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A NATURAL EXTENSION OF NATURAL DEDUCTION 

PETER SCHROEDER-HEISTER1 

One of the main ideas of calculi of natural deduction, as introduced by Jaskowski 
and Gentzen, is that assumptions may be discharged in the course of a derivation. As 
regards sentential logic, this conception will be extended in so far as not only 
formulas but also rules may serve as assumptions which can be discharged. The 
resulting calculi and derivations with rules of any finite level are informally 
introduced in ?1, while ??2 and 3 state formal definitions of the concepts involved 
and basic lemmata. Within this framework, a standard form for introduction and 
elimination rules for arbitrary n-ary sentential operators is motivated in ?4, 
understood as a contribution to the theory of meaning for logical signs. ?5 proves 
that the set {&, v, D, A } of standard intuitionistic connectives is complete, i.e. &, 
v a and A suffice to express each n-ary sentential operator having rules of the 
standard form given in ?4. ?6 makes some remarks on related approaches. For an 
extension of the conception presented here to quantifier logic, see [1 1]. 

?1. Derivations with rules of higher levels-informal exposition. Assumptions in 
sentential calculi technically work like additional axioms. A formula a is derivable 
from formulas ,, f38 in a calculus 1' if a is derivable in the calculus @' resulting 
from W by adding fi1,... , An as axioms. But whereas "genuine" axioms belong to the 
chosen framework and are usually assumed to be valid in some sense, assumptions 
bear an ad hoc character: they are considered only within the context of certain 
derivations. When deriving ac from Ale... , f we do not want to change our 
framework and to extend the calculus 1'; we are interested in the derivability relation 
between I3,. .& Bn and ac with respect to W'. This ad hoc character of assumptions, as 
compared with axioms, is made obvious in natural deduction systems: some of their 
inference rules allow one to discharge assumptions used in the derivations of the 
premises-that means, such assumptions are used only in specific subderivations 
for the purpose of establishing a certain formula in the superior derivation. Whereas 
inference rules of a Hilbert-type system may be written as 

(1) a 
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inference rules in a calculus of natural deduction can be given as 

F1 Ln 

(2) 
I fln 

where the F's are finite lists of formulas representing the assumptions which may be 
discharged within the subderivations of the corresponding fly's by the application of 
this rule. A rule of form (1) can be considered to be a formula tree (growing upwards) 
of height 2, a rule of form (2) to be a formula tree of height 3 (provided not all F's are 
empty). 

Instead of considering only ad hoc axioms (i.e. assumption formulas) we can also 
regard ad hoc inference rules, that is, inference rules of form (1) used as assumptions. 
Assumption rules technically work like additional basic rules: aC is derivable from 
assumption formulas /31, . . , f/n and assumption rules p 1, . . ., pm in W if a is derivable 
in 6', where 16 results from 1' by adding I3,,. . ., fn as axioms and P1,.. ., pm as basic 
inference rules. By "basic rule" or "basic inference rule" I mean rules which 
constitute, together with axioms, the derivability concept of a calculus. Certain rules 
are the basic rules of a calculus in the same sense as certain formulas are its axioms. 

Consider for example the abstract calculus whose formulas are finite strings 
consisting of the atoms + and o. Let it have as basic rules all instances of 

(M+1) X (M23 X Yo 
( X)(+. XYo 

where X and Y are schematic letters for formulas. Then 

+ (-4) - (v) - (OI) + 0 0 

0+ ( 01) 00 

0+0(M2) 0 + o o 

denotes a derivation of o + o0 from the assumptions +, o (assumption formulas) 
and 000 (assumption rule). To the right of the lines it is indicated whether the 
formula immediately below the line is an assumption formula or obtained by 
application of an assumption rule (a?), or whether it is obtained by application of a 
basic rule that is an instance of 1 or M2. These indications however are considered 
to be only metalinguistic comments, and are not part of the notation itself. 

The idea of assumption rules leads to an extension of natural deduction if we 
introduce inference rules allowing one to discharge assumption rules as well as 
assumption formulas. Such rules can be presented in form (2) where the F's may 
now contain rules of form (1) besides formulas; they may be considered formula trees 
of height 4 (provided at least one of the F's contains a rule of form (1)). Examples are 
the instances of the schema 

X 
+ XX 

y 
(M3) Y+ 



1286 PETER SCHROEDER-HEISTER 

If we extend the above calculus by this schema, the following denotes a derivation of 
0 +00 + from 0: 

1-(v) -G() O(a 
+ 

(0l) 00 ) 
0 + 0 10 2 

0 +00 (932) 1 (p3) 
0 + 00 + 

Here the small numeral (which does belong to the notation of the derivation) on the 
left-hand side of a line denotes that the formula occurrence immediately below it (if 
it is an assumption formula) or the application of the assumption rule indicated by 
the line is discharged by the application of the rule which is indicated by a line 
having the same numeral on its right-hand side. In the present case + and 

000 are discharged by application of 

0 

+ 00 

0 + 00 

0 + 00 + 

which is an instance of M3. A derivation depends on those assumption formulas 
occurring somewhere without a numeral to the left of the line immediately above it 
and on those assumption rules being applied somewhere without a numeral to the 
left of the line indicating this application. Both cases can be put into one if we 
consider assumption formulas a to be result of the application of an assumption rule 
a without premises. So from now on we shall use "assumption" and "assumption 
rule" synonymously. 

