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Abstract From the point of view of proof-theoretic

semantics, it is argued that the sequent calculus with

introduction rules on the assertion and on the assumption

side represents deductive reasoning more appropriately

than natural deduction. In taking consequence to be con-

ceptually prior to truth, it can cope with non-well-founded

phenomena such as contradictory reasoning. The fact that,

in its typed variant, the sequent calculus has an explicit and

separable substitution schema in form of the cut rule, is

seen as a crucial advantage over natural deduction, where

substitution is built into the general framework.

Keywords Proof-theoretic semantics � Paradoxes �
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1 Introduction

In this paper we discuss what it means for the format of

deductive reasoning when what we have called the ‘‘dogmas

of standard semantics’’ (see Schroeder-Heister 2008; 2011a)

are given up. The first and main dogma is the priority of the

categorical over the hypothetical. This dogma means that

hypothetical concepts are explained in terms of categorical

concepts, so that the hypothetical concepts have a derivative

status. In standard model-theoretic semantics the categorical

concept is that of truth in a model. The hypothetical concept

of consequence is then defined by saying that whenever

the antecedents of a consequence statement are true, then so

is the consequent. By ‘consequence’ I here mean material

consequence, not necessarily formal consequence. The latter

is obtained from material consequence by abstracting from

non-logical features of the propositions involved, which in

the model-theoretic case is achieved by quantifying over all

models. The dogma of the priority of the categorical over the

hypothetical holds for standard proof-theoretic explanations

of consequence as well. For example, in Dummett-Prawitz-

style proof-theoretic semantics based on a proof-theoretic

notion of validity, the validity of assumption-free (or

‘closed’) proofs is defined first, and the validity of hypo-

thetical (or ‘open’) proofs and thus the notion of consequence

is defined in terms of that of closed proofs (see Schroeder-

Heister 2006).

The second dogma of standard semantics, which is a

specialization of the first one, is the transmission view of

consequence. In the model-theoretic case it means that

consequence can be established by showing that truth (in a

model) transmits from the antecedents to the consequent of

the consequence claim. In the proof-theoretic case it means

that there is a procedure which transforms proofs of the

antecedents into a proof of the consequent. There are

several variants of the proof-theoretic approach: besides

the above mentioned Dummett-Prawitz-style semantics e.g.

the BHK-interpretation or Lorenzen’s admissibility inter-

pretation of the logical constants. They all understand this

transmission as a constructive procedure, whereas in the

classical model-theoretic case it is essentially a metalin-

guistic universally quantified ‘if … then …’. Together with

the transmission view of consequence comes the place-

holder view of assumptions, which is the idea that in

deductions open assumptions are ‘satisfied’ by proofs of

them.

The third dogma is the equivalence of valid consequence

and correctness of inference, or at least that valid conse-

quence entails the correctness of inference. Whenever a
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consequence statement is valid, we can proceed inferen-

tially from its antecedents to its consequent, i.e., a valid

consequence licenses a corresponding inference. This is

what soundness of inference rules means.

What is common to all these dogmas is that assumptions

or hypothetical claims are not given a status in their own

right. They are dependent on categorical concepts and their

handling. We argue instead for an alternative approach

which takes consequence and thus the hypothetical concept

first and considers categorical truth to be a limiting case of

consequence, namely consequence without assumptions.

The formal model of this approach is Gentzen’s sequent

calculus, whose semantical significance has not been

appropriately acknowledged, contrary to his calculus of

natural deduction, which has been the dominant formal

model in meaning-theoretical investigations.

The rationale for this different approach is not only the

general philosophical consideration of the notion of con-

sequence. The standard approach has certain limits which

can be overcome by considering the hypothetical concept.

The most fundamental of these limits is the well-founded-

ness assumption, which means that the categorical concepts

(truth, canonical provability) are defined in a strictly well-

founded way, leaving no space for issues such as circularity

or infinitely descending definitional chains. Non-well-

founded phenomena are apparently present, for example, in

the paradoxes, and an approach to reasoning should be able

to deal with them. The approach based on hypothetical

consequence as the primary concept is versatile enough to

achieve this. It covers the well-founded case, but still

allows one to deal with irreducibly paradoxical statements

such as self-contradiction.

