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Abstract Several proof-theoretic notions of validity have been proposed in the liter-
ature, for which completeness of intuitionistic logic has been conjectured. We define
validity for intuitionistic propositional logic in a way which is common to many
of these notions, emphasizing that an appropriate notion of validity must be closed
under substitution. In this definition we consider atomic systems whose rules are not
only production rules, but may include rules that allow one to discharge assumptions.
Our central result shows that Harrop’s rule is valid under substitution, which refutes
the completeness conjecture for intuitionistic logic.
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1 Introduction

Within proof-theoretic semantics [25] certain notions of validity have been pro-
posed, notably by Prawitz [16—19] (for a discussion and overview see [24]; cf.
also [2]). Prawitz [17, 19] conjectured that intuitionistic first-order logic is complete
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with respect to one such notion. We show that this conjecture is not even true for
propositional logic, if certain plausible assumptions are made about validity.

For a language without disjunction, Sandqvist [20] has shown that the laws of
classical logic are valid with respect to a variant of proof-theoretic semantics, which
corresponds to the one we are using here (for a discussion see [3] and [12]). His result
cannot be extended to formulas containing disjunction, unless disjunction is defined
classically, e.g., in terms of implication and negation. However, if we want to give
a proper counterexample to the completeness of intuitionistic logic, we need to find
a formula or rule which is not derivable in a calculus of intuitionistic logic, though
all its substitution instances, including those containing disjunction, are valid. A for-
mula which is valid, but one of whose substitution instances is not valid, can never
be derivable in intuitionistic logic for the trivial reason that derivability in intuition-
istic logic is closed under substitution. That a notion of validity is not closed under
substitution is, of course, a highly significant result in itself, but a result which rather
demonstrates that such a notion is not even a candidate for completeness. Therefore a
thorough discussion of completeness or incompleteness of intuitionistic logic should
at least consider a concept of validity closed under substitution. This does not infringe
Sandqyvist’s justification of classical logic, where only disjunction-free substitution
instances need to be considered, with respect to which validity is indeed closed under
substitution.

Like all other notions of validity in the works mentioned above, we rely on atomic
systems, with respect to which the validity of atomic formulas is defined. However,
we not only consider standard atomic systems whose rules are production rules, but
also atomic systems whose rules can discharge assumptions.

2 Validity

We define a notion of validity which is not necessarily closed under substitution.
We then define valid under substitution as valid for all substitution instances, so
that validity under substitution is by definition closed under substitution. Our proof-
theoretic notion of (intuitionistic) validity for propositional logic is based on atomic
deductive systems, which determine the validity of atomic formulas. The validity
of complex formulas is defined inductively relative to such systems. In this section
we use, for simplicity, atomic systems based on production rules. In Section 5 we
consider atomic systems whose rules can discharge assumptions.

We use propositional formulas A, B, ..., Ay, Az, ... constructed from proposi-
tion letters, called atoms, 1L, a,b, ..., a1, as, ... by means of the logical constants
—, vV and A. We use —A as an abbreviation for A — _L. It is crucial that L is an
atom, as this makes it possible to deal with minimal negation independently of ex
falso quodlibet.

Definition 1 An aromic system S is a (possibly empty) set of atomic rules of the form

ay ... dp
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where the a; and b are atoms. The set of premisses {ay, ..., a,} in a rule can be
empty; in this case the rule is an atomic axiom.

An atomic system S is an extension of an atomic system S (written S; 2 ), if S
results from adding a (possibly empty) set of atomic rules to S. The derivability of
an atomic formula a from a (possibly empty) set {a1, ..., a,} of atomic assumptions
in an atomic system S is written ai, ..., a, s a.

Definition 2 S-validity (Fg) and validity (F) are defined as follows:

S1) Fsa <= tgsa,

(S2) FsA— B <<= AFg B,

(S3) TI'EsgA <= VS D8:(Fs, ' = FEg, A),where I is a set of formulas,
and where Fg, I” stands for {Fg, A; | A; € I'},

(S4) Fs Al VA, <= FgAjor Fg A,

(S5) Fs A ANAy <= FgAjand Fg Ay,

(S5) T'Fs A = VAe A: T Fg A,

S6) I'EA < VS:I FgA.