This procedure can be iterated: we may use rules of form (2) as assumption rules 
which are dischargeable by the application of rules of higher complexity, and so on. 
Rules are then arbitrary finite formula trees (growing upwards); their height will be 
called the level of the rule. This leads to a concept of derivation where all kinds of 
inference rules may be used as assumptions and may be discharged by the 
application of other rules. In particular, assumptions may be discharged by the 
application of assumption rules. 

So formulas a are rules of level 1 (allowing one to infer a without premises), rules 
of form (1) are rules of level 2, rules allowing one to discharge formulas (like :D- 

introduction and v -elimination in natural deduction systems) are rules of level 3, 
rules allowing one to discharge rules of level 2 are rules of level 4 etc. 

Examples of rules of level 5 are instances of the schema 

X 
Xo +X 

Y X 
(:4) + Y X + 

ty 

Extending the preceding calculus with the instances of S4 as basic rules, the 
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following denotes a derivation of o + o + from + 0: 

0 

3 (-d) (sd) 
0 0 + 0 

3 -(a?) 2 1 (a?) 3 (a?) 2-(J2/) 
+ 0 +0 + 0 

+0+0 (M2) 0+ (M 1) 

0 + 0 
2 (M4) 

3 (M 3) 
0 + 0 + 

As the numerals to the left and to the right of the line above the topmost occurrence 
of o + o show, the application of the assumption rule 

0 

00 +0 

0 + 0 

discharging the assumption formula 0 is itself discharged by application of an 
instance of M4. 

In general, the meaning of a rule of form (2) can be informally stated as: If for each 
(1 < i < n) fli has been derived using certain assumption rules, one may im- 

mediately infer a and for each i discharge assumption rules of fl on which the 
derivation of /3, depends. 

We do not require assumptions which could be discharged by the application of a 
rule to be actually used in a derivation. For example, 

1 1- 
+ + 

+0 + + 1 (M4) 

denotes a derivation of o from + o applying the instance 

+ 0 + + 

(3) 0 + 

+ 0 + + 

0 

of M4, although the weaker rule 

(4) +0 + + 
0 

would have been sufficient to establish this derivation. Furthermore, in which order 
the assumption rules which may be discharged (i.e. the members of the F's in (2)) are 
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stated is not relevant for the application of this rule in a derivation. In order to 
capture this we shall define the notion of a subrule of a rule in such a way that each 
application of a subrule can be considered to be an application of the rule itself (e.g., 
(4) will denote a subrule of (3)). 

Moreover, an assumption that is actually used in a derivation and could be 
discharged by the application of a rule, need not be discharged at certain places or at 
any places at all. So 

+ ++ 
+ ? + 1 (M4) 

0 

denotes a derivation of 0 from + 0 and +. This point will be included in our 
definitions by adopting Prawitz's [7] technique of "discharge functions" which 
correspond to our numerals and state which assumption is considered discharged by 
which rule application. 

?2. Rules and derivations-basic definitions. In this and the following section we 
leave unspecified what is counted as a formula. 

DEFINITION 2.1. A rule is a finite formula tree growing upwards. A tree is here 
considered to be a graphical arrangement, not an abstract object. Speaking of 
formulas occurring (immediately) below or above others, of top formulas and the 
downmost or end formula etc. is thus explained. The height of the tree (i.e. the length 
of its longest branch) is called the level of the rule. 

From now on we use, if not stated otherwise, a, f3, and y as syntactical variables for 
formulas, p for rules (which include formulas as a limiting case) and F and z for lists 
of rules (all with and without primes and indices). Lists are linear graphical 
arrangements of signs called their members (including the empty list). 

DEFINITION 2.2. Subrules are defined as follows: Rules of level <2 have only 
themselves as subrules. A rule 

rF, F;1 

13I fin 

is a subrule of 

F1 l~n 
13I fin 

if for all i (1 < i < n) F results from fl by arbitrarily often performing the operations 
of omitting, duplicating and reordering members or replacing members by subrules 
of them. 

One could (but we do not) identify a rule with the set of its subrules (that would 
make rules which are subrules of each other identical). 

Prawitz's concept of discharge functions is modified somewhat for our purposes. 
Discharge functions have as arguments not only top formulas of a formula tree. 
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DEFINITION 2.3. A discharge function for a finite formula tree Y is a function f 
defined on the set of all formula occurrences of 9- such that f (a) is either a or a 
formula occurrence below x. 

Discharge functions are represented in the notation for derivations by small 
numerals. If fo(a) = / then a or the assumption rule whose conclusion is a is 
discharged by the application of the rule one of whose premises is /3, if there is such a 
rule. Otherwise /3 is the downmost formula in Y, and the assumption rule with the 
conclusion a is not discharged. 

