
Development of Data Acquisition
and Detector Controller

Electronics for the Low Energy
X-Ray Detector of the Simbol-X

Space Mission

Diplomarbeit

eingereicht von

Henry Sebastian Grasshorn Gebhardt

Eberhard Karls Universität Tübingen
Fakultät für Mathematik und Physik

Kepler Center for Astro and Particle Physics
Institut für Astronomie und Astrophysik

Abteilung Astronomie

November 2009

Contents

Deutsche Zusammenfassung 7

Preface 9

1 X-ray Emission in the Universe 11

1.1 Emission Mechanisms . 11

1.1.1 Blackbody Radiation 11

1.1.2 Inverse Compton Scattering 12

1.1.3 Synchrotron Radiation 12

1.1.4 Bremsstrahlung . 13

1.1.5 Emission and Absorption Lines 13

1.2 Astronomical Sources of X-rays 13

1.2.1 Active Galactic Nuclei 13

1.2.2 Cosmic X-ray Background 15

1.2.3 X-ray Binaries . 15

1.2.4 Supernova Remnants 16

1.2.5 Intracluster Gas . 16

2 The Simbol-X Mission 19

2.1 The Rise of Astronomical Instruments 19

2.2 Previous X-Ray Missions . 20

2.3 Simbol-X . 21

2.3.1 Wolter Optics . 21

2.3.2 X-ray Detector System 22

3

4 CONTENTS

3 The Interface Controller 27

3.1 Interface Controller Requirements 27

3.2 General IFC Design Considerations 29

3.2.1 Equality . 30

3.2.2 Uniqueness . 30

3.2.3 Simplicity . 31

3.2.4 Beauty . 31

3.3 IFC components . 32

3.3.1 SpaceWire core . 32

3.3.2 Receiver . 33

3.3.3 Sender . 34

3.3.4 ADC control . 34

3.3.5 SEQ control . 35

3.3.6 EPP control . 36

3.3.7 PWR control . 37

3.4 Additional components for testing 37

3.4.1 EPP data simulator 38

3.4.2 ECH control . 39

3.4.3 SIN control . 39

3.5 Summary . 39

4 The SpaceWire Protocol 41

4.1 SpaceWire Basics . 41

4.1.1 Basic Signals and Connectors 42

4.1.2 Low Voltage Differential Signaling 43

4.1.3 Data Strobe Encoding 43

4.1.4 Characters and Control Codes 45

4.1.5 The Parity Bit . 45

4.1.6 Packets . 46

4.2 Establishing a SpaceWire Link 47

4.2.1 Flow Control . 49

CONTENTS 5

4.2.2 The Run State . 49

4.2.3 Link-Level Error Notification: The Exchange of Silence 50

4.3 Application Side Interface . 51

4.4 Conclusion . 51

5 The SpaceWire-to-USB Converter SWitty 53

5.1 Test Setup with a SpaceWire PCI Card 53

5.2 SpaceWire interfacing teletype 55

5.2.1 Software Interface and Features 55

5.2.2 The Universal Serial Bus 56

5.2.3 SWitty Design . 58

5.2.4 SpaceWire Character 8-bit Encoding 60

5.3 Conclusion . 61

Conclusion and Outlook 63

Bibliography 66

A The Universal Serial Bus 67

A.1 USB Basics . 67

A.1.1 Topology . 68

A.1.2 Physical Layer . 69

A.1.3 USB 2.0 Transceiver Macrocell Interface 70

A.1.4 High Speed Detection Handshake 71

A.2 USB Communication Protocol 72

A.2.1 Packets . 72

A.2.2 USB Frames and Microframes 74

A.2.3 Transactions and Transfer Types 74

A.2.4 Device Descriptors . 75

A.2.5 Control Transfers . 77

A.2.6 The usbmon Linux Kernel Module 77

A.2.7 Enumeration . 79

6 CONTENTS

A.2.8 Bulk Transfers . 82

A.3 USB Device Classes . 83

A.3.1 Communications Device Class 83

A.4 Conclusion . 83

Danksagung 85

Plagiaterklärung 87

Deutsche Zusammenfassung

Ziel dieser Diplomarbeit ist der Entwurf und Test eines SpaceWire-Interface-
Bausteins für die Simbol-X Satellitenmission. Simbol-X wird eine hohe spek-
trale und räumliche Auflösung im Energiebereich von 0.5–80 keV besit-
zen und damit eine wichtige spektrale Beobachtungslücke zwischen bishe-
rigen Missionen wie XMM-Newton und Integral schließen. Dadurch wird es
möglich sein Kenntnisse über Beschleunigungsmechanismen in den energie-
reichsten Systemen des Universums zu gewinnen, wie zum Beispiel der Ent-
stehung von Jets aus Aktiven Galaktischen Kernen. Auch wird solch eine
Mission zum besseren Verständnis von Mikroquasaren mit einem Schwarzen
Loch oder Neutronenstern im Zentrum einer Akkretionsscheibe führen. Mit
einiger Wahrscheinlichkeit wird es außerdem gelingen den Ursprung des Kos-
mischen Röntgenhintergrundes zu verstehen, da mit Simbol-X zum ersten
Mal ein Instrument mit einer hohen Ortsauflösung im harten Röntgenbereich
zur Verfügung stehen wird. Einige Quellen und Emissionsmechanismen sind
in Kapitel 1 beschrieben, die Simbol-X Mission in Kapitel 2.

Simbol-X umfasst zwei Satelliten, einen mit einer Wolter Optik und einen
mit dem Detektorsystem. Diese fliegen in Formation im Anstand von 20 m
und fokussieren so die Röntgenstrahlen auf die Detektoren in der Fokalebene.
Das Detektorsystem von Simbol-X besteht aus einem Hochenergiedetektor
und einem Niederenergiedetektor. Die hier vorliegende Arbeit hat zum Ziel,
den Niederenergiedetektor mit einer SpaceWire Schnittstelle zu versehen um
die Integration mit den übrigen elektronischen Komponenten des Satelliten
zu ermöglichen. Der sehr modulare und leicht erweiterbare Entwurf ist nun
als VHDL Code in einem FPGA realisiert und wird in Kapitel 3 genauer
beschrieben.

Das SpaceWire Protokoll ist ein sich etablierender Kommunikationsstan-
dard. Er wurde speziell entwickelt zur Benutzung in Satellitenmissionen
und wird auch schon in zum Beispiel dem Herschel oder SWIFT Satelliten
verwendet. Die hier dargelegte Arbeit beschreibt und testet das SpaceWi-
re Protokoll, das hier in Tübingen zum ersten Mal Verwendung findet, im
Zusammenhang mit der Entwicklung der Simbol-X Mission. Das SpaceWire
Protokoll wird in Kapitel 4 erläutert.

7

8 DEUTSCHE ZUSAMMENFASSUNG

Um die hier entwickelte Schnittstellenkomponente von Simbol-X besser tes-
ten zu können, wurde ein spezieller SpaceWire-zu-USB Umwandler ent-
wickelt. Der Universal Serial Bus (USB) wurde wegen seiner allgemeinen
Verfügbarkeit und einfachen Handhabung gewählt, auch wenn die Details
der Implementierung durch diese Wahl etwas komplexer wurden. Jedoch
hat der SpaceWire-zu-USB Umwandler den zusätzlichen Vorteil eine gene-
rische Methode zu bieten, um große Datenmengen zwischen Software und
Hardware auszutauschen. Der Konverter ist in Kapitel 5 beschrieben, und
eine knappe aber detaillierte Zusammenfassung des USB Standards ist im
Anhang A gegeben.

Leider wurde die Phase B von Simbol-X aus finanziellen Gründen abgesagt.
Dennoch findet die hier vorgelegte Arbeit Verwendung insbesondere in Hin-
sicht auf das International X-ray Observatory (IXO), wo das High Timing
Resolution Spectrometer (HTRS) das SpaceWire Protokoll verwenden und
hier am Institut für Astronomie und Astrophysik Tübingen mit entwickelt
werden soll.

Preface

The letter I have written today is longer than usual because I lacked
the time to make it shorter. — Blaise Pascal

The Simbol-X space mission is a planned space observatory for the 0.5–
80 keV X-ray range. Simbol-X will consist of a satellite carrying the optics
and another carrying two detectors, a low energy detector and a high energy
detector. The two satellites will fly in formation to provide a long focal
length of 20 m. Simbol-X would be the first mission to have a good angular
resolution and sensitivity in the hard X-ray regime.

The intention is to look at some of the most energetic systems in the universe
and further our understanding of the particle acceleration mechanisms active
there. Jets are one of the most strange phenomena emanating from the hot
center region of accretion discs around black holes and neutron stars in
such systems as Active Galactic Nuclei and Microquasars. X-rays provide
a unique view into that high-energy region with temperatures in excess of
105 K, where rotationally and gravitationally smeared out iron lines will
be much better visible with an observatory such as Simbol-X. Also, the
mission is needed to resolve the origin of the cosmic X-ray background, to
better determine the parameters of recent supernova remnants in our galaxy,
and to further understand the hot intracluster gas between galaxies. The
emission mechanisms and sources are the topic of chapter 1.

The present work makes a small contribution towards reaching these goals
by providing a SpaceWire interface controller for electronically connecting
the low energy detector of Simbol-X to the rest of the spacecraft. The
detector is a new silicon-based matrix with an extraordinarily high frame
rate of 8000 frames per second that will allow a high time resolution in soft
X-rays. To limit the data rates, it is essential to pre-process each frame and
filter out only those pixel values that correspond to an actual photon event.
The interface controller is designed to command that event pre-processing
electronics (EPP) and to transfer the reduced science data via SpaceWire
to the telemetry system of Simbol-X. The mission is described in chapter 2,
the interface controller in chapter 3.

9

10 PREFACE

SpaceWire is an emerging standard analysed in this work. It is already
used in recent space missions by ESA and NASA. In order to facilitate the
development efforts for Simbol-X, a new SpaceWire-to-USB converter has
been created that provides a general method for exchanging large amounts
of data between hardware and software using the well-established Universal
Serial Bus. The SpaceWire protocol is explained in chapter 4, the converter
in chapter 5, and a concise introduction to the USB is given in appendix A.