Definition 3 S-validity under substitution (Fg) and validity under substitution (/)
are defined as follows:

(i) TlEg A :& for each substitution instance I"/,A’ of I',A: I'' Eg A’.
(i) TI'lF A :& for each substitution instance I'",A’ of I',A: I'" £ A’.

Definition 4 Intuitionistic S-validity (HS) is defined as follows. Suppose (L) stands
for the set of rules {%’a atomic}. Then I'EA = T Fsyc) A.
Correspondingly, I' = A, I” H=g Aand I'lF" A are definedas ' F(1) A, I Fsu)A
and I" IF(| ) A, respectively.

In Prawitz’s original definitions [16—19], validity is defined for derivations rather
than for formulas, and is relativized not only to atomic systems, but also to proof
reductions (‘justifications’). However, the formulation in Definition 2, which avoids
the explicit mentioning of justifications, suffices to make our point. More delicate
is the question of whether in (S3) it is appropriate at all to use extensions of atomic
systems (a point which makes our definition similar to the definition of validity in a
specific Kripke structure). This point is not entirely clear in Prawitz’s writings and
will be discussed in the final section. We consider the reference to extensions of S to
be absolutely essential, as it guarantees the monotonicity of = with respect to S.

A crucial point in our dealing with absurdity (and thus negation) is that we do not,
as in Kripke semantics, define absurdity to be something that cannot be validated in
any atomic system. If we defined _L to be a non-atomic constant with the semantical
clause

There is no S such that Fg |

we could verify ——a for any atom a, because —a is never valid in any S1 2 §, as a
will always become valid in some Sy 2 S;. This fact, that any atom « is validated in
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some extension of any atomic system, might be considered a fault of validity-based
proof-theoretic semantics, since it speaks against the intuitionistic idea of negation
—A as expressing that A can never be verified. We do not deal with this issue
here.

The fact that we consider absurdity L to be a distinguished atom means that we
have defined a notion of minimal validity, where “minimal” is understood in the
sense of minimal logic. If we added A as a non-atomic constant with the semantic
clause

Fs A <<= Va: Fsa

(which is the clause used by Sandqvist [20] following Dummett [4, Ch. 13]) then,
in the presence of ex falso quodlibet, the non-atomic A and the atomic L become
equivalent, more precisely, LF' A and AF L.

Lemma 1 (Properties of S-validity)

(P1) FEg is a consequence relation, i.e.,

(i) AFsA,
(i) I'EsA = I, AEg A,
(i) (I'FsAand A, AEgB) = I, AFg B.

(P2) FEgismonotonewrt. S, ie, 'Fs A = VS D 85: 1T Fg, A
(P3) 'EsA— B < I, AFg B.
P4 ai,....,anEFsb < aj,...,a,Fsbh.

These properties also hold for intuitionistic S-validity, i.e., for Fs replaced with F.

Proof Straightforward. U
Note that (P4) is an atomic completeness result: S-valid consequence between

atoms coincides with derivability in S.

3 Formulas and Rules

There is an obvious correspondence between rules and formulas of a certain form.

Any atomic system S can be represented by a set of formulas S*, if axioms and rules

are translated into formulas as follows:

Definition 5 The atom a represents the axiom a, and the formula a; A ... A

a, — b represents the rule % Then S* is defined as the set of formulas
representing the axioms and rules in S.

Conversely, any disjunction-free formula A without any left-iterated implication as

subformula can be translated into a set of rules S° (a left-iterated implication is an
implicational formula A; — A3, such that A contains an implication). Obviously,
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Failure of Completeness in Proof-Theoretic Semantics 325

any such A can be transformed into a set of formulas Ay, ..., A, of the form a; A
... A a, — b by (repeatedly) replacing any B — (C — D) with (B A C) — D and
any B — (Cy A ... A Cy) with the list B — Cy, ..., B — Cg. Call the resulting set
of formulas S’. Then we proceed as follows:

Definition 6 The axiom a corresponds to the atom a, and the rule 4 L
corresponds to the formulaa; A ... A a, — b. Then S° is defined as the set of rules
corresponding to the formulas in S’.

Lemma 2 (Properties of the formula-rule correspondence)

(Cl) S§* =8, A*4HEA.

(C2) Es S*, Fp A

(C3) (Fsg ST and I’ ':SUS| A) = I'Es A, (EsAand I’ Egup A) =— I’ Eg A.
(C4) TEsA << I'S*FA TFpA<— I AEA.

