Abstract submitted for the 1st World Congress on Universal Logic (UNILOG 2005), Montreux,
Switzerland, March 31 — April 3, 2005

Generalized Rules, Direct Negation, and Definitional Reflection

Peter Schroeder-Heister
Wilhelm-Schickard-Institut, Universitat Tiibingen
Sand 13, 72076 Tiibingen, Germany

psh@informatik.uni-tuebingen.de

By “generalized rules” in logic (more specifically: in natural deduction) I mean uniform
elimination rules for logical constants, given certain introduction rules. E.g., if

Al(pla"'7pn) Am(ph)pn)
C(pla"'apn> C(pla"'apn)

are the introduction rules for an n-ary propositional connective ¢, the elimination rule
may be presented uniformly as

Ai(pis- .-, pn) Ap(p1s- - Pn)
c(pis- -, Pn) C C
C
Obviously, this schema is modelled after the elimination rules for disjunction. Making
this idea more precise requires specifying the exact form of the premisses A;(p1, ..., pn)

of the introduction rules. In [7] I proposed including some sort of structural implication
which may be contained in the A’s, leading to a theory of rules of higher levels.

The principle of definitional reflection ([3, 4, 8]) generalizes this approach. Here arbi-
trary clauses (with variables as in logic programming, and possibly also with embedded
implication and quantification) are treated like introduction rules which can be inverted
by means of this principle. Due to the presence of variables and function symbols, inver-
sion is more complicated, the logical elimination rules just being a limiting case. At the
same time it is more powerful, leading to a significant extension of logic programming, and
allowing to deal with non-wellfounded phenomena such as semantical and mathematical
paradoxes.

In this talk I consider the situation which arises when direct negation in the sense
of Nelson’s logic of constructible falsity [6] is added (the term “direct logic” is due to
v. Kutschera [5]). Besides positive introduction rules we also have negative introduction
rules for the rejection of logically compound formulas. In the more general case we would
consider clauses with negated heads as in extended logic programs ([1, 2]). The logical
case is relatively easy to deal with, as it is clear from the very beginning how the rejection
rules for logically compound formulas should look like ([5, 9]). One would just have to
add elimination rules for negated formulas. For example, in the case of implication, the
rejection rule corresponding to implication introduction has the form

p ~q
~(pDq)’



so that we would just add
[p ~q]
~(pDq) C
C

as an elimination inference.

However, with generalized clauses, we would like to consider arbitrary positive and
negative clauses in our database which are not related with each other in such a specific
way. As in the theory of extended logic programming, this may even lead to inconsis-
tent databases. In extended logic programming, no inversion principle like definitional
reflection has been considered so far. If we want to add definitional reflection to a system
containing both positive and negative clauses we have to address questions such as the
following:

1. Due to the rejection operator we can dualize clauses, generating positive from neg-
ative clauses and vice versa. Should we distinguish between primary and secondary
definitional clauses, the secondary ones being generated by dualization from the
primary ones?

2. Are secondary clauses to be treated on par with primary ones, when it comes to
definitional reflection?

3. How is dualization and inversion (definitional reflection) to be defined, if function
constants are present, i.e. if not necessarily finitely many clauses are generated?

4. Which role do the “paradoxes of implication”, in particular the absurdity principle,
play in the context of dualizing definitional rules?

References
1. Damasio, C.V. & Pereira, L.M. A survey of paraconsistent semantics for logic programs. In:
D.M. Gabbay & P. Smets (eds.), Handbook of Defeasible Reasoning and Uncertainty Man-
agement Systems, Vol. 2: Reasoning with Actual and Potential Contradictions, Dordrecht:

Kluwer 1998, 241-320.

2. Gelfond, M. & Lifschitz, V. Logic programs with classical negation. In: D.H.D. Warren
& P. Szeredi (eds.), Logic Programming: Proceedings of the 7th International Conference,
Cambridge Mass., London: MIT Press 1990, 579-597

3. Hallnés, L. Partial inductive definitions. Theoretical Computer Science 87 (1991), 115-142.

4. Hallnés, L. & Schroeder-Heister, P. A proof-theoretic approach to logic programming. II.
Programs as definitions. Journal of Logic and Computation 1 (1990/91), 635-660.

5. Ein verallgemeinerter Widerlegungsbegriff fiir Gentzenkalkiile, Archiv fir Mathematische
Logik und Grundlagenforschung 12 (1969), 104-118.

6. Nelson, D. Constructible falsity, Journal of Symbolic Logic 14 (1949), 16-26.

7. Schroeder-Heister, P. A natural extension of natural deduction, Journal of Symbolic Logic
49 (1984), 1284-1300.

8. Schroeder-Heister, P. Rules of definitional reflection. In: 8th Annual IEEE Symposium on
520%102 ?3721 Computer Science, LICS 1993, Los Alamitos: ITEEE Computer Society Press 1993,

9. Wansing, H. The Logic of Information Structures, Berlin, Heidelberg: Springer 1993 (LNAI

Vol. 681).



