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This paper describes the logical and philosophical background of an extension of 
logic programming which uses a general schema for introducing assumptions and 
thus presents a new view of hypothetical reasoning. The detailed proof theory of 
this system is given in [7], matters of implementation and control of the corre- 
sponding programming language GCLA with detailed examples can be found in 
[1, 2]. In Section I we consider the local rule-based approach to a notion of atomic 
consequence as opposed to the global logical approach. Section 2 describes our 
system and char~terises the inference schema of definitional reflection which is 
central for our approach. In Section 3 we motivate the computational interpreta- 
tion of this system. Finally, Section 4 relates our approach to the idea of logical 
frameworks and the way elimination inferences for logical constants are treated 
therein, and thus to the notions of logic and structure. It shows that from a 
certain perspective, logical reasoning is nothing but a special case of reasoning 
in our system. 

1 L o c a l  a n d  g l o b a l  c o n s e q u e n c e  

If one poses an atom A as a query with respect to a definite Horn clause pro- 
gram P, this is normally understood as asking whether there is a substitution 
0 such that At? can be inferred from P, and for which substitutions this holds. 
Symbolically, we may represent this as 

(?O) P ~ AO, (1) 

where ~ denotes first-order logical consequence. Because first-order logic is com- 
plete, we may alternatively write 

(?O) Pt-LAO, (2) 

where ~-Z denotes derivability in some formalization of first-order logic. Expres- 
sion (1) would represent a model-theoretic interpretation, (2) a proof-theoretic 

* I would like to thank Michael Morreau for helpful suggestions. 
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interpretation of definite Horn clause programming. In both cases, the program 
P is considered a collection of formulae of a certain form, viz. 

(V)(A1A... AAnDA) (3) 

for atoms A1, . . .  ,An ,A ,  or some equivalent of it (here V denotes universal clo- 
sure). We call this the clauses-as-formulae view of logic programs. Since program 
clauses are considered hypotheses or axioms with respect to which something is 
proved, we may also speak of the clauses-as-axioms view. If one wants to apply 
proof-theoretic methods to prove, e.g., the soundness and completeness of SLD- 
resolution, one might consider for L a system which is proof-theoretically easily 
tractable such as Gentzen's sequent calculus L K  or some appropriate subsystem 
thereof. This is the way the theory of logic programming is presented in Beeson 
[3] and completeness is proved. 

It is then easy to extend logic programming to cover hypothetical queries 
posing A with respect to a hypothesis H and asking for which substitution 0 the 
atom A0 can be inferred from H0 with respect to P,  symbolically 

(?0) HO, PPLAO. (4) 

The hypothesis H0 is simply put on the left side of the turnstile in addition 
to the program P. Extensions of logic programing, which treat hypothetical 
reasoning in that way, have been developed by Gabbay and Reyle [5], and, in a 
sequent-style framework, by Miller [11] and Beeson [3]. 

We propose a different approach to hypothetical reasoning, considering a 
program P to be a set of rules rather than a set of axioms. As rules, which may 
be written as 

A1, .. . ,A~=c,A (5) 

instead of (3), clauses define themselves a notion of consequence t-p. According 
to this clauses-as-rules view, instead of (2) we now interpret a query posing A 
as asking 

(?0) ~-pAO, 

and instead of (4), a hypothetical query is now interpreted as asking 

(?0) HeF-pAO. (6) 

If we consider t-p to be a local notion of consequence and F-L to be a global one, 
we may say that according to (4) program clauses are axioms with respect to a 
global notion of consequence whereas according to (6) they are rules defining a 
local notion of consequence. Concerning hypotheses, we may say that in (4) they 
are formally treated in the same way as program clauses (namely as assumptions 
with respect to global dedueibility), whereas in (6) they are treated differently 
from clauses: The hypotheses as assumptions with respect to global deducibility, 
and the program clauses as defining local deducibitity. 

