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THE COMPLETENESS OF INTUITIONISTIC LOGIC 

WITH RESPECT TO A VALIDITY CONCEPT BASED 

ON AN INVERSION PRINCIPLE 

In his well-known programmatic remarks on the characteristics of the 
inference rules of his ‘Calculus of Natural Deduction’ Gentzen states that 

The introductions represent, as it were, the ‘definitions’ of the symbols concerned, 
and the eliminations are no more, ln the fmal analysis, than the consequences of these 
definitions. This fact may be expressed as follows: In eliminating a symbol, we may use 
the formula with whose terminal symbol we are dealing only ‘in the sense afforded it by 
the introduction of that symbol’. . . . By making these ideas more precise it should be 
possible to display the E-inferences as unique functions of their corresponding 
I-inferences, on the basis of certain requirements (Centzen 1935, ed. Szabo 1969, pp. 
8041). 

Several attempts have been undertaken to elaborate this program, especially 
by Prawitz (1965) in his formulation of an inversion principle for natural 
deduction rules (thus generalizing an idea of Lorenzen (195 5), which was 
formulated only for calculi without an operation of assumption elimination 
(“logistic calculi” in Gentzen’s terminology)) and by Prawitz (1971,1973) 
in his definition of validity for inference rules and derivations. For a 
philosophical discussion of an intuitionistic meaning theory for the logical 
constants which is closely connected with this program, see Dummett 
(1975,1977), Prawitz (1977). 

Prawitz (1973) conjectured that the inference rules of minimal logic (in a 
natural deduction formulation) were complete with respect to his validity 
concept based on introduction rules (p. 246). This seems to be obvious from 
the standpoint of intuitive reasoning, as Prawitz (1979, p. 37) mentions, 
but he was not able to prove it. 

In the following we shall propose a modified concept of validity based on 
introduction rules with respect to which the completeness of intuitionistic 
logic can be established. Our defmition does not employ the constructive 
interpretation of derivations from assumptions (and therefore of the 
implication sign) according to which such derivations are justified by con- 
structions transforming proofs of the assumptions into a proof of the 
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end-formula. (This was favoured by Dummett and by Prawitz (1971 and 
later)). Rather we retain the operative interpretation which underlies 
Gentzen’s natural deduction rules. Valid inference rules are considered not 
to be rules transforming valid derivations of the premisses into a valid deriva- 
tion of the conclusion but rules inverting introduction rules in some sense. 
So we go back to the inversion principle of Prawitz (1965) in order to obtain 
a criterion for the validity of derivations.’ 

In part I we define the general concept of an inference rule suitable for 
natural deduction systems and the derivability of inference rules. Part II 
then gives the definitions of canonical derivations and valid rules. In part III 
we prove that the usual introduction and elimination rules of intuitionistic 
first-order logic are valid and that all valid rules are derivable in intuitionistic 
logic. Part IV discusses some features of our concept of validity. 

I. THE CONCEPT OF AN INFERENCE RULE FOR NATURAL 
DEDUCTION SYSTEMS 

In order to define a concept of validity for arbitrary inference rules we have 
first to state a general schema for inference rules which includes the usual 
introduction and elimination rules. Such a schema has to take into account 
the fact that by application of an inference rule assumptions may be dis- 
charged. Furthermore, the conditions on the eigenvariables of quantifier 
rules have to be taken into account. Therefore we propose inference rules to 
have the form 

r1 rtl 

1% :Ir, 

(1) k, . . . . . A” 
A 

(n 20) 

where the P’s are (possibly empty) systems of formulas of the object 
language, the A’s are formulas of the object language, and the x’s are 
(possibly empty) systems of distinct individual variables. A system is under- 
stood as a list of signs which are separated by commas (cf. Iorenzen 1955, 
6 12). So a system of signs is itself a sign. For a system of formulas P we 
denote by (r} the set containing exactly the formulas belonging to the 
system r. A system A is called a subsystem of P if (A} C (I’}. (1) is to be 
read as: 
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If for all i (1 < i < n) derivations of Ar are given, possibly depending on 
ri and other systems of formulas I’; where none of the variables of Xi occurs 
free in any formula of I’:, then we may immediately infer A, whereby the 
resulting derivations depends on Ur= r {I’:). 

