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In this paper, we develop a proof-theoretic framework for
the treatment of arbitrary quantifiers binding m variables
in n formulas. In particular, we motivate a schema for in-
troduction and elimination rules for such guantifiers
based on a concept of 'derivation' that allows rules as

assumptions which may be discharged. With respect to this
schema, the system of the standard operators of intuition-

istic gquantifier logic turns out to be complete.

1. GENERAL INTRODUCTION

This paper, which is a sequel to [18], deals with a generalization of
natural deduction systems. The calculi of natural deduction as devel-
oped by Gentzen [7] and investigated by Prawitz [13] have at least two
distinctive features: Firstly they present a conceptualization of reas-
oning from assumptions in allowing that assumptions may be discharged
in the course of a derivation, and secondly they contain a certain sys-
tematics in that the rules governing the logical signs are split up in-
to introduction (I) and elimination (E) rules for each sign. Both as-
pects are especially important for intuitionistic logic. As to the first,

the possibility of discharging assumptions directly admits a derivatigggl
interpretation of implication as opposed to the truth-functional one

(the term 'derivativg' is due to Schmidt [16]1): a8 means that B can

be derived from o as is made obvious by the =I rule

(a]
B
asB .

Concerning the second, the I and E rules for the intuitionistic system
show a certain symmetry or duality in the sense that they can be consid-
ered inverses of each other (cf. Prawitz [13]) while in the classical
case this symmetry is at least partly lost. For example, the absurdity
rule

A
a
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can be conceived as the elimination rule of the O-place operator A and
can be justified from the fact that there is no I rule for A , whereas

the corresponding classical rule of indirect proof

[aoA]
A
a
cannot be so justified.Thus itis not surprizing that recent attempts at
building up a proof-theoretical semantics for intuitionistic logic
('proof' here regarded not purely syntactically but in the traditional
philosophical sense as the foundation of a proposition) are mainly

based on systems of natural deduction (cf. Dummett [6], Prawitz [14]).

The extension of intuitionistic natural deduction which is proposed in
the following, concerns both aspects. We shall first of all define no-
tions of 'inference rule' as well as of 'derivation', according to
which not only formulas but also rules themselves are allowed as as-
sumptions which may be discharged by the application of rules. It seems
guite natural to use as a hypothesis that one can pass over from deriv-
ed formulas to other ones, and not only that one may start with a cer-
tain formula as a hypothesis. This can of course be achieved by formu-
las too; for instance, a>8 as an assumption allows the transition from
a to B by means of medus ponens. However, this is a result of our in-
vestigations which are intended to start from an intuitively plausible
concept of 'derivation' which does not presuppose any specific inference
rules. Derivations in a formal system can be considered derivations
in a system without any basic rules, if all rules which are used are
counted as assumptions. This is just the way derivations will be intro-
duced: A derivation is defined as an arbitrary finite tree of pairs of
formulas and individual variables, indicating the eigenvariables of in-
ferences, together with a discharge function, indicating where an as-
sumption is discharged (this is a generalization of Prawitz' notion of
a discharge function in [13]). Those rules which justify such a tree

as a derivation and which can be decoded from the tree are then the as-
sumptions of this derivation, and the undischarged assumptions can be
considered either assumptions on which the end-formula depends or ap-
plications of basic rules (if there are any) . So the concept of a der-
ivation 1is defined independently of the question of which assumptions
are ad hoc, i.e. are ones on which a formula in a derivation depends,
and which belong to the considered framework, i.e. are applications of
basic rules - in the same way as in the usual concept of natural de-

duction it does not affect the intrinsic structure of a derivation (but
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only the set of formulas on which it depends) whether a certain formula
is an axiom or an assumption. (Gentzen's system NI of natural deduction
for intuitionistic logic does not contain any axiom but only proper
rules, but this is a specific feature of this particular calculus and
not of the type of calculus of which NI is a representative; for the
classical system NK, e.g., Gentzen proposes the 'tertium non datur' as
an axiom schema.)

The generalized notions of 'rule' and 'derivation' will then be used

to make the often stated 'symmetry' or 'harmony' between the I and E
rules for logical operators more explicit. This is done by providing a
general schema for I and E rules of an arbitrary operator which captur-
es the I and E rules for all standard intuitionistic connectives &,v,
>,4,¥,3, and by a metalinguistic characterization in terms of derivabil-
ity which justifies this general schema. For this purpose the vocabu-
lary of our language is based on the generalized notion of a 'quanti-
fier' or 'operator' which binds m individual variables in n formula-ar-
guments, thus including the usual existential and universal gquantifiers
(m=1, n=1) and n-ary sentential connectives (m=0). The justification of
this schema is based on the idea that from the conclusion of an intro-
duction rule it should follow exactly what can be concluded from all its
possible premisses (and what will be called the 'common content with
respect to certain eigenvariables' of these premisses). In the case of
dxa, for example, all that follows from every substitution instance
alxlt] of a should be a consequence of 3xa. This is guaranteed by the

3E rule

[a] (x not free in B nor in an assumption
Ixa B besides a on which B depends)

B

which states that whatever follows from a also follows from 3Ixa where
the eigenvariable x in a derivation from a is understood universally,

i.e. representing all substitution instances of the derivation.

This idea is closely connected with the concept of rules as assumptions,
because if one wants to speak of what follows from the premisses of an

I rule, one must have representatives of these premisses which can serve
as assumptions (1f they are not simply formulas without discharge-
able assumptions and eigenvariable conditions). Rules are very suitable
for that purpose. For instance, the rule a=8 ('from a you may infer B')
represents the premiss (including the dischargeable assumption) of oI

and the rule = ("for arbitrary t you may infer alx|t]') the premiss
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(including the eigenvariable condition) of ¥I. This is generalized in
such a way that arbitrary finite lists of arbitrarily complex rules can
be premisses of I rules and therefore assumptions of minor premisses of

E rules.

This general conception of I and E rules for generalized operators sug-
gests as a technical gquestion whether a certain set of operators is
complete with respect to this conception (in that sense of 'complete-
ness' one uses when speaking of 'functional completeness' in classical
sentential logic). It will be shown that the six standard intuitionist-
ic operators &,v,2,%,¥,3 suffice to explicitly define every other oper-
ator‘ which falls under our general schema and that, therefore, all
that can be formulated by use of rules as assumptions can be expressed
with their help. This shows that rules as assumptions are superfluous
once we have the standard operators at our disposal (but this is an in-

sight for which the concept of such rules is necessary!).