Although it has been decided that there will be no phase B for Simbol-X,
the present work continues to find its application in future missions such as
the upcoming International X-ray Observatory (IXO).

Chapter 1

X-ray Emission in the
Universe

Simbol-X is a satellite space mission for imaging and spectroscopy in the soft
to hard X-ray regime of 0.5–80 keV. In this chapter some of the emission
mechanisms and sources that Simbol-X could help understand are summa-
rized.

1.1 Emission Mechanisms

1.1.1 Blackbody Radiation

A body in thermal equilibrium radiates an electromagnetic spectrum depen-
dent on its temperature. Ignoring surface effects specific to the material, all
stationary bodies radiate the same spectrum given by Planck’s Law[1]

Bν =
2hν3

c2

1
ehν/kT − 1

,

or rewritten in terms of the photon energy E = hν

BE =
2E3

h3c2

1
eE/kT − 1

.

Dependent on the temperature, the maximum of the spectrum is at the
photon energy

Emax = 2.821 kT

= 2.431 · 10−7 keV
(
T

K

)
,

11

12 CHAPTER 1. X-RAY EMISSION IN THE UNIVERSE

with the Boltzmann constant k = 1.3806 · 10−23 J/K. Temperatures around
105 K peak around 0.024 keV, contributing with an exponential tail to soft
X-rays.

1.1.2 Inverse Compton Scattering

In 1923 A. H. Compton observed the scattering of a photon off an electron,
now called the Compton Effect. Removing the final 4-momentum of the
electron, 4-momentum conservation yields the relativistic equation

pµ · p′µ = qν ·
(
pν − p′ν

)
,

where p and q are the 4-momentum of the photon and electron before the
collision, p′ that of the photon after the collision. This equation is valid when
γh̄ω � mec

2, that is, the energy of the photon as seen from the electron is
much less than the rest energy of the electron.

The process is called Compton scattering, when the photon looses energy
to the electron, e.g. when the electron is initially at rest and then moving.
Inverse Compton scattering is when the electron population is at a much
higher energy than the photons. In that case, low energy photons are up-
scattered to higher energies

E′ ' γ2E,

where γ is the time component of the 4-velocity better known as the gamma-
factor of the electron, and E and E′ are the energies of the photon before
and after the collision. For a highly relativistic population of electrons this
can up-scatter photons to keV and even TeV energies.

1.1.3 Synchrotron Radiation

Synchrotron radiation is produced when charged particles such as electrons
are accelerated in a magnetic field, following the field lines in a helix-like
pattern due to the Lorentz force

dpµ

ds
= qFµνvν ,

where ds is the spacetime interval along the path, q is the charge, F is the
electromagnetic field, and v the 4-velocity. In radio a highly polarized beam
can be observed. At high energies the spectrum is a power law[13]

B ∝ E−α,

where α is in the range 0.5− 1.

1.2. ASTRONOMICAL SOURCES OF X-RAYS 13

1.1.4 Bremsstrahlung

Charged particles emit electromagnetic radiation when accelerated. The
power emitted by a single charge is given by Larmor’s equation

dE

dt
=

2 q2v̇2

3 c3
.

This occurs for instance in a hot plasma where electrons are accelerated in
the field of the ions. The resulting spectrum features an exponential cut-off
towards higher energies.

1.1.5 Emission and Absorption Lines

Discrete emission and absorption lines can be observed in the spectrum for
atomic transitions. For X-ray astronomy the Kα and Kβ fluorescent lines of
iron with energies of 5.9 keV and 6.49 keV are of particular interest, where
an electron transitions into the K shell from the L or M shells.

The nuclear decay of 44Ti into 44Ca also produces discrete emission lines
particularly at 68 keV and 78 keV, which is important for understanding the
origin of calcium in supernova remnants.

1.2 Astronomical Sources of X-rays

This section provides an overview over some of the more common X-ray
emitting objects.

1.2.1 Active Galactic Nuclei

Many if not all galaxies feature a central black hole with masses of 106–
109 M�. Whereas the black hole in the center of the milky way is relatively
quiet, Active Galactic Nuclei (AGN) accrete 1–3 M� every year, produc-
ing accretion discs and massive outflows in the form of jets that can span
thousands of parsecs.

AGN frequently radiate at or above the Eddington luminosity given by the
maximum that a spherically symmetric accreting object of mass M can
radiate:

LEdd =
4πcGM mp

σT
,

where mp is the mass of a proton and σT is the Thomson cross section
for the collision between a photon and an electron. It is given when the

14 CHAPTER 1. X-RAY EMISSION IN THE UNIVERSE

Figure 1.1: This is a composite image of Centaurus A at a distance of
3.4 million parsec. In blue is the X-ray image from Chandra, in or-
ange the submillimeter taken with the Atacama Pathfinder Experiment,
and in white and brown the optical view from the Max-Planck tele-
scope. (Credit: X-ray: NASA/CXC/CfA/R.Kraft et al.; Submillimeter:
MPIfR/ESO/APEX/A.Weiss et al.; Optical: ESO/WFI)[6].

gravitational force and the radiation pressure on the infalling material are
equal. In AGN, the material is not spherically falling onto the central black
hole, but due to angular momentum and friction it is forming a hot accretion
disc with temperatures exceeding 105 K.

AGN are classified into three basic types Seyfert 1, Seyfert 2, and Blazars.
These are distinguished by the visibility of the nucleus and our viewing angle.
The nucleus of Seyfert 1 galaxies is mostly absorbed by a gaseous ring. In
Seyfert 2 galaxies the view to the nucleus is unobstructed, whereas with
blazars we are looking directly into the jet. AGN show a time variability
of their luminosity on the order of hours, resulting in an estimated size of a
few astronomical units.

Shown in Figure 1.1 is an X-ray–submillimeter–optical composite of the
Seyfert 1 type galaxy Centaurus A. Much of the optical range is absorbed
by a ring of gas. The submillimeter radio observation is mostly associated
with the outer lobes at the end of the jets, and the X-ray observations show
the jet where it is still highly relativistic and the energetic inner regions of
where it is produced.

1.2. ASTRONOMICAL SOURCES OF X-RAYS 15

Disc wind
(Corona)

Accretion
disc

Jet

Hot spot

X-ray heating

Accretion
stream

Companion
star

Figure 1.2: An artists impression of the microquasar GRS1915+105. Mat-
ter is accreted by the compact black hole via Roche-Lobe overflow from the
companion star forming a hot spot where the matter hits the accretion disc.
[3]

1.2.2 Cosmic X-ray Background

The cosmic X-ray background (CXB) peaks around 30 keV. Its origin is
still unclear. One possible source could be a population of AGN with a
hard spectrum that are too faint to detect in soft X-rays with Chandra or
XMM-Newton. Simbol-X could be able to resolve those and contribute to
the understanding of the CXB.

1.2.3 X-ray Binaries

In X-ray binaries a neutron star or black hole orbits a companion with an
orbital period of typically a few days. When the companion star is so large
that its surface is close to the Lagrange point L1, matter may flow from the
star to the compact object via Roche-Lobe overflow, as pictorially displayed
in Figure 1.2 for GRS 1915+105. Thermal X-ray emission is produced by
the accretion disc close to the black hole reaching temperatures up to 105 K.
The jet is primarily associated with radio waves, but closer to the black
hole the electrons are relativistic enough to produce synchrotron radiation
in the X-ray band, while farther out the emission reduces to infrared and
radio. X-ray emission is also produced via inverse Compton up-scattering
of low energy photons in the hot corona and directly in the jet. Should the
compact object be a neutron star, X-rays may also be produced when the

16 CHAPTER 1. X-RAY EMISSION IN THE UNIVERSE

matter falls in an accretion column onto the surface of the star.

Emission lines from highly ionized iron have been observed. Their energy
profile suggests that they are originating close to the compact object, since
they are Doppler shifted, beamed, and anti-beamed by the rotation in the
accretion disc, and red shifted by the gravitational field. However, the reso-
lution of the spectra taken with current missions is not very satisfying. With
the higher sensitivity of Simbol-X, much better spectra could be obtained.

1.2.4 Supernova Remnants

Supernova remnants are another source of X-rays where the Simbol-X mis-
sion could contribute to their understanding. In the constellation of Taurus
a supernova exploded that was observed in 1054 A.D. and left behind the
Crab nebula with a fast rotating neutron star, the pulsar, in the center, see
Figure 1.3. The material outflow is directed by strong magnetic fields to-
wards the poles and the equatorial plane of the pulsar. The X-ray radiation
is produced by a shock where the ejected material from the pulsar inter-
acts with the surrounding gas, and by the beamed synchrotron radiation of
electrons following the magnetic field lines.

1.2.5 Intracluster Gas

A galaxy cluster typically consists of only about 1% matter visible in the
optical range. Another 5–15% is hot intracluster gas with temperatures of
107–108 K that can be seen in X-rays, see Figure 1.4. The rest of the mass
is called dark matter the nature of which is still unknown.

1.2. ASTRONOMICAL SOURCES OF X-RAYS 17

(a) HST mosaic (b) Chandra image

Figure 1.3: The Crab nebula (a) in an optical mosaic by the Hubble Space
Telescope and (b) in soft X-rays by Chandra. The images are approximately
at the same scale and orientation. (Images courtesy of NASA/STScI[11]
and NASA/CXC/SAO[10]).

Figure 1.4: The image shows the merging galaxy cluster 1E0657-558 as
observed by Chandra. The more massive eastern cluster has a temperature
of 14 keV while the less massive about 6 keV. The contours show the mass
distribution of the clusters as determined by weak gravitational lensing.[2]

18 CHAPTER 1. X-RAY EMISSION IN THE UNIVERSE

Chapter 2

The Simbol-X Mission

In this chapter a brief introduction to the Simbol-X mission in context of
other astronomical instruments of the past is given.