DEFINITION 2.4. A derivation is a pair (S., f ) consisting of a finite formula tree Y 
together with a discharge function f for Y 

This definition does not refer to any basic inference rule. We can define a rule 
assignment g for a derivation (E7, f ), associating with each formula occurrence a of Y 
a rule g(cL) in such a way that a can be considered to be the conclusion of an 
application of g(a) (or of any rule of which g(a) is a subrule). If no basic rules are 
given, (9Jf) may then be taken as a derivation of its downmost formula y from 
assumption rules g(/31),.. ., g(/3n), where /3,... ., /3n are those formula occurrences in 
9- which are neither discharged nor conclusions of discharged assumptions; that is, 
f(f3i) = y (1 < i < n). So there are nontrivial derivations using only assumption rules 
and no basic rules. 

DEFINITION 2.5. g is a rule assignment for a derivation (T,f ) iff g associates with 
each formula occurrence a of Y a rule g(a) such that if a is a topmost formula, then 
g(a) is a, and if a occurs in Y as 

#1 Aln 

then g(cL) is 

F1 Fn 

where for all i (1 < i < n) F1 contains exactly the rules g(y) for all those y such that 
fy) = A3. 

Obviously, a rule assignment always exists, and, for two rule assignments g1, g2 
for (S, f ) and any a, g1 (a) and g2(a) can differ only in the order of the members of the 
F's and are subrules of each other. So a specific choice of a rule assignment is not 
relevant for the following. 

Now we assume that certain rules may be distinguished as basic rules. 
DEFINITION 2.6. A derivation (X7, f ) having a as downmost formula is a derivation 

of a from z iff there is a rule assignment g for (37, f) such that, for each formula 
occurrence /3 of 87, if f (f) = a, then g(/3) is a subrule of a member of J or of a basic 
rule. a is derivable from A (,A F- a) iff there is a derivation of a from J. 

If we speak of a derivation or of derivability from Pi, l , pPn, we mean the list 
P... Pns, and by F, J or a, J we mean the lists formed by connecting F and J or a 
and a, and so on. 
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If one wants to have a decidable derivation relation, one must require of the set of 
basic rules that "subrule of a basic rule" be decidable. If we restrict the arguments of 
a discharge function only to top formulas, Definition 2.6 includes as a special case 
the definition of derivability for a natural deduction system of the Gentzen-Prawitz 
style. 

When speaking about rules we shall sometimes use a linear notation like 
< Pl sp,> => oc, => a and < F, F,, ..,& fi> => as for rules 

F, rn 

Pi ... Pn a F1 fln 

respectively. If p is of the form 

P1... Pn 

we denote by (p), the system Pi ... Pn of the premises of p, and by (9)2 the conclusion 
oc. (P)i is the empty system if p is a formula. 

One could consider rules written linearly with => to be object language 
expressions and in a derivation state assumption rules e.g. to the left of the line 
where it is applied, as done in Schroeder-Heister [9]. Assumption rules would then 
be part of a derivation itself and would function like a kind of implication which is 
to be distinguished from the sentential connective of implication D, and which may 
be iterated only to the left. This would however lead, if one wants to consider 
derivations to be representations of arguments, to the question in what sense rules 
can be parts of an argument itself (cf. Schroeder-Heister [10])-a problem which 
is avoided here. Our rules are rules in the genuine sense. 

?3. The derivability of rules. Basic lemmata. 
DEFINITION 3.1. A rule < F= /31, .. . ., =n / ;-n > = x is derivable from a list of rules 

F, if for all a the following holds: if for all i (1 < i < n) F,A, Fi F- /Ji, then F, A F- x. 
This definition follows the meaning we have assigned to a rule. However, 

derivability should be something that can be established by a derivation itself and 
not only by a procedure transforming derivations into derivations. The following 
lemma shows that this is the case. 

LEMMA 3.2. <F1=>fl ,. . ., Fn /,n> => is derivable from F if F, F1 
.1... , fn, En /,n F- c (or shorter: p is derivable from F if F, (P) F- (9)2)- 

The proof of this lemma uses three other lemmata for which we need some 
notational conventions. We shall use F F- p as an abbreviation for F, ()1 F- (P)2. 

F F- A means that F F- p for each member p of A. In particular, if A is empty, F F- A is 
true. F dF A means that F F- A and AF F. 

LEMMA 3.3. If F- oc, then F,A F- c. D 

LEMMA 3.4. p F- p, i.e. p, (P)i F- (0)2 
PROOF (by induction on the level of p). If it is 1, we have to prove oC F- o, which is 

trivial. If it is 2, we have to prove < #I . . . , /3n > => a, /3k ... , /3n F- a, which is trivial as 
well. If it is m > 2, then p is of the form <F1 =,1, .. . , fn f/n3> => oc where for at least 
one i (1 < i < n) Fi is nonempty. By the induction hypothesis we have for all those 
i: Fi =>i, Ji F- /3 (since Fi =,B Ais of level < m); thus by Lemma 3.3 (p)1, fl F- /3i for all i 
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(1 < i < n), i.e. we have derivations of /3i from (P)i and Fi. From it we obtain a 
derivation of of from (P)i and p by application of p. D 