2. RULES AND QUANTIFIERS

In the sentential case, as treated in [18]1, a rule was defined to be an
arbitrary formula tree growing upwards, whose height was called its

level. So the general form of a rule was

-

r
e}

- - B,

w

a

written linearly
<F1HBT,...,anBn>-a

where a and the Bi are formulas, Fi are lists (i.e. linear graphic ar-
rangements) of rules (where formulas are special cases of rules, viz.
rules of level 1). The intended meaning of such a rule, underlying the
definition of a derivation and the derivability of a formula a from a
list of rules A, was: If, for all i (1=<i=n), Bi has been derived from
ri and additional assumptions ai (i.e., rules of Fi and ai can have
been used in the derivation of Bi), one may immediately infer a and
consider it derived from 31,...,an alone (i.e. the Fi may be discharged

by the application of the rule).

The standard form for I and E rules for arbitrary n-ary sentential oper-

ators S, according to which, roughly speaking, the E rule allows one
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to establish all that is implied by the premisses of all I rules, was

) o ®
SA R sa
o, (a) o (A)
SA B Tt B
(S-E)
B
where A is a list Ay Al of different schematic letters for formulas,

B a schematic letter for formulas different from A1""'An and the
®,(A) systems of rule schemata containing at most Ajre..sA  as schemat-
ic letters. The rule schemata for the standard intuitionistic connec-

tives were

A B
A B A&B C
(&I) S (&E) —_—
A B
A B AvB C C
(vI) AvB AvB (VE) C
A
A B
B ASB [
(=) A= (=E) c
[no AI] (XE .
no AE) A

Here SE, which can be shown to be equivalent to modus ponens (cf. [18],
Lemma 4.4), is an example of a rule schema of level 4 (whereas usual

natural deduction systems only contain rules of levels <3).

In order to treat quantifiers within a related framework, we must first
have a concept of substitution of (individual) terms for (individual)
variables at our disposal. Furthermore we must be able to express the
fact that a rule holds for all substitutions of a variable by a term,
as e.g9. in the case of 3I, and to express eigenvariable conditions, as
e.g. in the case of 3E. The latter include restrictions concerning the
'additional' assumptions, i.e. those assumptions on which the premiss=
es of an application of a rule depend but which cannot be discharged
by an application of that rule. These restrictions cannot be dealt with
by an appropriate choice of the formulas which occur in the rule itself
- at least as long as one works in a natural deduction framework where
'additional' assumptions are not made explicit in the formulation of a

rule.
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Our proposal is to introduce a certain kind of universal guantification

into a rule. We define a variable-formula-pair (VF-pair) to be a sign

<x,a> consisting of a list of distinct variables x and a formula a, and

define a rule of level n to be a tree of VF-pairs (growing upwards) of

height n. The general schema of a rule then becomes

P1 Fn

<X,0B4> <X, B o
<x,a>

where the Pi are lists of rules. If x is the empty list, we simply write
a instead of <x,a>; so formulas are special kinds of level-l-rules.
The variables y of a VF-pair <y,y> are considered bound in y and in the
formulas of ali VF-pairs above <y,Y>. This is made more obvious in our
linear notation of (1):

< 81,...,rn-x Bn)-ﬁa

1‘51 =n

A list of variables Y in "'”y"' universally quantifies ...=... with
respect to ¥ in a certain sense. Variants of rules, resulting by re-
labelling such bound variables and adding or omitting vacuous quantifi-
cations, can then be defined in the obvious way, as can the substitu-
tion [x!t] of appropriate lists t of terms for lists x of variables in

rules (for precise definitions see section 3).

The intended meaning of (1) can then be stated as follows: For any

variant
Ll 1]
F1 lqn
S 7.

<y,a'>

of (1) and any appropriate list of terms t: If for each i (1<i=n)
Bi[zl;] has been derived from Pi[y[E] and additional assumptions 4; not
containing Yy free, then one may immediately infer a'[zig] and consider
it derived from 31,...,an alone (i.e. the Fi[zl;} may be discharged by
the application of (1)).

If, for example, a is a formula containg only x as a free variable and

B a formula without free variables,

a <x,a>
a <x,0> Ixa <x,B> vxa <x,B>

<x, Ixa> Yxa B 8
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are instances of 3I, VI, 3E and VE. The last rule is equivalent to the

usual

VX ’
<x,a>

but falls under a standard form for E rules.

In the following section we define in detail the notion of a derivation
of formulas from rules as assumptions, following the intended meaning
of a rule as stated above. This theory is applied directly to a lan-
guage for quantifiers in a generalized sense. Such a quantifier is con-
sidered to be an operator which gives a formula from ny variables and
n, formulas, where n, and n, are natural numbers. (n1,n2) is then

called its type. If S is a quantifier of type (n1,n21 and KyreeasX

n
. . X 1
are distinct variables and a,,...,a formulas, then Sx,...x_ a.,...Qa
1 n, 1 n, 1 n,
is a formala, in which free occurrences of KyreoorXy in a1,...,an
1 2
become bound. If nj = 0, S is a sentential operator. In the following

we shall simply speak of operators instead of quantifiers in the

generalized sense.

Historical Remark. Our notion of a quantifier or operator of type (ni.
n,) corresponds to the notion of a variable-binding operator of degree
(%,nT,O,n2) in Kalish/Montague [8], i.e. a variable-binding operator
without térms as arguments or values. Borkowski [3] considers only quan-
tifiers of type (1,n,). Concepts of rules of higher levels with bound va-
riables can be found in Lorenzen [10] and Prawitz[12,15]. Both approaches
differ from the one presented here in that they consider the consequence
relation to be a relation between rules and allow - in our terminology

- iteration of = to the right in the linear notation of a rule so that

a rule does not have a tree structure. Furthermore, Lorenzen's theory

is based on the concept of admissibility whereas we take the concept

of a formula being derived from assumptions to be primary and not the
concept of a formula being derivable if certain assumptions are deriv-
able. -

3. THE LANGUAGE. DERIVATIONS FROM RULES

When we speak of a list, we mean a (possibly empty) linear graphic ar-
rangement of symbols which are called its members, i.e. a sequence in
the graphic sense, not in the sense of an abstract mathematical entity.
Its number of members is called its length. Analogously, trees are
conceived as graphic objects.

As basic signs we assume to be given:
(i) Denumerably many (individual) variables (syntactical variables for
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them: 'x', 'y', 'z', for lists of distinct variables: 'x', 'y'y 'zt

all with and without ' and indices).