2.1 The Rise of Astronomical Instruments

With the invention of the telescope by Lipperhey at the beginning of the
17th century, the examination of the celestial sphere could be carried out
in unprecedented detail giving rise to the discovery of the moons of Jupiter
when Galileo Galilei first pointed his telescope at the sky. Subsequent refine-
ments in telescope technology further contributed to the establishment of
the Copernican world view that overthrew that of the late ancient Greeks.
With the invention of the Newtonian reflector, much larger apertures be-
came possible like Herschel’s telescope that was finished in 1789, and the
5 m Palomar Observatory finished in 1948.

It is only in the 20th century that astronomical observations in other wave-
lengths could be performed. It started in 1931 when Karl Jansky of Bell
Labs discovered the center of the milky way in radio waves.[15]

However, since much of the electromagnetic spectrum is blocked by the
atmosphere, longer observations in the infrared, ultraviolet, X-ray, and
gamma-ray bands only became possible with the advent of space flight,
although modern ground based Cherenkov telescopes use the earths atmo-
sphere as a detector medium for ultra high energy gamma-rays.

19

20 CHAPTER 2. THE SIMBOL-X MISSION

2.2 Previous X-Ray Missions

First X-ray observatories were carried with balloons and rockets in the 1960s.
The following missions mark the development of space-borne X-ray obser-
vatories from its beginning in the second third of the 20th century up to the
present.

• The first satellite dedicated to X-ray astronomy is UHURU launched
in 1970 from Kenya. It was sensitive to about 0.5 mCrab in the 2–
20 keV range at an angular resolution of about 30′.

• Einstein was the first fully imaging X-ray satellite launched in 1978.
It had an angular resolution down to 2′′ in the soft X-ray range 0.15–
3 keV.

• The Roentgen Satellite (ROSAT) from 1990–1999 conducted an all-sky
survey in the soft X-ray regime.

• The Rossi X-ray Timing Explorer (RXTE) launched in 1995 provided
astronomers with a high time resolution of up to 1 µs at 2–250 keV.

• With the launch of BeppoSAX in 1996, a satellite with an angular
resolution of 9.7′, imaging capabilities were available up to 10 keV.

Only RXTE and the following more recent missions are still in operation
today:

• The Chandra X-ray Observatory is characterized by a high angular
resolution of almost 0.5′′ in the 0.1–10 keV range. It was launched in
1999.

• Launched in the same year as Chandra, the X-ray Multi-Mirror Mis-
sion (XMM-Newton) has a lower angular resolution of 6′′, but a much
higher sensitivity. Its energy range is slightly larger from 0.1–15 keV.

• Onboard the International Gamma-Ray Astrophysics Laboratory (IN-
TEGRAL) is the Joint European X-ray Monitor sensitive up to 35 keV
at an angular resolution of 3′. Also onboard is an instrument with 12′

resolution starting at 15 keV. It was launched in 2002.

• Finally, Suzaku contains a spectrometer for soft X-rays with a spatial
resolution of 1.8′, and a non-imaging detector for hard X-rays.

With Chandra and XMM-Newton two similar missions with a high angular
resolution in soft X-rays below 10 keV are available that have contributed
greatly to our understanding of soft X-ray sources up to about 15 keV. These

2.3. SIMBOL-X 21

Figure 2.1: An artists expression of the Simbol-X mission. (Credit: CNES
/ Oliver Sattler)

missions provide accurate data in the soft X-ray regime. Missing from this
list is a detector system with a high angular resolution better than 20′′ and
a high sensitivity in the hard X-ray band. Simbol-X intends to fill that gap.

2.3 Simbol-X

Simbol-X is an astronomical space mission in the low to hard X-ray regime.
Started as a French-Italian cooperation, Simbol-X is a two-spacecraft mis-
sion, where one satellite carries a focusing Wolter optics and the other the
X-ray detector positioned in the focal plane. A graphic is shown in Figure
2.1. Its launch was planned for 2014.

It is unique in that it would be the first instrument with a good spatial
resolution and sensitivity in the hard X-ray range above 10 keV.

In the following, a very short introduction to the satellite’s optics, detector
system and electronics is given.

2.3.1 Wolter Optics

X-rays cannot be focused with ordinary lenses or mirrors. However, total
internal reflection occurs at angles of the order of 1◦, less for harder radiation.
A Wolter optics is a mirror arrangement named after its inventor Hans

22 CHAPTER 2. THE SIMBOL-X MISSION

Figure 2.2: Wolter type I optics. (Image from [12])

Wolter (1911–1978) that can be used to focus X-rays using total internal
reflection.

In principal, a Wolter type I optics consists of 2 mirrors, an ellipse and a
hyperbolic as shown in Figure 2.2. A type I Wolter optics can be stacked
many times as concentric shells that together yield a larger total aperture.
Due to the nature of total internal reflection of X-rays, a Wolter optics
system has the following properties that determine its geometry.

• The small reflection angle results in a large focal length, especially for
hard X-rays. To achieve that, the Simbol-X optics are on a separate
spacecraft flying in formation with the detector unit at a distance of
20 m as shown in Figure 2.1.

• The variance of the maximum total internal reflection angle with the
photon energy results in a smaller effective aperture for harder X-rays
as the outer shells no longer focus.

To achieve the scientific mission, Simbol-X was designed with 100 concentric
shells, the largest 65 cm and the smallest 26 cm in diameter, with a focal
length of 20 m.

2.3.2 X-ray Detector System

The detector system in the focal plane consists of two 128 × 128 X-ray de-
tectors. The low energy detector (LED) becomes transparent for higher

2.3. SIMBOL-X 23

energy photons, so it can be positioned in front of the high energy detec-
tor (HED) as shown in Figure 2.3. The two detectors are surrounded by
an anticoincidence detector (ACD) for filtering particle background events
and thus significantly reducing the background. The Simbol-X low energy
detector is in so far unique in that it would be the first with an active anti-
coincidence shield. In addition, it was discussed to use a proton deflector to
reduce the background from low energy protons funneled onto the detector
by the optics. This would also reduce the degradation of the detector by
such protons.

The detectors have the following characteristics.

• The LED is sensitive in the range 0.5 keV–20 keV. A pixel of the
matrix consists of concentric drift rings collecting the electrons at the
center where a DEPFET (Depleted P-channel Field Effect Transistor)
is used to detect the amount of electrons freed by the incoming photon.
Each pixel has a size of 625 µm × 625 µm. It is read out at a rate of
8000 frames per second.

• The HED has a range up to 80 keV in hard X-rays. The detector
material is made up of CdTe.

• Together, the two detectors give a nearly 100% quantum efficiency
across the X-ray range up to 80 keV as shown in Figure 2.4.

• The ACD catches particles from everywhere except where the photons
from the optics are coming in. Comparing the time of an event in
the ACD with the time of pixels from the LED and HED allows to
classify these as background events and be discarded for most science
measurements.

The LED, HED, and ACD are connected via a SpaceWire link to the central
DPDPA processing board as shown in Figure 2.5. The software running on
the DPDPA CPU board has access to a several hundred megabyte large
mass memory. It will compute offset and threshold maps, command each
detector to start and stop sending science data, and correlate events from
the anticoincidence detector with the pixel events from the detectors. From
the DPDPA board science and housekeeping data are transferred to the
spacecraft telemetry system and from there to ground.

The LED electronics (LEDE) are shown in Figure 2.6. It is the purpose of
the interface controller developed in this work to provide the LED with a
SpaceWire interface to the DPDPA board, and to convert the science data
into a standardized format.

24 CHAPTER 2. THE SIMBOL-X MISSION

Figure 2.3: The Simbol-X detector geometry. X-rays coming in from the top
hit the low energy detector (LED) first. Higher energetic X-rays continue
through to the high energy detector (HED). For detecting particles from the
sides or bottom, the entire detector system is surrounded by an anticoinci-
dence detector. An aluminium base plate transports heat to the outside to
keep the detector temperature below −40◦C. (Credit: CEA / Jerome Mar-
tignac)

0.0

0.2

0.4

0.6

0.8

1.0

LED + HED
HED
LED

Energy [keV]10 100

Q
ua

nt
um

 E
ff

ic
ie

nc
y

Figure 2.4: The combined quantum efficiency of the LED and HED add up
to almost 100% as shown in this simulation by C. Tenzer.

2.3. SIMBOL-X 25

HED
SpW

SpW

LED
SpW

SpW

ACD
SpW

SpW

CPU board
SpW

SpW

SpW SpW SpW MM

DPDPA (main)

CPU board
SpW

SpW

SpW SpW SpW MM

DPDPA (redundant)

Figure 2.5: Simbol-X detector connections. The CPU board is connected
via SpaceWire links to each of the three detectors, and has access to a mass
memory unit (MM), which is also part of the DPDPA. Every detector has
a redundant SpaceWire interface controller that connects to the redundant
DPDPA shown subdued in the figure. Not shown is the connection with the
telemetry electronics. (adapted from Simbol-X Detector Payload SpaceWire
Utilisation Requirements[4] Figure 1-1)

26 CHAPTER 2. THE SIMBOL-X MISSION

ADC_1

CAMEX 128CAMEX 128

SEQ_1

SEQ_3

DPDPA

E
P

E
_

re
d

E
P

E
_

n
o

m

EPP_2

SEQ_0

CAMEX 128

EPP_0

ADC_0

g
a
te

g
a
te

g
a
te

cl
ea

r
cl

ea
r

LEDE

SEQ_2

ADC_3

LEDA

ADC_2

EPP_1

CAMEX 128

EPP_3

Q_3

Q_0

Q_2

Q_1

cl
ea

r
g
a
te

cl
ea

r

space wire

interface
controller

Figure 2.6: LED electronics overview. The 128 × 128 detector matrix is
split in 4 quadrants Q0, Q1, Q2, and Q3. Each quadrant is controlled by
two switchers, gate and clear. The gate switcher enables an entire row of a
quadrant, so that the energy deposited in each pixel can be read out by the
CAMEX (Charge Amplifying Multiplexer). The clear switch flushes the
electrons in a row of DEPFETs for the next frame. The analog pixel values
from the CAMEX are transferred to an ADC for each quadrant, where the
event preprocessor (EPP) filters for the pixels corresponding to a photon
event. The switchers, CAMEX, ADC, and EPP receive their timings from
the sequencer (SEQ) of each quadrant. The interface controller transfers the
data from each quadrant to the DPDPA, and accepts commands to power
up and configure the low energy detector electronics. Should the nominal
interface controller fail, the DPDPA can enable a redundant one. (Graphic
courtesy of Thomas Schanz)

Chapter 3

The Interface Controller

The purpose of the interface controller is to provide a simple and standard-
ized interface to the low energy detector electronics of Simbol-X. The design
is realized in an FPGA with input and output ports for each of the compo-
nents of the detector readout electronics. In this chapter the requirements
on the interface controller are described, then the overall design principles,
and finally the specifics of each component.