LEMMA 3.5. If z F- p and A, p F- y, then z F- y. 
PROOF (by induction on the level of p). If it is 1, we have to prove that if z FX and 

A , x Fy thenJ F- , which is trivial. If it is 2, we have to prove that if A, /31, . . .,/ F- oc 
and A, U BX .. fin> = oc F- T then z F-y. We replace each application of 
<K/?y Ghan > =, C in the given derivation of y from A and <K/l... elan> =O L by the 
given derivation of a from z and / 1? . .. ,,ln. If the level of p is m > 2, then p is of the 
form <F, - p ... ,n = /n A> =C c where at least one Fi is nonempty. Consider a 
topmost occurrence of a in the given derivation (S. f ) of y from A and p such that a 
is the conclusion of an application of p (that is, f (ox) = y and g(o) is a subrule of p for 
a rule assignment g for (3- f )). Then there are derivations of A3i from zA, fi and Ji for 
each i (1 < i < n), where the Ji are lists of assumption rules which are discharged in 
(XY, f ) by applications of rules below a. That is, we have A, Fi, 4 F- f3,i which is the 
same as zA, zi~ F-i ,fl/i. Since Ti => /i is of level < m, we obtain by n-fold applica- 
tion of the induction hypothesis to A, zi F- Fi, => /i and to z F- p (i.e. A, 
F1, =* /1-. . , F= fin F- x) a derivation of o from and i. Replacing the considered 
application of p in (X, f ) by the derivation of o from z and Ji we obtain a derivation 
(gY ', f ') of y from a and p which has at least one application of p less than (E7, f ). 
(The Ai are discharged in (Y', f') below the considered o as in (E, f).) Successive 
application of this procedure yields the assertion. D 

PROOF OF LEMMA 3.2. By Lemmata 3.3. and 3.4 we have F, F, 1 . .. .., Fn =An 
Fi F- fi for all i (1 < i < n). Thus, if <F1, =,1 ... , E=fln 3> a = is derivable from F, 
then F.,F, =E . n =A n F- a. Conversely, if F, F1, =. /... ., En =A fn F x, then 
from the hypotheses F, z, Fi F- f3i (1 < i < n), which are the same as F, A F- fi =* f3,i 
and by n-fold application of Lemmata 3.3 and 3.5 we obtain F, A F- a, i.e. 

<F, =,I1 ..., 3n ,fn> =C is derivable from F. F- 
In view of Lemma 3.2 we are justified to identify F F- p with the derivability of p 

from F. 
DEFINITION 3.6. A component of a rule p is a rule p' that is a subtree of p. An 

element of p is the downmost formula of a subtree of p (i.e. one of the formula 
occurrences from which p is built up). 

LEMMA 3.7. Let p' -+ p". Let p' occur as a component of p and p[p'/p"] be the 
result of replacing this component by p". Then p dF p[p'/p"]. 

PROOF (by induction on the level of p). If p is identical with p', the assertion is 
obvious. (This is in particular the case if p has level 1.) Otherwise p is 

<ply.. Pn > == /3. p' must be a component of a pi (1 < i < n), and by the induction 
hypothesis we have for this pi: pi -+ pi[p'/p"]. By Lemmata 3.4 and 3.5 we obtain p, 
Pi pp'/, P "P ],. , pPn F- f,3 i.e. p F- p[p'/p"], and analogously p[p'/p"] K p. D 

LEMMA 3.8. Let a -+ /3. Let a be an element of p and let p[oc//] result from p by 
replacing this element in p by /3. Then p F p[oc//3]. 

PROOF. If p is not identical with a (in which case the assertion is trivial), p contains 

<P15-5 
. , x as a component. Replacing <P1, .. ., Pn> =- 0 by <P1 ... Pn> =~/3is 

the same as replacing a by /3. Since from a HF /3 we can by Lemmata 3.4 and 3.5 infer 

<tP assertioPn> nfo llow <Ps f ePn3> .. 

the assertion follows from Lemma 3.7. F- 
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?4. Sentential calculi for n-ary operators. We present a framework for the 
treatment of arbitrarily many sentential operators (in short: operators) of any 
number of argument places. That means, we do not present a specific calculus, but 
describe a language for a generalized sentential logic leaving the sentential operators 
themselves unspecified, and motivate a standard form for basic rules for these 
operators (again leaving the rules themselves unspecified). This standard form is 
justified by arguing that rules of this form give a meaning to the operator involved, 
i.e. we describe a semantical framework in the sense of the theory of meaning. 

We assume finitely or denumerably many sentential operators to be given, each 
with an associated natural number ?0 as the number of its argument places, and 
furthermore infinitely many sentence letters. We use S and S' as syntactical variables 
for operators. All sentence letters are atomic formulas. Formulas are atomic 
formulas and expressions Sal ... *n where S is an n-ary operator and the a,.. ., cn are 
formulas (in particular, S is a formula if S is 0-ary) If S is binary, (L Sxc2) may be 
written instead of Sa1 a2, where outer brackets may be omitted. Subformulas of a 
formula are the formula itself and, if it is Sa1 ... a", the subformulas of all,...,ai. 
Subformulas of a rule are defined as subformulas of its elements, subformulas of a 
list of rules as subformulas of its members. 