(ii) Denumerably many (individual) terms, forming a (not necessarily
proper) superset of the set of variables (syntactical variables for
them: 't', for lists of terms: 't', both with and without ' and indi-
ces) .

(iii) For each number of argument places denumerably many predicate
letters (syntactical variables: 'P', with and without indices).

(iv) Finitely or denumerably many operators, each with an associated

pair (n1,n2) of natural numbers as its type (syntactical variable: 'S').

Atomic formulas are of the form Pt, where the length of t is equal to

the arity of P. Formulas are atomic formulas and signs Sxa where, if
S is of type (n1,n2), x is of length n, and a is a list of formulas of
length n,. In the case of binary sentential operators we may write

(ajsaz), where outer brackets can be omitted. Parts of a formula B are
B itself and the parts of members of a if B is Sxa. Syntactical varia-
a', '8's 'y

bles for formulas: 'a', 'B', 'y', for lists of formulas:

all with and without ' and indices.

The members of x in Sxa are considered binding corresponding occurrenc-
es of variables in the members of a. All elements of a belong to the
scope of x. So free and bound (occurrences of) variables in formulas
can be defined as usual. x is free in a if for each member x of x,

x is free in a. t is free for x in a if x does not occur free in a
within the scope of a variable which occurs also in t. t is free for x
in a if x and t are of the same length n and for each i (1<i=n), the
i-th member t; of t is free for the i-th member x, of x in a. alxlt]
is defined if t is free for x in a and is the result of simultaneously
substituting the free occurrences of Xy in a by ti (12i<n) if x is
XXy and t is t,...t.. alxlt] is defined if for all members P of a,

Blxlt] is defined, and is the result of forming Blxlt] for all B.

Rules .of level n were already defined in § 2 (see (1)) as finite trees
of height n of VF-pairs <x,a> called their elements, where x binds cor-
responding occurrences of variables in a and in formulas above <x,a~”,
and where, if x is empty, a is identified with <x,a>. Parts of a rule

p are p itself and the rules Pqr---1Py if
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is a part of p (i.e., the parts of p are p and all subtrees of p).
Proper parts of p are parts of p different from p. Syntactical varia-
p', for lists of rules: 'A', 'T'', all with and with-

bles for rules:

out ' and indices.

We say that a list of variables does not occur free in a rule if none
of its members occurs free in the rule. So 't is free for x in p' is
defined in the obvious way, and plxlt] as well. t is free for x in a
list of rules A if t is free for x in all its members. Alx|t] is defin-
ed memberwise. When making an assertion about an alx|t], we shall un-
derstand this assertion to be restricted to those t such that alxlt]

is defined.

A variant of p results from p by re-ordering lists of variables, omit-
ting or adding vacuous quantifications or re-labelling the variables X
of a variable-formula-pair, i.e. by once or more often replacing a

part 4= a of p by (i) A=« where X, contains the same variables as x
in a dlfferent order, (11} o=, a where X, results form x by omitting or
adding variables not occurring free in A=a, (iii) a[x[y]-yu[xly] provid-

ed y is free for x in A=a and no member of y is free in &ﬂy .

A subrule of p results by arbitrarily often performing one of the fol-
lowing transformations, starting with p:

(i) Transforming a rule into a variant.

(ii) Specializing of variables x in a rule ﬁ»xa to t, yielding
Alxlt]l=alxlt].

(iii) Transforming a rule <P1- TB.I....,r‘n-§n8n>:§o. into

1""'Fn < B ># a where F; (1=i=n) results from Fi by omitting,
£n X

<r; XTB
duplicating, re-ordering members of Pi and replacing members of ri by
subrules of them.

If p' is a subrule of p, then, according to the intended meaning of a
rule, an application of p' can be conceived as an application of p as

well.

In the sentential case ([18]), a derivation was considered a pair (T,f)
consisting of a finite formula tree T and a discharge function f, i.e.

a function defined on the set of all formula occurrences of T such that
f(a) is either a or a formula occurrence below a, indicating where the

rule with conclusion a is discharged (it remains undischarged if f(a)

is the lowermost formula of T). In the quantifier case we also have to
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make explicit the eigenvariables related to an inference step. For that
purpose one could define an assignment of eigenvariables e for T to be
a function which associates a list of variables x with each formula oc-
currence a of T besides the lowermost one, having the intended meaning
that the substitution of terms t for x is blocked above a, i.e. that
the inference step with a as one of its premisses need not remain valid
if x is substituted by a list of terms t. A derivation could then be
conceived of as a triple (T,e,f) consisting of a finite formula tree T,
an assignment of eigenvariables e for T and a discharge function f for
T.

For technical purposes however it is easier to consider VF-pairs <x,a>
instead of assignments of eigenvariables to formulas and to let a dis-
charge function cperate on VF-pairs instead of formulas. So we define

a discharge function for a finite tree T of VF-pairs to be a function f

defined on the set of all elements of T such that f(<x,0>) is either
<x,a> or a VF-pair below <x,a>. A derivation is a pair (T,f) consisting
of a finite tree T of VF-pairs, in whose lowermost element the list of
variables is empty, and a discharge function £ for T. Obvieusly, this
approach is equivalent to the previously sketched one using an assign-
ment e of eigenvariables, and everything which follows could be trans-
lated into the former approach (take x in <x,a> to be e(a) and identify
f(<x,a>)=f(<y,B>) with f(a)=£f(B)). With our latter definitions, however,
we can immedIately take over the notions defined for rules (i.e. trees
of VF-pairs): Derivations (T,f) and (T',£f') are called variants of each
other, if T and T' are variants of each other and f(<x,a>) and
f'(<x',a'>) are corresponding elements of T and T' whenever <x,c> and
<x',a'> are corresponding elements of T and T'. Substitution in deriva-
tions is defined as follows: If t is free for x in T, then (T,£)[xIt]
is defined to be the derivation (T[x,t],f') where ' (<y,a>[xlt])=
f(<y,a>) [xIt]. )

The rules (= the assumptions!) which are used in a derivation and thus
justify its inference steps are not considered part of the derivation
itself. Rather, they are assigned to it by a function g associating
with each VF-pair <X,a> a rule p in such a way that <x,a> may be con-
sidered the result of an application of p (or of a rule of which p is

a subrule). This coincides with the usual view that comments stating
which rule is applied in a particular step belong to the metalanguage.
Such a rule assignment g is determined to a great extent by the deriva-

tion (T,f): it has to be chosen in accordance with the intended meaning
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one of whose premisses is f(<x,o>), the application of the rule whose
conclusion is <x,a> is discharged; moreover with the intended meaning
of the eigenvariables x of VF-pairs <x,a> of T which is that they be-
come bound in all rules which have been applied above <X,a> but not yet

discharged above <x,a>. So we define:

g is a rule assignment for a derivation (T,f), if g associates a rule
g(<x,a>) with each VF-pair <x,a> of T such that:

If <x,a> occurs in T as

<XqBy>.. <xn,5n>

<x,a>
then

F1 r'1'1

<x;.B,> ' " % B>
g(<x,a>) = -

<y ,o>

where for all i (1=i=n), I'; contains all rules g(<z,y>) for all <z,Y>
such that f(<g,v>)=<§ifﬂi>, and where Y contains all variables belong-
ing to a VF-pair which equals or is below <x,a> and is properly above
f(<x,a>) in T. This definition contains as a limiting case the occur-

rence of <x,a> as a top VF-pair.

There are only finitely many rule assignments for a given derivation,

since they can differ only in the order of the members of y and of the
I'y. In particular, if g and g'

<x,a> 1is an element of T, then g(<x,a>) and g'(<x,a>) are subrules of

are rule assignments for (T,f) and

each other.

So far we have defined what a derivation loocks like and how to find
rules which justify the inference steps, but not on which- assumptions
a derivation or its lowermost formula depends. For that purpose one has

to consider the undischarged assumptions of a derivation (T,f) with

respect to a rule assignment g for (7,f), which, according to the in-
tended meaning of f, are defined to be the rules assigned by g to those
VF-pairs <x,a> of T for whieh £(<x,0>) is the lowermost formula of T.

We define an assumption system for (T,f) to be a list I' of rules such

that for a given rule assignment g for (T,f) each undischarged assump-
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tion is a subrule of a member of I' (this definition is independent of
the choice of g!). Now a derivation (T,f) with a as the lowermost for-
mula of T and I' as an assumption system for (T,f) can be considered a

derivation of a from I'.

However, some members of I may be basic rules of a calculus, i.e. be-
long to the given framework and are not assumed ad hoc within a deriva-
tion, and therefore should not be counted as something on which a deriv-
ed formula depends. So we define: Let a set R of rules which are
distinguished as basic rules be given. Then a derivation (T,f) is a

derivation of a from A in R (i.e., in the calculus having R as its set

of basic rules), if a is the lowermost formula of T and there is an as-
sumption system I' for (T,f) such that each member of I belongs either
to A or is a subrule of an element of R. This definition includes as a
limiting case that R is empty, i.e. no basic rules are given. As can
easily be seen, the concept of a derivation from A in R is decidable,
if 'subrule of a rule of R' is decidable. a is derivable from A in
R('al—Ra'), if there is a derivation of a from A in R. We write ' |-
instead of ‘1—2‘ if a statement is independent of a specific choice of

basic rules or if it is obvious what is meant.

Concerning the set of basic rules R our only restriction is that basic
rules contain no free variables (this will be crucial for the important

lemma 3.1(iv)). When writing a basic rule in the form

R

we mean the rule

A
<X,a>

where x contains all variables free in A or a (in a certain standard
order, for the sake of unigueness). This convention is important if
we write basic rules schematically, since then different instances of

a schema have different lists x of variables of that kind.

Lemma 3.1:

(i) If e is a subrule of Py then p1[§:£} is a subrule of pz[ﬁlg].

(ii) Let (T',f') be a variant of a derivation (T,f) and g be a rule
assignment for (T,f). Then there is a rule assignment g' for
(T',£') such that for each <x',a'> of T' which corresponds to

<x,0> in T, g'(<x',a'>) 1is a variant of g(<x,a>).
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(iii) Let (T,f) be a derivation. Let t be free for x in T. If g is a
rule assignment for (T,f), then g' is a rule assignment for
(T,£) [x1t) where g' (<y,a>[xIt])=g(<y,a>)[xIt].

(iv) If Tka, then for all x, t: Flxlt]alxit].

Proof: (i) - (iii) follow straightforward from our definitions. (iv)
follows by use of (i} - (iii): Consider a derivation (T,f) of a from I,
choose a variant (T',f') of (T,f) in such a way that x is free for t
not only in I' and a but also in T, and apply (ii), (iii) and (i) (note

that basic rules contain no free variables).

A rule awxv is called derivable from I' in R, if for all its variants
a'-yv' and for all t such that (a'=y')[ylt] has the form

: If, for
. n

each 1 (1<£i=n): F,ai,Fi FWQBi

o, orr, then r,a1,...,an szq. This definition follows the intended

meaning we have given to a rule (see § 2).

<P1;§1BT""'rn- Bn>»a, the following holds for all Byreeasd

+ where no variable of X; occurs free in

We shall use I'|l—A=y as an abbreviation for I',Al—y. Fk-ﬂ-xY expresses
that for a variant A'-yv' of A= Y such that no variable of Y is free
in r: r,A't~y'. By lemma 3.1 (iv), this then holds for any variant of
this kind. Furthermore this is, again by lemma 3.1 (iv), equivalent to
the statement that for all t: F,a'[ziz]k—v‘[zig], where a‘»yv‘ is any
variant of a-xy (without restriction). Our notation 'p, =~ which
suggests that p is derivable from I', but is not defined in this way,
will be justified by lemma 3.3 which is based on lemma 3.2.

Lemma 3.2:
(i) phFp (i.e. A= a, Ala).

(ii) If Alp and A,pl=y +then Alvy.

Proof: See the proofs of lemmata 3.4 and 3.5 in [18]. Only a few addi-

tions are necessary which deal with bound variables.
Lemma 3.3: I'tp iff p is derivable from I.

Proof: Let p be a-xy. I'—p means that for all variants a'”yY' of p and
all t we have I',a'Tyltll=Y'[ylt]. Let this be of the form:

F'r1'§151'“"rn‘§n‘5n]”°’ . (2)



412 P.Schroeder-Heister

If we have for all i (1=£ism): F,ai,TiL—Bi where no variable of Xy
occurs free in I' or ﬁi' we obtain, since this can be written as

F,aiP—Fi-x Bi,by (2) and lemma 3.2 (ii) (n-fold application):
=i

r, A ,...,ank-a. Conversely, since by lemma 3.2 (i) it holds that for

1

all i (1=isn): [ = Bi,FiF—Bi, the derivability of p from I' implies (2).
=i

By this lemma we may use I'lp as an alternative formulation of the der-

ivability ofp from I'. AT means that ab—oi for all i (1<isn) if T is

the list po,...P,- As a limiting case, Al-I is considered to be true if

I' is empty. A-IFT means that AT and THa.