These properties also hold for intuitionistic S-validity, i.e., for Fg replaced with I=.

Proof We show the first claim of each pair of propositions.

(C1) and (C2): Straightforward.

(C3): By induction. Fgys, a <= tsus, a. Lemma 1, (P4) implies for =g ST that
all rules of S are derivable in S. One therefore obtains g a, and thus Eg a.

Fsus; A— B <= AFgsus, B by (P3)
— AFs B by Es S} and i.h.
= F¢A— B by (P3).

(The cases for the remaining connectives are also trivial.)

I'Esus) A <= VD2 SUS) :(Fs, I' = Fg, A)
— V83 :(Fssusus; I = Fgusus, A)
= VS3:(Fgus I' = Fgus A) by Fs,us Sik and i.h.
< I'kFs A by Def.

(C4): “<=" follows from (C2) and Lemma 1, (P1), (iii).

“=""T Es A < V5128: (s, I’ = FEs5; A) < VS : (Fsus,
I' = Fsus, A). Suppose Fg, S* and g, I'. Then Fgys, I" by Lemma 1, (P2),
and therefore Fgus, A. From g, S* and (C3) one gets Fy, A. O

4 The Failure of Strong Completeness

We now consider natural deduction for intuitionistic logic and show that it is not
complete for validity.
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Definition 7 Natural deduction for intuitionistic logic NI is given by the following
rules:

[A]
£ A A=>B g
A— B (= B
[A1]  [A2]
A; o AlvA,  C C
Ay (D =1or2) _ oE)
A A2 Ay A As o
A Ay, M (B =Tor)
1
— (L)
a

Note that the rule (L) can be assumed to have only atomic conclusions.
The derivability of a formula A from a (possibly empty) set of assumptions I” over
an atomic system S is written I" FgA, and derivability in NI is written I" - A.

Definition 8 (i) Soundness of NImeans: I' - A = ' A.
(ii)  Strong completeness of NI means: ' F* A = ' F A.
(iii) Completeness (simpliciter) of NI means: I' I’ A = I' - A.

Since derivability in NI is closed under substitution, soundness implies I" I’ A. As
remarked in the introduction, we are mainly interested in completeness rather than
strong completeness. Strong completeness parallels a concept of validity, which is not
necessarily closed under substitution, with derivability in intuitionistic logic. There-
fore, if we do not have strong completeness, this may simply be due to the fact that
validity is not closed under substitution, whereas derivability in intuitionistic logic
is closed under substitution. In this sense, intuitionistic validity under substitution
(and not intuitionistic validity) is the proper concept to be compared to intuitionistic
derivability. We shall nevertheless present some results on the failure of strong com-
pleteness before we proceed to our main result, which is the failure of completeness
(simpliciter).

Lemma 3 NI is sound.

Proof By induction on the structure of derivations. O
Theorem 1 NI is not strongly complete.

We present and discuss three proofs of this theorem.

Proof 1 In his justification of classical logic, Sandqvist [20] proved =—a ' a for
any atom a, and even showed that this holds when a is replaced with any formula
A not containing disjunction. (We are, of course, using the terminology developed

in the present paper.) This was part of his soundness theorem for classical logic.
Although he did not explicitly deal with the incompleteness of intuitionistic logic,
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Failure of Completeness in Proof-Theoretic Semantics 327

his result obviously demonstrates that NI is not strongly complete, as ——a + a is
false. O

This result is essentially due to the fact that validity is not closed under substitu-
tion. For example, =—(a V —a) E' a V —a is not true, since, using standard principles
for !, we can easily conclude = a Vv —a, which is obviously false. We interpret this
as showing that the notion of validity is not properly framed, if it is to be compared
with derivability.