Furthermore, we assume infinitely many schematic letters for formulas be given. 
Syntactical variables for schematic letters are A, B, and C, with and without indices. 
Formula and rule schemata are built up from schematic letters in the same way as 
formulas and rules are built up from sentence letters, i.e., formula schemata are 
schematic letters and expressions SF1 ... F,,w where F1,.. ., Fn are formula schemata. 
Rule schemata are finite trees of formula schemata. Formula and rule schemata are 
instantiated by replacing all schematic letters with formulas. Syntactical variables 
for formula schemata: F, for rule schemata: R, for lists of rule schemata: P (all 
with and without indices). (Remark. According to these definitions, we consider 
schemata to be formal objects. Schematic letters for formulas are distinguished from 
syntactical variables for formulas.) 

In order to indicate that schemata F, R, ' contain at most A1,..., An as sche- 
matic letters, where the A1,. , An are all different, we also write F(A1, ... ,A) 
R(A1,.. .,An), (A1, . . .,An)* For formulas a,,.. ,, Fx1..x)* R(J ,..,***, 

(.. , acn) are then the result of substituting Ad for Ai for all i (1 ? i < n) in F, R, d>. 
We say that R(A1,.. ., An) or O(A1,.. ., An) is derivable, if for all formulas (1X, Cn 

we have F-R(al, . . ., an") or F- (Cal, . . ., an)- 
We want to justify a standard form for introduction and elimination rules for an n- 

ary operator S. This is based on the concept of the common content of lists of rules. 
DEFINITION 4. 1. The common content of F1,..., Em is the set of all p such that Fl F- p 

foralli(1 ?iam). 
As a limiting case we allow m to be 0. In that case the common content of 0 lists of 

rules consists of all rules p. This case will lead to intuitionistic logic with its 
characteristic absurdity rule. The concept of common content is a generalization of 
the concept of the logical content of a formula as the set of its logical consequences, 
as used e.g. by Tarski and Carnap (but whose roots go back at least to Frege). 

We now assume that, with each n-ary operator S, m (m 2 0) lists 
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of rule schemata are associated. The limiting case m = 0 means that no list is 
associated with S. S is then called a I-operator. Since the meaning of S will be 
determined by reference to the <Pi and thus to the operators occurring in the Pi, their 
meaning must be presumed to be already given. So we require that it must be 
possible to order the sentential operators in a sequence S1, S2, ... such that for each 
operator S the operators occurring in the associated lists P1, .. .,,, of rule schemata 
precede S in this enumeration (i.e., if S is S,, then no Sk with k ? 1 may occur in a Pi). 
Then we want the basic rules for S just to guarantee that the following condition is 
fulfilled: 

CONDITION 4.2. For all a....., an, Sal an expresses the common content of the 

Cal, an) ( < i < m), i.e. for all a, , an and p we have Sa1. an p iff for all 
i (1 < a<m) Oi(al, - ,an) F_ P. 

This condition may be conceived as generalizing the aim of an explicit definition: 
If a formula a is explicitly defined by /3, a has according to the definition the same 
content as /3, since for all y it holds that a F y iff / F- y. Another way of circumscribing 
Condition 4.2 is to say that for all a1,. ..,an, Sa1 an is a formula of maximal 
strength which can be inferred from P a(J1,... , an) for all i (1 < i < m)-which is very 
much like Tennant's "principle of harmony" [12, p. 74]. 

The reason for associating only lists of rule schemata with operators is the 
following: We want to leave open the possibility of considering our system of 
sentential logic as built up over a basic calculus (e.g. a Post system) generating valid 
atomic formulas, and the basic rules for operators should be independent of the 
choice of such a basic calculus (cf. Schroeder-Heister [9]). 

Condition 4.2 leads to the following standard form of basic rule schemata for S: 

Schemata for P1(A,, . . ,An) Pm(Ai,. ... ,An) 
S-introduction (SI): SA1 An SA1 A 

01 (A, An) Om(Al I.. I An) 

Schema for SA1. An A A 

S-elimination (SE): A 

Here A stands for a schematic letter different from A1,..., An. If S is a I-operator, 
there is no SI-rule and the schema for SE is 

SA1 ... An 

A 

THEOREM 4.3. Condition 4.2 is fulfilled iff SI and SE are derivable. 
PROOF. Let formulas a,... , an be given. From 4.2 it follows, taking p to be 

Sa1 .an, that for all i (1 <i < m) 

(i(al, * ,an) F_ Sal 
' 

an) 

i.e. the derivability of SI. Taking p to be F -r a for arbitrary F and a, we have that if 
for all i (1 < i < m) Oi(a1,... , an), F F- a, then Sal ... an, F F- a, i.e. the derivability of 
SE. Conversely, from Sa an F- p and i(1,.. ., a) F Sa1 ... an for all i (1 < i < m) 
we obtain CQal,... ,an) F- p for all i (1 < i < m). Furthermore from 0(a*, ... ,n) F- p, 
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i.e. Pi(a1, an), (A)1 F (P)2, for all i (1 < i < m), and the derivability of 