Lemma 3.4: Let a-ll-B. Let p contain <x,a> as an element and let p' be

the result of replacing this element by <x,B>. Then p-iFp' .

‘Proof: Let Py be the part of p whose lowermost element is <x,a> (line-
arly written: a—xa), and let pa be ﬁ-xﬁ. From aﬂxa,ak-a and al—8 it
follows that ﬂ-xak—&-xﬁ; analogously &-XB¥—&=XGT So we have 014Fo%.
If Py is identical with p, nothing remains to be shown. Let p, occur as
a proper part of a part Py of p of the form <...o1.">:yY and let pé be
<...pi...>=yy. Then 02,...,p1,...i—Y by lemma 3.2 (i) and
02,...,93,.T.F—Y by lemma 3.2 (ii), i.e. pzk—pé. In the same way we ob-
tain pé}—pz. Repeated application of this procedure yields p-iFe' .

4. BASIC RULES FOR OPERATORS

We shall define a standard form for schematically given basic rules
(more precisely, I and E rules) for operators. For this purpose we as-
sume to be given:

(i) Denumerably many schematic letters to be instantiated by formulas

(syntactical variables for them: '‘a', 'B', 'C', for lists of distinct
letters: 'A', 'B', 'C', all with and without indices).

(ii) For each list of distinct schematic letters for formulas A, denu-
merably many schematic letters to be instantiated by variables which

do not occur (neither free nor bound) in a member of the list of for-
mulas by which A is instantiated (syntactical variables for them: ‘XA',
'YA', ‘ZA' where 'X', 'Y', 'Z' may have an index, for lists of distinct
letters: ‘EA', 'ZA‘, 'EA', for lists of distinct letters of the kind
Yoa. -++¥pp ¢ 'u', 'V'). If A is empty these schematic letters can be
instantiated by any variable (syntactical variables in that case: ‘X',
'y', 'z', 'X', 'Y', '%2', with and without indices).
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A schematic letter X for nonempty A can be instantiated only if A is

instantiated at the same time. - As for variables, we use 'xa' or 'ga'

in order to express that x or x does not occur in a.

Formula schemata are defined as follows: Each schematic letter for for-

mulas is a formula schema. For all A&, U and (not necessarily distinct)

D S
1a, nA

(i.e., the Xiéi

instance of Aa), zl'xigl){.IA "'an ] is a formula schema. (.[.!.] is here
=1 -n

a2 sign and not an operation!) If S is an operator of type (nI.nz), u

 where U is of length n and all éi (1=i=n) contain A

must not be instantiated by variables occurring in the

is of length n, and F1,...,Fn are formula schemata, then SQF1...Fn
2

is a formula schema. All occurrences of schematic letters of U in
SQF1...Fn are called bound. A rule schema is a finite tree of pairs

2
<U,F> where F is a formula schema. A linear notation for rule schemata
is defined in the same way as for rules. Occurrences of schematic let-
ters of U in <U,F> and above <U,F> in the considered rule schema are

called bound.

The instantiation of formula/rule schemata to formulas/rules is defin-
ed as follows: Replace schematic letters for formulas A by formulas a

and different schematic letters XA for variables by different variables

Xg not occurring in the instance § of A. a[y[z]...zn], when resulting

from A[QIXTA <o Xoa ] is then always defined and can be evaluated, since
=1 —n

no z, occurs in a because of the restriction on the XiA . A formu-

la/rule schema is called derivable from a set of basic rulaés R iff all

its instances are derivable from the empty list of assumptions in R.

Remark. Whereas on the level of formula/rule schemata [.1.] is a sign,
on the level of formulas/rules .[.|.] is an operation to be evaluated.

So the procedure of instantiating a schema includes the evaluation of
.[.1.] conceived as a metalinguistic substitution operation. This way
of dealing with substitution could have been avoided by treating quan-
tifiers not as variable-binding operators but as operators which are
applied to A-terms. Then we would have had to add rules of A-conversion
to the basic rules.

As syntactical variables we use 'F' for formula schemata, 'R' for rule
schemata, '®' for lists of rule schemata (all with and without indices).
If U and V have no schematic letter in common, we write 'F(U,V,A)",
'R(U,V,A)", '®(U,V,A)' to indicate that F, R and ®contain no other sche-
matic letters for variables than those of U and V and no other schematic
letters for formulas than those of A (but possibly fewer). If U, V, A
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can be instantiated by x, y, &, then 'F(x,y,a)’', 'Ri(x,y.a) ',
'@(5,2,9)', respectively, denote the formula, rule or list of rules

which is the result of this instantiation.

We motivate our standard form for I and E rules for an operator by re-

ferring to the common content of lists of rules F1,...,Fm with respect

to a list of variables x. It is defined as follows: The common content

of T T with respect to x in R is the set of all p such that for

P
all ; and for all i (1<i=m): Fi[§I£]1-Rp. Whereas in the propositional
case the common content was the finite intersection of contents of
lists of rules (see [18]), the common content with respect to a list
of variables can be considered to be an infinite intersection of con-
tents of lists of rules. The limiting case m=0 leads to intuitionistic

logic since it allows one to interpret the absurdity sign.

Similar to [18], we assume that with each operator S of type (n1'“2)
lists of rule schemata ¢1(E'XA’&)""'Qm(E'XA'&) (m20) are associated
where X is of length n, and A of length n,. It is required that all
operators can be ordered in a sequence 51, 52,... in such a way that in
the lists associated with an operator Sk at most the operators Sj for
j<k occur. Furthermore, the @, (X,¥,,A) (1<i<m) must fulfil the condi-
tion that letters of Y, only occur bound. This 1s because instances of
@, should not contain free variables beyond those in the corresponding
instance of SXA, save variables by which X is instantiated. The reason
for writing 'ZA' instead of 'Y' is that variables free in an instance
of SXA should be free in the corresponding instance of @i. In other
words, instances ¢i{§,z,g} and Sxa of 2, and SXA can, with respect to
free variables, differ only in that variables of x are free in

o, (x,y,a) but bound in Sxa. S is called a l-operator if m=0, 1.e., if

no list of rules (not even the empty list) is associated with S.