Unter a certain interpretation of F-p (see below), these two approaches are 
intertranslatable: 

• . . ,  P~z . . . .  (derivability f r o m  P in L) (7) 
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and 
...~-p... (derivability in P) (8) 

are equivalent (if rules of the form (5) are appropriately translated into formulae 
of the form (3) and vice versa). From this point of view, the difference between 
the clauses-as-axioms view and the clauses-as-rules view is analogous to that 
between Hilbert-style and Gentzen-style formalizations of logic, now appearing 
at the level of atoms rather than logical constants. The (global) derivability 
from P in L corresponds to the derivability from logical axioms using only the 
global rule of modus ponens (in the propositional case), whereas the (local) 
derivability in P corresponds to the derivability using logical rules which are 
specific for every logical constant. This leads to an important shift in perspective 
on logic programming, corresponding to the conceptual shift from Hilbert- to 
Gentzen-style calculi. In particular, it allows one to prove standard results of 
the theory of logic programming (such as the completeness of SLD-resotution) 
in a straightforward way, since derivations in the sense of t-p are closely related 
to SLD-derivations (such a proof is given in [7]). 

Proof-theoretically, this means that logic programming basically belongs to 
the theory of atomic systems. According to this view logic programming is, liter- 
ally speaking, not logic programming but programming with atomic rules. These 
rules can be translated into logical language, but this translation is conceptually 
secondary. 

2 Definitional reflection 

However, we propose an even stronger reading of Fp, according to which 

. . . ,Pt-L. . .  

and 
• . .  } - p  . . .  

are no longer equivalent. This reading is based on a definitional view of logic 
programs. We look upon the clauses of a program as definitions of their heads. 
In contradistinction to program clauses, assumptions appearing to the left of the 
turnstile are not considered as contributing anything to the  meaning of atoms. 
Whereas as a definition the program fixes the "world" one is dealing with in a 
particular context, assumptions are just hypotheses about what is the case in 
this world without changing it. 

This idea will be captured by defining a consequence relation Fp by means 
of a sequent calculus. 1 The definitional reading of programs is determined by 
a specific inference schema of definitional reflection. This schema allows one to 
assume an atom A by reference to the program rules defining (= permitting 
to infer) A. If one uses this schema with respect to A, one refers in a specific 

1 Here "consequence relation" is not understood in Tarski's sense but quite unspecifi- 
cally as a relation between assumptions and assertions. 
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way to what the program (definition) says about A and not to anything else we 
assume about A. For example, suppose B=#A is the only program rule by means 
of which A can be inferred, and we have derived 

B---~A, BbC, 

then by definitional reflection we may pass to 

B--*A, AFC. 

If there is no such program sule, we cannot perform this step, although the 
assumption B---~A seems to say the same about A as does the program rule 
B=t,A (the precise inference schemata for definitional reflection and for --* are 
given below). The basic difference is that as a program rule B=~A is considered 
as defining A whereas as an assumption B ~ A  is not so considered, and the 
inference schema of definitional reflection only refers to the definitional aspects 
(the meaning) of A. 

The (local) consequence relation bp  generated by the program P is formally 
defined as follows: 

We use A, B, C for atoms, F and G for implicationM formulae built up from 
atoms by means of implication --~ (including atoms as a limiting case), and X,  
Y, Z for finite sets of implicational formulae. All letters may have subcripts. A 
sequent has the form 

XF-F, 

a clause or program rule the form 

X =~A. 

Expressions like X, Y b F  or X,  F::c,A are understood in the obvious way. A pro- 
gram P is a finite set of clauses. We write XF'pF to express that the sequent 
X F F  is derivable in the sequent calculus with respect to a fixed program P. 