<Sai 
-n - 

. 1(al, ,. an) ==> WP2, * * , 0(a(l, - * *, a. v An (P)2> :=> WP2 

we obtain Sal. an, (P)i F (P)2, i.e. Sal an F- p. D 

The basic rules for the intuitionistic connectives &, v, I, A, as given in Prawitz 
[7], already have our standard form or can easily be transformed into it. The former 
holds for v and A, whose basic rule schemata have the form 

A B 

(v) A vB (v E) A v B B C 

and 

(A E) A A 

The basic rule schemata for & can be written in the form 

A B 

(&I) A &B (&E) C 

since, obviously, 

A&B A&B 
A and B 

have both together the same strength as &E. The basic rule schemata for a can be 
stated in the form 

A 
A B 

(aI) ADB (-E) A = B C 

where a E is equivalent to the schema of modus ponens having the form 

(MP) A B A 

as the following lemma shows. 
LEMMA 4.4. MP is derivable iff D E is derivable. 
PROOF. For formulas a, /3, y, the derivation denoted by 

(-?) 1-(I4) 

/3 (I1) 

shows that <K a /3, oa> a/, < < /3, <Ko> ,/> : y F y. From the derivability of MP 
and Lemma 3.5 we obtain o a /3, <<o> =- /3> =:>y F- y. Conversely, the derivation 
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denoted by 

( ( ) 

shows that <aa < /3 ?<a> => /=>=> / /3, /, aa F /3. From the derivability of : E 
and Lemma 3.5 we obtain a z /3, a F- /. [ 

One sees that v E is here considered to be the pattern according to which 
elimination rules are framed. To obtain an elimination rule for D of this form the 
extension of the concept of assumption was necessary: Elimination rules are of level 
I + 1 if the introduction rules are of level 1; and in the case of a, the introduction 
rules are already of level 3 (cf. Schroeder-Heister [10]). 

DEFINITION 4.5. The rank rk (a) of a formula a is defined as follows: rk(a) = 0, if a is 
atomic; rk(Saj ... an) = max{rk(3) I there is a schema (A1,...,A) =>SA1 An 
for SI so that / is an element of P(a1, . , an)} + 1. 

That this is a correct inductive definition is due essentially to the requirement that 
the lists of rule schemata associated with S contain only operators preceding S in a 
certain enumeration of operators. rk(a) is not simply defined to be the number of 
operators in a, because one wants the rank to increase when an introduction rule is 
applied, and the formulas from which a is inferred by an introduction inference and 
rules discharged by this inference step may contain more and other operators than a. 

THEOREM 4.6 (REPLACEMENT THEOREM). Let /3 -* /3'. Let / occur as a subformula of 
T and let F [#/3/'] be the result of replacing this occurrence of /3 in F by /3'. Then F -d F 
[I1/A']. 

PROOF. It is sufficient to prove the theorem for formulas a instead of lists of rules 
F. The full assertion then follows from Lemma 3.8. We proceed by induction on 
rk(a). If /3 is identical with a (which must particularly be the case if rk(cx) = 0) the 
assertion is trivial. If a is Sal ...ai an... and /3 occurs as a subformula of ai then for 
each SI rule P(LX1,..., an) = Sa1 ...an / occurs (possibly more than once) as a 
subformula of elements of 0(aP,... ., an). Since these elements are of lower rank than 
a, we obtain by the induction hypothesis and Lemma 3.8 

0(ai, * * *, ai~fl/fll' * * *, ?(n) Ok (2L.**i* aim*** an), 

and by Lemma 3.5 and SI 

?(l ,ai[,B/fll,. .', a) F- Sal ... an, 

(ocx, . . , an) F- Sal ... ai#//'] an 

Application of SE yields 

Sal .. an *S Sali ai[fl/f *** n- 

In order to consider rules to be meaning-determining for logical operators, one 
may (as e.g. Belnap [1]) require fulfilment of two necessary conditions: uniqueness 
and noncreativity. This is particularly suggested by the interpretation of Condition 
4.2 as a generalization of the aims of explicit definitions. Both requirements are 
fulfilled, as the following theorems show. 
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THEOREM 4.7. Let the same lists of rule schemata be associated with the n-ary 
operators S and S', i.e. let S and S' have the same introduction and elimination rules 
aside from the naming of the operator. Let p be a rule in which S occurs at a certain 
place and let p' result from p by replacing this occurrence of S in p by S'. Then p *k p'. 

PROOF. Combining SI with S'E and S'I with SE one obtains 

(5) Saxl ... ,, S'.. a, for arbitrary al,..,an 

Now S occurs in p at the beginning of a certain subformula S31 ... /3n of an element 
of p. Replacing this Sf31 . /3,,n by S',3 ... /3n is the same as replacing S by S'. So the 
assertion follows from Theorem 4.6. D 

THEOREM 4.8. Let S1, S2,... be the enumeration of operators mentioned above 
Condition 4.2. Let F F-i a mean that there is a derivation of a from F using no basic rule 
for Sj with > i (in the case i = 0 no basic rule at all). Then for all i ? 1, if F-i aC and S 
does not occur in F nor in a, then F Fi- 1 . 