The system of variables Xi in 

indicates a kind of generalization of that premlss: if Ai is derived from l?i 
and I’f where no formula of I’: contains any variable of Xi free, then we have 
for all systems of terms _ti of the same length as xi derivations Of Ai [gi/zi] 
from ri [gi/ii] and I’; at our disposal, where [zibi] is the operation of 
simultaneously substituting the terms Of_ti for the variables Of zi within the 
formulas of ri (provided, as always in the following, that the terms of& are 
free for the corresponding variables of Xi). (We shall speak simply of x,t, I’ 
when variables of g, terms of 1 and formulas of r are meant.) This interpre- 
tation of the variable conditions presupposes that it is guaranteed that 

(2) if r l-A, then r[&] +A[&/fJ for arbitrary systems of 
formulas r, formulas A, systems of variables2 and systems 
of terms t of the same length as x (provided J is free for x in 
r,A. 

This can be achieved, for example, by the requirement that the calculus 
considered contains with each inference rule of the form (1) also 

rlh211 kki r, k,/y,i wti 

where theyi are systems of distinct variables of the same length as -xi not 
occurring in ri or Ai, such that _x andt contain no variable OfJi (1 Q i Q n). 
Another way is to consider (1) to be a rule for which each application has 
the form (3), i.e., a rule which is applied under substitution of terms for 
variables. In the following we assume that with each inference rule of the 
form (1) we have rules of the form (3) at our disposal. It should be noted 
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that the requirement (2) is not artificial and reflects the sense of the use of 
free individual variables. 

Obviously the schema (1) includes all instances of the introduction and 
elimination rules of natural deduction systems. For example, each instance 
of the + introduction rule has the form 

A 

B 
A+B’ 

each instance of V introduction the form 

:Y 

where y is not free in VxA, and each instance of 3 elimination the form 

A [X/Y 1 
:Y 

iI.xA B 
B 

where y is not free in 3xA or B. 
since the r’s and A’s in (1) were chosen as (systems of) formulas of the 

object language they are not permitted to contain syntactical variables. Thus 
(1) includes only the instances of inference rules in the usual sense, not these 
rules themselves. But the distinction between rules with syntactical variables 
for formulas and instances of such rules (obtained by substitution of the 
syntactical variables) is not necessary in our context. We are interested only 
in the derivability and validity of inference rules: A definition of these 
properties for inference rules with syntactical variables would refer to the 
set of their instances which are inference rules in the sense of (1) or to 
inference rules in which the syntactical variables are replaced by schematic 
letters (belonging to the object language) which are also inference rules in 
the sense of (1). Therefore when we speak of an introduction or an elimina- 
tion rule of a natural deduction system we mean the set of their instances, 
when we speak of an application of such a rule in a derivation we mean an 
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application of an instance of that rule which is suitable in that situation. 
We do not generally require inference rules to be closed under substi- 

tutivity of formulas. Contrary to the substitutivity of individual variables, 
expressed by (2), this is not necessary for the (motivation of the) definition 
of derivability and validity of inference rules. The usual logical systems of 
course obey the principle of substitutivity of formulas since their inference 
rules are instances of certain rules which contain syntactical variables for 
formulas. 

As a definition of derivability of an inference rule R of the form (1) in a 
certain calculus Xwe could propose: “R is derivable in Xiff for all sys- 
tems of assumptions l? If for all i (1 < i < n)Ai is derivable in Xfrom ITi 
and I’; where I’; is a subsystem of r not containing a variable of xl free, 
then A is derivable in Xfrom I’.” However, the derivability of a rule R 
can then (in general) be established only by metalogical considerations, not 
by a derivation in Xitself, contrary to what we would expect from a 
concept ofderivubih’ty. A more adequate definition of derivability has to 
treat the existence of a derivation of Ai from r, as a kind of assumption in a 
derivation of A, such that the derivability of R can be considered to be a 
derivation of A from assumptions of’this kind (in analogy with the 
derivability of a rule 

. . 