3.1 Interface Controller Requirements

The interface controller (IFC) provides the low energy detector of Simbol-X
with a SpaceWire interface to the rest of the spacecraft, the DPDPA. As
such, it needs input and output ports for every component of the low energy
detector, plus those needed for the SpaceWire communication with the rest
of the spacecraft.

Figure 3.1 gives an overview of the components the interface controller needs
to communicate with. The following input/output port considerations need
to be made for every quadrant.

• The sequencer and the EPP are combined onto the same board, so
that a single SPI link is sufficient for control commands towards the
detector. The SPI link is used to configure and command the se-
quencer and the EPP. Most importantly it is this link via which the
IFC must upload offset and threshold maps for the EPP, and it needs
to command the sequencer when it should start and stop operating
the detector readout electronics. The SPI link needs 3 output and 1
input signal.

27

28 CHAPTER 3. THE INTERFACE CONTROLLER

camex

EPP

SEQ

IFC

HK Sensors Power

SWittySpaceWire USB fpipe

Figure 3.1: LED electronics overview. Starting at the top left, X-rays from
a binary system hit the detector matrix which is above the CAMEX that am-
plifies the raw pixel values. To each side of the detector matrix are switchers
to control the detector read out. The amplified pixel values from the CAMEX
are digitalized with an ADC (not shown), and sent to the event-preprocessor
(EPP). The switchers, CAMEX, and EPP are controlled by the sequencer
(SEQ). The interface controller (IFC) collects the science data from the
EPP, sends commands to the sequencer, controls the power, and collects
housekeeping (HK) sensors data. The communication with the rest of the
spacecraft is done via a SpaceWire link. Shown here is a setup as is planned
in the laboratory for testing, where the SpaceWire communication is trans-
ferred by SWitty, explained in chapter 5, to a computer via the USB, and
analysed with the fpipe analysis software.

• The EPP reduces the detector output to only those pixels that cor-
respond to a photon event. Each pixel is encoded in a 64-bit format
that includes a time code, the position, the energy, and the type of the
pixel. In order not to use up too many I/O ports of the interface con-
trollers’ FPGA, a 16-bit parallel bus is envisioned for the data transfer
of the pixels from the EPP, controlled by 2 extra signals.

• The housekeeping and power sensors were not set as of this writing,
but to save FPGA I/O ports, an analog multiplexer is added to the
interface controller board. It directs analog sensor signals onto a single
ADC that, too, will be on the IFC board.

• The interface controller must also set the power for the detector. How-
ever, the power supply interface was too early in its development to
be considered for the IFC at the time of this writing.

3.2. GENERAL IFC DESIGN CONSIDERATIONS 29

SpaceWire
Core

Receiver

Sender

ADC
control

EPP
control

SEQ
control

Din

Sin

Dout

Sout

DataRx

DataTx

EnRdRx
FifoEmptyRx

ReqNcar
ClrNcar

FifoEmptyRx to(dest)

EnRdRx of(dest)

ReqNcar of(src)

ClrNcar to(src)

Figure 3.2: IFC internal overview. On the right, the SpaceWire core with
the SpaceWire signals is shown. The Sender and Receiver components
distribute and collect packets to and from the * control components that
do the actual work of communicating with the components of the low energy
detector. Not shown are the external signals for that communication. The
thick arrows in light color depict the path of science data from the EPP
through the interface controller.

• Finally, the interface controller will be used to carry a clock signal to
the EPP. However, this clock signal will not affect the IFC directly.
Instead, it is distributed through signals electrically separate from the
IFC.

3.2 General IFC Design Considerations

At its core, the interface controller must act as a router to the various com-
ponents of the low energy detector. The basic design is shown in Figure 3.2.
Control components provide the low-level interaction with each LED com-
ponent. The receiver component is responsible for distributing packets from
the SpaceWire core to the individual control components. Similarly, the
sender is responsible for collecting the packets from the control components
and sending them to the SpaceWire core.

The interface controller has undergone a complete rewrite since a first work-
ing version was in place. Compared to that, the current design has the
following advantages.

• Debugging and testing of IFC components is extraordinarily easy.

30 CHAPTER 3. THE INTERFACE CONTROLLER

• There are no complicated interrelationships between components and
internal signals.

• The IFC is easily extensible.

These three advantages have resulted in a nearly bug-free implementation.
They are the result of some general design principles, some of them created
as a response to the first version of the interface controller, some of them
well known in the software programming community. Even though that
first version of the interface controller exhibited a highly modular design,
it is only with the help of these guiding principles that a truly workable
design could be created. Those principles shall be described in the next few
sections.

3.2.1 Equality

All components are created equal. What this means is that the components
are in no particular hierarchical order in and of themselves. It is only their
function that determines their place inside the interface controller.

The principle of equality entails that the communication between the in-
dividual components must be standardized. Ignoring external signals, the
entity of each component has been chosen to match precisely the host-side
interface of the SpaceWire core. It consists of a 9-bit data bus and two
signals, FifoEmptyRx and EnRdRx, for receiving packets, and a 9-bit data
bus and the signals ReqNcar and ClrNcar for sending packets.

The practical implication is that each component can be connected directly
to the SpaceWire core and be tested separately from all other components.

3.2.2 Uniqueness

The principle of uniqueness says that code should not be duplicated. The
principle can be further interpreted to mean that the idea expressed within
a piece of code should occur only once. Duplication early in the development
means that changes in one copy might not be applied to another copy, and
the relationship between the two copies becomes unclear as the code evolves.
This is hampering development especially when ideas are changing, since
every piece of code needs to be reviewed for subtle changes.

Uniqueness of code has played a central role from the very beginning of
the development of the interface controller. Early versions, however, broke
the principle with regards to the uniqueness of ideas expressed in the code.
It is uniqueness of code and of ideas that leads to a clean modularization

3.2. GENERAL IFC DESIGN CONSIDERATIONS 31

framework. The principle demands that similar but distinct functions be
merged together or split up further. Uniqueness is the driving force behind
factorization of a design into independent modules with clean interfaces.1

For hardware, the situation is much reversed. Using the same components in
many parts of the design means that optimization can be directed towards
fewer distinct elements. Should the element be designed in a hardware
description language, this leads us back to the principle of uniqueness, where
concentrating on a single implementation of a component instantiated many
times greatly eases development.

3.2.3 Simplicity

Simplicity is a well known term in software development. It can mean many
things including minimalism, symmetry, and elegance. It also ties in very
closely with the ideas of uniqueness and modularity, as both these demand
that complications are coded only once, leading to a simpler overall design.

When uniqueness is impossible, such as using the same interface between
all the components, then simplicity demands that this interface be a sim-
ple interface. In the case of the interface controller, it entailed forbidding
complicated interrelationships between the various components, and sym-
metrizing the relationship between receiving and transmitting data busses.

Simplicity cannot be pinpointed easily. It pervades the design on every level.
When complications are hidden away in submodules, simplicity demands
an interface for these submodules that can be easily described and shared
among developers. What this usually means is that each module should do
only one thing, and do that well.2

3.2.4 Beauty

The combination of the principal ideas of equality, uniqueness, and simplic-
ity has resulted in a highly modular design. The three principles are in
many ways building on top of the usual mantra of a modular design with
independent components, but in some ways they are more general. Indeed,
it could well be argued that these might set the very foundation of which
modularity is perhaps the best solution.

Perhaps the most important consequence is that the code in its entirety
may be called beautiful. Beautiful code is simple code. Beauty is achieved
when simple code snippets are combined to create a design capable of much

1Hence, this subsection may also be called “Modularity is not enough”.
2This is one of the basic philosophies behind UNIX.

32 CHAPTER 3. THE INTERFACE CONTROLLER

Table 3.1: Transmitter and receiver host data interface coding. The MSB,
e.g. DataRx(8), is leftmost, the LSB rightmost. (Table 7, page 54 in ECSS)

DataRx/DataTx Meaning
0xxxxxxxx 8-bit data
1xxxxxxx0 EOP
1xxxxxxx1 EEP

more than its individual components. That is, beauty ensues when removed
complexity results in greater applicability. It is the beauty of small but
generally applicable code that drives development. The practical result is
that it is a delight to maintain and extend the design.3

3.3 IFC components

The interface controller consists of the SpaceWire core component, the Re-
ceiver and the Sender, and multiple control components. In this section these
components of the interface controller will be described in more detail.

3.3.1 SpaceWire core

The SpaceWire core component used was developed by Frédéric Pinsard and
Christophe Cara at CEA. The host-side interface exported by this compo-
nent is used throughout the design of the interface controller.

There are, actually, two interfaces. One for the receiving line, another for
the transmitting line, denoted by appending Rx and Tx to the respective
signal names. The data is published via the signals DataRx and DataTx.
These are 9-bit data busses, and as shown in table 3.1, the 9th bit, e.g.
DataRx(8), is used to distinguish between a data character and a control
character. If that bit is high, then it is a control character, and the LSB
distinguishes between a normal end-of-packet and an error-end-of-packet. If
the MSB is low, the remaining 8 bits constitute a data byte.

The interface controller is notified of a new character by the SpaceWire
components two control signals FifoEmptyRx and EnRdRx. They are used
just like the interface to a FIFO that is filled with SpaceWire characters
coming over the SpaceWire link, and emptied by the interface controller.
On the transmitting side, there are the two signals ReqNcar and ClrNcar
with the same idea but slightly different semantics as the signals on the

3It is somewhat unfortunate that beautiful code is code that does not need much
maintenance.