2 Definitional Freedom1

One can avoid non-well-foundedness by requiring that,

when we define something, this must be carried out in a

stepwise, well-founded fashion. However, this is not as easy

to achieve as it may appear at first glance, since a definition

does not always exhibit whether it is well-founded or not.

For example, if we deal with clausal definitions as in logic

programming, which are similar to inductive definitions, it is

not even always decidable whether a particular substitution

instance of a defined proposition has a well-founded defi-

nitional chain. This corresponds to the fact well-known from

recursive function theory that being total is not generally a

decidable property of a partial recursive function. One

would nonetheless, at least nowadays, in the age of com-

puter science, admit arbitrary partial recursive functions as

well-defined entities, and leave it to be a matter of (mathe-

matical) fact whether a function is defined (has a value) for a

particular argument or not.

One is used to well-foundedness from the case of the

standard logical constants, when proof-theoretic validity is

defined. However, not everything for which a definition can

be written down is ‘well-behaved’ in this sense, and there is

no reason to confine oneself to such cases. There is a tendency

in philosophical semantics, in particular in its proof-theoretic

branch, to concentrate on logical constants, logical conse-

quence, and logicality in general. Nevertheless, there are

concepts more general than logical ones, and the restriction to

logical concepts can prevent one from getting on overview of

what can be defined (proof-theoretically or otherwise).

We strongly propose definitional freedom in the sense

that there should be one or several formats for definitions,

but within this format one should be free. Whether a certain

definition is well-behaved is a matter of (mathematical)

‘observation’, and not something to be guaranteed from the

very beginning.

3 Type Systems for Clausal Definitions

We use clausal definitions as in logic programming, where

an atom A is defined in terms of certain conditions C1, …,

Cn understood as alternative ways of introducing A:

A :- C1

..

.

A :- Cn

8
><

>:

This list of clauses is called the definition of A, and a

definition (simpliciter) is a collection of such lists for

various defined atoms A. Thus a definition is exactly like a

logic program, with the exception that we do not restrict

the conditions (‘bodies’ in logic programming) to lists of

atoms, perhaps with negations. In principle we allow for

any logical composition, but we leave this point open

here. Obviously, clausal definitions can also be viewed as

inductive definitions, looked upon as rule systems (see

Aczel 1977; Denecker et al. 2001). A definition is put into

action by certain inference schemata. In which way this is

done depends on the reasoning format chosen. In a natural

deduction format, we define introduction and elimination

rules for atoms as follows:

C1

A
. . .

Cn

A

½C1� ½Cn�
..
.

. . . ..
.

A C C

C

The introduction rules express the reasoning along defini-

tional clauses. The elimination rule corresponds to what is

1 The claim of definitional freedom, and the comparison with recur-

sive function theory is due to Hallnäs (1991, 2006).
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known as generalized elimination rules in natural deduc-

tion. Within the general definitional setting they are very

powerful and go beyond what is available, for example, in

standard accounts of logic programming. They express the

principle of definitional reflection, which is a sort of

inversion principle according to which everything that can

be inferred from each defining condition of A can be

inferred from A itself. It develops its full power when

clauses contain variables and are not just of the proposi-

tional kind dealt with here. When we speak of ‘atoms’

which are defined, and for which introduction and elimi-

nation rules are given, we mean atoms in the sense of logic

programming, i.e., the entities to be defined, not atoms in

the logical sense. Therefore logically compound expres-

sions, for which a definition is given, would be atoms in

our sense as well. (For further details see Hallnäs 1991;

Hallnäs and Schroeder-Heister 1990/1991.)

In the present context it is more instructive and useful to

present the inference rules as a type system (see Hallnäs

1991):

t : C1

c1t : A
. . .

t : Cn

cnt : A

½x1 : C1� ½xn : Cn�
..
.