AI...A, 
A 

in’xas Al,. . . , A I-A). 
“3 

Such an extension of the concept of assumption can be achieved in the 
following way. We define objects FA for a system of formulas I’, a 

formula A and a system of individfl variables ,x, which we call assumption 
rules. If r or 3 is empty, an assumption rule may have the form r *A, 
2 A, =$ A. We identify an assumption rule =+A with the formula A taken 
as an assumption. In an assumption rule I’ 2 A the variables 5 are considered 
to be bound. Al,. . . , A, =+ A may enter a derivation as an additional 
assumption according to t i: e schema 

(4) 
AI,. . . ,A,*A A&‘11 . . . . .AnWil 

A k/id 
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where 1 is of the same length as x and free forx in A r, . . . , A,, A. Here 
A &“I depends on A r, . . . , A, :A along with the undischarged assump- 
tions of the derivations of the Ai [g/r]. This schema justifies the name 
‘assumption rule’: We use the rule A i, . . . ,A, ;A as an assumption when 
we apply it to certain derived premisses Ai [s/r] ln order to obtain A [z/i 1. 
Assumption rules are treated as a subclass of assumptions. The application 
=) A/A of * A is identified with the introduction of A as an assumption. 

Thus, we can define a concept of derivability of formulas from formulas 
and assumption rules in a calculus X We denote it by AbA for a system 
of assumptions (formulas and assumptions rules) A and a formula A. 
(Assumption rules which are not identified with formulas may not be dis- 
charged by the application of inference rules; if a formula of a derivation 
depends on an assumption rule, then the end-formula of the derivation 
depends on it .“) 

An assumption rule Al, . . . , A, :A can now represent the hypothesis 
that A can be derived from Al, . . . , A, and additional assumptions A not 
containing z free. Each application of the form (4) of an assumption 
Al, - . ’ 3 A, :A in a derivation, where the Aj[&] depend on A, is replace- 
able by a der&tion of A [z/i] from A&/I], . . . , An[#] and A. Such a 
derivation is obtained from a derivation of A from Al, . . . , A,, and A if A 
does not contain g free (by condition (2) which remains valid, when there 
are assumption rules as additional assumptions). Conversely we obtain a 
trivial derivation of A from Al, . . . , A, and A r, . . . , A, :A (where 
Al,... , A, 3A does not contain x free). 

Thus, theIntuitive idea of the derivability of an inference rule of the 
form (1) by means of a derivation of A on the object-language level from the 
hypotheses that Ai can be derived from f’i can be explicated as follows: A is 
derivable from the assumption rules rr -z Al, . . . , r, gn A,. So we define: 

DEFINITION. An inference rule of the form (1) is derivable in a calculusx 
iff rl;Al, . . . , C,~An&I. 

To demonstrate by an example how this definition works we consider a 
calculus Xbavlng 

A 

(RI) 
Wtl A 

B 
and (R,) ; 
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as inference rules where A, B, D are formulas without free variables, C a 
formula containing exactly one free variable x and t a constant term. We 
want to show that the inference rule 

E 
:x : 

&) C E[x/tl 
D 

is derivable in Z, where E is like C a formula containing x as the only free 
variable. According to the definition we have to show that 

(5) E z:c, Ebltl I+ 
This can be proved by means of the following derivation: 

X 
EzC E[x/t] 

Wtl 
6) RI 

A 

& 
B 

1 
D 

Here X denotes the application ofthe assumption rule E 2 C according to 
the schema (4), and the numeral 1 indicates that A is discharged by a 
corresponding application of Rp 

If we had a derivation 

A E . . . . OfC 

C 

from E and from a system A of further assumptions not containing x free 
and a derivation 

A’ 
+ 
+ 

&I 
of E[x/t] 

from a system A’ of assumptions, we would also have a derivation 

A Wtl . . . . of C[x/t] 

&I 
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from E[x/t] and A (by condition (2) which is assumed to be valid for.%). 
Thus we could replace 

A” 
+ + 

E zCE[x/t] A &I 
Wtl 

in (6)by ‘. : 

c&t] 

and would obtain a derivation of D from A, A’. Therefore, (6) represents on 
the object level a procedure for transforming derivations of C from E and 
further assumptions A not containing x free and of E[x/t] from A’ into a 
derivation of D from A, A’, what must be required from a definition of the 
derivability of (Rs). Conversely we would obtain (5) from such a procedure, 
if we assumed 

A E 
. . to be 

E=y2 E A’ 
. . 

C 
and z to be E[x/t]. 

. . 
C &I 

II. CANONICAL DERIVATIONS. THE DEFINITION OF 
VALIDITY 

We assume a calculus for atomic formulas to be given. According to Prawitz 
(1973) we call it an atomic base 9. It is not necessary to give a closer 
specification of this system. It can be a Post system, but may also contain 
inference rules of the form (1). The only restriction we impose on the 
derivability relation t--of such a system is that it fulfil condition (2). 

