
Chapter 15
Harmony in Proof-Theoretic Semantics:
A Reductive Analysis

Peter Schroeder-Heister

Abstract We distinguish between the foundational analysis of logical constants,
which treats all connectives in a single general framework, and the reductive analy-
sis, which studies general connectives in terms of the standard operators. With every
list of introduction or elimination rules proposed for an n-ary connective c, we asso-
ciate a certain formula of second-order intuitionistic propositional logic. The formula
corresponding to given introduction rules expresses the introduction meaning, the
formula corresponding to given elimination rules the elimination meaning of c. We
say that introduction and elimination rules for c are in harmony with each other
when introduction meaning and elimination meaning match. Introduction or elim-
ination rules are called flat, if they can discharge only formulas, but not rules as
assumptions. We can show that not every connective with flat introduction rules has
harmonious flat elimination rules, and conversely, that not every connective with flat
elimination rules has harmonious flat introduction rules. If a harmonious character-
isation of a connective is given, it can be explicitly defined in terms of the standard
operators for implication, conjunction, disjunction, falsum and (propositional) uni-
versal quantification, namely by its introduction meaning or (equivalently) by its
elimination meaning. It is argued that the reductive analysis of logical constants
implicitly underlies Prawitz’s (1979) proposal for a general schema for introduction
and elimination rules.
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15.1 Introduction: Reductive Proof-Theoretic Semantics

The proof-theoretic semantics of logical constants is predominantly concerned with
the meaning of the standard connectives, which in intuitionistic propositional logic
are implication (→ ), conjunction (∧), disjunction (∨) and absurdity (⊥) (see
Schroeder-Heister 2012a). Even if we confine ourselves to intuitionistic logic, and
here to the propositional case, this is a severe limitation. It is natural to ask how one
should deal with arbitrary n-ary propositional connectives. For example, in a natural
deduction framework, one should discuss what introduction and elimination rules
for such connectives look like, and what it means that these rules are in harmony
with each other, a requirement standardly made in proof-theoretic semantics. These
questions will be the subject of this paper. The seminal paper on this topic within the
framework of natural deduction is Prawitz (1979).1

UnlikePrawitz,we shall not try to formulate a general schema for elimination rules
given certain introduction rules. We do not attempt the reverse procedure either—
starting from eliminations and trying to formulate a general schema for introductions.
We shall rather propose general schemas both for introduction and for elimination
rules, and then formulate a criterion that tells when such rules are in harmony with
each other. This criterion will not be based on the syntactic form of these rules but
on their content. Certain elimination rules will be harmonious with given introduc-
tion rules not because they have a specific form which is developed from that of the
introduction rules, or vice versa. We shall instead associate with each set of intro-
duction rules for a connective c the introduction meaning cI of c according to these
rules, which describes the content of the introduction rules. Likewise, with each set
of elimination rules for c we shall associate the elimination meaning cE of c accord-
ing to these rules, which describes the content of the elimination rules. We call the
introduction and elimination rules for c harmonious when cI and cE are equivalent.

This presupposes that we have a language at our disposal in which we can express
introduction and eliminationmeanings cI and cE , and a deductive system inwhichwe
can establish their equivalence. As such a language and system we use intuitionistic
propositional logic PL, sometimes including universal propositional quantifiers, i.e.,
second-order intuitionistic propositional logicPL2. The introduction and elimination
meanings cI and cE are formulas of PL (and PL2, respectively). This means that
we take the logic of the standard intuitionistic operators for granted and explain the
meaning of arbitrary n-ary connectives with respect to them. Therefore we call this
approach a reductive analysis of logical constants.

1 For the framework of the sequent calculus, the seminal paper is von Kutschera (1968), most results
of which can be carried over to the natural-deduction framework.
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15 Harmony in Proof-Theoretic Semantics: A Reductive Analysis 331

Being reductive, our approach differs from foundational approaches, according
to which the introduction and elimination rules for arbitrary n-ary connectives as
well as those for the standard operators are accommodated in a single basic frame-
work. Such foundational approaches, which have been proposed, for example, by
von Kutschera (1968) and Schroeder-Heister (1984), carry a certain conceptual and
notational overhead with them, which is not needed for all purposes. Many results
can be established within the reductive framework which nonetheless pertain to the
foundational frameworks. The results on flattening mentioned below are of this kind.
A foundational approach corresponding to the reductive one of this paper is carried
out in Schroeder-Heister (2014a).

Based on a schema S that describes the general form of introductions, and another
schema S′ that describes the general form of eliminations, each for an n-ary constant
c, and using the introduction and elimination meanings cI and cE of c with respect
to these schemas, we can ask questions such as the following:

1. Given certain introduction rules for c satisfying the schema S, and certain elimi-
nation rules for c satisfying the schema S′, are these introduction and elimination
rules in harmony with each other? If they are not in harmony with each other,
when do they guarantee at least conservativeness? When do they guarantee the
uniqueness of c?

2. Given certain introduction rules for c satisfying the schema S, are there elim-
ination rules for c satisfying the schema S′, such that these introduction and
elimination rules are in harmony with each other?

3. Conversely, given certain elimination rules for c satisfying the schema S′, are
there introduction rules for c satisfying the schema S, such that these intruduction
and elimination rules are in harmony with each other?

Answers to these questions are facilitated by the great technical advantages of
our reductive approach. As we can express the strengh of introduction and elimina-
tion rules directly in terms of propositional formulas without referring to the rules
themselves, we gain access to the apparatus of standard (second-order) propositional
logic with all its well-established methods. We can use such methods to prove results
about the possible forms of formulas intuitionistically equivalent to cI or to cE . This
enables us in particular to establish negative results about the shape of harmonious
introduction and elimination rules, i.e., results telling us that rules of certain restricted
forms are not appropriate as introduction or elimination rules. This is important for
the discussion of so-called “general” elimination rules in the sense of Dyckhoff,
Tennant, Lopez-Escobar and von Plato (see Schroeder-Heister 2014b). More gener-
ally, these results constrain the structure of introduction and elimination rules in the
foundational framework with rules of higher levels (Schroeder-Heister 1984).2 This
is due to the fact that entities in the foundational framework such as higher-level
rules have an implicational counterpart in standard propositional logic, so that neg-
ative results about the latter carry over to the former. Our central result here are the
non-flattening theorems, according to which there are not always elimination rules in

2 And, correspondingly, those of von Kutschera’s (1968) framework.
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harmony with given introduction rules, or introduction rules in harmony with given
elimination rules, which are flat in the sense that only formulas (and not ‘higher’
entities such as rules) can be discharged as assumptions.3

Traditionally, in investigations of n-ary connectives, proof-theoretic semantics
has been concerned with the question: Given introduction rules of a certain form,
how do we have to frame elimination rules such that they are in harmony with the
introductions? This question is certainly related to our questions above (in partic-
ular to the second one), but covers only part of the problem. The formulation of
harmonious elimination rules which are obtained as unique syntactic functions of
introduction rules4 gives us a certain principle of harmony. However, it cannot tell
us anything about the relation between introductions and eliminations which are not
of the form considered. A connective such as Prior’s (1960) tonk would simply be
ill-defined, as its given elimination rules are stronger than the harmonious elimina-
tion rule based on its given introduction rule. In our reductive framework, which is
completely symmetric with respect to introduction and elimination rules (as it starts
with independent general schemas for both of them), tonk has a well defined intro-
duction meaning tonkI as well as a well-defined elimination meaning tonkE whose
mutual relationship we can investigate (see below Sect. 15.5 and Table15.3).

In Sects. 15.2–15.5 we give independent schemas for introduction and elimination
rules for n-ary propositional operators c and define and characterize introduction and
elimination meanings cI and cE with respect to them.We define harmony in terms of
cI and cE and relate it to Belnap’s (1962) criteria of conservativeness and uniqueness.
We then report some positive and negative results concerning the form of harmonious
elimination and introduction rules starting from introduction or elimination rules,
respectively. The negative results mainly concern the fact of whether rules can be
flattened in a certain way.

