proc. of 3rd

Conference on Structure in Complexity, 1988.

[BDG88] J. Balc�acar, J. Di�az, and J. Gab�arro. Structural Complexity Theory I.

Springer, 1988.

[BDG90] J. Balc�acar, J. Di�az, and J. Gab�arro. Structural Complexity Theory II.

Springer, 1990.

[BDHM91] G. Buntrock, C. Damm, U. Hertrampf, and C. Meinel. Structure and impor-

tance of logspace-MOD-classes. In Proc. of 7th STACS, To appear in LNCS.

Springer, 1991.

[BHS90] G. Buntrock, L. A. Hemachandra, and D. Siefkes. Using inductive counting

to simulate nondeterministic computation. In Proc. of 15th MFCS, number

452 in LNCS, pages 187{194. Springer, 1990. (to appear in Information and

Computation).

[CH89] J. Cai and L. A. Hemachandra. On the power of parity polynomial time. In

Proc. of 6th STACS, number 349 in LNCS, pages 229{239. Springer, 1989.

[Coo71] S. A. Cook. Characterizations of pushdown machines in terms of time-

bounded computers. Journal of the ACM, 18:4{18, 1971.

[DR86] P. Dymond and W. L. Ruzzo. Parallel RAMs with owned global memory

and deterministic language recognition. In Proc. of 13th ICALP, number

226 in LNCS, pages 95{104. Springer, 1986.

[GS88] J. Grollmann and A. Selman. Complexity measures for public-key cryptosys-

tems. SIAM Journal on Computing, 17:309{335, 1988.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-

guages and Computation. Addison-Wesley Series in Computer Science.

Addison-Wesley, 1979.

[Imm88] N. Immerman. Nondeterministic space is closed under complement. SIAM

Journal on Computing, 17(5):935{938, 1988.

[JK89] B. Jenner and B. Kirsig. Alternierung und Logarithmischer Platz. Disserta-

tion, Universit�at Hamburg, 1989.

[JKL89] B. Jenner, B. Kirsig, and K.-J. Lange. The logarithmic alternation hierarchy

collapses. Inform. and Comp., 80:269{288, 1989.

[LL76] R. Ladner and N. Lynch. Relativization of questions about log space com-

putability. Math. Systems Theory, 10:19{32, 1976.

17

[LR90] K.-J. Lange and P. Rossmanith. Characterizing unambiguous augmented

pushdown automata by circuits. In Proc. of 15th MFCS, number 452 in

LNCS, pages 399{406. Springer, 1990.

[Nie91] I. Niepel. Personal communication, 1991.

[NR90] R. Niedermeier and P. Rossmanith. Unambiguous Simulations of Auxiliary

Pushdown Automata and Circuits. SFB-Bericht 342/31/90 A, I9054, Insti-

tut f�ur Informatik, Technische Universit�at M�unchen, Arcisstr. 21, D-8000

M�unchen 2, December 1990.

[Ros91] P. Rossmanith. The owner concept for PRAMs. In Proc. of 8th STACS,

number 480 in LNCS, pages 172{183. Springer, 1991.

[RST84] W. L. Ruzzo, J. Simon, and M. Tompa. Space-bounded hierarchies and prob-

abilistic computations. Journal of Computer and System Sciences, 28:216{

230, 1984.

[Sud78] I. H. Sudborough. On the tape complexity of deterministic context-free

languages. Journal of the ACM, 25:405{414, 1978.

[Sze88] R. Szelepcs�enyi. The method of forced enumeration for nondeterministic

automata. Acta Informatica, 26:279{284, 1988.

[Val76] L. Valiant. The relative complexity of checking and evaluating. Inform. Proc.

Letters, 5:20{23, 1976.

18