We want to extend the atomic base 9 by inference rules for the 
operators A, v, +, 1, V, 3 of intuitionistic first-order logic in such a way that 
these inference rules can be considered to determine the meaning of the 
operators. Following Centzen’s program we choose the introduction rules to 
be the central inference rules for that purpose : 

. . . . 
ii A fi - - - 
AAB AvB AvB 
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A 

B 
A+B 

[I has no introduction rule ] 

A* (Jo not freein VxA) 

Let Q be A!?, extended by the introduction rules. kV obviously fulfii con- 
dition (2). According to a terminology used by Dummett and Prawitz in 
their philosophical discussions, we speak of a “canonical derivation” and of 
“canonical derivability” for a “derivation in s”” and for “derivability in 
V”, respectively. In doing so we consider the reference to introduction 
rules as the main feature of the notion of canonicality. With respect to other 
points our notion of canonical derivations is slightly different from that of 
Dummett and Prawitz. 

By means of this concept of a canonical derivation the concept of 
validity of an inference rule can be defined. The intention behind the 
definition of a valid inference rule is to extend the concept of canonical 
derivations in such a way that the additional inference rules can be justified 
by appeal to the introduction rules or to the meaning assigned to complex 
formulas by the introduction rules for their principal signs. For the elimin- 
ation rules of the standard intuitionistic connectives Prawitz (1965) 
formulated an.‘inversion principle” which describes the intuitive idea that 
elimination rules are inverses of the corresponding introduction rules (cf. 
Prawitz, 1965, pp.‘32-34). We want to generalize this principle in order to 
obtain a criterion for the justification of arbitrary inference rules. Thus we 
read it not as a description of the relation between given introduction and 
elimation rules but as a criterion to justify an elimination rule relative to a 
given introduction rule. An alleged elimination rule is justified as an elimin- 
ation rule if the inversion principle holds for that rule, i.e., if, given a 
derivation of its major premiss using an introduction rule in the last step and 
derivations of its minor premisses, a derivation of its conclusion can be 
found without an application of that rule. Obviously this formulation works 
only for elimination rules of a special form, viz. with one major premiss and 
(possibly) one or more minor premisses. In order to use it for a definition of 
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validity for arbitrary inference rules (including, e.g., introduction rules) we 
have to reformulate the schema (1) so that it is on the one hand a schema 
for elimination rules to which the inversion principle can be applied but on 
the other hand includes as a limit case inference rules which are not to be 
interpreted as elimination rules in the genuine sense. In other words, we 
want to have a schema according to which all rules are special cases of 
elimination rules (in a wider sense) so that an inversion principle can be 
applied to all rules. 

We are led to such a schema by the following consideration: Genuine 
elimination rules are inference rules of the form (l), in which one or more 
premisses without assumptions and without eigenvariables are distinguished 
as major premises. A non-genuine elimination rule is then simply an 
inference rule which has no major premisses. So we write the general schema 
of an inference rule in the form 

r1 rm 

(7) *Al.. . ..*A. B1 . . . . . B, 
A 

where the stars indicate the premisses to be counted as major premisses. (We 
leave open the possibility that a I’i and/or -xi is empty; we then have 
assumption-free and/or eigenvariable-free minor premisses, as, e.g., in the 
case of + elimination.) The star is of course not allowed for atomic 
premisses. The generalisation we thus undertake for elimination rules (in the 
genuine sense) is that we allow them to have more than one major premiss. 

This enables us to formulate an inversion principle as a definition of the 
validity of a rule of the form (7): A rule of the form (7) is valid iff: given 
derivations of its premisses, whereby in the case of major premisses 
introduction rules are used in the last step, a derivation of its conclusion can 
be found without an application of that rule. 

This proposal still leaves open what kind of derivations are taken into 
consideration, i.e., to which formal system they belong. As such derivations 
we allow derivations in $9 possibly depending on assumptions (including 
assumption rules). We choose s” because the canonical derivations are the 
basis of our semantic framework. We permit derivations to depend on 
assumption formulas because the basic notion of “derivation” in natural 
deduction calculi is that of “derivation from assumption formulas”. We 
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furthermore permit assumption rules because we want validity to be pre- 
served in each extension of Q; arbitrary assumption rules as possible 
assumptions guarantee that validity is not affected when we extend ‘3’ by 
rules already shown to be valid.3*4 They even guarantee that it is not 
affected when one adds rules that are not necessarily valid. This is very 
important: Validity is not considered to be a global property of whole 
formal systems but a local property of single inference rules. Thus this 
property should not depend on the special features of the system to which 
the inference rules in question belong. Besides this there remains the motiv- 
ation for admitting assumption rules: namely that they allow one to define 
a satisfactory concept of derivability of rules (see above, Part I). The way 
assumption rules are related to natural deduction systems is similar to the 
way assumptions (in the sense of formulas) are related to Hilbert-style 
systems. 