. . . ..
.

t : A t1 : C tn : C

D t; x1:t1; . . .; xn:tnð Þ : C

ð1Þ

Here the ci are constructors for canonical terms of type

A, the dot denotes a binding operation, and D is a selector

with the following reduction (or equality) principle:

Dðcis; x1:t1; . . .; xn:tnÞ . ti½xi=s� ð2Þ

It says that if t reduces to canonical form cis, then s can be

substituted for the variable xi in the ith minor premiss of

(1), yielding a term ti[xi/s] of type C. For simplicity we

assume that the Ci are single types (otherwise, t : Ci would

have to be understood as representing lists of typing

judgements). If there is just a single clause for A, then no

selector is needed. Instead of the rules

t : C
ct : A

x : C½ �
..
.

t1 : A t : C

D t1; x:tð Þ : C

and the reduction principle

Dðcs; x:tÞ . t½x=s�

we can equivalently use a direct elimination rule, yielding

t : C
ct : A

t : A

c0t : C
ð3Þ

with the reduction principle

c0ct . t ð4Þ

Here c0 is the destructor that annihilates c. One should

remember our presupposition that C is a single type—a

strong simplification, which is however sufficient for the

present purposes. (Already in the case of standard con-

junction there would be a pair of types giving rise to two

direct elimination rules.)

In a sequent-style reasoning format there are right

introduction and left introduction rules for the defined

atom A:

D ‘ C1

D ‘ A
. . .

D ‘ Cn

D ‘ A

D;C1 ‘ C . . . D;Cn ‘ C

D;A ‘ C

If Ci consists of more than one formula, D ‘ Ci is

understood as a list of sequents (we are not considering

multiple-formulae succedents here). In a type system, D is

a list of declarations of the form y : B, and we have the

following rules:

D ‘ t : C1

D ‘ c1t : A
. . .

D ‘ t : Cn

D ‘ cnt : A

D; x1 : C1 ‘ t1 : C . . . D; xn : Cn ‘ tn : C

D; y : A ‘ Dðy; x1:t1; . . .; xn:tnÞ : C

ð5Þ

with the reduction principle (2).

In the case of a single clause for A, we can again for-

mulate the rules in the simpler direct way as follows:

D ‘ t : C
D ‘ ct : A

D; x : C ‘ t : C

D; y : A ‘ t½x=c0y� : C
ð6Þ

with the reduction principle (4).

We also need a term-annotated version of the rule of cut,

which is a substitution rule:

C ‘ t : A D; x : A ‘ s : B

C;D ‘ s½x=t� : B
ð7Þ

4 Self-Contradiction2

A most elementary circular definition, which immediately

leads to contradiction, is the definition of an atom R in

terms of its own negation :R: We understand :R in the

intuitionistic way as implying absurdity: R ? \. In this

way we can distinguish between a contradiction consisting

of the pair R and :R; and absurdity \. The letter R should

remind one of the Russell paradox. The definition of the

Russell set within naive set theory can be viewed as a

sophisticated way of defining something in terms of its own

2 The consideration of paradoxes in the clausal framework

and the self-contradictory definition of R as a standard example

and test case in a theory of definitional reasoning goes back to Hallnäs

(1991, see also Hallnäs and Schroeder-Heister 1990/1991).
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negation. Using our definitional framework we do not need

to introduce any set-theoretic notion.3

For implication we need typed introduction and elimi-

nation rules for the natural deduction framework, as well as

right and left introduction rules for the sequent framework.

For natural deduction these are the common ones of

lambda abstraction and term application:

x : A½ �
..
.

t : B

kx:t : A! B

s : A! B t : A

App s; tð Þ : B

together with the reduction principle of application

reduction, which is the same as b-contraction:

Appðkx:t; sÞ . t½x=s� ð8Þ

The corresponding rules for the sequent calculus are as

follows:

D; x : A ‘ t : B

D ‘ kx:t : A! B

D ‘ t : A

D; x : A! B ‘ Appðx; tÞ : B

together with App-reduction (8). The left introduction

rule corresponds to modus ponens, but differs from

Gentzen’s implication left rule, from which it can be

derived in two steps. Here we use it for convenience and

abbreviation. We do not discuss the point that it might

be preferable to Gentzen’s rule anyway (see Schroeder-

Heister 2011b).