When introduction and elimination meanings cI and cE of c coincide, then c
can be defined by either cI or cE . This relates our result to the investigation of the
functional completeness of logical connectives. Here, in the intuitionistic framework,
“functional completeness” means the expressive completeness in analogy to truth-
functional completeness in classical logic.5 We shall deal with this topic in Sect. 15.6.
In Sect. 15.7 we relate our approach to Prawitz’s (1979) paper. We argue that his
approach is best regarded as a reductive rather than a foundational approach, even if
it was not intended as such.

The final Sect. 15.8 sketches some problems a more foundational approach faces
in comparison to the reductive approach advocated here. It is claimed that modus

3 The term ‘flattening’ has been coined by Read (see Read 2014, this volume).
4 Already Gentzen spoke of eliminations as “functions” of introductions in the frequently quoted
passage of Gentzen (1934/35, p. 189) that Prawitz (1965) first drew attention to.
5 It is convenient to use the term “functional completeness” to distinguish this matter from semantic
completeness, which is an entirely different issue. The term “functional” is definitely not perfect,
but evokes the right associations. One might think of rules as transforming proofs into proofs, and
therefore of “proof functions”, in the intuitionistic case.
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15 Harmony in Proof-Theoretic Semantics: A Reductive Analysis 333

ponens and the two projections as elimination rules for implication and conjunction,
respectively, are fundamental and cannot be superseded by more general rules.

15.2 Introduction and Elimination Rules

We consider introduction and elimination rules for n-ary connectives c in a natural
deduction framework. As the general form of an introduction rule for c we propose
the following:

(cI)

[�1]
s1 . . .

[��]
s�

c(p1, . . . , pn) ,
(15.1)

where s1, . . . , s� are propositional variables and the �i are (possibly empty) lists
of propositional variables, which can be discharged at the application of (cI). As a
limiting case we allow for � = 0 (which covers the case of the truth constant �).
All propositional variables occurring in the rule must be among p1, . . . , pn . Schema
(15.1) corresponds to the schema proposed in Prawitz (1979).

Evidently, the introduction rules for the standard intuitionistic connectives
∧,∨, →

p1 p2
p1 ∧ p2

p1
p1 ∨ p2

p2
p1 ∨ p2

[p1]
p2

p1 → p2

fall under this schema, with � being 2 in the case of conjunction and 1 in the case of
disjunction and implication, and with the �i being empty in the case of conjunction
and disjunction, and �1 consisting just of p1 in the case of implication.

Our schema for introduction rules is quite restricted.We do not, for example, allow
for any connective occurring above the inference line. This means that we cannot,
for example, characterize negation by an introduction rule referring to absurdity in
its premiss

[p1]
⊥(¬ I) ¬p1 .

However, for the point we want to make our schema is sufficient. It is easy to extend
it to the case where connectives are introduced in a certain order, where an ‘earlier’
connective can be used to define a ‘later’ one.6 The fact that we do not consider ‘extra

6 Prawitz (1979) works in a more general context, allowing for dependencies between connectives.
More involved is the problem of self-referential operators, the premisses of whose introduction rules
may contain the operator being introduced. We do not discuss this problem here (see Schroeder-
Heister 2012b).Tranchini (2014) has pointedout that our reductive approach is not capable of dealing
with this sort of phenomena, and that a notion of ‘rule equivalence’ is needed, in contradistinction
to our approach which according to Tranchini is based on ‘formula equivalence’. A definition of
harmony which is nearer to the level of rules and which would correspond to this notion of rule
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variables’ beyond p1, . . . , pn in the premisses of (cI) is another restriction, which is
not relevant for the points we want to make here. We should like to remark, however,
that introduction rules with extra variables in premisses are a neglected topic in
proof-theoretic semantics. They represent an interesting and significant extension of
the means of expression available, which corresponds to introducing existentially
understood variables into the meaning of connectives.

There may be more than one introduction rule of the form (15.1) for c (as it is
the case with disjunction). We assume that they are given as a finite list, where, as
a limiting case, the empty list of introduction rules is permitted. This covers the
absurdity constant ⊥, which has no introduction rule. A connective which plays a
prominent role in our investigations is the ternary operator � with the following two
introduction rules

[p1]
p2(� I)

�(p1, p2, p3)
p3

�(p1, p2, p3) .

(15.2)

As our general schema for an elimination rule for an n-ary connective cwepropose
the following:

(cE)
c(p1, . . . , pn)

[�1] [��]
s1 . . . s�

q ,
(15.3)

where s1, . . . , s�, q are propositional variables and the �i are (possibly empty) lists
of propositional variables. c(p1, . . . , pn) is called the major premiss of (cE), the
remaining premisses are called the minor premisses of (cE). We allow for � = 0,
in which case minor premisses are lacking. We do not impose any restriction on the
propositional variables occurring in (cE). They may (and will normally) comprise
p1, . . . , pn , but any number of propositional variables beyond p1, . . . , pn may be
present. This generalizes the fact that in elimination rules such as ∨-elimination

(∨E)
p1∨p2

[p1]
r

[p2]
r

r
(15.4)

the additional propositional variable r is used as minor premiss and conclusion. Our
motivation for proposing (15.3) as elimination schema is that we should be able
to choose anything whatsoever as possible consequence of c(p1, . . . , pn), which
means that the minor premisses and the conclusion should not be constrained in any
way. The lack of this restriction makes our schema more general than elimination
schemas derived from given introduction rules such as those in Prawitz (1979) and

equivalence, is proposed in Olkhovikov and Schroeder-Heister (2014b). In the German translation
of Prawitz (1979), Prawitz himself considers (or at least mentions the possibility of) self-referential
connectives, for example a connective defined in terms of its own negation.
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Schroeder-Heister (1984) where s1, . . . , s�, q are identical, i.e., represented by a
single variable r .7

It is absolutely crucial to realize that we are formulating (15.3) as an independent
schema in its own right, i.e., without any reference to potential introduction rules for
c. (15.3) is our general schema for an arbitrary elimination rule, not a general schema
for elimination rules given certain introduction rules. All proposals for general elim-
ination schemas that can be found in the literature on proof-theoretic semantics
consider a schema that is generated from introduction rules given beforehand, thus
(explicitly or implicitly) following Gentzen’s (1934/35) idea that elimination rules
are “functions” of introduction rules.

Evidently, the elimination rules for the standard intuitionistic connectives ∧,∨,

→ ,⊥ are of the form (15.3): The rule of ∨-elimination has just been stated. In the
two ∧-elimination rules

(∧E)
p1 ∧ p2

p1
p1 ∧ p2

p2
(15.5)

� is zero and q is p1 or p2, respectively. In modus ponens

(→E)
p1 → p2 p1

p2
(15.6)

we have that � is 1, s1 is p1 and q is p2, with �1 being empty. In the case of absurdity,
the rule of ex falso quodlibet

(⊥E) ⊥
q (15.7)

leaves q unchanged with � being zero. Note that a general schema for elimination
rules in which s1, . . . , s�, q are identical, cannot accommodate these rules.

There may bemore than one elimination rule for c, as is the case with conjunction.
We suppose that elimination rules for a connective c are given as a finite list, where,
as a limiting case, we allow for the empty list of elimination rules. This covers the
verity constant �, which has no elimination rule.

Our elimination schema (cE) is restricted in a way similar to the introduction
schema (cI): No operators are permitted to occur in it except the c in the major pre-
miss. This restriction could be released, but in its given form the schema is sufficient
for the points we want to make. Note, however, that in the elimination case, there is
no restriction corresponding to the ‘no-extra-variable’ constraint. If we disallowed
extra variables beyond p1, . . . , pn in (cE), we would not be able to formulate, e.g.,
the elimination rule for disjunction. This means that for the topic discussed in this
paper it is crucial to consider variables in elimination rules which are understood
universally. When translating elimination rules into standard logic, this will lead us
to use not just intuitionistic propositional logic PL, but intuitionistic propositional
logic with universal propositional quantification PL2.