The sequent system has the following three program-independent inference 
schemata: 

(I) X,  AbA 

X, FII-F2 
X -F  F2 

X -F1 X, F2 -F 
X , F1---* F~F F 

These inference schemata constitute a Gentzen sequent-style implicational cal- 
culus. One also could give schemata for other operators such as conjunction or 
universal quantification. For simplicity (as regards the computational interpre- 
tation of the system) we restrict ourselves to implication. These operators need 
not be read as logical constants in the narrower sense, since they can be used 
in bodies of rules to define logical constants. We would rather prefer to speak 
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of "structural" operators or connectives as opposed to logical ones. So we call 
--* a "structural implication" to be distinguished from "logical implication" D. 
The reason for introducing --. at all is that implications in the bodies of rules 
strongly increase the expressive power of logic programming, especially in con- 
nection with definitional reflection. Without --* one would lose the power that 
one has in logical rules which allow discharge of assumptions. (For the relation- 
ship between logic programming and logical rules and generally between rules 
and structure see §4 below.) 

There are two schemata referring to the program P.  The first one is the 
following: 

(t-P) (Xt-Ftr)FeY 
X~-Acr 

for any clause Y:2zA in P.  It simply says that from a substitution instance of 
the premisses of a clause one may pass over to the corresponding substitution 
instance of its conclusion, i.e., it expresses closure under program rules. Since 
we look at programs as definitions, it may be called the schema of definitional 
closure. It is what one would normally expect as a schema for rule application. 
We use the label "(F-P)", since it operates on the right side of the turnstile. 

The schema of definitional reflection (PF-), which is characteristic of our 
approach to hypothetical reasoning, permits the introduction of an atom on the 
left side of the turnstile. It is a natural counterpart of the schema of closure 
under program rules and is defined as follows: Let for any atom A, 

Dp(A)  := {For: A = B~ for a clause Y=~.B in P}. 

Here Dp(A)  is to be read as "the definiens of A according to P" .  Then 

(P~') (X, Z~-F)zeDp(a) provided De(A t )  = (Dp(A) ) r  for all substitutions T 
X,  AFF 

This inference schema can informally be read as follows: If F follows from X 
and the definiens of A, then F follows from X and A itself. It may be motivated 
in the following way: Since P is considered a definition, the clauses Y=~B in P 
whose heads have A as a substitution instance (i.e., A = B a  for some ~r), define 
A. The Yq  in DR(A) then exhaust all possibilities of inferring A according to 
the program and thus represent the "meaning" of A. Therefore everything one 
obtains from every Y(~ is obtained from A itself. 

The proviso for the application of (PP) is an invariance condition. What 
should not happen is that by further specializing A by means of substitution 
the definiens of A is enlarged. This guarantees that the inference schema (P~-) 
is dosed under substitution. 

The schema (P~-) is a natural counterpart of the schema (PP) and thus fits 
in a very natural way into the schemata of Right- and Left- introductions in 
sequent style systems. To give a deeper understanding of this duality it might 
be useful to formulate (F-P) and (Pt-) in natural deduction style as introduction 
and elimination schemata for A. The schema (FP)  then reads 

(A - I)  Ya  Y=t,B E P and A = Bo" 
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and (Pt-) reads 

( A -  E) 
A 

E P and A = B a  

F 

where ( F  or) meansthat therearederivat ionsofFfromYaforeveryycr  

fulfilling the given condition. It is obvious that this inference schema is modelled 
according to the schema of V-elimination in natural deduction. It is furthermore 
obvious that ( A - I )  and ( A - E )  represent introduction and elimination schemata 
for an atom A and not for the predicate p, if A is p(t) for some term t. The minor 
premisses of (A - E) may change completely if one changes from p(t) to some 
p(¢'), if ¢' is not a substitution instance of t. Thus (A - E) is not specific for 
p but for the whole atom p(t). This makes our schema differ fundamentally 
from Martin-Lbfs elimination principle for predicates in his theory of iterated 
inductive definitions ([10]), where the minor premisses are only dependent on the 
predicate being eliminated and not on a particular instance thereof. In this sense 
our principle of definitional reflection is local and not a global induction principle 
as Martin-Lbf's. It is more closely related to Lorenzen's inversion principle (see 
[9, 8]). 2 Obviously the natural deduction schema (A - E) is not very useful from 
a computational point of view (i.e., for backward reasoning), since the major 
premiss A does not occur below the line. 