3.3. IFC COMPONENTS 33

SpaceWire
Core

Receiver

Add-ress CRC
check

destination

mux
mux

ADC
con-
trol

EPP
con-
trol

SEQ
con-
trol

DataRx

EnRdRx

FifoEmptyRx

Figure 3.3: The Receiver distributes packets to their respective control com-
ponent.

receiving side. To merge the two, the signal FifoEmptyRx should have been
negated, i.e. FifoNotEmptyRx.

The SpaceWire component is the first to receive commands over the Space-
Wire link. As such, it is viewed as the master to the other components of
the interface controller.

3.3.2 Receiver

The purpose of the receiver component is to distribute incoming packets
to their respective control component. In doing that, the receiver is also
stripping the header and footer from each packet.

Although the packet formats were not finalized as of this writing, the header
will have the same structure for all packets. It will contain a byte identifying
the LED as its destination. For compatibility with specifications, another
byte will specify that the packet is in a custom format. A third byte is
used for the packet type distinguishing packets for housekeeping and science
packets. It might also be used as a logical address for identifying the control
component responsible for the packet.

The footer consists of a single CRC8 byte for checking the integrity of the
packet. It is the responsibility of the receiver to check that the CRC is correct
and to provide the control components only with the cargo of the packets.
It does this by controlling a multiplexer via the register destination that
transfers the FifoEmptyRx and EnRdRx signals to the specified control com-
ponent. This is shown in Figure 3.3. In this way, the control components
can essentially “see through” the receiver as if directly connected to the

34 CHAPTER 3. THE INTERFACE CONTROLLER

SpaceWire
CoreSender

Add-ress Add
CRC

source

mux
mux

M
U
X

ADC
con-
trol

EPP
con-
trol

SEQ
con-
trol

DataTx

ReqNcar

ClrNcar

Figure 3.4: The Sender essentially multiplexes the access to the SpaceWire
core.

SpaceWire core.

3.3.3 Sender

The sender component does the opposite of the receiver. It polls which
control component has a packet to send and grants it access to the SpaceWire
core, adding an appropriate header and a CRC8 footer to each packet. The
internal setup of the sender is very similar to that of the receiver, and it is
shown in Figure 3.4.

3.3.4 ADC control

ADC control is the prototype for the housekeeping control component.
Housekeeping data includes values from temperature, voltage, and current
sensors, the most prominent probably being the one reporting the temper-
ature of the detector matrix. Which values exactly will be needed was not
clear yet as of this writing and will be determined during detector operation
in the laboratory.

To save ADCs and FPGA I/O ports, most analog sensor values will be
multiplexed onto a single ADC. The design is shown in Figure 3.5a. The
ADC control component sets an address on the multiplexer, which then
puts the signal from the selected sensor on the ADC input. The control
component then proceeds to read out the digitalized value from the ADC
via the signals shown in the figure.

3.3. IFC COMPONENTS 35

ADC
control

ADC

M
U
X

DataRx

DataTx

CS
CLOCK

DO

(a) ADC control

SEQ
control

SPI

DataRx

DataTx

SS0
SCLK
MOSI
MISO

(b) SEQ control

Figure 3.5: (a) Analog sensor signals from the bottom left are multiplexed
onto an ADC. The component ADC control inside the FPGA sets an address
on the multiplexer, and reads out the converted value via a standard ADC
interface. (b) The sequencer control component allows the DPDPA software
on the other side of the SpaceWire link to send commands directly to the
sequencer, providing an SPI converter as it does so.

3.3.5 SEQ control

This control component interacts with the sequencer. Packets coming over
the SpaceWire are sent to the sequencer via an SPI bus. The interface
controller acts as a kind of tunnel to the SPI interface of the sequencer, so the
DPDPA software can essentially communicate directly with the sequencer.

The basic setup is shown in Figure 3.5b. Whether a more complicated setup
is necessary or even desired is yet to be determined. The current setup might
have the drawback of taking a long time to upload an offset or threshold map
as each pixel needs to be set individually. Every command is 6 bytes long.
Adding to that 3 bytes for the header, 1 for the CRC sum, and roughly half
of one for the end-of-packet, adds up to 10.5 bytes per pixel. For a total of
4096 pixels, that makes at least 43008 bytes per map. At a rate of 2 MB/s
that takes 22 ms over the SpaceWire. The SPI link is slower, and takes
6 × 8 = 48 SPI clock cycles per command. For successful operation, the
SPI clock is lowered to 3.75 MHz, making 12.8 µs per command, or about
53 ms per map. Sending the 2-byte status result received while transmitting
over the SPI back over the SpaceWire takes another 13.3 ms per map. In
total, uploading an offset or threshold map should take about 88.3 ms. Even
though there will be some extra latencies introduced that are not included
in this calculation, there does not seem to be any pressing need for a more
complicated setup.

36 CHAPTER 3. THE INTERFACE CONTROLLER

0

8

16

24

32

40

48

56

64
4 misc flags

28 bits time code

1 misc flag

7 bits x position
1 misc flag
7 bits y position
1 misc flag
1 MIPS flag

14 bits energy

Figure 3.6: The figure shows the preliminary assignment of each of the 64
bits for every pixel. Small ticks mark bit boundaries, large ticks mark byte
boundaries.

3.3.6 EPP control

The EPP control component collects the science data from the event pre-
processor, packages them in a standardized format, and sends them off over
the SpaceWire to the DPDPA software. The control of the EPP is done via
the sequencer, and is not part of this component.

The standardized format is made up of 64 bits for every pixel. The infor-
mation encoded in these 64 bits is shown in Figure 3.6 as was agreed upon
at the time of this writing. The data from the EPP is very similar, and
contains for each valid pixel a time code, the energy, the position, and var-
ious miscellaneous flags subject to change. The standard format has been
deliberately chosen with the following points in mind.

• The time code, x, y positions, and energy are byte aligned, because
that makes for much easier processing in software.

• The MIPS flag has been chosen as an extra bit for the energy, so that
a simple check of the energy is all that is necessary for the DPDPA
software to distinguish good events from MIPS.

• The quadrant number is within the 7th bits of the x and y positions,
making the position a natural number across the entire 128 × 128
detector matrix.

3.4. ADDITIONAL COMPONENTS FOR TESTING 37

EPP
control

DataRx

DataTx

16 bit
Data

Request
FifoEmpty

Figure 3.7: The EPP control component collects the science data from the
event preprocessor over a 16 bit data bus with an interface reminiscent of a
FIFO.

• To allow for additional miscellaneous flags, only the first 28 bits of the
EPP time counter are transmitted with every pixel. This would have
a wrap-around time of 13.42 s. The rest of the time code can then be
retrieved via other means.

The 64 bits per pixel are envisioned to be transmitted over a 16 bit bus as
shown in Figure 3.7, where each signal is LVDS encoded for better electro-
magnetic compatibility.

In order to test the EPP control component a simulator was written. The
simulator will be more closely described in section 3.4.1. Even though the
data format from the simulator is somewhat different, it could be shown
that the interface controller can sustain data rates well above the maximum
2 MB/s of the SpaceWire link.

3.3.7 PWR control

This component controls the power to the LED. It does not exist yet, as it
only makes sense to develop when more details about the power interface
are available. It is mentioned here as it is an important part of the interface
controller should Simbol-X fly.

3.4 Additional components for testing

In this section two control components, ECH control and SIN control, and
a simple EPP data simulator used for testing purposes are introduced.

38 CHAPTER 3. THE INTERFACE CONTROLLER

(a) Intensity map

(b) Light curve (c) Spectrum

Figure 3.8: The Crab lifts its right claws.

3.4.1 EPP data simulator

At the time of this writing, the hardware to connect the EPP with the
interface controller was not available. As a consequence a simple simulator
for the data was written as a subcomponent of the EPP control module.
The raw pixel energy values are created from three sources listed below. In
the following, data is a VHDL variable holding the raw pixel value, and
rand is a pseudo-random number generated from a 63 bit linear feedback
shift register (LFSR). It has a 5 bit range, that is from 0 to 31.

• Offset: data <= 0x133 + rand;

The offset is valid for every pixel. It corresponds to the current mea-
sured in the detector when there was no photon event.

• Image: data <= 0x1F0 + rand;

To make things more interesting, a PNG file containing a picture of
a well known X-ray source is loaded at VHDL synthesis time. The
RGB value of each pixel in the image determines the intensity. The
resulting image is shown in Figure 3.8a.

3.5. SUMMARY 39

• Background: data <= 0x22F + rand;

The background is also valid for all pixels, but it is not set every single
frame. Instead there is a randomization resulting in about 2 to 3 pixels
per frame contributing to the background.

An intensity map, a light curve, and a spectrum in arbitrary units are shown
in Figure 3.8 as screen shots from the fpipe analysis software.

The EPP data simulator acts as a source of data. The rate of data trans-
mission can be throttled if desired or needed. The simulator has made
development somewhat of a delight, and the slightly asymmetric nature of
the image proves that the entire chain from the interface controller to the
analysis software is interpreting the X and Y coordinates of the pixels cor-
rectly.

3.4.2 ECH control

The ECH control component echoes everything it receives back over the
SpaceWire. It is very handy for testing the SpaceWire connection in all
rigor. Its main use is for testing when the SpaceWire core is replaced by
SWitty, which is a SpaceWire-to-USB converter described in chapter 5.

3.4.3 SIN control

The SIN control component acts as a sink accepting all data, sending none.
It is used to test the SpaceWire link or SWitty unidirectionally.

3.5 Summary

The basic function of the interface controller is to be a router that distributes
packets coming in over a SpaceWire connection to the individual components
of the low energy detector. This function has been nicely tucked away in
two components, a receiver and a sender. For every component of the low
energy detector, a control component has been developed when possible.

The interface controllers’ design in Figure 3.2 has proven itself to work
rather well. Simplicity and uniqueness of code and ideas throughout have
contributed to its versatility. Simple debugging was achieved by creating
all top-level components as equals, allowing each to be connected directly
to the SpaceWire core. Beauty in logic and function in combination with
equality, uniqueness, and simplicity has resulted in a highly modular design
with great independence for every module.