7 However, it is less general than these other schemas in that here �i may only contain propositional
variables.
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A connective which will play a prominent role in the following, is the ternary
operator ◦, which has a single elimination rule:

◦(p1, p2, p3)
[p1]
p2(◦ E) p3 .

(15.8)

15.3 Introduction Meaning and Elimination Meaning

In what follows, we take intuitionistic propositional logic based on the standard
connectives ∧,∨, → ,⊥ for granted. We call this system standard propositional
logic PL. We use formulas of this logic to express the intended meaning of n-ary
connectives c, for which introduction or elimination rules are given. This means that
we do not deal with the justification of the introduction and elimination rules for
these standard connectives, nor with inversion and harmony principles and the like
for them. Our enterprise is of a reductive kind, reducing problems associated with
arbitrary n-ary connectives c to problems that only have to do with the standard
connectives. If introduction and/or elimination rules for c are specified, by PL+cI
we denote the system PL extended with the introduction rules for c, by PL+cE the
system PL extended with the elimination rules for c and by PL+cIE the system PL
extended with both the introduction and elimination rules for c. When we consider
derivability in any of these systems, it will always be clear from the context, from
which language the formulas involved are drawn, e.g., whether they contain c or not.

Suppose an introduction rule (cI) for an n-ary connective c is given according
to (15.1). Then the intended meaning cI of c according to this introduction rule, in
short: the introduction meaning of c, can be expressed by translating the premisses
of (cI) into a standard propositional formula. Let

∧

�i denote the conjunction of all
elements of �i . We define cI to be the formula

(
∧

�1 → s1)∧ . . . ∧ (
∧

�� → s�) (15.9)

Then the rule cI

c(p1, . . . , pn)
is derivable in PL extended with the rule (cI),

and (cI) is derivable in PL extended with the rule cI

c(p1, . . . , pn)
.8 If we have k

introduction rules (cI)1, . . . , (cI)k for c, then the introduction meaning cI of c is
defined to be

8 We call a rule R derivable in a formal system K , if applications of R can be eliminated from all
derivations in K , i.e., if� 	K+R ϕ implies,� 	K ϕ for any formula ϕ and any set of assumptions�.
This corresponds to the usual definition of derivability of rules when R does not discharge assump-
tions, but includes the case of assumption-discharging rules. Note that we request the eliminability
of R under arbitrary assumptions �. (Otherwise we would be defining the notion of admissibility
of a rule.)
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15 Harmony in Proof-Theoretic Semantics: A Reductive Analysis 337

cI
1 ∨ . . . ∨ cI

k ,

where for each introduction rule (cI)i , the formula cI
i is specified as in (15.9). If

k = 0, then cI is absurdity ⊥, and there is no introduction rule. We note as a fact:

Fact I1: The rule cI

c(p1, . . . , pn)
is derivable in PL+cI, i.e. in PL extended with

(cI)1, . . . , (cI)k , and each introduction rule (cI)i is derivable in PL extended with

the rule cI

c(p1, . . . , pn)
.

Using this fact we can conclude that in the context of introduction rules, c can
be replaced with cI . More precisely, let �′ and ϕ′ result from a set of formulas �

and a formula ϕ by simultaneously replacing every occurrence of c with cI . This
is done by replacing every subformula of � and ϕ of the form c(ϕ1, . . . , ϕn) with
cI [p1, . . . , pn/ϕ1, . . . , ϕn], where [p1, . . . , pn/ϕ1, . . . , ϕn] denotes the simultane-
ous substitution of ϕ1, . . . , ϕn for p1, . . . , pn . Then we can show that

� 	 PL+cI ϕ implies �′ 	 PL ϕ′ .

In other words: In contexts, where only introductions for c are available, c and cI

behave identically. We note this as a fact:

Fact I2: If �′ and ϕ′ result from � and ϕ by replacing c with cI , then
� 	 PL+cI ϕ implies �′ 	 PL ϕ′.

Another way of exhibiting the equivalence between cI and c with respect to
introduction rules is by saying that for any set � of formulas not containing c,

� 	 PL+cI c(p1, . . . , pn) iff � 	 PL cI .

This equivalence, which immediately follows from the two previous facts, expresses
that the introduction meaning cI of c is the weakest formula in the language without
c which by using the introduction rules for c allows one to infer c(p1, . . . , pn). We
might also say that in assertion position, i.e., on the right side of the turnstile, cI is
equally strong as c.9 We note this as a fact:

Fact I3: If � does not contain c, then: � 	 PL+cI c(p1, . . . , pn) iff � 	 PL cI .

In the elimination case the situation is slightlymore complicated. In an elimination
rule for c variables beyond p1, . . . , pn canbepresent. In the following, these variables
are also called extra variables. A typical example of an extra variable is the variable

9 Popper (1947, see Schroeder-Heister 2005) was the first to characterize logical constants in terms
of maximality and minimality conditions. Tennant (1978, p. 74) used them as the basic ingredient
of a principle of harmony.
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r in the following formulation of the standard elimination rule for disjunction (15.4).
It is obvious that the extra variables in elimination rules have a universal meaning.
Correspondingly, we extend ourmeans of expression by considering not just standard
intuitionistic propositional logic, but this logic together with universal propositional
quantification.We call this system PL2.10 Correspondingly, we use the abbreviations
PL2+cI, PL2+cE and PL2+cIE, if in addition introduction, elimination, or both
introduction and elimination rules for c are available in the system.

Suppose an elimination rule (cE) is given for an n-ary connective c according
to (15.3). Then the intended meaning cE of c according to this elimination rule, in
short: the elimination meaning of c, is obtained as follows. We remove the major
premiss c(p1, . . . , pn) from (cE) and translate the ‘rest’ of the rule, which tells what
can be inferred from c(p1, . . . , pn) according to (cE), into a formula of PL2. Thus
we define cE to be the formula

∀(((
∧

�1 → s1)∧ . . . ∧ (
∧

�� → s�))→ q) . (15.10)

Here∀universally quantifies all extra variables in cE .11 Then the rule
c(p1, . . . , pn)

cE

is derivable inPL2 extendedwith the rule (cE), and (cE) is derivable inPL2 extended

with the rule
c(p1, . . . , pn)

cE
. If we have k elimination rules (cE)1, . . . , (cE)k for

c, then the elimination meaning cE of c is defined to be

cE
1 ∧ . . . ∧ cE

k ,

where for each elimination rule (cE)i , the formula cE
i is specified as in (15.10). If

k = 0, then cE is verity �. We note as a fact:

Fact E1: The rule
c(p1, . . . , pn)

cE
is derivable in PL2+cE, i.e. in PL2 extended

with (cE)1, . . . , (cE)k , and each elimination rule (cE)i is derivable in PL2 extended

with the rule
c(p1, . . . , pn)

cE
.12

Using this fact we can conclude that in the context of elimination rules, c can be
replacedwith cE . More precisely, let�′ and ϕ′ result from� and ϕ by simultaneously
replacing every occurrence of c with cE . This is done by replacing every subformula

10 To express the meanings of elimination rules, we can restrict ourselves to the case of prenex
formulas, i.e., formulas quantified only from outside. More involved forms of quantification might
be considered, but are not needed here. We also do not use the fact that by using propositional
quantification and implication, all intuitionistic connectives become definable (see Prawitz 1965).
11 More precisely, ∀ stands for ∀r1 . . .∀r j , where {r1, . . . , r j } is the set of those variables occurring
in cE , which are different from any variable in {p1, . . . , pn}.
12 Note that for this statement propositional quantification is not really needed, as we are treating
all rules as schemas, which means that universal quantification could remain implicit just by the
usage of free propositional variables.
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of � and ϕ of the form c(ϕ1, . . . , ϕn) with cE [p1, . . . , pn/ϕ1, . . . , ϕn]. Then we can
show that

� 	 PL2+cE ϕ implies �′ 	 PL2 ϕ′ .