To illustrate (Pb) by an example, consider the following propositional pro- 
gram as an example: P = {p~s,  q~s}.  Then we have the following derivation: 

p,q--,rbp r,p,q--*rF-r q,p--~rl-q r,q,p--~rbr (-+b) 
p, p--*r, q--.rbr (--*b ) q, p--*r, q--*rl-r 

s, p--+r, q--,rbr 
(P~),  

which corresponds to V-elimination if s is pVq. (For the relationship of the schema 
of definitional reflection to elimination inferences in natural deduction see §4.) 

Another example: Let _l_ be a 0-ary predicate which in P is given no defini- 
tion, i.e., there is no clause with head l in P (otherwise P is arbitrary). Then 
D R ( l )  -- 0, thus the set of premisses of (PI-) is empty, so that we can trivially 
derive 

X, .I_~-F 

for any X and F. This means that we have an intrinsic notion of falsity built 
into the system with the ex/also quodlibet as its characteristic feature. 

2 If the set DR(A) is just a singleton {Y~r}, the schema (PI-) actually allows to invert 
the clause Y=~B (with Ba = A) in the sense that AbYa becomes derivable. 
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If one takes away from the system the schema (Pk-) one obtains a system 
which is extensionally equivalent to the system QN-Prolog of Gabbay & Reyle 
[5], and to a certain subsystem of systems by Miller and by Beeson ([11, 3]). 
Conceptually, however, it is still different from them, since they are all based 
on the clauses-as-formulae view. It is the clauses-as-rules view and its differ- 
ent treatment of assumptions and programs, which makes definitional reflection 
possible and thus the full symmetry in the inference schemata of the sequent 
calculus. 

3 Computational interpretation 

We now give a computational interpretation of the sequent system we have 
described so far. This computational interpretation may be viewed as an oper- 
ational semantics of a programming language. A description of such a language 
GCLA is given in [1, 2]. 

A goal is defined to be a finite set of sequents. Goals are denoted by capital 
Greek letters A, F, 27,/7. We say that 27 is valid with respect to the program P 
if for each sequent XF'F in ~7, X F p F  holds. When proving a goal 57 as a query 
with respect to P,  we ask for substitutions 0 such that 270 is valid with respect to 
P.  In the following, we describe in abstract terms a method of how to compute, 
given 57, substitutions 0 such that ,UO is valid with respect to P.  This method 
is partly based on a generalization of SLD-resolution. The abstract description 
is given by an inductive definition of the relation "or is computable for 27 with 
respect to P" ,  in short: (27, or, P)  or (27, ~} (since P is assumed to be fixed).a We 
give this inductive definition in terms of a formal system; i.e., if one has derived 
(27, or) in this system, this is to mean that g is computable for 27 with respect 
to P.  We throughout use the fact that the inference schemata of the sequent 
calculus introduced in the previous section are closed under substitution. 

In the following we state inference schemata and give in each ease an intuitive 
motivation telling why the schema reflects a computation step with respect to 
the consequence relation Fp. In each case, a step 

(27i, 
(27,, 

corresponds to a computation step leading from a goal 272 to a subsequent goal 
271, expressing that if ~r: is computable for the goal 271 then or2 is computable 
for the goal 272. In steps where no bindings to variables are created during 
computation, cq equals g2. If a substitution g is computed at that step, then ~2 is 
¢~1. This corresponds to the fact that during evaluation of a query, substitutions 
are created stepwise and are then composed. 

Axioms are of the form 

3 The third component P may be important for a concrete programming language, 
where one allows one to change the program P in addition to adding or deleting 
assumptions. This is actuMly the case in GCLA. 
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for any substitution a. 
Motivation: If the goal is empty then for any substitution ~, nothing needs to 
be computed, so every substitution is correct. 