So we are led to the following inversion principle/definition of validity, 
where 6 denotes canonical derivability by means of a derivation using an 
introduction rule in the last step: 

DEFINITION. An inference rule of the form (7) is valid, iff for all systems 
A of assumptions (including assumption rules): If Ah& for all i (1 < i < n) 
and there is for all j (1 < j G m) a subsystem Aj of A not containing a vari- 
able of gj free such that Al, rj bBj, then A IgA. 

(This generalized implication should be understood constructively as the 
existence of a procedure which effectively transforms derivations into 
derivations.) 

As a corollary of this definition we formulate: 

LEMMA If a valid rule of the form (7) has no major premisses, it is derivable 
in Q. 

Boof Since by (4) for each j (1 < j < m) we have I’j z Bj, Pj bBj, and 
since rj g BI does not contain gi free, we obtain by the definition of 
validity 

r@h,...,L,~mB,t~A, I 
i.e., the derivability in Q of the valid inference rule considered. 

This result coincides very well with our expectations that valid inference 
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rules which cannot be conceived as genuine elimination rules do not 
properly extend the introduction rules. 

Let A/-A denote the derivability of A from A by means of valid rules of 
form (7). (For the relation of ‘IV to our notion of validity see below, Part 
IV.) 

III. THE COMPLETENESS OF INTUITIONISTIC FIRST-ORDER 
LOGIC 

Let 9 be the calculus of intuitionistic first-order logic, extended by the 
chosen atomic base 9, i.e., Q plus the elimination rules 

A B . . 
. . 

*AAB *AAB *A;B d C’ 
A B c 

*A+B A *1 
B s 

A WY 1 
:u 

*WA “3xA B 
A WI B 

0, not free in 3xA or in B) 

Let I’b A denote the derivability of A from the assumptions I’ in 9. 

THEOREM For each formula A and each system of assumptions I’: T’b A 
iff lq-A. 

B-oofl. From left to r&ht: We show that all inference rules of 9 are 
valid. The assertion, then, follows by induction on the length of derivations 
in 9. For the atomic inference rules and the introduction rules this is trivial 
since they are part of Q. Now we consider the elimination rules. Let A be a 
system of assumptions. 

If A l-&A A B, then A bA and A bB, since the derivation of A A B uses A 
introduction in the last step. 
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A I$1 is always false since 1 has no introduction rule. 
If Al-$VxA , then A’bA [x/y] where A’ is a subsystem of A not contain- 

ing y free. Then A’bA [x/y] b/t] for all terms f by condition (2). This 
equals A’$A [x/t] by the condition on y. Therefore AbA [x/t]. 

If Al-$ZixA, then A bA [x/r] for a term 1. If furthermore A’, A [x/y] $B 
for a subsystem A’ of A, where A’ and B do not contain y free and y is not 
free in &A, we obtain A’, A [x/y] b/t] bB by condition (2). This equals 
A’, A [x/t] $B. Therefore AbB. 

2. From rr@rt to left: We show that each valid inference rule of the form 
(7) is derivable in S, i.e., 

The assertation, then, follows by induction on the length of derivations 
using valid rules: If we have AIkA by means of a derivation using a valid 
rule of the form (7) in its last step, we have AIl-Ai for all i (1 < i < n) and 
A,, I’,Il-Bj for alli (1 < j d m) by means of shorter derivations, where 
{A,) 5 {A} and Aj does not contain a variable of g, free. By induction 
hypothesis AbAi for all i (1 Q i Q n) and Al, I’,bB, for alli (1 <i <m), 
therefore by conditon (2) Aj, r, [z&l k El [&I for all lj of the same 
length as &j and free for 3 in r, and B,. Thus we are able to replace each 
assumption Ai and each application of l”,$B, in the derivation of A from 
AI,..., A,J-‘l~Bl,. . . >Lzm =$ B, in 9 by the given derivations in 9. 
This yields AbA. 