40 CHAPTER 3. THE INTERFACE CONTROLLER

Multiple additional control components can be easily added. As a conse-
quence, the interface controller has proven to be simple to use yet very
versatile even in unforeseen situations such as a testing device for SWitty,
the SpaceWire-to-USB converter described in chapter 5. As such, it will be
interesting to see how the integration with the other components of the low
energy detector of Simbol-X will go.

Chapter 4

The SpaceWire Protocol

A SpaceWire link is a full-duplex serial communication line capable of speeds
of 2 Mbit/s up to 400 Mbit/s. The standard was spun off the IEEE 1355-
1995 standard with the goal to make it suitable for space applications. The
specification was first released on January 24, 2003 by the European Coopera-
tion for Space Standardization, and it is now available under the designation
ECSS-E-ST-50-12C(31 July 2008) at http://spacewire.esa.int[7].

It is already used in missions such as the Herschel space telescope launched
in 2007 and the SWIFT space observatory launched in 2004. In the present
context of Simbol-X, SpaceWire cables are used to connect the individual
detector electronics to a common processing board known as the DPDPA. It
is the purpose of the interface controller to provide the low energy detector
of Simbol-X with a SpaceWire interface. In this chapter the SpaceWire
protocol is described in some detail.

4.1 SpaceWire Basics

SpaceWire cables are specially shielded against electromagnetic interference.
Since interference will most likely occur equally on all wires in the cable,
only the difference between two signals is used. Such differential signaling
is also standard in most serial communication protocols including the USB,
Firewire, or Ethernet, although there are major differences in the electrical
details. For SpaceWire, low voltage differential signaling (LVDS) is used,
where the information is carried over the wire via a current that produces a
low voltage signal across a 100 Ω resistor at the receiver. These electromag-
netic interference counter measures result in a very reliable connection even
at 60 Mbit/s as used in the laboratory.

41

http://spacewire.esa.int

42 CHAPTER 4. THE SPACEWIRE PROTOCOL

1

Din+

2

Sin+

3

Inner
shield

4

Sout-

5

Dout-

6

Din-

7

Sin-

8

Sout+

9

Dout+

Figure 4.1: SpaceWire connector contact identification viewed from rear of
receptacle or front of plug. (adapted from Fig. 10, page 40 in ECSS-E-ST-
50-12C[7])

SpaceWire is a fairly simple standard with a low footprint on electronic and
energy resources. However, there is little guarantee for data integrity. A
CRC8 field at the end of each packet was chosen for the Simbol-X mission
to be able to detect data corruption and request resending of the data. This
is sufficient for single bit errors.

The SpaceWire protocol also features what is called time-codes. These are
data characters that take priority over normal data characters, and can be
sent over a SpaceWire link at any time. With a relatively simple extension
to the SpaceWire protocol proposed by F. Pinsard and C. Cara[14], time
synchronization via time-codes can be achieved to an accuracy of up to two
clock cycles. Although time-codes are not used at all for Simbol-X, they are
mentioned here for completeness, and may be used in future space missions.

SpaceWire is a packet oriented protocol. A packet can be sent over a link
only one at a time. To allow for smaller packets, SpaceWire encodes end-
of-packet characters efficiently as a 4-bit character, while normal characters
are 10-bit with 8 bits of data. There is no start-of-packet character. The
end of one packet marks the beginning of the next.

4.1.1 Basic Signals and Connectors

A SpaceWire link consists of 9 wires with micro-miniature connectors at
each end. The connector identification is displayed in Figure 4.1.

There is an input and an output signal. The input signal is encoded using
data-strobe, described in section 4.1.3, using a Din and an Sin signal. The
Din and Sin signals are transmitted via LVDS, see section 4.1.2, giving
Din+, Din-, Sin+, and Sin- signals. The same applies to the output signals,
resulting in the signals Dout+, Dout-, Sout+, and Sout-.

4.1. SPACEWIRE BASICS 43

Vin-
0 0

Vin+

1

1.2 V typical

+250 mV to
+400 mV typical

−250 mV to
−400 mV typical

Vin+− Vin-

0 V

+100 mV

−100 mV

Transition
region

Figure 4.2: LVDS signaling levels. The above figure shows the absolute
values of the voltage of the positive line Vin+ and the negative line Vin-
of a differential signal, and their swing around the 1.2 V value. The lower
figure shows the difference between the two. A transition is detected when
the difference is within 100 mV of 0 V. (adapted from Fig 3, page 29 in
ECSS-E-ST-50-12C[7])

4.1.2 Low Voltage Differential Signaling

Low voltage differential signals are used for all signals because of their
high immunity to induced noise. The voltage swing used here is typically
±350 mV, although it can go from 250 to 400 mV, see Figure 4.2.

The transmitter provides a constant 3.5 mA current when there is a 100 Ω
termination resistance on the other end. The receiver must have a high
input impedance, so that most of the current flows through the termination
resistor.

4.1.3 Data Strobe Encoding

For each line there is a data signal D and a strobe signal S. The strobe signal
changes whenever the data signal does not change, as shown in the example
in Figure 4.3. In this way, only transitions need to be detected, resulting
in an increased skew tolerance between the data and strobe signals. In case
needed, the clock is reproduced by the XOR of the D and S signals.

44 CHAPTER 4. THE SPACEWIRE PROTOCOL

Data 0 0 1 1 1 0 1 0 0

D

S

Figure 4.3: Data Strobe (DS) encoding. The strobe signal S changes when-
ever the data signal D does not. (adapted from Fig 5, page 30 in ECSS-E-
ST-50-12C[7])

The robustness of the data-strobe encoding has been tested by instantiating
two cores in a single FPGA. Glitches were then inserted on the FPGA-
internal D and S lines. There are two kinds of glitches that can be tested in
this way. Either there is a bit flip in one of the signals, or there is a bit flip
in both of them. As shown in the following, these errors are handled very
well by the data-strobe encoding.

Let us first consider a bit flip on both lines, the D and the S line.

Data 0 1 0 0 1 0 0 10 1 1 0

D

S

In dashed lines, the original example is shown, the solid line shows the signal
with the glitch on both lines. This results in a signal that is still a valid
data-strobe encoded signal, but with one bit flipped.

In general, if both the D and S lines flip, the transition will be on the other
line, so the signal will remain valid, though with one bit flipped. One-bit
flips are easily detected via the parity bit, described later in section 4.1.5.

The second kind of error is where only one of the lines flips. Let us consider
the example where the D line flips one bit. This is the same situation as
when the skew between the data and strobe signals becomes too large.

Data 0 1 0 0 1 0 0 X 1 1 0

D

S

For a successful decoding it is essential to determine the order of transitions.
The SpaceWire core must determine which signal transition is occurring
before the other. In the extreme case discussed here, two transitions are
occurring at the same time, with differences introduced by jitter inside the

4.1. SPACEWIRE BASICS 45

FPGA. The SpaceWire receiver must tolerate this and can randomly choose
which is first.

The dashed signal shows the original data signal in the figure above. Should
the actual transition occur after the transition in the strobe signal, or be
detected as such, then the bit marked ’X’ will be a 0. This error is once
again detectable via the parity bit.

Should the actual transition occur slightly before the transition in the strobe
signal, then ’X’ is 1, and there is no error.

This epitomizes the extraordinary skew and jitter tolerance that the data-
strobe encoding brings to the SpaceWire protocol.

4.1.4 Characters and Control Codes

The SpaceWire protocol is a packet oriented protocol, and it uses a spe-
cial character encoding for marking the end-of-packet or error-end-of-packet
characters.

A character consists of either 4 or 10 bits. The first two bits in a character
are always the parity bit and the control flag. The parity bit is used to detect
single bit errors, and it is set as described in Section 4.1.5. The control flag
determines whether the character is a data character or a control character.

When the control flag is 0, then the character is a data character, and the
next 8 bits contain the data, LSB first.

If the control flag is 1, then the character is a control character, and the
next 2 bits indicate whether it is an FCT (flow control token), EOP (end of
packet), EEP (error end of packet), or ESC (escape) character.

In addition, the SpaceWire protocol recognizes combinations of characters,
called control codes. There are two control codes, NULLs and Time-Codes.
A NULL is also called a NULL-character. It is formed from an ESC character
followed by an FCT. A time code is formed from an ESC, followed by a data
character.

Figure 4.4 illustrates the individual character types and control codes. Data
characters, EOP, and EEP characters are also called normal characters, or
N-Chars. ESC, FCT, NULL-characters, and time-codes are also called link
characters, or L-Chars.

4.1.5 The Parity Bit

The purpose of the parity bit is to detect simple 1-bit errors. It is set such
that the total number of 1’s in the covered field is always odd.

46 CHAPTER 4. THE SPACEWIRE PROTOCOL

Data characters
P 0 X0 X1 X2 X3 X4 X5 X6 X7

LSB MSB

Control flag

Parity bit

Control characters
P 1 0 0 FCT Flow control token
P 1 0 1 EOP Normal end of packet
P 1 1 0 EEP Error end of packet
P 1 1 1 ESC Escape

Control codes
P 1 1 1 0 1 0 0 NULL
P 1 1 1 1 0 T0 T1 T2 T3 T4 T5 T6 T7 Time code

Figure 4.4: Data characters, control characters, the null character, and time
codes. (adapted from Fig 6, page 31 in ECSS-E-ST-50-12C[7])

P 0 X X X X X X X X P 1 0 1 P 1 0 0

Data Character EOP FCT

Parity Coverage Parity Coverage

Figure 4.5: Parity coverage. As an example, the sequence of a data character
followed by an EOP and an FCT is shown. The parity bits are set such that
the number of 1’s in the parity coverage is odd. The figure illustrates that the
parity coverage includes the end of the previous character and the beginning
of the current character. (adapted from Fig 17, page 53 in ECSS-E-ST-50-
12C[7])

The parity bit covers the following bits: itself, the control flag, and the last 8
bits of the previous data character or the last 2 bits if the previous character
was a control character. Figure 4.5 illustrates the coverage of the parity bit.