The remaining inference schemata correspond to those given for the relation 
[-p: 

(~r, O) i f  Act = Bo'. 
(~ 0 {X, A~-B}, ~0} 

Motivation: Suppose the sequent X, AbB occurs as a subgoal of the considered 
goal £7 0 {X,A~'B}, and A unifies with B. This means that  by applying the 
substitution ~r to the goal £7 0 {X, AbB} one obtains £:a 0 {Xer, Ac~'A~}. Since 
X~, AabAa can be obtained by (I), one may omit this sequent from the goal and 
continue with £7a as the subsequent goal. Therefore, if some 0 is computable for 
the subsequent goal Zkr, a0 is computable for the original goal Z: 0 {X, AbB}, 
since ~ is the additional substitution computed at this step. 

(Z U {X, FlhF2}, O) 

(~ 0 {X~-FI---~F2}, O) 

0 {x, F  F eF}, e) 

Motivation: Obvious from (~'-0 and (---d-). No substitution is computed at 
these steps. 

(,Ua U {Xcrhr~r : F E Y}, O) i f  Y=~A is in P and Act = Bet 
(X' 0 {XhB},  aO) 

Motivation: Suppose X~'B occurs as a subgoal of the considered goal Z7 0 
{XF-B} and B unifies with the head A of a program clause YzaA. Then by 
applying the substitution ~r to this goal one obtains ,Ua 0 {XcrbAcr}. Since the 
sequent XaFAa can be obtained from {X~rF-Fa : F E Y}  by (hP) ,  one may 
replace it by {Xab'Fa : F E Y}  and continue with ~ U {XahFa  : F E Y}  as 
the subsequent goal. Therefore, if 0 is computable for this subsequent goM, ¢0 is 
computable for the original goM, since ¢ is the additionM substitution computed 
at this step. 

(~r  U {Y ,X~bFa : Y e Dp(AcT)},O) i f  Dp(A~- )  = (Dp(Acr))r for all r 
(Z' 0 {A, XbF},  ~0) 

If the proviso (i.e., Dp(A~v)  = (Dp(Acr))r for all v) is fulfilled for ~, we also 
say that  ~ is A-sufficient. 
Motivation: Suppose A, Xb'F occurs as a subgoM of the considered goal £7 (J 
{A, XhF}  and a is A-sufficient. Then by applying the substitution a to this 
goal one obtains ,Us 0 {A~r, XcrbFcr}. Since a is A-sufficient, the proviso for 
the application of (PF-) with respect to Aa is fulfilled, i.e., Act, XeF-Fa can be 
obtained from {Y, X a b F a :  Y E Dp(Aer)} by (P~-). Thus we may replace it by 
{Y, XcrF-F~r : Y E Dp(Acr)} and continue with £7~rU{Y, Xa~'F~r : Y E Dp(Aa)}  
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as the subsequent goal. Therefore, if 0 is computable for this subsequent goal, 
g8 is computable for the original goal, since ~r is the additional substitution 
computed at this step. 

If one considers only definite Horn clause programs, i.e., programs with only 
atoms in bodies of clauses, and allows only goals of the form {FAx,. . .  ,bAn}, 
then one only needs (t-P) and the corresponding schema in the definition of 
computability (and axioms (0, ~), of course). This corresponds exactly to SLD- 
resolution, showing that computability in our sense extends SLD-resolution in a 
certain way. In our case bindings are created at two new places: In the evaluation 
of (I) and of (Pt-). In the case of (I) this is just unification of the succedent 
with one antecedent of a sequent. In the case of (Pt-) it means the computation 
of an A-sufficient substitution. A feasible algorithm for the computation of A- 
sufficient substitutions is decribed in [7]. It must be noted, however, that there 
is no unique minimal (that is, most general) A-sufficient substitution for every 
A. 

It can be shown that computability is sound and complete in the following 
s e n s e :  

Completeness of computability: For any substitution ~, zU~r is valid with respect 
to P iff there is a r which assigns the same terms to variables occurring in Z as 

and which is computable for ,U with respect to P.  