Proof 2 Tt is clear thata — (b V ¢) + (a — b) Vv (a — c¢) is false. We show that
a— (bve)E (a— b) Vv (a— c)holds. Suppose that Fg a — (b Vv ¢) for some
atomic system S. We have to show that Fg (¢ — b) vV (¢ — ¢). We know that for
every S 2 § for which Fg, a, we also have that Fg, b Vv ¢, which means that either
Fs, borkg c. Now choose S; to be S extended with a as an axiom. Then by (C4)
either a Fg b or a Fg ¢, which implies Fg (a — b) Vv (a — ¢). O

This is a counterexample against strong completeness of minimal logic and thus
of NI, which has also been presented by Goldfarb [5] in his discussion of Dummett’s
boundary rules. Like Sandqvist’s double-negation example, it shows that validity is
not closed under substitution. If b v ¢ were substituted for a, then it would have to
be shown that either = (b vV ¢) — b or E (b V ¢) — ¢, which cannot be achieved. The
advantage of this counterexample over Sandqvist’s is that it is not tied to the particular
format of atomic systems. It just expects that we can extend an atomic system by
adding an atom as an axiom, whereas Sandqvist’s example ceases to be valid if we
consider atomic systems with assumption-discharging rules, which we shall consider
below in Section 5.

Proof 3 As is well-known, Mints’s rule

(A— B)— (AV C)
(A—>B)— AV (A— B)— C)

is not derivable in NI, i.e., (A— B)— (AVC) ¥ (A—B)— A)V((A— B)— C) (cf.
Mints [14]). However, assuming strong completeness, we show (A— B)— (AVC) =
((A— B) —> A) vV ((A— B) — (), which contradicts completeness. Therefore NI is
not complete. Suppose F5(A — B) — (A Vv C). By (C4), S* E (A— B) — (AV O).
Assuming strong completeness, S* - (A — B) — (A v C), i.e., there is an open
derivation in NI of the premiss of Mints’s rule from assumptions S*. This derivation
can be transformed into normal form. Since S* does not contain disjunctions, this
normal form must be of the following form, having an introduction rule in the last
step:

[A — B]", S*
9
AvC

(=D"
(A— B)—> (AVv ()
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The subderivation & either ends with (VI) or with an elimination rule. (It cannot end
with the rule (L), which has only atomic conclusions.) If & ends with (VI), then
either A > B, S* - Aor A— B,S* - C.If Z ends with an elimination rule,
then there is a path through formulas Fi, ..., F,, F,41, where each Fi, ..., F, is
the major premiss of an elimination rule, and Fj,4 is either the major premiss of
an elimination rule or the endformula. The path starts with Fj, which is the open
assumption A — B and major premiss of an application of (—E). Hence, there is a
derivation of the minor premiss A of this application of (—E), i.e., A— B, S*F A
oreven S* - A.If A— B,S* - Aor S* - A, then S* - (A - B) > A, and
if A— B,S* I C, then S* - (A — B) — C, each by (—1I). In both cases S* F
((A— B)— A)V ((A— B) — (), by (VI). By soundness S* ' ((A— B) = A) Vv
((A— B) — O), andl=’5((A—>B)—>A)\/((A—>B)—>C) by (C4). L]

This proof is independent of the form of the formulas A, B and C, i.e., it holds
for A, B and C used as schematic letters for arbitrary formulas. However, our proof
is indirect. Assuming strong completeness, it shows that Mints’s rule is valid under
substitution, thus providing a counterexample to completeness (hence a fortiori to
strong completeness). What makes this proof interesting is that it does not rely in an
obvious way on the fact that validity is not closed under substitution. The assumption
S* £ (A — B) — (A Vv C), to which the hypothesis of strong completeness was
applied, is not in any clearcut manner non-closed under substitution. It might even
be that it is closed under substitution after all, so that we have a proper refutation
of completeness. As the previous one, this proof is not dependent on the format of
atomic systems. If we consider assumption-discharging rules, everything stays as
it is.

5 Atomic Higher-Level Rules

In order to give a direct counterexample to completeness, we extend the notion of an
atomic system by allowing for rules that discharge assumptions. Atomic systems in
the sense of Definition 1 are now called first-level atomic systems.

Definition 9 A second-level atomic system S is a (possibly empty) set of atomic
rules of the form

[I1] (1]
ap an

b

where the a; and b are atoms, and the I are finite sets of atoms. The sets I; may be
empty, in which case the rule is a first-level rule. The set of premisses of this rule can
be empty as well, in which case the rule is also called an axiom.