Now we define the self-contradictory R as follows:

DR R :- R! ?f

If we denote the constructor for R by r, then from (1) and

(5) we obtain the following typing rules in the natural

deduction and sequent systems:

t : R! ?
rt : R

x : R! ?½ �
..
.

s : R t : C

D s; x:tð Þ : C
ð9Þ

and

D ‘ t : R! ?
D ‘ rt : R

D; x : R! ? ‘ t : C

D; y : R ‘ Dðy; x:tÞ : C
ð10Þ

together with the reduction principle

Dðrs; x:tÞ . t½x=s�

Instead of using (9) or (10) to derive a contradiction, we

use the simpler forms corresponding to (3) and (6)

t : R! ?
rt : R

t : R

r0t : R! ?
and

D ‘ t : R! ?
D ‘ rt : R

D; x : R! ? ‘ t : C

D; y : R ‘ t½x=r0y� : C

together with the reduction principle

r0rt . t

In the natural deduction system we then obtain a typed

proof of absurdity ? as follows:

ð11Þ

The term obtained for absurdity is not normalizable,

as seen from the following reduction sequence which

loops:

Appðkx:Appðr0x; xÞ; rkx:Appðr0x; xÞÞ.
Appðr0rkx:Appðr0x; xÞ; rkx:Appðr0x; xÞÞ.
Appðkx:Appðr0x; xÞ; rkx:Appðr0x; xÞÞ

ð12Þ

This witnesses the fact that the given derivation, which

without terms can be written as follows,

ð13Þ

is not normalizable. It corresponds to what was first

observed by Prawitz (1965, Appendix B) in the context of a

natural deduction formulation for naive set theory.

In the sequent calculus, for the derivation of the

absurdity sequent ‘ ? the rule of cut is required in the last

step:

ð14Þ

3 Tennant (1982) shows that many well-known paradoxes exhibit a

proof-theoretic behavior corresponding to that of R as discussed

below: Generating a non-normalizable derivation of absurdity. He

therefore sees this feature as the characteristic property of paradox-

icality. Also Ekman (1998) argues that the proof-theoretic content of

Russell’s paradox can be stated in propositional logic by analyzing

the derivation of absurdity from self-contradiction R$ :R:

80 P. Schroeder-Heister
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Annotated with terms, this derivation looks as follows:

ð15Þ

The term generated for absurdity is essentially the same as

the one generated in the natural deduction variant. More

precisely, it is the second line of the looping reduction (12),

so we have again a non-normalizable term. Here it reflects

the fact that there is no cut-free proof of absurdity. If we

carry out the standard reductions for eliminating cuts, we

obtain again a non-terminating sequence of reduction steps.

We leave the details to the reader.4

5 Absurdity in Natural-Deduction-Style Reasoning

Our natural-deduction-style type system attempted to be a

framework for reasoning with respect to any definition,

including self-contradicting ones. It is based on the idea

that with a definition a corresponding pair of introduction

and elimination rules is associated, according to which we

can proceed in a natural-deduction manner starting from

assumptions (and also discharging assumptions when per-

mitted by the rules). This is a concept according to which a

valid proof is a proof composed of introduction and elim-

ination inferences of the justified kind. So we do not, as

in Dummett-Prawitz-style semantics, define the validity of

proofs first, and then the validity of rules as respecting the

validity of proofs. Dummett’s and Prawitz’s idea of putting

proofs first is intimately linked to the dogma that closed

proofs are primary to open ones, i.e., the categorical is

primary to the hypothetical. It is also linked to the well-

foundedness assumption: In Dummett and Prawitz, the

validity of (canonical) closed proofs is defined in terms of

its closed subproofs of lower complexity, something that

breaks down in the case of our definition of R. Since in

our approach rules are conceptually prior to proofs,

hypothetical proofs are simply validated by rules leading

from assumptions to conclusion, and no longer by the

transmission of valid categorical proofs.