We require that the set RS of basic rules for S be a minimal set with
respect to derivability which satisfies the condition that for all x,
Vor & (where x is of length n, and a of length n,), Sxa expresses the
common content of ®1(§f¥a’g}""'¢m[5’2a'9) with respect to x in R,
i.e.

for all x, vy ,a and for all p: Sxal—pe iff for all t and

. X
(*) all i (1<ism): °i(’i'3jg'9} (xIt]l Ipe .

By 'minimal with respect to derivability' we mean that if (*) holds for
a certain R, then for each peRS: I—Rp. Obviously, different minimal sets

2 and R' are interderivable in the sense that for each pER': I—Pp, and
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for each DER:|—R,D.

We shall show that R, can be chosen as the set of all instances of I
S

and E rule schemata of the following standard form.

¢1(5;£§f§) @ (X, Y ;A)
S5-I _— . = s _—
SXA SXA
Linear notation: ¢ (X, Y ,A)-SXA (1=i<m)
¢ (X, YA,A} (X X PA)
SXa %B[&lggb BX1Z e
S-E
B[glgB]

where B is a schematic letter different from those in A, and Zp and X
have no schematic- letter in common, i.e., they are instantiated by dif-
ferent variables.

Linear notation: <S§§,®1{E,X&,é)»EB[glgal,...,¢m(§,gé,§}a§8[§lgB]>

= Blxlz,].

One should remember that according to a convention stated in § 3 all
variables are bound in instances of rule schemata of this form, so
that for appropriate z containing all variables which are free in

¢i(§,}_(g,g) '

would be an instance of S-I.
Theorem 4.1: (*) holds iff S-I and S-E are derivable in R.

Proof: Let arbitrary x, va,a be given such that o, {x,y (a) is defined
for every i (1<ism). Taking p to be Sxa we obtaln from (*) for all i
and t (1<i<m): ®i{§,y (@) [x1t]I=Sxa, in particular ®, (x,v,,a) =Sxa.
Thus witg,ga,g}azSEQ is derivable where z contains all variables free
in @, (x,y ,@). =

By lemma 3.2 (i) we have for all i (1<ism) if X 1is not free in B:

®1(5-29-9}-x6,-..,¢m(5,gg.g)-ia.mi(5,g§,g>|-B ,

therefore by lemma 3.1 (iv) for all t:
®1(E:ggfg)-ﬁﬁa-.-,wmti,gg,g)»iﬁ,mi(E,gg,g)[§|;]|—B :
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which is the same as
¢'l(ﬂngfg) [ilr__] |— <¢.| (E;}_’g;"}_}f-'ﬁﬁ roe - l¢m (EFXE:9)=§B>”B~

From (*) we obtain

Sxal— <&, {§f}_’9,g}=§B, e ,@m(i,gg,c_;)a§a>.,{3

which is the same as

S;g.¢1(E,XE,Q)»EQ..--,®m{§,gg,g)=§EI*B

Thus <S§g,¢1(g,gg,g)wiﬁ,...,@m(g,ggpg)'§6>=zﬁ

is derivable, where z contains all variables free in a ¢i(§,ya;§)
(1€i<m) or B. - B
Conversely, from ¢i(§,ya,g)r— Sxa follows @i{ﬁ,ya,g)[ﬁlg]]—5§g by

lemma 3.1 (iv), thus together with Sxal—p: mi{§,§a,g}[§1gli—o .-
Assume &, (x,y ,a) [x[t]l=p for all i (1<i<m) and all t.

Choose z,,2, in such a way that x, z,, 2, have no variable in common,

1
4 occurs free in °i(§'ya'9) for any i (1£i=m), no
variable of z, occurs free in o, p[§|51T[51I§] is p and

no variable of z

@i(§.za,g){§|32][32|§] is ©, (x,y, ,a) for all i (1€i<m) . Then we obtain

¢i(§,2;’g)[§lgzll—o for all i (T<ism).

Therefore by two applications of theorem 3.1 (iv):

Qi(i'ya'g)l_p[é’zi] for all i (1<i<m),

thus for a variant r'=ze' of 0[5151] such that z and x have no varia-
ble in common and z is not free in any @, (X,y,,&):

0, (Xsyg:@,T'I=B" . thus -

1 - L]
r'| ¢i(§.¥g,g}=x8 .

By S-E and lemma 3.2 (ii):

Sxa,r' =" thus
Sxal-elxlz,], thus by lemma 3.1 (iv):
Sxal=p

If one takes RS to contain exactly the instances of S5-I and S-E, then
S-I and S-E are trivially derivable in RS' so (by the theorem) RS ful-
fils (*). Conversely, if R satisfies (*) then (by the theorem) S-I and
S-E are derivable in R, i.e. Rs is a minimal set satisfying (*).

Basic rule schemata for the standard quantifiers ¥,3 which are of

type (1,1), have the form:

<X ,A>
v <X, A> Ve VXA <X,B[Xlzg]>
VXA = BIXIZg]
lin.: <= A>=VXA lin.: <VXA,<4XA>-XB[XIZB]>»B[XIZB]
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A
' >
. A - — <X,B xlzB]
3IXA B[XIZB]
lin.: <A>=3XA lin.: <3XA,<A>-XB[XIZB]>-B[XIZB]

VE is equivalent to the usual ¥Yelimination rule which has the form

% (3)

For letting x,a be arbitrary, B not containing x free, then

vxa
X, a2
B

is a derivation of B for which a rule assignment is given by:

)

g(¥xa) = = vxa, g(<x,a>) = <¥xa>=a, and g(B) = <= a>=f. Since =, 7xa
and <-xa>-ﬂ are subrules of ¥xa and <-Xa>axﬁ respectively, we have a
derivation of B from ¥xa, <éxa>ax5 and an instance of (3). Conversely,
taking the instance <VXa,<-xa>wxa[xiyq]>aza[xlyal of VE where z con-
tains all variables which are free in a[xTya], we obtain
<qu,<-xa>aa[xIya]>-za[x|yu} as a variant and (an,(:xa>~a>ua as a

subrule; since uxar—a holds trivially, we obtain V¥xal—a by use of VE.