The intended meaning of such a rule as suggested by the notation is as follows: If
in S we have derived ay, ..., a, from certain assumptions, then we may pass over
to b, where, for each i, in the branch of the subderivation leading to a; assumptions
belonging to I; may be discharged. Rules which discharge assumptions are present
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Failure of Completeness in Proof-Theoretic Semantics 329

in logical calculi, for example in the implication introduction or disjunction elimina-
tion rules in NI. Here the idea of having rules discharging assumptions is carried over
to the atomic case. As before, the derivability of an atomic formula a from a (possi-
bly empty) set {ai, ..., a,} of atomic assumptions in an atomic system S is written
ai,...,a, Fsa.

This idea of atomic discharging rules can be extended to the higher-level case
where not only atoms but atomic rules can be introduced and discharged as assump-
tions, an idea first proposed in [22] (for the more general case of arbitrary, non-atomic
rules). We cannot spell out the full formalism of this approach here, but sketch it in
sufficient detail. A recent exposition can be found in [26] and [15]. First we need
a linear notation for rules. A basic rule of a first-level atomic system (Definition 1)
is linearly written as ay, ..., a, > b, a basic rule of a second-level atomic system
(Definition 9) as (I1 > ay), ..., (I, > a,) > b. The precise definition of atomic
higher-level rules runs as follows:

Definition 10 (i) Every atom a is a rule of level 0.
(i) If Ry,..., R, arerules (n > 1), whose maximal level is £, and a is an atom,
then (Ry, ..., R, > a) is arule of level £ + 1.

The intended meaning of a rule (1] > ay), ..., (I, > a,) > b is nothing but a gener-
alization of the second-level case: Suppose, for each i (1 <i < n), we have derived
a; from I7; then we may pass over to b. This gives rise to the notion of a higher-level
atomic system.

Definition 11 A higher-level atomic system S is a (possibly empty) set of atomic
rules of the form
[11] [15]
a ...

n

b
where the a; and b are atoms, and the I are now finite sets of rules, which may be
empty. The set of premisses of such a rule can be empty as well, in which case the
rule is also called an axiom.

The fundamental difference to the second-level case is that now rules and not only
atoms can function as assumptions, which can be discharged. This has to be taken
into account to define the notion of a derivation of an atom a from rules Ry, ..., R,.

Definition 12 For a level-0 rule a,

is a derivation of a from {a}.
Now consider a level-(¢ + 1) rule (/] > ay), ..., (I, > a,) > b. Suppose that, for
each i (1 <i < n) aderivation
X Ulrl;
D

ai
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of a; from X; U I7; is given. Then

2 En
D Dy
ai

... a
- (N> a),.... (I >a)>b
is a derivation of b from X1 U ... U X, U{(I1 > ay), ..., ([ > a,) > b}.

We say that b is derivable from X' in a higher-level atomic system S, symbolically
X kg b, if there is a derivation of b from X U §.

An example may illustrate what a particular derivation looks like. Suppose the atomic
system S comprises the rules (b > ) > f and ((a > b) > ¢) > e. Then the following
derivation demonstrates that ((a > b) > d), ((b,d) > ¢) ks f:

% [a> b)?
— P 1= (a>b)>d
b b,d>c
2% (a>b)>c) > e)
3 7 (bre) > f)

Here, the rules enclosed in angle brackets (...) are primitive rules of S. As usual,
square brackets [...] with numerals indicate the discharge of assumptions. The def-
initions of S-validity (Definitions 2, 3 and 4) remain unchanged, with the reference
to derivability in S now understood in the higher-level sense.

The translation of atomic rules into formulas and vice versa (Definitions 5 and 6)
can easily be carried over to the higher-level case as follows.

Definition 13 With every rule R in a set of rules S a formula R* representing R is
associated as follows:

(i) a* := a, for atoms a.
i) (Ry,....Ry>a)*:=R]A...AR;—a,forarule Ry, ..., R, >a.

Then S* is defined as the set of formulas representing the rules in S.

Conversely, with a formula A not containing disjunction a rule or finite set of rules
S° is associated as follows. Carry out the following transformations on subformulas
until an irreducible formula A’ is reached:

(1) Replace any subformula of the form C — D; A ... A D, with (C — Dp) A
... AN (C — Dp).
(i) Replace any subformula of the form C — (D — E) with (C A D) — E.

Then the operation * associating a rule or set of rules with A’ is defined as follows:

@) a® .= a, for atoms a,
(i) ((BiA...AB)—a)* =B} ... Bi>a,
(iii) (BiA...ABy*:={B¥ ..., Bf}.
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Finally set S° := A",

As an example, if A is the formula (a A b) — (¢ A ((d — L) — 1)), then A’ is the
formula ((a Ab) - ¢c) A((laAb A(d— L)) — L), and S° is the set consisting of
the tworulesa,b>canda,b, (dr> 1) > L.