In other words: In contexts, where only eliminations for c are available, c and cE

behave identically. We note as a fact:

Fact E2: If �′ and ϕ′ result from � and ϕ by replacing c with cE , then:
� 	 PL2+cE ϕ implies �′ 	 PL2 ϕ′.

Another way of exhibiting the equivalence between cE and c with respect to
elimination rules is by saying that for any set � ∪ {ϕ} of formulas not containing c,

c(p1, . . . , pn), � 	 PL2+cE ϕ iff cE , � 	 PL2 ϕ .

This equivalence, which immediately follows from the two previous facts, expresses
that the elimination meaning cE of c is the strongest formula in the language without
c, which, by using the elimination rules for c, can be inferred from c(p1, . . . , pn).
We might also say that in assumption position, i.e., on the left side of the turnstile,
cE is equally strong as c. We note this as a fact:

Fact E3: If � and ϕ do not contain c, then:
c(p1, . . . , pn),� 	 PL2+cE ϕ iff cE,� 	 PL2 ϕ.

15.4 Harmony, Conservativeness, Uniqueness

Given introduction rules for c, we have defined the introductionmeaning of c to be the
formula cI , which is a formula in standard intuitionistic propositional logicPL. Given
elimination rules for c, we have defined the eliminationmeaning of c to by the formula
cE , which is a prenex formula in PL2, i.e., in standard intuitionistic propositional
logic with propositional quantification. If both introduction and elimination rules
are provided for c, we say that they are in harmony with each other, if introduction
meaning and elimination meaning of c match, i.e., if in PL2 we can show:

cI �	 cE . (15.11)

Splitting up harmony into its two directions, we can say the following. Suppose the
introduction meaning of c entails its elimination meaning:

cI 	 cE . (15.12)

Then we have conservativeness of the introduction and elimination rules for c over
PL. We state this as a result:
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Conservativeness Lemma Suppose that in PL2 it holds that cI 	 cE . Suppose that
in PL+cIE we have that � 	 ϕ for a set of formulas � and a formula ϕ which do
not contain c. Then � 	 ϕ holds already in PL.

Proof sketch We use a normalisation argument. In the introduction context we can,
according toFact I2, replace c with cI , and in the elimination context we can, accord-
ing to Fact E2, replace c with cE . If c occurs both in introduction and elimination
context, i.e., as a maximal formula, we replace it with cI followed by a derivation
in PL2 of cE from cI . Thus � 	 ϕ holds is PL2. Using the normalisability of PL2
and the conservativeness of PL2 over PL, we obtain our result. 
�

That this proof needs to rely on the heavy machinery of normalisation of PL2
(i.e., Girard’s system F; see, e.g., Girard et al. 1989, and Prawitz 1971) is due to
the fact that we describe introduction and elimination meanings in abstract terms,
and here the latter by means of a second-order formula. If we deal with a concrete
system with harmonious rules, for example rules following a general schema for
eliminations as in Prawitz (1979) or Schroeder-Heister (1984), then normalisation
and conservativeness can be proven directly in the system under consideration.

Conversely, suppose the eliminationmeaning of c entails its introductionmeaning:

cE 	 cI . (15.13)

Then c is uniquely characterised in the following sense.

Uniqueness Lemma If we extend PL2 with the introduction rules for c and with the
elimination rules for a duplicate c′ of c (in the joint language containing both c and
c′), we can show

c′(p1, . . . , pn) 	 c(p1, . . . , pn).

If introduction and elimination rules for both c and c′ are available, this gives us the
equivalence

c′(p1, . . . , pn) �	 c(p1, . . . , pn) .

Proof This follows immediately from Fact I1 and Fact E1 above, which give us the

derivability of the rules
c′(p1, . . . , pn)

cE
and cI

c(p1, . . . , pn)
. 
�

Conservativeness and uniqueness are the two conditions Belnap (1962) consid-
ered to be crucial for the inferential definition of a connective (see also Došen and
Schroeder-Heister 1985). Similar conditions appear under different names in proof-
theoretic semantics, for example validity and stability (Dummett 1991) or (local)
soundness and (local) completeness (Francez and Dyckhoff 2012). There are con-
siderable differences between these and related notions, in particular as to whether
they are understood locally (refer to applications of rules) or globally (refer to the
behaviour of the logical system as a whole). In this paper, we understand the two
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conditions in an abstract way, by relating the logically coded introduction and elim-
ination meanings of a connective, rather than using its introduction and elimination
rules themselves (in contradistinction, for example, to the foundational analyses of
Francez and Dyckhoff 2012, and Schroeder-Heister 2014a).

As we have defined harmony and, correspondingly, conservativeness and unique-
ness in terms of derivability in PL2, one might ask13 whether any of these relations
is decidable. As PL2 is undecidable, the immediate answer is negative. However,
the conservativeness direction (15.12) is in fact decidable, as cE is a prenex for-
mula whose quantifiers can be represented by free variables, so that conservative-
ness becomes a derivability problem in the decidable system PL. The uniqueness
direction (15.13) may contain quantifiers on the hypothesis side, which cannot be
eliminated. There, as we would guess, the undecidability of PL2 comes into effect.14

15.5 The Existence of Harmonious Rules

If the introduction and elimination rules for an n-ary connective c are in harmonywith
each other, we also say that the elimination rules are harmonious for the introduction
rules and the introduction rules are harmonious for the elimination rules. For many
sets of introduction rules there are harmonious elimination rules and vice versa.
Table15.1 gives the introduction and elimination rules of the standard connectives
∧ , ∨ , → , ⊥ and � together with their respective introduction and elimination
meanings. These rules are all in harmony with each other. For ∧, → and � this is
trivial, as the respective introduction and elimination meanings are identical. In the
case of disjunction and absurdity, we can easily show in PL2 that

p1 ∨ p2 �	 ∀r(((p1 → r)∧ (p2 → r))→ r)

and
⊥ �	 ∀r r .

In Table15.2 we consider forms of conjunction and implication with alternative
elimination rules. Here we have harmony as well. For example, in oder to prove it
for the introduction and elimination rules for × we can easily show in PL2 that

p1 × p2 �	 ∀r1r2r(((p1 → r1)∧ (p2 → r2)∧ ((r1 ∧ r2)→ r))→ r) .

Table15.3 presents some further connectives. The connectives c1 and c2 have
the same introduction rules but different elimination rules. We nevertheless have
harmony in both cases, since in PL2 we can show that

13 Heinrich Wansing posed this question.
14 More precisely, we do not have an argument at hand showing that the derivability of a quantifier-
free formula from a prenex formula in PL2 is decidable.
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Table 15.1 Introduction and elimination rules together with introduction and eliminationmeanings
for the standard connectives

Introduction rules Elimination rules

Introduction meaning Elimination meaning

a

p1 p2
p1 ∧ p2

p1 ∧ p2
p1

p1 ∧ p2
p2

p1 ∧ p2 p1 ∧ p2

b
p1

p1 ∨ p2

p2
p1 ∨ p2

p1 ∨ p2

[p1]
r

[p2]
r

r

p1 ∨ p2 ∀r(((p1 → r) ∧ (p2 → r)) → r)

c

[p1]
p2

p1 → p2
p1 → p2 p1

p2

p1 → p2 p1 → p2

d No I rule ⊥
r

⊥ ∀r r

e � No E rule

� �
In all cases introduction and elimination rules are in harmony with each other

(p1 ∧ p2)∨ p3 �	 ∀r((((p1 ∧ p2)→ r)∧ (p3 → r))→ r)

as well as

(p1 ∧ p2)∨ p3 �	 ∀r(((p1 → r)∧ (p3 → r))→ r)∧ ∀r(((p2 → r)∧ (p3 → r))→ r)

(15.14)
Note that we take the intuitionistic logic of the standard connectives for granted,
which means in particular that we assume that the standard structural rules are at our
disposal. Otherwise we would not, for example, be able to show (15.14), for which
we essentially need distribution or ∨ over ∧ :