The proof (see [7]) proceeds by stepwise comparing the inductive definitions 
of k'p and of computability with respect ot P. Since the inference schemata in 
these inductive definitions can be completely separated, it also contains proofs of 
the completeness of standard SLD-resolution for definite Horn clause programs 
and of an extended notion of computability for the system without (PF). Of 
course, this is only the abstract, nondeterministic notion of completeness, as it 
is normally considered in the theory of logic programming. 4 

4 D e f i n i t i o n a l  R e f l e c t i o n  a n d  S t r u c t u r a l  F r a m e w o r k s  

It was basic for the described approach to logic programming that programs as 
sets of rules are conceptually kept apart from inference schemata handling these 
rules. In this way certain inferences, particularly definitional reflection (P~-), 
can specifically refer to these rules as a separate sort of objects. This makes 
our approach differ from proof-theoretic approaches where program clauses are 
treated as special initial sequents or as sets of assumption formulae. 

The conceptuM division between rules and inference schemata is fundamental 
for the idea of structural frameworks, too. A structural framework (see [15]) is 
characterized by a concept of "rule" and a set of inference schemata that describe 
which inferences can be performed given a database of rules. Following Gentzen's 
terminology, these inference schemata are called "structural", since they do not 
contain logical content. When dealing with logics, the logical content is given 

4 For soundness and completeness results of the notion of falsity in our systems with 
respect to finite failure see [7]. 



336 

through the database of rules. However, the inference schemata of a structural 
framework go much beyond what Gentzen called "structural". They do not only 
regulate the way formulae in a sequent may be associated (such as Thinning or 
Contraction), but also the way rules are treated. Furthermore, they may contain 
schemata concerning a sort (or sorts) of implication which is then not considered 
logical but structural implication, i.e., some analogue to logical implication at 
the struturat level (corresponding to the comma, which is a structural analogue 
of logical conjunction at the structural level, i.e., a structural conjunction). They 
may also contain a structural generalization corresponding to universal quantifi- 
cation in logic. So a structural framework is a kind of "structural logic" which 
particularly describes the handling of a database of rules. Therefore the picture 
is the following: 

Principles for structural conjunction 
and implication 

Principles for handling the database 

whereas in Gentzen's approach we have 

[ t Oatabase of rules I 

Principles for structural conjunction 

Principles for logical constants 

In Gentzen the content which is now in the database is part of specific inference 
schemata dealing with logical constants. 

Structural frameworks are particularly well-suited for the treatment of logics 
with restricted structural postulates. In permitting different families of conjunc- 
tion-like connectives with different structural postulates assumed for them they 
are similar to Belnap's display logic (see [4]). However, the consideration of 
structural implication(s) in combination with the treatment of databases of rules 
which may contain such structural implications in their bodies extends this ap- 
proach considerably. It allows us a uniform treatment of logical constants in 
varying structural environments (see [12]). 

More important in the present context, however, is that this approach is 
entirely independent of whether the content of the database is logical or not. It 
works for specific logical rules as well as for rules dealing with atoms. Moreover, 
it can be made plausible that the inference schema (PI-) of definitional reflection 
is a reasonable ingredient of a structural framework which is not specific for the 
reasoning with atoms, but treats logically compound formulae as well. In this 
sense the sequent calculus presented in §2 represents a structural framework. 

To demonstrate this universal character of our system let us use it as a 
structural framework for intuitionistic propositional logic, taking as the database 
the following introduction rules for propositional operators: 

p~ q=:~pAq p=~pVq q=~pVq p--~q:--~pDq. 
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Here p and q are variables for formulae built up from certain sentential letters 
by means of the operators A, V, D and ±. (Remember that --* is a structural 
implication to be distinguished from D.) These formulae are viewed as atoms 
in the sense of the sequent calculus of §2 - we just consider the propositional 
operators as functors transforming atoms into atoms, without requiring that 
atoms start with predicates. It is then obvious that by using (FP) the following 
inference schemata can be derived: 

Xt"p Xt-q Xt"p X~-q Xt-p--+q 
Xl-pAq Xt-pYq Xl-pVq XFpDq ' 

where the last one is interadmissible with 

X, pl-q 
XkpDq " 

By using (Pt-) the following inference schemata are immediately obtained: 

X,p,q~'F X,pI-F X, qbF X,p-.-.qt-F 
X, pAqFF X,pVqkF X, pDqI-F ' 

where the last one is interadmissible with 

Xt-p X, q~-F 
X, pDqbF 

Together with the fact that 
X b ±  

XFF 
is admissible (one has again to use (PF), if X~'± is an axiom), this yields with 
-~p as pD-k an intuitionistic sequent calculus. 