The properties (P1)-(P3) in Lemma 1 continue to hold. Note that (P1)-(P3) also
hold for the intuitionistic case, which we need now. Lemma (1), (P4) now takes the
form

AN Esh & A'‘sb

where A* is the set of formulas representing a finite set A of atomic rules.
Lemma 2 continues to hold with * and ° understood in the new way.

6 The Failure of Completeness

First we note as lemmas two interesting completeness results, which show that in
the current framework of higher-level atomic systems strong completeness holds for
disjunction-free formulas as well as for arbitrary negativeformulas.

Lemma 4 (Strong completeness for disjunction-free formulas) Suppose I" and A
do not contain disjunction. Then I' E' A <— I - A.

Proof Follows immediately from Lemma 1, (P4), together with the translation
between formulas and rules. O

Remark 1 For disjunction-free I” and A we also have strong minimal completeness
I'EA < I' " A, where " denotes derivability in minimal logic, i.e., without
using the rule (L).

Lemma 4 depends on the availability of higher-level rules, which makes it possible
to represent any nested implication as a rule. It can be extended to arbitrary negative
formulas, as from negative formulas disjunctions can be eliminated.

Lemma 5 (i) Any formula —A is intuitionistically equivalent to a formula A’,
which does not contain disjunction.
(i) F\—A < F A foranyS.

Proof (i) The following equivalences hold for NI (see [9, §§26-27]):
—-(AVv B)dF—=AA—=B, —(AAB)dr—=(—=—AA—--B), —(A— B)-+
—-—A A —B.

(ii)  Soundness of intuitionistic logic. O]

Remark 2 This result does not hold in the framework of minimal logic, as

we need ex falso quodlibet (i.e., the rule (L)) in the translation of a negated
implication.
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Lemma 6 (Strong completeness for negative formulas) For any formula of the
form —A it holds that F' —A <— I —A.

Proof Suppose ' —A. By Lemma 5, we we have ' A’ for some disjunction-free A’
which is intuitionistically equivalent to —A. By Lemma 4 we have that = A’, which
again is equivalent to - —A. O

Now we can present our counterexample to the completeness of intuitionistic
logic.

Theorem 2 Intuitionistic logic is not complete with respect to the semantics based
on higher-level atomic systems.

Proof Harrop’s rule!
—a — (b V)

(—ma — b) vV (—a — ¢)
is not derivable in intuitionistic logic, i.e., ma — (b V) ¥ (—ma—b) V (—a — c).2 We
show that =A — (BV C) E! (=A— B)V (=A— C) holds for any formulas A, B, C,
which means that Harrop’s formula is intuitionistically valid under substitution. Sup-
pose that lzg—-A — (B Vv C). We have to show that ﬁ"s(—-A — B)V (—mA— C). We
know that for every S; © § for which IZiSI —A, we also have that lzgl B v C, which
means that either l=fg] B or ’:i?l C.By Lemma 5, |=gl —A is equivalent to |="S1 A’ for

some disjunction-free A’ which is intuitionistically equivalent to —A. Now choose
S1 to be S U (A”)°. Then by (C2) we know that |=’S] A’, and therefore |=’S] —A. Thus

cither 5, B or F C. Thus, by (C4), either A'5sB or A'FC, i.e., either ~AFB
or ~AFC. O

7 Critical Discussion

By means of a counterexample, we have shown that intuitionistic logic is incom-
plete for a semantics based on higher-level atomic systems. By appropriate coding,
the usage of higher-level rules can be reduced to the usage of second-level rules
(see [21]). Thus, in effect, we have shown the incompleteness of intuitionistic logic
for a semantics based on second-level atomic systems. However, there is no way in
sight how to carry over this result to a semantics based on standard first-level rules
in the sense of Definition 1 (in the following called standard semantics). The argu-
ments in Section 4 show that intuitionistic logic is not strongly complete for standard
semantics. This means that the question of whether intuitionistic logic is complete
(simpliciter) with respect to standard semantics is still open.

! Also known as Kreisel-Putnam rule (cf. [10]) or independence of premiss rule.