4.1.6 Packets

A packet is formed by one or more data characters followed by either EOP
or EEP. An EEP indicates the end of a packet in which an error occurred.

Characters from two different packets may not be interleaved. Only FCTs,
NULLs, and Time-Codes can be interleaved with a packet. The data char-
acter immediately following an EOP or EEP is the first character of the next

4.2. ESTABLISHING A SPACEWIRE LINK 47

ErrorReset
No Tx, no Rx

Run
Send Time-

Codes/FCTs/N-
Chars/NULLs

ErrorWait
Enable Rx

Connecting
Send

FCTs/NULLs
Ready

Started
Enable Tx

Send NULLs

Reset

After 6.4µs

After
12.8 µs

If
[Link Enabled

]

gotNULL

gotFCT

RxErr OR
gotFCT OR
gotN-Char OR
gotTime-Code

RxErr OR
gotFCT OR
gotN-Char OR
gotTime-Code

RxErr OR
gotFCT OR
gotN-Char OR
gotTime-Code OR
after 12.8 µs

RxErr OR
gotN-Char OR
gotTime-Code OR
after 12.8 µs

RxErr OR
CreditError OR
If [Link Disabled]

Figure 4.6: SpaceWire Link Interface State Machine. In normal operation,
the link interface follows the thick arrows into the Run state. On error
it transitions back to the ErrorReset state, from where it will restart the
link establishing sequence until it reaches the Run state. See section 4.2 for
details. (adapted from Fig 20, page 60 in ECSS-E-ST-50-12C[7])

packet. When an error occurs, the packet needs to be closed either with an
EOP or EEP before sending new data characters.

In a network setting, the first data characters are to be interpreted as desti-
nation addresses, and thus stripped one after the next as the packet passes
through the network.

4.2 Establishing a SpaceWire Link

Figure 4.6 displays a typical state machine of a SpaceWire link interface
component such as the one used in this work. The following sequence of
events lead to a successful SpaceWire link.

48 CHAPTER 4. THE SPACEWIRE PROTOCOL

1. The link interface component starts out in the ErrorReset state. This
state is also entered on every reset of the component, and whenever
an error in the transmission occurs.

In the ErrorReset state both the receiver Rx and the transmitter Tx
are disabled.

2. After 6.4 µs the link component will transition to the ErrorWait state
where the receiver is enabled. The component will stay in this state
for 12.8 µs, and then enter the Ready state.

These timeouts are used for ensuring a successful “exchange of silence”,
explained in section 4.2.3, in case an error occurred.

3. The specific SpaceWire link component used in this work publishes
multiple input signals to give a fine-grained control on the link connect-
ing behavior. It may be configured as “link enabled”, “link disabled”
or “automatic”. In the simplest case, the component is enabled and
will simply transition to the Started state and start the connection.

Alternatively, the link may be disabled. In this case, the component
will stay in the Ready state until the configuration changes or an error
occurrs.

In automatic mode, the link will only transition to the Started state
when it detects that a connection attempt is made by the other side of
the link. This is the case when the receiver detects a NULL-character.

Automatic mode is what is used in the interface controller. That way
it is up to the DPDPA in the rest of the spacecraft to enable or disable
the nominal interface controller or the redundant one.

4. In the Started state, the link interface component enables the transmit-
ter and sends out a continuous stream of NULL-characters to inform
the other side of its existence.

5. Each side of the link can now detect a NULL-character from the op-
posite side. This tells each link component that the link is working
and they can each enter the Connecting state.

6. Now the link is essentially established, and the two ends of the link
inform each other how much room they have for receiving characters.
This is done via flow control tokens (FCT) as described in the next
section.

7. Upon detection of at least one FCT, each side can finally enter the
Run state for normal operation.

4.2. ESTABLISHING A SPACEWIRE LINK 49

4.2.1 Flow Control

The SpaceWire protocol ensures proper flow control of data characters. That
is, each side of a SpaceWire link needs to keep track of how much space the
other side has left for receiving characters. The maximum is to have room
for 56 bytes of data, the minimum is 8 bytes. The maximum ensures that a
6-bit number is sufficient for keeping track. The minimum comes from the
fact that each sending of an FCT implies that the sending side has room for
receiving 8 more bytes. In this way, each side of the link knows exactly how
many normal characters it is allowed to send across the link before receiving
another FCT.

A CreditError occurrs when either too many normal characters or more than
7 FCTs corresponding to the maximum of 56 bytes have been received. If a
CreditError occurrs, the link needs to be re-established.

4.2.2 The Run State

The Run state is the state of normal operation. In this state all kinds
of characters can be sent from NULL-characters, normal characters, flow
control tokens, and times-codes. These characters are sent with different
priorities to ensure a smooth operation, as follows.

• NULL-characters are sent with the lowest priority. They are always
sent if nothing else is pending in order to keep the link active and
prevent the other side from detecting an exchange of silence.

• Of slightly higher priority are normal characters. These represent the
data requested by the application. If the application indicates one
should be sent, the link component waits for the current character to
finish being sent and then immediately afterwards sends the normal
data character.

• The second highest priority goes to flow control tokens. These must
have a higher priority than normal characters, so that the receiving
line is not drowned out by the sending line.

• In the Run state, time-codes are sent with the highest priority. They
are not buffered and so do not need any form of flow control.

In any case, before sending a character, the link component waits for the
current character to finish.

Initially, the clock frequency on the link must be 10 ± 1 MHz. During the
Run state, the component may change to a different speed, where the lowest

50 CHAPTER 4. THE SPACEWIRE PROTOCOL

is 2 MHz, and the highest is determined by skew, jitter, and the capabilities
of the two ends of the link. The minimum speed is set since it counts
as a disconnect error when neither the data nor the strobe signal changes
within 850 ns. The SpaceWire core used in this work adjusts the clock speed
automatically once in the Run state.

4.2.3 Link-Level Error Notification: The Exchange of Silence

There are three kinds of link-level errors that result in an “exchange of
silence”, although by some countings these are five errors:

• An RxError occurrs when either a disconnect was detected, a parity
error occurred, or an escape error occurred.

– A disconnect error is detected when there is a transition on nei-
ther the data nor the strobe signal for at least 850 ns.

– A parity error occurrs when the number of bits in the parity
coverage is not odd.

– An escape error occurrs whenever an ESC character is followed
by an invalid character, that is, it is neither followed by an FCT
resulting in a NULL nor by a data character resulting in a time-
code.

• A character sequence error occurrs whenever an unexpected character
is received during link initialization, for instance, when an FCT is
received before a NULL has been sent.

• Also, CreditErrors as described in the flow control section 4.2.1 belong
to the category of link level errors.

The two ends of the link notify each other of such link errors by an “ex-
change of silence”. The side of the link detecting the error transitions to the
ErrorReset state, thus causing a disconnect error on the other end of the
link. Both sides then cycle through the link initialization procedure, during
the first 19.2 µs of which no signal is transmitted.

Should one end have not correctly detected the disconnect, then the other
side will cycle between the ErrorReset and ErrorWait states during which
it transmits no signal. This exchange of silence ensures that a disconnect
error is certainly detected on both ends.

4.3. APPLICATION SIDE INTERFACE 51

Table 4.1: Transmitter and receiver host data interface encoding. (adapted
from Table 7, page 54 in ECSS-E-ST-50-12C[7])

Control flag Data bits (MSB . . . LSB) Meaning
0 xxxxxxxx 8-bit data
1 xxxxxxx0 (use 00000000) EOP
1 xxxxxxx1 (use 00000001) EEP

4.3 Application Side Interface

Although the standard does not mandate that implementations of the Space-
Wire protocol follow the same application side interface specification, the
recommendation summarized here is followed by at least two SpaceWire
cores, including the one used for Simbol-X.

Only normal characters (data, EOP, and EEP characters) are exchanged
with the application. Such characters between the link interface and the
host application contain 9 bits. The first bit is the control flag, as indicated
in Table 4.1. When the control flag is 1, the bits marked ’x’ are ignored,
but should be set to 0. If the control flag is 0, the other 8 bits contain the
data. Also, link-level errors are reported via at least one signal, RxError.

4.4 Conclusion

SpaceWire is an easy to use high-speed point-to-point serial communication
link with a low resource usage. A SpaceWire VHDL component synthesized
completely inside an FPGA is quick to setup, allowing the developer to
concentrate on other issues.

SpaceWire has been explicitly designed to be used in space applications,
featuring very good immunity to electromagnetic interference. Speeds of
2 Mbit/s up to 400 Mbit/s are possible.

The overhead introduced by the SpaceWire protocol is 2 bits per byte. At
a signaling frequency of 20 MHz as envisioned for Simbol-X, this allows a
maximum data rate of 2 MB/s, well above the expected maximum of about
half a megabyte per second.

As a standard, the SpaceWire protocol provides for seamless integration of
satellite components developed around the world. The fairly clean appli-
cation side interface allows a SpaceWire VHDL core to be reused in many
components as well as in future missions.

52 CHAPTER 4. THE SPACEWIRE PROTOCOL

Chapter 5

The SpaceWire-to-USB
Converter SWitty

In this chapter SWitty is described. SWitty is a SpaceWire-to-USB con-
verter to easily connect the interface controller or any other SpaceWire cable
to a computer. The main component is a VHDL USB core that has a much
more general application as a cheap method for transferring large amounts
of data between hardware and software.

Before introducing SWitty, a different setup using a custom PCI card as a
SpaceWire port to the computer shall be described. The problems associated
with that setup is what gave rise to SWitty.

5.1 Test Setup with a SpaceWire PCI Card

For testing, the interface controller has a component to simulate data ex-
pected from the event pre-processor. To test the functioning of the interface

IFC
PCI
card

SpaceWire
IdefX

hard
disk

Windows

fpipe
Ethernet

sshfs, or nfs

Linux

Figure 5.1: Test setup with SpaceWire PCI card. Randomly generated data
from the IFC is transferred via a SpaceWire cable to a PCI card in a Win-
dows computer. A special software, IdefX, is used to save the data to disk,
where it is transferred either via an sshfs or an nfs server to a Linux
computer running the fpipe analysis software.