This does not mean that we are just laying down a

formal system, as might be raised as an objection. The

introduction and elimination rules we are proposing are

not arbitrary, but are justified as rules putting definitional

clauses into action. They complement one another in the

sense of an inversion principle, making the eliminations

inverses of the introductions. However, this complemen-

tation is not based on global ideas of reducibility of proofs,

but is a local principle, which only assumes that an atom is

defined by certain conditions. It does not assume that these

conditions are of lower complexity than the atom. For more

details relating this approach to Dummett-Prawitz-style

semantics see Schroeder-Heister (2011c).

Given the definition DR of R this means that there is a

derivation of absurdity ? which has the feature that it is not

normalizable, witnessed by the fact that in typed form we

derive t : ? with non-normalizable t. Semantically, the

term t represents the knowledge one has gained by proving

t : ?: Distinguishing in the spirit of Dummett-Prawitz

semantics between indirect and direct knowledge, one

might say that a term in normal form represents direct

knowledge, whereas a non-normal term represents indirect

knowledge. According to this type of semantics, the dis-

tinction between indirect and direct knowledge is crucial,

together with the principle that indirect knowledge can

always be transferred into direct knowledge (called the

‘fundamental assumption’ by Dummett 1991, Chap. 12). In

fact, the validity of indirect knowledge is defined by ref-

erence to the direct knowledge it can be reduced to.

In our case this could lead to the suggestion that the

derivation of t : ? shows that absurdity can be proved, but

only in a sense of delivering indirect knowledge. Referring

to the non-normalizability of t, we could put forward the

idea of ‘ultimately indirect’ knowledge, i.e., knowledge

that cannot be ‘directified’. We could say that a derivation

of absurdity is possible in our generalized definitional

framework, but only by yielding ‘ultimately indirect’

evidence of it. In general we would then say that certain

definitions—those which are ‘well-behaved’—always

produce direct, i.e. ‘first-class’ knowledge, whereas others

like that of R may produce only ‘second-class knowledge’

that cannot be ‘upgraded’ to ‘first-class knowledge’ by

means of term reduction. If one wanted to give this idea a

very broad philosophical perspective, one could put it in

relation to the discussion of theoretical terms in philosophy

of science and associate with it the fact that theoretical

terms are only indirectly linked with observational ones.

This would give definitions such as DR a Quinean aspect.

However, it is not obvious what this non-directifiable

indirect knowledge actually might be. Should there be any

4 Note that we have not given a term system which codifies the

sequent-style proof directly. In order to achieve that, we would have

to present a term reduction system for cut elimination in the style of

Dyckhoff (2011) and show that the term constructed for the end-

sequent is not normalizable. Our terms, which correspond to those

used by Barendregt and Ghilezan (2000), codify the fact that the cut

rule is a substitution rule corresponding to the combination of two

proofs in natural deduction, which is the semantically significant

aspect of it. We also do not discuss the issue of contraction, although

contraction is used in (14) and (15) at a crucial place and is very

important for the generation of paradoxes.
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knowledge of absurdity at all? Note that absurdity does not

just mean contradiction. In the last step of the proof of

absurdity we proceed from :R and R by modus ponens to

absurdity, from which we could proceed to any other

proposition. We are not proposing a paraconsistent system,

but a system, in which everything can be proved, though

not in a ‘first-class’ way. The fact that in a proof of t : ?
the term t is not normalizable, should perhaps not be given

too much weight, since normally one would argue that by

simply omitting the term information in a proof, and

keeping only the types, one would still be left with a proof,

though with a proof carrying less information. The idea of

distinguishing between first-class and second-class proofs

of the same proposition, and giving only the first-class ones

real epistemic significance is problematic. We want to have

no proof of absurdity at all, not a second-class proof of

absurdity that lacks certain global properties such as

normalizability.