(p1 ∧ p2)∨ p3 �	 (p1 ∨ p3)∧ (p2 ∨ p3)

which is not available as a general law when thinning or contraction are restricted.15

15 It depends on whether these connectives are read additively or multiplicatively. This point is in
particular relevant, if (like, e.g., Read 2010, 2014, this volume) one prefersmore than one elimination
rule in cases such as . (see Table15.2).
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Table 15.2 Introduction and elimination rules together with introduction and eliminationmeanings
for various connectives related to the standard ones

Introduction rules Elimination rules

Introduction meaning Elimination meaning

a
p1 p2

p1&p2

p1&p2

[p1, p2]
r

r

p1 ∧ p2 ∀r(((p1 ∧ p2) → r) → r)

b
p1 p2

p1.p2

p1.p2

[p1]
r

r
p1.p2

[p2]
r

r

p1 ∧ p2 ∀r((p1 → r) → r) ∧∀r((p2 → r) → r)

c
p1 p2

p1 × p2

p1 × p2

[p1] [p2]
r1 r2

[r1, r2]
r

r

p1 ∧ p2 ∀r1r2r(((p1 → r1) ∧ (p2 → r2) ∧ ((r1 ∧ r2) → r)) → r)

d

[p1]
p2

p1⊃p2
p1⊃p2 p1

[p2]
r

r

p1 → p2 ∀r((p1 ∧ (p2 → r)) → r)

In all cases introduction and elimination rules are in harmony with each other

Obviously, the rules given for the connectives &⊃ and tonk are not harmonious,
since neither

p1 ∧ (p1 → p2) �	 p1 → p2

nor

p1 �	 p2

holds in PL2.
The n-ary connectives ci and ce represent connectives of a general form. In the

case of ci we have harmony, provided the introduction rules do not discharge any
assumption, but are just productions. Likewise, the rules for ce are harmonious,
provided the elimination rules do not discharge any assumption. This means that, if
the introduction rules of ci are of the form stated in Table15.3, then there is always
a harmonious elimination rule. If the elimination rules for ce are of the form stated,
then there is always a harmonious introduction rule.
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Table 15.3 Introduction and elimination rules together with introduction and eliminationmeanings
for further connectives

Introduction rules Elimination rules

Introduction meaning Elimination meaning

a
p1 p2

c1(p1, p2, p3)

p3
c1(p1, p2, p3)

c1(p1, p2, p3)
[p1, p2]

r
[p3]

r
r

(p1 ∧ p2) ∨ p3 ∀r((((p1 ∧ p2) → r) ∧ (p3 → r)) → r)

b
p1 p2

c2(p1, p2, p3)

p3
c2(p1, p2, p3)

c2(p1, p2, p3)
[p1]

r
[p3]

r
r

c2(p1, p2, p3)
[p2]

r
[p3]

r
r

∀r(((p1 → r) ∧ (p3 → r)) → r)
(p1 ∧ p2) ∨ p3 ∧ ∀r(((p2 → r) ∧ (p3 → r)) → r)

c
p1

[p1]
p2

p1 &⊃ p2
p1 &⊃ p2 p1

p2

p1 ∧ (p1 → p2) p1 → p2

d
p1

p1 tonk p2
p1 tonk p2

p2

p1 p2

e
�1

ci(p1, . . . , pn)
. . .

�m

ci(p1, . . . , pn)

ci(p1, . . . , pn)

[�1] [�m ]
r . . . r

r

�i of the form qi1 . . . qi�i

with {qi1, . . . , qi�i } ⊆ {p1, . . . , pn}
∧

�1 ∨ . . . ∨ ∧

�m ∀r((
∧

�1 → r) ∧ . . . ∧ (
∧

�m → r) → r)

ce(p1, . . . , pn) �1
q1

. . .
ce(p1, . . . , pn) �1

qm

f

[�1]
q1 . . .

[�m ]
qm

ce(p1, . . . , pn) �i of the form qi1 . . . qi�i

with {qi1, . . . , qi�i } ∪ {q1, . . . , qm} ⊆ {p1, . . . , pn}

(
∧

�1 → q1) ∧ . . . ∧ (
∧

�m → qm) (
∧

�1 → q1) ∧ . . . ∧ (
∧

�m → qm)
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However, not for every given set of introduction rules there are harmonious elim-
ination rules, and not for every given set of elimination rules there are harmonious
introduction rules. An example of a connective with given introduction rules, for
which there are no harmonious elimination rules is the connective �, whose intro-
duction rules (� I) are given in (15.2). Its introduction meaning �I is (p1 → p2)∨ p3.
If there were harmonious elimination rules for �, then, according to the definitions
in Sect. 15.3, its eliminationmeaning �E would have to be of the form �E

1 ∧ . . . ∧ �E
k ,

where each �E
i is of the form ∀(((

∧

�1 → s1)∧ . . . ∧ (
∧

�� → s�))→ q).
However, in Olkhovikov and Schroeder-Heister (2014a) it could be demonstrated
that no formula of this form is equivalent to �I in PL2.

If we allow for connectives already defined to occur in introductions and elimi-
nations, then there are harmonious elimination rules for �. The trivial � elimination
rule would be the single rule

�(p1, p2, p3)
(p1 → p2)∨ p3

which assumes that implication and disjunction are already being given. An alterna-
tive elimination rule only assumes that implication is available:

�(p1, p2, p3)
[p1 → p2]

r
[p3]

r
(� E) r .

The elimination meaning �E of � according to this elimination rule is

∀r((((p1 → p2)→ r)∧(p3 → r))→ r)

which can easily be shown to be equivalent in PL2 to �I :

(p1 → p2)∨ p3 �	 ∀r((((p1 → p2)→ r)∧(p3 → r))→ r) .

Instead of assuming implication to be a connective already defined, we could extend
the apparatus of natural deduction by using rules of higher levels, i.e., rules that
can discharge not only formulas but also rules which are used as assumptions, as
described in Schroeder-Heister (2014a). In such a framework the elimination rule
for � would take the form

�(p1, p2, p3)
[p1 ⇒ p2]

r
[p3]

r
(� E) r .

Here p1 ⇒ p2 represents the rule which allows one to pass over from p1 to p2. It is
assumed as an assumption in the subderivation of the left minor premiss and is dis-
charged at the application of (� E). The result by Olkhovikov and Schroeder-Heister
(2014a) can then be read as showing that � does not have flat elimination rules, where,
following a terminology proposed by Read (2014, this volume), an elimination rule
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is called flat, if it does not allow one to discharge rules, but only formulas. Flat rules
are rules of the kind considered in standard (non-extended) natural deduction.16

Non-flattening theorem for elimination rules The connective � does not have flat
elimination rules.

If we allow for rules of higher levels, then every set of introduction rules for
an n-ary connective c has harmonious elimination rules. In fact, only one single
elimination rule is needed, which we call the generalised or canonical elimination
rule. It is constructed as follows: We associate with every introduction rule for c of
the form

(cI)

[�1]
s1 . . .

[��]
s�

c(p1, . . . , pn)

a list � of rules
(�1 ⇒ s1), . . . , (�� ⇒ s�)

representing the premisses of this introduction rule (note that the double arrow is
used to linearly denote rules rather than implications). If there are m introduction
rules for c, we obtain m such lists �1, . . . ,�m . Then the canonical elimination rule
for c has the form

(cE)GEN
c(p1, . . . , pn)

[�1] [�m]
r . . . r

r .
(15.15)

This schema is devised such as to guarantee that introduction and elimination mean-
ing of c match. If �i is (�1 ⇒ s1), . . . , (�� ⇒ s�), let �PROP

i be its propositional
translation (

∧

�1 → s1), . . . , (
∧

�� → s�). Then the elimination meaning of c is
defined as

∀r(((
∧

�PROP
1 → r)∧ . . . ∧ (

∧

�PROP
m → r))→ r) .