Its remarkable feature is that it was obtained by just taking a database of in- 
troduction rules, which by (kP)  generated the right-introduction inferences and 
by (PF) the left-introduction inferences. A natural deduction version with elim- 
ination inferences instead of left-introduction inferences can also be obtained: 

X~pAq Y,p, qbF ZbpVq Y, pt-F Y, qt-F Z~-pDq Y,p-.~qt"F 
Y, X~-F Y, Xt-F Y, Xt-F 

Here the first schema is equivalent to 

and the third one to 

X[-pAq Xt--pAq 
XI-p Xkq 

Xl'-pDq Ykp 
Y, Xbq 

This shows that the schema of definitional reflection is very closely related to 
the uniform pattern for elimination inferences for natural deduction proposed in 
[13]. However, whereas there a general metalinguistic schema was proposed to 
generate explicit rules like 

pV q , p~v, q~r=#v 
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pDq, (p--*q)--+r=~r, 

(Pt-) works at the object level, so that elimination inferences are intrinsically 
available. This seems to be a good explication of Gentzen's dictum that "the 
introductions represent, as it were, the 'definitions' of the symbols concerned, 
and the eliminations are no more, in the final analysis, than the consequences 
of these definitions" ([6]). Our definitional reading of logic programming may be 
viewed as a generalization of Gentzen's definitional view of logical introduction 
rules. It expresses the computational reading of logic according to which intro- 
duction rules are the computationally basic production rules whereas elimination 
inferences just  make explicit what is contained in the introduction rules read as 
definitions. 

Apart from that, consideration of systems with weaker structural postulates 
suggests that this is the only way to deal with elimination inferences. As shown 
in [12], explicit rules like those just  mentioned for V or D do not work in that 
context. This has to do with the fact that assumptions discharged in elimination 
inferences may be embedded in an arbitrary structural context and cannot in 
general be moved out if certain structural postulates (such as Exchange or Thin- 
ning) are not available. An intrinsic schema like (PF)  seems to be the only way of 
treating these logics in a structural framework and obtaining a uniform picture 
of them. This supports definitional reflection from a completely different point 
of view. Definitional reflection is a principle that is neither specific to logic nor to 
logic programming but  applies to the whole area of a computational approach to 
inference and hypothetical reasoning - logical or extra-logical. This view extends 
to all structural postulates, not just  to definitional reflection. Any framework 
with restricted structural postulates naturally gives a declarative semantics of 
a logic programming language. Properly understood, it is not just a framework 
for, e.g., contraction-free, linear or relevant logic, but for any database of rules 
(see [12]). 

It should be mentioned that when generalizing structural frameworks to per- 
mit arbitrary databases of rules one loses Cut as a general principle. ~ Cut holds, 
if rules are restricted in such a way that they obey certain well-foundedness 
principles. This is the case for introduction rules for logical operators where 
only subformulae of the conclusion occur in the premisses. It is also the case if 
the database is a definite Horn clause program (i.e., without -* in the premiss of 
a rule), but it may fail, if one goes beyond that. The reason is that, when (struc- 
tural) implication is available, the premiss of a program rule may be of higher 
complexity than its conclusion, which destroys induction over the complexity 
of the Cut-formula. However, this should not to be seen as a disadvantage, but 
as reflecting the generality of our approach. That Cut holds is a property of 
programs that one is lucky to obtain in many cases, and not a restriction on 
permissible programs which has to be checked in advance. 

5 If one takes a natural deduction version of the structural framework, with (A - E) 
instead of (PF) (see ~2) and Modus Ponens instead of (--.t-) (or a corresponding 
formulation in sequent-style natural deduction), one loses normalizability. 
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