6 Absurdity in Sequent-Style Reasoning

In the sequent-style framework we have obtained a deri-

vation of ‘ t : ? with a non-normalizable t by using the cut

rule. However, the cut rule is not a primitive rule of the

framework. So we are not entitled to use it, except we have

shown beforehand that it is eliminable. For many defini-

tions, this can be achieved, but not for DR: Epistemologi-

cally, we do not need to distinguish between first-class and

second-class proofs. Instead we can say that, with respect

to DR; we have both a proof of ‘ R and a proof of R ‘ ?;
but not a proof of ‘ ?: In other words, we have proofs of

both R and its negation, but not a proof of absurdity, which

means that our system is paraconsistent. This sort of

paraconsistency gives us the possibility to use definitions

like DR without devastating consequences. The principle of

definitional freedom need not be given up. That we gen-

erate a contradiction if we define R in a contradictory way,

is not implausible. We do not generate absurdity out of this

definition, not even some sort of ‘second-class’ absurdity.

This result is obtained by a particular feature of sequent-

style reasoning. The principle of cut is separated as a

special structural rule from the framework of the meaning-

giving rules. With respect to the meaning-giving rules,

nothing prevents us from giving up cut in principle. We

thereby depart radically from the fact that consequence

entails correct inference, one of the dogmas of standard

semantics, which is embodied in the principle of cut. Even

if we have established that B follows from A as expressed

by the sequent A ‘ B; this does not necessarily mean that, if

we have furthermore established ‘ A; we can establish ‘ B;

which is a case of cut. This feature: the separation of

meaning from transitivity in the sense of cut, is achieved by

the institution of left-introduction rules. In the sequent

calculus, we introduce assumptions (i.e., propositions in the

antecedent of a sequent) not only by trivial initial sequents

(which correspond to assumptions in natural deduction),

but by explicit assumption-introduction (= left-introduc-

tion) rules, which depend on the form of the assumption

being introduced. This is the proper way of taking

assumptions seriously, a way that overcomes the dogmas of

standard semantics. The primary relation is that of conse-

quence as expressed by the sequent sign, and we have rules

for assertion (right-rules) as well as rules for assumptions

(left-rules) which make up consequence. The fact that one

may join two consequence statements according to the

transmission view is something that depends on the pre-

supposed definition.

Combining proofs is a matter of a structural rule, namely

cut. It is not intertwined with meaning-giving principles.

This strongly speaks for the sequent-style approach to

reasoning. In our derivation of absurdity in the natural-

deduction framework (13)/(11), the problem arises with our

last application of modus ponens, which corresponds to the

final cut in the sequent-calculus derivation (14)/(15). But

we cannot just refrain from using modus ponens in a way in

which we can refrain from using cut, as modus ponens is an

indispensible meaning-giving principle, whereas cut is not,

as the meaning of implication is given by inference prin-

ciples of its own. Therefore, from a semantical point of

view, the parallel between cut elimination and normaliza-

tion is far from perfect. It makes a crucial difference of

whether the usage of a special local rule, namely cut, or the

global form of the whole proof, namely normalization, is at

stake. This comes to bear when there is no normalization/

cut elimination. Then in the sequent calculus the unprob-

lematic part can just be saved by removing the local cut

rule, whereas in natural deduction this part is defined by

some sophisticated global property (normalizability).

One might, of course, model natural deduction accord-

ing to the sequent calculus. One possibility would be to use

the strategy of generalized elimination inferences which

actually makes natural deduction a notational variant of the

sequent calculus, yielding something such as ‘bidirectional

natural deduction’ (Schroeder-Heister 2009). However, this

is not exactly our point here. We are comparing the

reasoning formats of natural deduction and the sequent

calculus, not ways of simulating one approach within the

other.

7 Consequence, Inference, Place-Holders: Intuitive

Account

Even if with DR we have an example of a situation in which

cut fails, there remains a gap between observing this fact

82 P. Schroeder-Heister
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and grasping it intuitively. Suppose we have established

A ‘ B as a consequence (for example, by a derivation in

our semantically motivated sequent calculus). Why cannot

we later use this consequence to guide an inference from

A to B? Why cannot we argue that, because we once have

established A ‘ B; we can savely move from A to B:

A

B
A ‘ B

Is it not the purpose of establishing consequences that we

may use them later on? For example, in the sequent-style

framework, it appears absolutely natural to use the

consequence A ^ B ‘ A in order to proceed by^-elimination

C ‘ A ^ B A ^ B ‘ A

C ‘ A

even without having demonstrated cut elimination. Telling

novices in logic that the correctness of this rule has to be

formally demonstrated would confuse them.