This corresponds to the definition of elimination meaning in Sect. 15.3 with the only
difference that we cannot just form the conjunction of the elements of the�i , as they
are not necessarily formulas, but have to propositionally translate these elements into
conjunction-implication-formulas, if they are rules. Then we can easily prove in PL2
that introduction meaning (which is defined as before in Sect. 15.3) and elimination
meaning of c match:

cI
1 ∨ . . . ∨ cI

m �	 ∀r(((
∧

�PROP
1 → r)∧ . . . ∧ (

∧

�PROP
m → r))→ r)

16 The general elimination schema Francez and Dyckhoff (2012) propose is flat and therefore not
harmonious in the sense of the definition of harmony proposed in Sect. 15.4. However, their point
on local soundness and completeness is independent of this schema and applies to harmonious rules
in our sense.
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We simply have to use that cI
i is identical to

∧

�PROP
i .

In fact, if we allow for implication-conjunction formulas to occur as assumptions
in elimination rules, we can obtain the same result without having to rely on rules
as assumptions. Instead of the general elimination schema (15.15) we could use the
following schema, which results from (15.15) by replacing lists of assumptions rules
�i with lists of their propositional translations �PROP

i :

(cE)P
c(p1, . . . , pn)

[�PROP
1 ] [�PROP

m ]
r . . . r

r .
(15.16)

We call it the Prawitz schema for generalised elimination rules, as it corresponds
to the schema proposed in Prawitz (1979). For further discussion of this issue see
Sect. 15.7.

Our result even pertains to the case in which the introduction rules are not flat,
i.e., may be of higher levels. In that case, the elements of �i may be rules which
discharge assumptions. For example, consider the following quaternary operator c
with the following two introduction rules:

[p1 ⇒ p2]
p3(c I)

c(p1, p2, p3, p4)
p4

c(p1, p2, p3, p4) .

According to the general schema (cE)GEN the corresponding canonical (and thus
harmonious) elimination rule is

c(p1, p2, p3, p4)
[(p1 ⇒ p2) ⇒ p3]

r
[p4]

r
(c E) r .

In general it holds that, if we pass from given introduction rules to the corresponding
canonical elimination rule, the level always goes up by one step, as the premisses of
the introduction rules then occur as dischargeable assumptions of minor premisses in
the canonical elimination rule. This cannot be avoided, i.e., we can always construct
a connective whose introduction rules are of level n, without there being harmonious
elimination rules of level n or below. This generalised non-flattening result is proved
in Olkhovikov and Schroeder-Heister (2014b, Theorem 1)]:

Generalised non-flattening theorem for elimination rules Suppose the schema for
introduction rules is limited to rules of maximal level n. Then we can always find a
connective satisfying such a schema, whose elimination schema cannot be of level n
or below, i.e. must be at least of level n + 1. In fact, we can choose the (n + 1)-place
connective with the introduction meaning

((. . . (p1 → p2) . . . → pn−1)→ pn)∨ pn+1,
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which is a generalisation of �.
If we start with elimination rules, we have an analogous situation: Not all connec-

tives which are specified by given elimination rules have harmonious introduction
rules. Consider negation ¬ with the elimination rule:

(¬E)
¬p1 p1

r .

According to our definition, its elimination meaning¬E is ∀r(p1 → r). However,
there is no set of introduction rules for ¬ such that the introduction meaning ¬I

is equivalent to ¬E . This is simply a consequence of the (almost) trivial fact that
negation ¬ cannot be defined in terms of implication and conjunction.

However, if we allow for connectives already defined to occur in introduction
rules, we can easily give an appropriate introduction rule for ¬:

[p1]
⊥(¬I) ¬p1 .

The introduction meaning ¬I of ¬ is now p1 → ⊥, which is interderivable in PL2
with its elimination meaning ¬E :

p1 → ⊥ �	 ∀r(p1 → r)

by using the absurdity rule (ex falso quodlibet), which is the elimination rule for
⊥. Another example is the ternary connective ◦ with the elimination rule (◦ E)
given in (15.8). Its elimination meaning ◦E is (p1 → p2)→ p3. If there were har-
monious introduction rules for ◦, its introduction meaning ◦I could be described
by a disjunction of formulas ◦I

1 ∨ . . . ∨◦I
k , where each formula ◦I

i would be of the
form (

∧

�1 → s1)∧ . . . ∧ (
∧

�� → s�). It can be shown, however, that ◦E is never
equivalent in PL2 to a disjunction of formulas of this form. The proof of this fact
can be found in Olkhovikov and Schroeder-Heister (2014a).

If we allow for connectives, which are already defined, to occur in introduction
rules, we could equip ◦ with the trivial introduction rule

(p1 → p2)→ p3
◦(p1, p2, p3)

or alternatively with
[p1 → p2]

p3(◦ I) ◦(p1, p2, p3) .

The introduction meaning ◦I according to this introduction rule is (p1 → p2)→ p3,
which is identical to its elimination meaning. If we use higher-level rules, we can
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write the introduction rule for c as

[p1 ⇒ p2]
p3(◦ I) ◦(p1, p2, p3)

The result by Olkhovikov and Schroeder-Heister (2014a) then says that ◦ does not
have flat introduction rules.

Non-flattening theorem for introduction rules The connective ◦ does not have flat
introduction rules.

However, even if we allow for rules of higher levels, not every set of elimination
rules for an n-ary connective c has corresponding harmonious introduction rules.
This is due to the fact that in (cE) propositional variables beyond p1, . . . , pn may
occur, which, as schematic variables, have a universal meaning and correspondingly
enter the elimination meaning cE as universally bound. If we want to turn the content
of such an elimination inference into the premiss of an introduction rule, we have
to devise a binding mechanism at the structural level. We need not only rules as
assumptions, but also bound variables in the premisses of rules. For that to achieve
we define the general schema of an introduction rule for c to be of the form

(cI)

([�1]
s1

)

r1

. . .

([��]
s�

)

r�

c(p1, . . . , pn)
.

Here the ri are lists of propositional variables different from p1, . . . , pn , which
cannot be substituted (as can p1, . . . , pn), but which in the subproofs of si from �i

are treated like constants (‘parameters’ or ‘free variables’ in a different terminology).
Assuming this extension of natural deduction with quantified higher-level rules

(described in detail in Schroeder-Heister 2014a), we can construct introduction rules,
which are in harmony with given elimination rules for c of the form (cE) as given
in (15.3). In fact, only one single introduction rule, is needed, which we call the
generalised or canonical introduction rule. It is constructed as follows: We associate
with every elimination rule of the form (15.3)

(cE)
c(p1, . . . , pn)

[�1] [��]
s1 . . . s�

q ,

a list � of rules
(�1 ⇒ s1), . . . , (�� ⇒ s�)

representing the premisses of this elimination rule. From this we construct the pattern
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(

[�]
q

)

{s1,...,s�,q}

representing what can be inferred from c(p1, . . . , pn) using this elimination rule.
Suppose c has m elimination rules and we have associated m patterns

(

[�1]
q1

)

Var1

. . .

(

[�m]
qm

)

Varm

with them, respectively. Here Vari are the sets of variables occurring in the respec-
tive patterns beyond p1, . . . , pn . Then the canonical introduction rule for c has the
following form:

(cI)GEN

(

[�1]
q1

)

Var1

. . .

(

[�m]
qm

)

Varm

c(p1, . . . , pn) .

It is constructed in such a way that introduction meaning and elimination meaning
of c match. If �i is (�1 ⇒ s1), . . . , (�� ⇒ s�), let �PROP

i be its propositional
translation (

∧

�1 → s1), . . . , (
∧

�� → s�). Then the introduction meaning of c is
defined as

∀(
∧

�PROP
1 → q1)∧ . . . ∧∀(

∧

�PROP
m → qm)

(note that ∀ binds all variables beyond p1, . . . , pn). This corresponds to the definition
of introduction meaning in Sect. 15.3 with the only difference that we cannot just
take the conjunction of the elements of the �i , as they are not necessarily formulas,
but have to propositionally translate these elements into conjunction-implication-
formulas, if they are rules. Then elimination meaning (which is defined as before in
Sect. 15.3) and introduction meaning of c match, i.e., the following holds in PL2:

∀(
∧

�PROP
1 → q1)∧ . . . ∧ ∀(

∧

�PROP
m → qm) �	 cE

1 ∧ . . . ∧ cE
k .