We prove the derivability of valid inference rules in 9 by induction on 
the number of their major premisses (i.e., their starred premisses). Let a 
valid inference rule R of the form (7) be given. If n = 0, then R is derivable 
in s” by the lemma, thus derivable in 9. If n > 0, we consider the right- 
most major premiss A,, of R . 

If A, has the form CA D, then 

r1 rm . . . . 
. . . . :-x1 :-x, 

*Al . . . ..*i.ml i Li El.....&, 
A 
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is a valid rule since from AbCand A$D we obtain A6 CAD. Since this 
rule has a lower number of major premisses than R, we have by induction 
hypothesis 

A I,.. .A-,,C,W’I~BI,. ..,L,~m&,~A. 

By A elimination in 9 we obtain the derivability of R. 
KA,hastheform CvD,then 

and 

l-1 r?n . . 
* :-x1 :%?I . . 

*Al . . . . . *A,el C B1 . . . . . B, 
A 

rl rm . . 
* 1x1 :&I . . 

*Al . . . . .*Anwl D B1. . . . .B, 
A 

are valid rules with a lower number of major premisses than R. Thus, by 
induction hypothesis, they are derivable in 9. By v elimination we obtain 
the derivability of R in 9. 

If A, has the form C + D, then 

c r1 rm . . 
. 1x1 :xnl . . 

*Al . . . . . *A,ml D B1 . . . . . B, 
A 

is valid and, by induction hypothesis, derivable in 1, i.e., 

Replacing each application 

C*D C 
D 

of C=+D 
‘+ 
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by an application 

C+D C 
D 

of -+ elimination, 

we obtain the derivability of R in 9. 
If A, is 1, then R is trivially derivable in 
If A, has the form WC, then 

3, since +A. 

r1 ml 

ly :x1 :&I 

*Al.....*A”-l C&y] i,.....B, 
A 

is valid. By induction hypothesis we have 

Al,.. . ,-h-l, ~C[x/vl, h;Bl, . . . , rm~mBmtyA. 

Since C[x/y] b/r] equals C[x/r] by the condition ony, we may replace each 
application 

gx/u 1 
WY 1 WI of y[x/Yl 

by an application 

vxc 
- of V elimination 
Wfl 

and obtain the derivability of R in 9. 
If A, has the form 3xC, then 

rl rm 

1x1 :&I 
*Al . . . . . *in-, C&t] li, . . . . . li, 

A 

is valid for all terms t. By induction hypothesis we have A r, . . . , A,, _ 1, 
c[x/4 rlpy . . . , rmx * B&A for all t. If we choose t to be a variable 

-m not occurring free in Al, . . . , A,-,,3xC, I’-, FBI,. . . , F,: B,,A, we 
can apply 3 elimination and obtain the derivakty of R in 3. 
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IV. SOME REMARKS 

We note some important features of our concept of validity. This may facili- 
tate comparison with other definitions of validity, especially the one given 
by Prawitz. 

(1) Canonical derivations in our sense need not be closed, i.e., they may 
depend on assumptions. So, for instance, A is a canonical derivation of A 

depending on itself and 
A*B A 

B is a canonical derivation of B depending 

on A and (the assumption rule) A *B. 
(2) Our notion of validity, unlike that of Prawitz, is not strongly connec- 

ted with the notion of normalizability of derivations but only with the 
invertibility of introduction rules by elimination rules. As a consequence, 
our proof that each inference rule of 9 is valid (Le., the fast part of the 
proof of the theorem) does not make use of the whole apparatus of normal- 
ization procedures but only of proper reductions. So our completeness 
proof does not give the information obtained by normalization theorems. 
(However, there seems to be no reason to require that .) 

(3) Besides the concept of canonical derivations (gderivations) we use 
in the definition of validity a concept of “canonical derivations applying an 
introduction rule in the last step”; let us call them “V’derivations”. 
Obviously not all subderivations of @+derivations are Q*derivations. For 

the concept of validity this has the effect that, e.g., 
*(AAB)AC 

A is not a 

valid inference rule : A valid inference rule transforms Q+derivations of its 
major premisses and Qderivations of the other (minor) premisses into a 
gderivation of its conclusion. From a Q+derivation of (A A B) A C we can 
obtain a SYderivation of A A B and a 57derivation of C; but in general we 
cannot obtain a IT-derivation of A A B (and thus a Vderivation of A). 