The reason for this confusion is that the proposition

being cut does not stand for the same in both of its posi-

tions. In the example, the left occurrence of A ^ B stands

for something different from its right occurrence. This

becomes clear, when the typed version is used:

C ‘ t : A ^ B x : A ^ B ‘ p1x : A

C ‘ p1t : A

In the left premiss we have a term t, and in the right

premiss we have the variable x, which, by applying cut,

becomes substituted. This means that in the case of cut,

different terms are involved, together with a substitution

operation which is hidden in the non-typed formulation.

This hidden substitution operation causes the problem in

critical cases. In the last step of our derivation (15) of \,

this substitution operation generates a term which is not

normalizable.

When we force such a substitution operation to be valid,

we end up in paradox. But the question still remains: What

is it intuitively that speaks against such a substitution?

A tentative answer might be the following. Semantically the

variable x in the right sequent of cut (7) is not understood

as running over all terms individually, i.e. over all proof

terms. Rather, it is understood as an objectual variable

running over an arbitrary proof object, abstracting from the

specific structure which concrete proofs may have. When

performing the substitution in the application of cut, we are

substituting this arbitrary object with an individual proof

term, which, when embedded into a new context, may

behave differently, as this proof term has a specific internal

structure. Thus we would invoke the difference made in

other areas of logic between objectual quantification,

substitutional quantification and arbitrary objects. This idea

still needs to be worked out in detail.

8 Closure Under Substitution and the Format

of Deductive Reasoning

To repeat, the situation arising with self-contradiction,

when treated in a typed system, is that a substitution of a

normal term into a normal term results in a non-normal and

non-normalizable term. In the sequent calculus, this is due

to the application of cut, which is a substitution rule:

D ‘ t : A D; x : A ‘ s : C

D ‘ s½x=t� : C

Even if s and t are normal, s[x/t] does not need to be

normal nor to be normalizable. In natural deduction,

a corresponding situation obtains with modus ponens:

s : A! B t : A

Appðs; tÞ : B

Even it s and t are normal, App(s, t) does not need to be

normal or normalizable. Our derivations (11) and (15)

exemplify this. The advantage of the cut rule is that it

makes this substitution operation explicit. By disallowing

cut, or by using cut only for definitions, for which we can

prove beforehand that cut can be eliminated, we can dis-

pose of the substitution problem.

Now it might be considered a too radical solution: either

not to use cut or to prove a cut-elimination theorem

beforehand. One might consider instead the idea to use cut

whenever it is appropriate, without expecting it to be

globally admissible. This could be achieved by means of a

side condition, saying that cut can be applied whenever the

substitution term generated by cut is normalizable. If we

denote the normalizability of a term t by t!, we could then

formulate the restricted cut rule as follows:

D ‘ t : A D; x : A ‘ s : C

D ‘ s½x=t� : C
s½x=t�!

One must be aware, however, that the side condition goes

beyond usual side conditions in proofs as it is not always

decidable (depending on the system considered). So one

would have to give at least a proof system by means of

which s[x/t]! can be established, in such a way that the

finitistic concept of ‘proof’ is not given up.

In the natural deduction framework, modus ponens with

the corresponding side condition would be

s : A! B t : A

Appðs; tÞ : B
Appðs; tÞ!

However, this is still not exactly the same situation as in

the sequent system. The terms s and t may contain free

variables, as the judgements s : A ? B and t : A may

depend on assumptions. Suppose t, but not s contains the

free variable y, and t : A depends on the assumption y :

D, so that we have the situation:
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y : D

..

.

s : A! B t : A

App s; tð Þ : B
App s; tð Þ!