This is actually trivial since cE
i is identical to ∀(

∧

�PROP
I → qm).

This result pertains to the case in which the elimination rules are not flat, i.e. may
be of higher levels. In that case, the elements of �i may be rules which discharge
assumptions. Note however that when passing from eliminations to introductions,
not only the level of the rule goes up by one step, but we have to use structural quan-
tification in the premiss of the introduction rule, too, if the elimination rules contain
extra variables. Going up one step cannot be avoided, i.e., we can always construct
a connective whose elimination rules reach level n, without there being harmonious
introduction rules of level n or below (Olkhovikov and Schroeder-Heister 2014b,
Theorem 2):
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Generalised non-flattening theorem for introduction rules Suppose the schema for
elimination rules is limited to rules of maximal level n. Then we can always find a
connective satisfying such a schema, whose introduction schema cannot be of level n
or below, i.e. must be at least of level n + 1. In fact, we can choose the (n + 1)-place
connective with the elimination meaning (. . . (p1 → p2) . . . → pn)→ pn+1, which
is a generalisation of ◦.

The fact that in the canonical introduction rule we add some sort of structural
quantification leads to a further generalisation. Once in the canonical introduction
rule we allow for structural quantification in the premisses, there is no reason in
principle why we should not specify introduction rules for a connective by using this
sort of quantification in their premisses. In the corresponding harmonious canonical
elimination rule this would lead to structural quantification in the assumptions of
minor premisses. But if we allow for that, there is no reasonwhywe should not iterate
this process and use any sort of embedded (i.e. nested) universal quantification in
the specification of connectives. In the end this means that, at the structural level, we
would use means of expression which correspond to those available in PL2 at the
logical level.17

Concerning the negative results presented, the reader should keep in mind that we
are working in an intuitionistic framework throughout. If we used classical second-
order propositional logic PL2c instead of the intuitionistic system PL2, we could
always find harmonious rules, as emphasized by Read (2014, this volume). For
example, � could be given the (flat) harmonious elimination rule

�(p1, p2, p3) p1
[p2]

r
[p3]

r
r ,

since we can show in PL2c that

(p1 → p2)∨ p3 �	 ∀r((p1 ∧ (p2 → r)∧ (p3 → r))→ r) .

15.6 Functional Completeness

From Fact I1 (Sect. 15.3) we know that

17 This is discussed in detail in Schroeder-Heister (2014a).—The fact that, as shown by Pitts
(1992), PL2 can be translated into PL, cannot be used here, as this translation uses all connectives
of PL including disjunction, which does not have a structural analogue in our framework. However,
this translation might become useful in the context of functional completeness. See Sect. 15.6 and
footnote 19.—We have not discussed the issue of structural existential quantification, as this is not
relevant for our central topic. In the frameworkdiscussedhereweneed to adduniversal quantification
if from given elimination rules we want to construct harmonious introduction rules. If we allowed
for extra variables and thus for implicit existential quantification in the premisses of introduction
rules, we would need to add universal quantification when passing to harmonious elimination rules.
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cI 	 c(p1, . . . , pn) (15.17)

holds in PL+cI, and from Fact E1 we know that

c(p1, . . . , pn)	 cE (15.18)

holds in PL2+cE. Now suppose that the introduction and elimination rules for c are
in harmony with each other, i.e.,

cI �	 cE (15.19)

holds in PL2. This implies that both

c(p1, . . . , pn) �	 cI (15.20)

and
c(p1, . . . , pn) �	 cE (15.21)

hold in PL2+cIE, whichmeans that we can regard (15.20) and (15.21) as two explicit
definitions of c in PL2. Therefore c can be expressed by means of the connectives
of PL2, which are ∧, ∨, → , ⊥ and ∀. As ∧, ∨ and ⊥ are definable in PL2 in terms
of → and ∀, we obtain as a result that c can be expressed by using → and ∀ in
the system that comprises both second-order propositional logic and the introduction
and elimination rules for c.

For example, our connective � can be defined either by (p1 → p2)∨ p3 (its
introduction meaning) or by ∀r((((p1 → p2)→ r)∧(p3 → r))→ r) (its elimination
meaning). From the latter formula we can eliminate conjunction by rewriting it as
∀r(((p1 → p2)→ r)→ ((p3 → r)→ r)), obtaining a definition of � in terms of ∀
and → .18

This is a reductive version of functional completeness in the sense that constants of
standard second-order intuitionistic logic suffice to express all connectives definable
by harmonious introduction and elimination rules. It is reductive as the standard
constants (here → and ∀) are taken for granted and are conceptually not on the
same level as the connective c.

Whereas (15.21) gives rise to a definition of c in the language of PL2, which can
use propositional quantification in the definiens, the right hand side of (15.20) is a
formula of PL, which can only contain ∧, ∨, → and ⊥ as connectives (see our
definition of cE and cI in Sect. 15.3). As the derivability relation in (15.20) is that of
PL2+cIE, (15.20) only yields a definition of c in PL2, even if no quantifier occurs
in the definiens. However, the following observation shows that only derivability in
PL+cIE is needed to establish (15.20), so that (15.20) actually is a definition of c in

18 If we use the standard translation of s1 ∧ s2 into second-order logic, which is ∀q((s1 →
(s2 → q)) → q), we would obtain the more complicated formula ∀r(∀q(((p1 → p2) → r)

→ ((p3 → r) → q) → q) → r). The formula ∀r(((p1 → p2) → r) → ((p3 → r) → r)) is actually
the standard second-order translation of (p1 → p2) ∨ p3 which uses the translation of s1 ∨ s2 as
∀r((s1 → r) → ((s2 → r) → r)).
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PL in terms of the connectives ∧, ∨, → and ⊥. In view of (15.17) we have to show
that we do not need second-order quantification to establish c(p1, . . . , pn) 	 cI . As
cE is a prenex formula of the form ∀∀ϕ, where ∀∀ represents a quantifier prefix and
ϕ the quantifier-free kernel, we can, from the derivability of cE 	 cI in PL2 [see
(15.19)] and normalisation for PL2, conclude the derivability of ϕ1, . . . , ϕn 	 cI in
PL, where ϕ1, . . . , ϕn are certain quantifier-free instances of ϕ. Furthermore, from
c(p1, . . . , pn) we can derive each ϕi in PL+cE, which yields the required derivation
of cI from c(p1, . . . , pn) in PL+cE.

Therefore we have obtained the following result:

Functional completeness Any connective c with harmonious introduction and elim-
ination rules can be defined in PL by its introduction meaning cI and also by its
elimination meaning cE .

Here the same remark we made after the Conservativeness Lemma in Sect. 15.4
applies: That this proof needs to rely on the heavy machinery of normalisation of
PL2 is due to our description of introduction and elimination meanings in abstract
terms by means of second-order formulas. In a concrete system with harmonious
rules it would be replaced with a direct syntactic proof using the rules available (see
Prawitz 1979; Schroeder-Heister 1984).

Pitts (1992) defines a translation ∗ from PL2 into PL, such that � 	 PL2 ϕ entails
�∗ 	 PL ϕ∗, where for every quantifier-freeϕ,ϕ∗ is identical toϕ. Thus, from (15.19),
we can conclude that in PL the following holds:

cI �	 (cE )∗ .