In particular, if F F- a and i is the greatest such that Sj occurs in F or a, then FI-i a. 
In this case an Sj with j > i does not even occur in the derivation of a from F, i.e. a is 
derivable from F in the calculus having only those Sj with j < i in its vocabulary. D1 

This theorem states that the basic rules for Si, when added to the basic rules for 
S1,... 'Si- , do not create any derivability relation not involving Si. The proof 
(which can be found in Schroeder-Heister [9]) proceeds mainly by modifying 
Prawitz's [7] normalization procedures and establishing normalizability for our 
generalized calculus. 

In the theory of explicit definitions one usually requires besides noncreativity that 
defined terms can be eliminated. In the present context this would have to be 
formulated as follows: For each a there is a at containing no operators such that 
a Ad It. This is wrong, since it can be shown that no list of rule schemata I (A, B) 
exists such that, for all a and /3, a v 3 -H- z1(o, /3) (cf. Schroeder-Heister [9]). Thus by 
extending the concept of explicit definability in Condition 4.2 we have retained 
noncreativity but given up eliminability. Eliminability fails in spite of the fact that 
uniqueness, in particular (5), holds. So there is no analogue to Beth's definability 
theorem for the present context. 

?5. The completeness of {&, v, D, kA}. Let X be a calculus of the form 
described in the last section containing among its operators the four standard 
connectives &, v, a, A of intuitionistic sentential logic with the introduction and 
elimination rules given above. Let the first four operators in the enumeration 
S1, s2,... of the operators of X# contain just these standard connectives. (This is 
possible because their introduction rule schemata have no operator in the premises.) 
Let X0 be the subcalculus of X having only &, v, D, A as operators but allowing, 
as X does, assumption rules of arbitrary levels. Let X have only &, v, D, A as 
operators, but MP instead of a E as basic rule schema; furthermore, in X only 
formulas are allowed as assumptions. So X can be considered to be a standard 
natural deduction system for intuitionistic logic. We show that each operator of X 
is explicitly definable in terms of &, v, D, A and can therefore be expressed in J. 

Since for & and v the associative laws hold, we omit brackets in iterated 
conjunctions and disjunctions. F- always means Ho. 
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We associate with each formula or formula schema a, each rule or rule schema p 
and each list of rules or of rule schemata F a formula or formula schema a*, p*, f* 
as follows: 

DEFINITION 5. 1. o * is a. p * is (p1 & ... & D aC if p is < p p P> =>2 a. is 
p*& .&p* if Fisthelistp... pn. F* is A x A if Fistheemptylist. 

LEMMA 5.2. For all formulas a, rules p, and lists of rules F: 

oc *I *, pi *p*, FrearF*. 

PROOF. a If a * holds by definition. From pi dk pi* for all i (1 < i < n), 

P ndF P 1 & ..& Pn* 

follows by use of &I and &E, and from that 

<pi, - , Pn> =*c a * (PI ... & P n*) -z 

follows by use of D I and D E. So p If p * is proved by induction on the level of p, and 
the third assertion follows from the second one if F is nonempty. If F is empty, 
F -H A , A is true according to our stipulations. D 

THEOREM 5.3 For each n-ary S there is a formula schema F(A1,... , An) containing at 
most &, v, a, A as operators, such that for all formulas L ..,n 

Sa 1 .- . . 
n dk F(al, p ,an)- 

PROOF (by induction on 1, where S occurs in the lth place of the enumeration of 

the operators). If S is S1, S is one of the operators &, v, a, A , and we can take F to 
be SA1 ... An. Let S be S, for I > 1. If S is a I-operator, let F be A. Obviously 

Sal * **.n dk A . Otherwise there are lists of rule schemata OP(Al, . . ., An) (1 < i < m) 
associated with S. They contain at most the operators Sj with < I whose numbers of 

argument places we denote by nj. By the induction hypothesis, formula schemata 

Fj(Al,. . . , Anj) exist containing at most &, v, D, A as operators so that for all 
formulas fnj 

SA, 
.. 

Bnj dk Fj( Al,,* *, flnj). 

By successive application of Replacement Theorem 4.6 we obtain lists 0'(A1,. . ., An) 
(1 < i < m) containing at most &, v, a, A as operators so that for all formulas 
OC 1 . .. I An 

Oi(2L pan) dF ?(P(XL an)- 

Now take F(A1,.. ., An) to be 

(q 5(Al, A ..An))* v v ('m(A n))* 

Using Lemma 5.2, SI and SE and v I and v E, it can easily be shown that for all 

formulas a1 an 

Sa (n Ad (?1(t1 . .) n)) * * .. V (O' (al * vn))* [1 

COROLLARY 5.4. For all rules p there is a rule p + containing at most &, v, a, A as 
operators, so that p He p +. 