2Harrop’s rule was proposed as an example of a formula, which is admissible, but not derivable in intu-
itionistic logic (see [8]). It should be pointed out that admissibility is different from validity, although there
are some similarities between these concepts (see [3]).
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The significance of this point is reinforced by the fact that serious objections can
be raised against second-level and higher-level atomic systems. By admitting atomic
rules that discharge assumptions, a great deal of logic is already put into the atomic
system, namely fundamental ideas underlying the framing of implication in natu-
ral deduction. With higher-level atomic systems, everything that is independent of
disjunction is already present at the atomic level. This is reflected by the fact that
the strong completeness of implication-conjunction logic is nearly trivially proved
(Lemmas 4 and 6). In fact, once we start to include implication-specific features such
as assumption discharge in the atomic system, there is no genuine reason why we
should exclude further means of expression. If we included propositional quantifi-
cation, which is very useful in the framing of logical rules (see [26]), in the atomic
system, we would gain means to express disjunction-like features at the atomic level,
giving us the completeness of intuitionistic logic in a relatively simple way.3 Overall
this means that there are good reasons to argue that the ‘real’ validity-based proof-
theoretic semantics is standard semantics, in which atomic systems consist just of
production rules.

What we have shown speaks neither for nor against completeness with respect to
standard semantics. If the latter could be established, we would have the interesting
fact that, in view of Sandqvist’s result for classical logic, there would be a justifica-
tion for classical as well as for intuitionistic propositional logic, where intuitionistic
logic, being based on a wider range of connectives, demands stronger requirements
concerning closure under substitution.

However, there are further points that affect the validity concept as a whole, as it
is used here and in related works. One crucial point already mentioned in Section 2
is the handling of negation. If we consider negation to be a proper logical constant
as dealt with in Kripke semantics, namely as expressing that something can never
turn out to be true, then most of our techniques fail. Our way of proceeding depends
on the fact that, by means of adding rules to a given atomic system, we can force
a negated statement to be true. By adding the rule a > L to § we can generate an
extension of S, in which a is false. Theoretically, we could even make an atomic
system inconsistent by adding absurdity L as an axiom to it. This is not possible
if absurdity is a logical constant which by definition can never be established. If
the semantics is restricted in such a way that only consistent extensions of atomic
systems are allowed, i.e., extensions in which absurdity | cannot be derived, then
completeness can be achieved (Goldfarb [5]; see also Litland [11]).

Another crucial point is that our framework and results rest on the assumption that
in the interpretation of hypothetical consequence in (S3) (and therefore implicitly
in the interpretation of implication in (S2)) we are considering arbitrary extensions
of atomic systems. Prawitz used the idea of extensions of atomic systems in [16],
but from 1973 [17] on never refers to them, without making it explicit that he does
not need them. There might be arguments against extensions of atomic systems as
describing evolving knowledge; an atomic system might instead be considered to

3See also Sandgqvist [21], who proposed some sort of semantics for disjunction corresponding to the use
of propositional quantification in atomic rules, for which completeness follows almost immediately.
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be an (inductive) definition that delineates the meaning of atomic expressions. With
respect to definitions one would not expect monotonicity (in the sense of (P2)), as
an extension of a definition changes what is being defined. A system for definitional
reasoning is definitely worth developing. For that purpose one might use, for exam-
ple, Martin-Lo6f’s theory of iterated inductive definitions [13] or Hallnés’s idea of
definitional reflection (see [6, 7, 23]). It would then not be enough to just drop the
reference to extensions in (S2). It would rather be necessary to add a full-fledged
definitional theory.

In any case we have shown that if extensions are considered, which is a com-
mon case considered by many authors, and absurdity and negation are dealt with in
the way indicated, then we do not have intuitionistic completeness, at least when
assumption-discharging atomic rules are considered. This is a significant result,
which goes against certain intuitions concerned with the harmonious relationship
between introduction and elimination rules (cf. [1]) as put forward by Prawitz [16—
18], and also by Dummett [4]. However, even if, given the standard introduction
rules, there are no stronger elimination rules than the intuitionistic ones, this does
not preclude that stronger rules, which do not have the form of elimination rules, can
be validated. Harmony between syntactically specified introduction and elimination
rules is one matter, the validity of arbitrary rules is a different matter.
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