This gives us another definition of c, namely as (cE )∗. It might be interesting to
check what (cE )∗ looks like for various cI .19

15.7 Prawitz’s Account of Functional Completeness

Our reductive approach offers a plausible way of understanding Prawitz’s (1979)
proof of functional completeness of the standard intuitionistic constants ∧, ∨, →
and ⊥. Prawitz starts from (15.1) as the general schema for introduction rules of an
n-ary connective c. He then associates a corresponding elimination rule for c (there
is only a single one) as follows. From an introduction rule of the form (cI) a list
�PROP of conjunction-implication formulas

∧

�1 → s1, . . . ,
∧

�� → s�

19 The reference to Pitts (1992) was brought to my attention by an anonymous reviewer of
Olkhovikov and Schroeder-Heister (2014a).
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is constructed, where
∧

�i denotes the conjunction of all elements of �i , where
∧

�i → si is identified with si , if �i is empty. This list represents propositionally the
premisses of (cI). If we have m introduction rules of the form (cI), we obtain m such
lists �PROP

1 , . . . ,�PROP
m . Then the elimination rule (cE) has the following form:

(cE)P
c(p1, . . . , pn)

[�PROP
1 ] [�PROP

m ]
r . . . r

r ,

which is exactly the schema (15.16). This schema is modelled by Prawitz after the
pattern of the standard ∨ elimination rule. It expresses that everything that can be
derived from the premisses of each introduction rule for c can be derived from its
conclusion. To put it differently: c(p1, . . . , pn) is the strongest proposition that can
be derived from the premisses of each introduction rule for c. In the case of absurdity
⊥, which has no introduction rule, we obtain the ex falso quodlibet as the limiting
case of (cE) (m = 0, i.e. no minor premisses).

Unfortunately, (cE)P already uses the connectives ∧ and → , which means that
it cannot be used as a schema covering them. In fact, conjunction is not used in the
elimination rule for conjunction, which according to (cE)P takes the form

(∧EGEN )
p∧q

[p, q]
r

r ,

but only in more complicated elimination rules. Thus one may view conjunction as
defined by this general rule and later refer to it as an already defined connective.
However, in the case of implication, Prawitz’s elimination rule takes the form

p1 → p2
[p1 → p2]

r
r ,

which is trivial and therefore useless. From a foundational point of view, Prawitz’s
meaning-theoretical considerations as well as his proof that every connective can be
defined in terms of the four standard connectives ∧, ∨, → and ⊥ misses out on
implication.

However, if we adopt a reductive view, as we are doing in this paper, we can leave
Prawitz’s schema as it stands. We take the meaning of the standard connectives (in
particular implication) for granted. Prawitz’s schema then shows how the meaning
of all connectives except the standard ones is reduced to the meaning of the standard
ones.His completeness proof establishes that every connectivewhich is characterised
in a certain way is definable in terms of the standard connectives.

Therefore, from a reductive point of view, Prawitz’s approachmakes perfect sense.
It is less general than the one advanced here in that he is proposing an introduction
schema and generating a general elimination schema from it, rather than starting from
independent introduction and elimination schemas and investigating their strength.
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In defining harmonious elimination rules for given introduction rules, Prawitz does
not need to use second-order quantification. In our terminology, Prawitz’s work is a
reductive approach focussing on the definability of connectives by their introduction
meaning.

15.8 Outlook: The Foundational Approach

As mentioned in Sect. 15.2, the standard connectives ∧, ∨, → and ⊥ with their
standard inference rules fall under the general schemas (15.1) and (15.3) for intro-
duction and elimination inferences for an arbitrary connective c. In this sense they
play no special role. However, they are needed and therefore taken for granted when
formulating the introduction and elimination meaning of c and the corresponding
notion of harmony. In order to establish harmony we need the logic of the standard
operators. This is why our approach is reductive and not foundational.

This does not mean that our notion of harmony is not applicable to the stan-
dard operators. In fact, in Table15.1 introduction and elimination meanings were
associated with the standard connectives. For example, the formula p1 ∨ p2 is the
introduction meaning of ∨, the formula ∀r(((p1 → r)∧ (p2 → r))→ r) its elimina-
tion meaning, and their equivalence

p1 ∨ p2 �	 ∀r(((p1 → r)∧ (p2 → r))→ r) (15.22)

establishes that the standard introduction and elimination rules for disjunction as
given in Table15.1 are in harmony with each other. However, to show (15.22) we
use the standard introduction and elimination rules for disjunction (plus those for ∧,
→ and ∀), supposing that they are appropriate and therefore harmonious in some
basic (‘primordial’) sense. If we chose different rules for the standard connectives
which were not ‘harmonious’ in this basic sense, then (15.22) would perhaps no
longer hold. This would not only affect disjunction but any other claim of reductive
harmony.

At first sight one might think that this problem affects only disjunction and absur-
dity, as, in order to establish harmony for them, a real proof in PL2 as a background
logic must be given, using at least one logical rule for these connectives. In the case
of conjunction and implication, introduction and elimination meanings are literally
identical (see Table15.1). To prove harmony we just need to rely on the identities

p1 ∧ p2 �	 p1 ∧ p2 p1 → p2 �	 p1 → p2

rather than on any logical rule of PL2. However, this impression is misleading. Let
us consider implication. When defining the introduction meaning of a connective
according to a given introduction rule, we translated the fact that a premiss depends
on an assumption by an implication between the assumption and the premiss. That
is, if an introduction rule for c is of the form
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. . .

[ p1]
p2 . . .

c(. . .)

the relation between assumption p1 and premiss p2 is interpreted as p1 → p2. When
defining the elimination meaning of a connective according to a given elimination
rule, we translated the relation between minor premisses and conclusion by an impli-
cation as well. That is, in an elimination rule of the form

c(. . .) . . . p1 . . .
p2

(15.23)

the relationship between p1 and p2 was translated by the same implication p1 → p2.
This means that the dependence on an assumption and the relation between premiss
and conclusion of a rule is given the same meaning. This is exactly what standard
implication says:

[ p1]
p2

p1 → p2
p1 → p2 p1

p2 .
(15.24)

According to its introduction rule it expresses the dependence on an assumption, and
according to its elimination rule (modus ponens) it expresses the relation between
(minor) premiss and conclusion. In this way some fundamental harmony between
implication introduction and modus ponens is built into the translation of rules for n-
ary connectives to generate their introduction and elimination meanings. Something
similar holds for conjunction, where we interpret the fact that p1 and p2 occur as
two premisses in an introduction rule in the same way as the fact that p1 and p2 are
the conclusions of two elimination rules, namely by conjunction ∧:

. . . p1 . . . p2 . . .

c(. . .)

c(. . .) . . .
p1

c(. . .) . . .
p2 .

(15.25)

This is exactly what standard conjunction says:

p1 p2
p1 ∧ p2

p1 ∧ p2
p1

p1 ∧ p2
p2 .

(15.26)

According to its introduction rule it expresses the association of two premisses, and
according to its elimination rules it expresses the association of the conclusions of
the two rules.

This shows that in our reductive approach we are implicitly relying on some fun-
damental harmony inherent in the rules of the standard connectives. How far it is
possible to give a foundational analysis of this harmony is another matter. Any tool
introduced to analyse and describe this harmony will possibly have to rely on some
‘deeper’ sort of harmony governing its own reasoning principles. This is a fundamen-
tal problem for approaches such as Lorenzen’s (1955), von Kutschera’s (1968) and
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our own (Schroeder-Heister 1984) that all deal with structural analogues of implica-
tion (especially higher-level rules) in order to deal with logical connectives.20

We should, however, already mention a point of specific interest: The standard
connectives for implication and conjunction involved in describing the introduction
and elimination meanings of logical constants are those with the two projections and
modus ponens, respectively, as elimination rules. As explained above, the interpreta-
tion of the relation between p1 and p2 in (15.23) bymeans of implication corresponds
to modus ponens in (15.24), and the interpretation of the association of the two elim-
ination rules in (15.25) corresponds to the two projections in (15.26). This does not
speak against generalised forms of implication or conjunction (in Table15.2 denoted
by & and ⊃), but shows that modus-ponens-based implication and projection-based
conjunction are not only connectives in their own right, but basic connectives that
cannot be superseded by others.21
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