Now suppose we have a derivation of t0 : D, and suppose

we want, by substituting t0 for y, to combine these two

derivations to a derivation of App(s, t[y/t0]) : B, yielding

..

.

t0 : D
..
.

s : A! B t y=t0½ � : A

App s; t y=t0½ �ð Þ : B
App s; t y=t0½ �ð Þ!

Then we have to check the validity of the side condition,

and of all other side conditions in the derivation above it

again, as they are not necessarily closed under substitution

(in fact, our self-contradiction example demonstrates this

non-closure). In the sequent-calculus framework, in the

same situation, we would simply add another cut with an

additional side condition:

Here only this additional step needs to be checked, there is

no need to rework the whole proof.5 In a natural-deduction-

style formulation this can be achieved by restricting the

combination (substitution) of natural-deduction proofs.

However, formulating such restrictions essentially means

to give up the natural deduction framework in favor of a

sequent-style framework (even though this would be in a

natural-deduction-style notation).

The idea of closure under substitution is deeply built

into the framework of natural deduction. Imposing side

conditions that are not automatically closed under substi-

tution represents a reasoning format that is very difficult to

handle. In the sequent calculus, on the contrary, substitu-

tion just means applying a rule (namely cut), so substitu-

tion is a local principle rather than a global one.

The locality of substitution is what in our eyes ulti-

mately speaks for the sequent format of reasoning. It gives

up the dogmas of standard semantics by making the

application of consequence, i.e., the transmission of truth, a

local issue of rule application rather than a global issue of

the reasoning framework.

9 Free Type Theory

We have discussed the possibility of a local rule of cut

depending on the side condition that the term being con-

structed by the substitution operation denotes (is

normalizable):

D ‘ t : A D; x : A ‘ s : C

D ‘ s½x=t� : C
s½x=t�!

This may suggest the idea of incorporating the side

condition, which is an external proviso, into an actual

premiss of the cut:

D ‘ t : A D; x : A ‘ s : C s½x=t�!
D ‘ s½x=t� : C

We would obtain some sort of free type theory in which,

before generating a term by means of cut, we must first

show that it denotes. The type-theoretic view that proofs

are objects named by terms would then be combined with

the idea of free logic that certain names denote whereas

others do not, and for certain inferences and names

t occurring in them, there would be the premiss t!

expressing that t denotes. The ‘denotes’-claim expressed by

the exclamation mark would be an additional form of

judgement, for which corresponding proof rules would

have to be given. This is a wide field and can here just be

proposed as a possible research programme.

Such a programme does not appear totally unreasonable.

If we consider type theory in Martin-Löf’s setting, then one

of its characteristic features is that the formation rules are

not external, but part of the intrinsic framework. Before we

can prove t : A, i.e., that t has type A, we must prove first

A type, i.e. the fact that A makes sense as a type, according

to the proof rules for the ‘type’-judgement, which are the

formation rules. Now if there are formation rules for types,

one might argue that there should be formation rules for

terms as well in the sense that, before one can judge that t is

of type A, one must also show that t makes sense as a term,

as expressed by the judgement t!. Spelling this out in detail

requires reworking the whole framework of type theory and

especially its ontology, to adapt it to a definitional frame-

work where no well-foundedness assumptions are made.

In this paper, we have focussed on the impact which the

proof-theoretic treatment of the paradoxes has on the

appropriate choice of the format of deductive reasoning,

and have claimed that a sequent-style format is more

appropriate than natural deduction. Given our consider-

ations on normalization and denotation of proof terms, one

might try to develop a general theory of sense and deno-

tation of proofs. Some steps in this direction have

been taken by Tranchini (2011), who argues that proofs are

meaningful (have sense) if they follow a principle of local

harmony (which is, for example, not satisfied by Prior’s

5 Note that, as we have assumed that y is not free in s, s[x/t][y/t0] is

the same as s[x/t[y/t0]].
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tonk connective), whereas they denote when in addition

they can be reduced to canonical form. Further pursuing

this idea will be a natural continuation of what has been

presented here.
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