Examples of further operators are those whose I rule schemata have the

following form, where the types of the operators are mentioned on the

right:

<<A>-XB>aHXAB (1,2)

<A,B>=IXAB (1,2)

<=y A>=3¥ XYA (2,1)

<azAA[x2x3JZAZA]>=LX1X2X3A

<=ZAA[X1X3IZAZA]>-LX1X2X3A (3,1)

<-ZAA[X1X2]ZAZA]>#LX]X2X3A

<aZAA[XY[ZAZA]>aDXYA (2,1)

<<A>aXYAA[x|YA]>»IXA (1,1)

<A,“( ) r
A,A[XIZAB]>-XZ B[YIZAB]>~J£YAB (2,2)

AB
<<A[X2IYA],A{X1X2!YAZA]>=XTYAZAA[X21ZA}>-TXTX2A (2,1)
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Corresponding E rules are determined uniquely by the I rules. The IIE
rule, for instance, is

.
<HXAB,<<A>:XB>=XC[XIZCJ>-C[KIZCJ.

Remark. At the meeting 'Konstruktive Mengenlehre und Typentheorie' (Min-
chen 1980) Per Martin-L&f presented a version of his intuitionistic set
theory in which the E rule for his operator 11 is structurally similar

to the above IIE rule, and could be considered a rule of level 4 in our
sense. He formulates it as

[v(x)€EB(x) (x€A)]
c€I(A,B) d(y)ec(Aly))
F(c,d)€ecC(c)

which in our notation for rules would have to be written as

XEA
<x,v(x)€B(x)>
c€ll(A,B) <y,d(y)EC(A(y))>
F(c,d)€C(c)

or linearly
<c€I(A,B) ,<<XE€A>= v (X) EB{x)>-yd(y) EC (A (y))>=F(c,d)€EC(c).

Apart from the usage of a new kind of assumption, however, this simi-
larity only concerns certain basic ideas about the relationship be-
tween I rules and E rules, and not those specific features of Martin-
L5f's system which make it behave differently from other formalizations
of intuitionistic mathematics. In order to justify its rules in detail,
one would need further principles, in particular about the way logical
rules, i.e. rules concerning propositions, are part of a type or set
theory. In the published versions of his system (e.g.[11]) Martin-L&f
gives an equivalent [E rule which is of level 2 (for a description of
Martin-Lof's theory as a formal system see [1]). - Zucker and Trages-
ser [20] work, when treating the completeness of the standard intuition-
istic operators for quantifier logic, within the framework of Martin-
L5f's theory. Their general schema for I rules (whose premisses are
conceived as trees growing downwards) is intended to capture all kinds
of operators which may be introduced in this framework. Zucker and Tra-
gesser give, however, almost no motivation for their schema, not even
an example. Similarities between their approach (when restricted to
first-order logic) and the one presented here I can only suspect.

Theorem 4.2 (Replacement theorem): Assume B-ll-B'. Let P occur as a part
of a, and let a' be the result of replacing this part of a with B'.
Then a-ll-a'. Furthermore, if <x,a> is an element of a member of I' and

r' results by replacing this element with <x,a'>, then I'-ll-T"".

Proof: From lemma 3.4 in almost the same way as in the propositional

case (see [18], theorem 4.6).

Theorem 4.3 (Relabelling of bound operator variables):Sxa-l-Sz(alxlz])

if z is not free in a.
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Proof: Induction on k where S is Sk. i.e. the k-th member in the se-
guence of all operators. If S is S1 and has I and E rules of the gener-

al form stated above, then the ¢i(§,g +A) do not contain any operator.

A

From the S-I rule we have
@i(g,ya,g)!—SEQ for all i (1=ism) , (4)

and by forming a variant of mi(i'ya’g) and applying lemma 3.1 (iv) we

obtain

;alxlz]) I-Sxa for all i (1=ism) . (5)
Application of S-E vyields
Sz(alxlz]) I-Sxa

The converse follows analogously.

If S is Sk for k>1, then the situation differs only in that the
mi(g,EA,é) may contain Sj for j<k. So we have, in order to pass from
(4) to (5), to apply additionally the induction hypothesis and the re-

placement theorem 4.2.

5. THE COMPLETENESS OF THE STANDARD INTUITIONISTIC OPERATORS

We can now show that all operators given by I and E rules of our stand-
ard form are explicitly definable in terms of &,v,>,4,¥,3. We assume
that the calculus we are considering already contains these operators
and their basic rules and that they form the first 6 members 51"“'86
of the enumeration of operators. vxa and 3xa are used as abbreviations
for VXq.. VX oQ and Ix,...3x a if x is Kyoo oKy and similarly for sche-

mata.

We associate with each formula schema F, rule schema R and list of rule
schemata ® a formula schema F*, R* and ®&* which contains at most &,>,
A,¥ as operators besides operators occurring in F, R, ®: F*¥ is F.
R* is (R1*&...&Rn*)3F if R is <R1....,Rn>-F. R* is ?E((R1*&...&Rn*)3F)
if R is <R,,...,R >=_F, &% is R, *&...&R_* if ©® is the list R,...R_.

1 n" X 1 n 1 n
®* is AoA if ® is the empty list. In the same way we associate with

each formula a, rule p, list of rules A a formula a* p*, A*.

Lemma 5.1: For all formulas a, rules p and lists of rules A:
a-dta*, pdkp*, A-FRA*.
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Proof: We consider only the case where a quantifier is involved. Assume

* *
<DT,...,pn>=>a4F(o1 &... 80 joa . (6)

Since <o1,...,on>-a is a subrule of <pj,...,pn>-xa, we have

- *
<D1,...,pn>v§ai (p] &...&on*):a

By applying VI (possibly more than once), we obtain
- * *
<p1,...,og:£al vx ((o *&...ap *)2a) .

Conversely, we have by (3), which is equivalent to VE, and (6):

* * -
VX ((p,*&. . .80 )2a) ;04 4+« .s0 Ima. Thus

* * —_

V§((D1 &...80) yoa) | <p1,...,pn>»§a .

Theorem 5.2: For each S of type (n1,n2) there is a formula schema
F[E,{A,é) containing at most &,v,>,A,¥,3 as operators, where X is of
lenth n, s A of length n, and letters of XA only occur bound, such that

for all x, y,ra: Sxa ARF (X, Y1)

Proof: Induction on k where 5 is Sk' If's is ST' then S is one of the

operators &,v,>,A,¥,3; so we can take F to be SXA. Let k>0. If S is a
L-operator, take F to be A. Obviously Sxa 4k A. Otherwise there are

lists of rule schemata @, (X,Y,
operators Sj for j<k. For these Sj' there are, by induction hypothesis,

;A) associated with S, containing at most

formula schemata Fj(§,§1B

tors such that for all z, 516r§
Sjgg ﬁij(gfg1é,§) '

,B) containing at most &,v,>,4,VY,3 as opera-

and, if all members of B are members of a, then for all z, EZG'Q'

By application of the replacement theorem 4.2 we obtain lists
®i{§,§ ,A) containing at most &,v,>,4,¥,3 as operators such that for

all Xr ngg
@i(gfzg.g)-ﬂkwi(g.ggpg} . (7)

Now take F{E,EA.g) to be

' ] *
3§(mi(5,g§,g))* V oee. ¥ ag{am{§.§A,§}J .