AAB C 
(AAB)AC 

is, for example, a Tderivation of (A A B) A C. 

(4) Since 

*(AAB)AC 
A 

is derivable in .Y, the non-validity of that inference rule shows that there 
are inference rules derivable in 9 which are not valid. So we have not 
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proved in our completeness result that all inference rules derivable in 9 are 
valid; we have proved only that all inference rules derivable in 9 are deriv- 
able by use of valid inference rules of form (7). This can be stated more 
generally in the following way: Let II be the relation between sets 
{*AI,..., *&h~B,,..., l-,g B,} and formulas A which holds if (7) 
is valid. Then for 11 we can defme a kind of “transitivity” in an obvious way 
with the result that Ii- is exactly the transitive closure of II. (We roughly 
speak of the transitive closure of validity.) Since the inference rules 

*(AAB)AC *AAB 
AAB and ~ A 

are valid our example shows that II is not transitive, i.e., that Il- is different 
from 11 (whereas derivability in 9 and its transitive closure are identical). 
We can now reformulate our completeness theorem. It says that the 
transitive closures of derivability in 9 and of validity coincide; but it does 
not say that derivability in 9 are validity coincide. 

(5) The validity of a rule of form (7) depends on whether premisses are 
starred or not. *A A B/A is valid whereas A A B/B is not. Our derivability 
concept was so defined that it does not count such rules as different. If we 
assume, however, that all premisses without assumptions and without 
eigenvariables of a rule of form (7) are starred, we can state the problem of 
finding a subsystem 9’ of Yso that a rule of this kind is derivable in 9’ 
iff it is valid.’ Such a system is obtained if we define an 9 ‘-derivation to be 
an sderivation in which major premisses of elimination rules occur only as 
top-formulas (i.e. assumptions). 

(6) That our concept of validity is not transitive in the sense explained 
above (contrary, e.g., to the validity concept of Prawitz) seems philo- 
sophically (i.e., from the standpoint of the theory of meaning) to be no 
defect. We require that a valid inference rule can be eliminated from a 
derivation if its major premisses are used according to their meanings, that 
is, if they are derived by an application of an introduction rule. That they 
should be eliminable also in other cases is, as it seems, not a reasonable 
demand. If we nevertheless want to have a transitive validity concept, we 
can simply take the transitive closure of our validity concept as the ‘real 
validity concept, i.e., define an inference rule of form (7) to be valid iff 

AI,..., A,, I-1 ZB,, . . . , I’,,, ,’ 4A--A. 
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NOTES 

’ Our use of the word “valid” differs of course from the use of this word within 
model-theoretic semantics where it is connected with a certain concept of “interpreta- 
tion” of signs. One could introduce another word to distinguish validity in our sense 
from validity in the model-theoretic sense (e.g., “operationally valid”, as proposed by 
the anonymous referee of JPL). Following Prawitz, however, we prefer to speak simply 
of “validity” since this word denotes also in our context the central semantic (or 
meaning-theoretic) concept which is used to justify a certain derivability notion based 
on syntactic rules. 
a That is for the present purpose. For other purposes it is possible and makes sense to 
introduce calculi with a discharge operation for assumption rules, cf. Schroeder-Heister 
(1981). 
a In the last two points the inversion principle we are formulating according to Prawitz 
(1965) differs entirely from Lorenzen’s”Inversionsprineip~~ (cf. Lorenzen 1955, p. 
30). Lorenzen’s Inversionsprinzip is formulated by use of the notion of “Zul&ssigkeit” 
of an inference rule, and this notion is a useful tool only for assumption-free deriva- 
tions whose subderivations are also assumption-free. (For derivations depending on 
assumptions it coincides with derivability.) HoWever, it is a central feature of natural 
deduction calculi that assumption-free derivations may contain subderivations depend- 
ing on assumptions (e.g. a derivation of A -+ B, using -+ introduction in the last step). 
* Note that assumption rules of the form p ZA can represent a justified inference rule 
of the form (l), since in Q* introduction and V introduction are available. The appli- 
cation, e.g., of an inference rule 

A,B 
.x .- 
c - 
D 

can be replaced by an application of the assumption rule Wx(B -f (A + C)) 3 D in the 
following way: 
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L 

A-C 
1 
2 

B-+cA-+c) 
vx(B-+(A+Q)-D Vx (E-+(A-+C)) 

D 

Neil Tennant drew my attention to this. 
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