PROOF. This follows from Theorem 5.3 by successive applications of Replacement 
Theorem 4.6. D 
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THEOREM 5.5. For all rules Pi, . , pn and formulas a there are formulasp1?...a P 
and aO, containing at most &, v, D, A as operators, so that 

Pi,- PnF a if pi, . Pn a 

PROOF. Define P0 to be p+*, where + is taken from Corollary 5.4 and * from 
Definition 5.1. Then 

P1,~~~~~~ , nA f ,.SP+ Hap~ a+ (Corollary 5.4) 
iff p 01..., 1P0 Hap (Lemma 5.2) 

if po,..., pIP F-,ea? (Theorem 4.8) 

if P 1? P0 ra 

since by Lemma 4.4 :DE can be replaced by MP and since no assumption rule of 
level > 1 can have been applied within a derivation of a formula from assumption 
formulas alone provided the basic rules are all of level < 3. D2 

COROLLARY 5.6. For all formulas a(1,... an, , containing at most &, v, c, A as 
operators: 

al,...,c'anK9/3 if @l,* ,aHe 3X 

PROOF. al?,... 
I, flB is the same as oL,.. .,ci,/. E 

Theorem 5.5 shows that 0 is an embedding of # in X, and Corollary 5.6 shows 
that the identity function is an embedding of J in X. In this sense X and X have 
equal expressive power. This result is of course relative to our framework that 
formulas formed by sentential operators have as their content the common content 
of lists of certain kinds of rules. So it should not be considered as justifying the 
restriction to &, V, I, A in ordinary intuitionistic logic, but rather as demarcating 
the strength of these operators. This view, as similarly emphasized by Prawitz [8], 
avoids e.g. Kreisel's [4] rigorous criticism of the completeness results of 
McCullough [6] and Zucker and Tragesser [13]. 

{&, v, a, A} is the most usual set of operators being complete in the sense of 
Theorem 5.3, but of course not the only one. Hendry [3] has shown that {-, v, A } 
is a complete set, where the schema for _ I is of the form 

< <A > =:> B. < B> =--- A > =:>(A _B). 

For all a, / it holds that 

a~ /3 HF /3 B (xc v /3), 
a & /3 by (a f/3) (a v 3). 

If s is the three-place operator with two schemata for sI of the form 

<<A> == B,<B> == A> =-. sABC, <C> =* sABC, 

then for all a, /3, y it holds that 

a-=3 F so/3A, a v 3 IH s( A-A )A1X3, 

which shows that {s, A} is a complete set as well. Hendry has however shown that 
there is no binary operator S such that {S} is complete. 
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?6. Comparison with related conceptions. Zucker and Tragesser [13] propose a 
so-called "inferential logic" based on the thesis of the primacy of introduction rules 
for a theory of meaning. They provide a standard form for introduction and 
elimination rules for operators having at most one introduction rule schema. 
Operators with more than one introduction rule schema are treated by the remark 
that they are definable from &, v, D, A. This definability claim is not quite clear, 
since it is based only on the implicit assumption that when an operator is given by 
more than one introduction rule schema, we obtain the meaning of the operator in 
terms of &, v, D, A by forming the disjunction of the meanings of premises of 
introduction rule schemata in terms of &, v, D, A. 

In contrast to Zucker and Tragesser, Prawitz [8] provides a standard form for 
elimination rule schemata which is also suitable for operators with more than one 
introduction rule schema. Thus he is able to formally prove a result similar to 
Theorem 5.3. His semantic framework, developed within a theory of argumentation, 
differs from that of Zucker and Tragesser, and from the one given here, particularly 
in hisjustification of elimination rules. Prawitz uses a as a basic sign in his standard 
form of elimination rule schemata, thus presupposing a concept of implication at a 
place where we use rules as assumptions. If one read assumption rules as a special 
kind of left-iterated implications (we have avoided this here, but it is possible), our 
standard form of basic rule schemata for operators would turn out closely related to 
Prawitz's. 

Kutschera [5] uses a kind of calculus of sequents instead of a natural deduction 
formulation in which the sequent arrow -+ may be iterated (to the left and to the 
right) and where the succedent may be empty (in which case a rule of thinning is at 
our disposal). Furthermore he confines himself to sentential operators not referring 
to other operators in the premises of their introduction rule schemata and proves 
completeness for {&, v, ,= } instead of {&, v, D, A }. However, if we identify 
empty succedents with A and Kutschera's sequent arrow -+ with our =A, under- 
standing zi = (F =- a) always to be an abbreviation for zi, F => a, then each 
(possibly higher level) sequent of Kutschera's system is derivable in that system if it 
is derivable in our system. 

Dosen [2], who does not deal with the completeness of sets of operators, makes 
use of sequents of arbitrary levels to investigate logical systems with different 
assumptions about structural rules. Contrary to that, we have not questioned the 
structural assumptions underlying Gentzen-Prawitz-style natural deduction. 
Furthermore, Dosen allows operators to be introduced in and eliminated from the 
antecedent of a sequent, which does not fit in with our framework of natural 
deduction. Aside from these differences, the aim of Dosen's theory is quite distinct 
from ours. He is not concerned with questions of semantics or theories of meaning at 
all, but develops a criterion for the logicality of constants involved in alternative 
systems. 
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