(This formula schema possibly contains vacuous quantifications which
can be omitted.) Let x, Yor & be given. Since

2, (XY r2) I-Sxa for all i (1sism), we have (Gi(g,ga,g})*l—sﬁg

for all i (1<i<m) (by (7) and lemma 5.1). Thus by 3E:
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55({¢i(§aggrg))*l—sig

and by VvE:
F(g.gg,g)P—SEQ .

Conversely, since for all i (1<i<m)
°i(§fggr93V‘f°£(£rZQ;Q)J* (by (7) and lemma 5.1)

and
¢i(§,gg.g)%—F(§,¥E,g) (by 3T and vI) ,

and since F(E,ya,g) does not contain x free, we obtain by S-E:
SxQI=F(x,y5s2) -~
For example, the operators N, Z, %, L, D, I, J, T, for which I rules

are given in § 4, are definable in terms of &,v,2,A,¥,3 as follows:

NXAB: vX (ASB)
LXAB: 3X (A&B)

I KYA: IXVYA

LX X, XAz ax1vaA{x2x3izAzA] v axzvaA[xTx3izAzA] v 3x3vaA[x1x2|zAzAJ
DXYA: VZAA[XYIZAZA]

IXA: VXYA{A:A[XJYA])

JXYAB: EXY(A&VXZAB((A&A[XEZAB]):B[YEZAB]))

TX XAz vijAzA((a[xzrygl&a[x1x2|YAzA]}:A[x2|zAI)

J can, for instance, be used to express the relation between a one
place predicate PT and a two place relation 92 which holds if P1 is
satisfiable and for all x,y, if P,x and P,y, then szy- T can be used
to express the transitivity of a relation, etc.

Application of the replacement theorem 4.2 yields that for each rule p
. + A
there is a rule p containing at most &,v,>,A,¥,3 as operators such
-
that pdkFp . Thus by lemma 5.1.:

) +% +* +%
01:---fDn1—O‘. iff FJ-[ :---;On —a ’

4+ ¥ Fi +* A 3
where 01 ,...,pn ;L are formulas containing at most &,v,>,A,v¥,3 as

operators. If we assume that
every derivation of B from A can be transformed into a
(**) derivation of B from A only using rules for operators

occurring in B or A as basic rules,
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we obtain:

, +
01,...,onr-a iff fq PR lTa ,

where I denotes the ordinary natural deduction system for intuitionist-
ic logic as presented in Prawitz [13]. Furthermore, since for formu-
las 61,...,Bn,3 containing at most &,v,>,4,¥,3, +* is the identity, it
holds that

B-]r---an |_fa iff Bjr---anI'B -

This shows that our generalized calculus can be embedded in ordinary
intuitionistic logic and vice versa. (**) can be proved, since the nor-
malization procedures and subformula principles, as given in [13], can
be taken over to our generalized calculus for logical operators. This
is done for the sentential case in [17], and the quantifier case does

not provide additional problems in principle.

6. CONCLUDING REMARKS

The approach presented here is designed for the interpretation of in-
tuitionistic guantifier logic. It is natural to loock for a similar in-
terpretation of classical logic. Since the classical I and E rules do
not immediately fit into the characterization given in § 4 by (*) and
the general form for basic rules for operators, one has to change the
underlying framework for rules, derivations etc. One way is to intro-
duce the denial ~a of a sentence a besides its assertion and to con-
struct calculi with refutation-rules, i.e. rules which govern the de-
nials of sentences. ~, as distinguished from the operator — of negation,
is here a sign which can only occur in outermost position and must
therefore not be iterated. The rules of 'reductio ad absurdum', formu-
lated by use of ~ (and not of —), must then be considered fixed basic
rules which are independent of the I and E rules for logical operators

(for sentential logic this is carried out in [17], c¢f£. also [9]).

Another way is to use multiple-conclusion logic (cf. [19]), i.e., to
consider derivations based on rules which may have more than one con-

clusion. In that case one could always have 'direct' E rules like

Q
<
w

o]
w
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However, since our general form of I and E rules is based on 'indirect'
E rules as present in the usual vE and 3E rules of systems of natural
deduction, it is much more promising to use the system of multiple-
conclusion logic developed by Boriti& [2] as a starting point. This
system is, roughly speaking, a natural deduction calculus for sets of
formulas (understood disjunctively) as premisses and conclusions of
rules, in which e.g. the rule of vE takes the form

({a}] [{B}]

MU{AVB} N N
MUN .

It can be considered an immediate natural deduction counterpart of the
classical sequent calculus which differs from the intuitionistic one by

allowing more than one formula in the succedent.

Instead of using a natural deduction framework one could work with se-
guent systems from the beginning. Such systems have the advantage of
making structural assumptions explicit. This is especially useful for
the treatment of modal operators. Whereas sequent calculi are not very
natural for the interpretation of 'ordinary' intuitionistic or classical
logic because they are 'meta-calculi' in the sense that, to explain the
sequent arrow, one seems to have to refer to a derivability relation
between antecedent and succedent (cf. [13]), thus presupposing something
like nafural deduction, this meta-perspective is just appropriate for
modal logic (for, e.g., oa should express that a can be logically
derived). For such a framework DoSen [4,5] introduced sequents of higher
levels; their exact relationship to our rules of higher levels is still

to be investigated.

Concerning our method of proving the completeness of a system of oper-
ators with respect to a general form for I and E rules of operators,

an application to Martin-L8f's system, more precisely, to its 'logical'
part without natural numbers, well-orderings and universes (and perhaps
without propositional equality too), seems promising. As stated above,
this system is based on several assumptions which go beyond that which
can be dealt with by the approach presented here, but it is nevertheless
possible to give a general schema for I and E rules in Martin-L&f's
framework, and I conjecture that the completeness of I, E, + and the
finite types can be established with respect to such a schema. This
could explain some of the 'systematic character' of Martin-LS&f's theory,
i.e. its being free from stipulations which seem arbitrary, which makes

it, at least from the philosophical point of view, so attractive as a
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foundation for logic and mathematics.
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