53

54 CHAPTER 5. THE SPACEWIRE-TO-USB CONVERTER SWITTY

controller, a test setup as shown in Figure 5.1 was used originally, where the
interface controller transfers the simulated data via a SpaceWire cable to a
SpaceWire PCI card in a Windows computer running specialized software
that saves the data to disk. From there the data are sent via Ethernet to a
Linux computer for analysis by the fpipe software.

Unfortunately, this setup has some major drawbacks. Foremost, special care
needs to be taken to avoid data loss and corruption. Data that arrives on the
SpaceWire port of the PCI card gets written into a direct memory access
(DMA) ring buffer that is read and saved to disk by the special-purpose
software IdefX.

The software does this by polling the ring buffer at regular intervals of at
most once every millisecond. Should the software for some reason skip even
a single polling interval, then a buffer overrun can occur where the current
data are overwritten by new data coming in over the SpaceWire.

In theory, data rates of 8 MB/s are supported by the DMA-to-hard disk
system compared to the 5 MB/s that are possible with the SpaceWire link.
In practice, however, tests have shown that even at data rates on the order
of 2 MB/s lead to an occasional buffer overrun.

To reduce the likelihood of buffer overruns, the IdefX software runs at the
highest possible priority. However, overruns cannot be avoided completely
this way when the data is simultaneously exported via either an NFS or
SSH server over Ethernet to the Linux computer. The only workaround is
to throttle the data transmission rate from within the interface controller.

The correct way to solve this would be to include flow control with the DMA
buffer. However, the solution that was chosen for the lab setup completely
sidesteps the SpaceWire PCI card, and makes use of the USB instead, re-
sulting in a few other advantages elaborated on below. The result is that
flow control is active along the entire chain from the interface controller to
the analysis software.

The data loss problem at high transmission speeds is certainly the most
difficult to work around, but there is another issue of usability. There is no
direct way of automatically sending large amounts of data from the computer
over the SpaceWire link to the detector. If, for instance, a new offset map
was to be uploaded, then the experimenter would need to use some program
to generate the offset map, and then he would have no choice but to convert
the result into a file that IdefX can read, and, finally, turn to IdefX to send
it off.

This is not very complicated, yet it adds another annoying and unnecessary
level of complexity that cannot be solved easily with the PCI card and
requires special care from the experimenter.

5.2. SPACEWIRE INTERFACING TELETYPE 55

5.2 SpaceWire interfacing teletype

The solution offered here, called SWitty, is a SpaceWire-to-USB converter
addressing the concerns with the PCI card. It makes use of operating system
dependent interfaces, and should run on any system supporting the USB
and specifically the USB communications device class abstract control model
(USB CDC ACM) as standardized by the USB implementors forum at http:
//www.usb.org.

5.2.1 Software Interface and Features

SWitty is short for SpaceWire interfacing teletype. It is a USB device ad-
hering to the USB CDC ACM standard, on one side, and a SpaceWire port
on the other side. Flow control is built into the standard.

On Linux, the cdc acm driver module creates the device special file /dev/
ttyACM0 when the device is attached on the USB. From the view of the
software application, the device special file is used as an ordinary file, except
that what is written to it is not necessarily what is read from it.

Sending data from the host computer to the detector is as simple as writing
to /dev/ttyACM0.

Receiving data from the detector over the SpaceWire link is as simple as
reading from /dev/ttyACM0.

Other operating systems have different interfaces for SWitty. In this work,
Linux has been used for its rather strong USB debugging facilities and the
fact that the fpipe analysis software runs on it.

The device special file /dev/ttyACM0 must be configured via the command

$ stty -F /dev/ttyACM0 raw -echo -echoe

This disables any interpretation and echoing back of the bytes in the data
stream. It is necessary to run this command on every re-load of the USB
CDC ACM device driver, such as a reboot.

The reason this needs to be run is that, traditionally, teletypes were used as
terminals for users to type in commands. These would be commanded by
specially interpreted characters such as carriage return and new line. For
SWitty these are turned off by the raw option.

Also, the user would ordinarily want to see the result of her typing being
echoed back to the screen of her teletype. A software emulation of this
behavior is still used for the console of every Linux computer, which is why
the echo and echoe options are enabled by default and must be turned off.

http://www.usb.org
http://www.usb.org

56 CHAPTER 5. THE SPACEWIRE-TO-USB CONVERTER SWITTY

Apart from solving the flow control and usability issues of the PCI card,
SWitty inherits some limitations from the USB so that an exact one-to-
one and onto relation between SpaceWire and the USB cannot be achieved.
However, these complications are not very severe.

First, care needs to be taken not to overload the USB by attaching too many
devices to the same root hub. This would result in very slow transmission
speeds. Since most computers come equipped with more than one root hub,
this issue is not much of a concern.

Second, SpaceWire time-codes cannot be sent via SWitty easily. The reason
behind this is due to the USB’s master-slave architecture that introduces
a high latency. However, a partial solution to this problem could be to
exploit start-of-frame markers as sent by the USB every millisecond, and
to publish this as a time-code over SpaceWire. For Simbol-X, a different
time synchronization mechanism is envisioned, so this idea has not been
developed further. It is mentioned here for future reference.

On the other hand, SWitty also offers a few advantages over the Space-
Wire PCI card. The USB is cheap and ubiquitous. All hardware is already
available on most any computer and many FPGA development boards come
equipped with a UTMI, a USB 2.0 interface chip that eases USB develop-
ment.

The standard device class allows SWitty to be used with just about any
operating system supporting the USB communications device class abstract
control model, although tests were done exclusively on Linux.

The driving force behind the development of SWitty, however, comes from
its usability as a generic way to transfer large amounts of data from an FPGA
to a computer and vice versa. The advantage over commercially available
solutions is the increased data rate by a factor of 10-15. Theoretically,
40 MB/s should be possible, although this places extreme demands on the
cable quality, and is only possible if the hardware FPGA design is specially
created for such data rates. In reality, data rates of about 10 MB/s are well
achievable.

5.2.2 The Universal Serial Bus

Starting in the 1990s, the Universal Serial Bus (USB) has been developed by
a collaboration of major computer manufacturers. It is primarily designed to
be used as a plug-and-play desktop peripheral connection standard. While
the details of the USB topology and protocol are discussed in Appendix A,
some basic terms shall be defined in the following points.

5.2. SPACEWIRE INTERFACING TELETYPE 57

Device Host

EP 0

EP 1 OUT

EP 1 IN

EP 2 IN

USB
sub-

system
/dev/ttyACM0

control pipe

bulk pipe

bulk pipe

interrupt pipe

Figure 5.2: In the high-level communication model of the USB, pipes are
multiplexed over the low-level USB cable, so that the USB subsystem of the
operating system essentially talks directly with an endpoint (EP). The ex-
ample here shows the endpoints of a CDC ACM device that is published by
the Linux operating system as a device special file /dev/ttyACM0.

• A USB cable has four wires, two that carry a differential logic signal,
and two as a 5 V power supply.

• Every device on the USB is assigned a unique 7-bit device address.

• The USB distinguishes low-speed, full-speed, and high-speed devices.
A device is first attached as a full-speed device. By initiating a de-
vice chirp, it can advertise itself as a high-speed device when first
connected.

• A device consists of a set of endpoints. An endpoint is viewed as a
FIFO that either accepts or sends data. It is identified by the endpoint
address and the direction of data flow.

• The high-level communication with an endpoint is via a pipe. The USB
subsystem of the operating system multiplexes the different pipes over
the USB cable, so that a specific driver does not need to take care of
the low-level USB protocol, see Figure 5.2.

• A pipe is unidirectional. That is, an OUT endpoint can only accept
data from of the host, and an IN endpoint can only send data from
the device to the host.

Only the pipe associated with endpoint zero is bidirectional. It is used
for control transfers.

• Data is exchanged over a pipe via transactions initiated by the host.
The device must wait for the host before sending any data. Due to
this host-centricism, USB latency is on the order of milliseconds.

• There are four kinds of pipes: control pipes, bulk pipes, interrupt
pipes, and isochronous pipes. In this work only control pipes and bulk

58 CHAPTER 5. THE SPACEWIRE-TO-USB CONVERTER SWITTY

pipes are used. Control pipes are used for determining the type of
device. Bulk pipes are used to transfer large amounts of data reliably.

• The bulk transfer protocol includes flow control and data integrity
checking.

• The USB employs the notion of standardized device classes. The most
common are the USB mass storage device class for memory sticks and
the human interface device class for mice and keyboards. In this work,
the USB communications device class abstract control model (USB
CDC ACM) is used to emulate a serial-to-USB converter.

• On Linux, the software interface for a USB CDC ACM device, and by
extension for SWitty, is very simple. Sending data to the device is done
by writing to the device special file /dev/ttyACM0, while receiving is
done by reading from that file.

• Theoretically, speeds up to 40 MB/s are possible, but interference and
electronics design limit the practical rate to about 10 MB/s.

5.2.3 SWitty Design

The original implementation of the USB communications class VHDL com-
ponent available at [9] is only capable of USB 1.1 speeds. That original has
been heavily changed in this work to allow for USB 2.0 high-speed transac-
tions. Figure 5.3 shows a schematic of SWitty. The components fulfill the
following tasks.

• The component serswi connects the SpaceWire component on the left
with the USB system on the right.

• The component usb data implements the USB CDC ACM data inter-
face. It contains the bulk IN and bulk OUT endpoints used for the
data transmission.

The bulk IN endpoint is essentially a 512-byte FIFO with some control
logic. The USB specification mandates that a bulk endpoint has a size
of 512 bytes.

The bulk OUT endpoint is implemented as a 1024-byte memory. A
FIFO cannot be used, since a data packet needs to be re-sent should
an error occur in the transmission. For efficiency reasons, the memory
is twice as large as necessary. This allows another packet to be saved
in memory while the first packet is being transmitted.

5.2. SPACEWIRE INTERFACING TELETYPE 59

SWitty

SpaceWire

Core

UTMI

PHY

usb

trans-

action

usb control

usb data

usb notify

ser-

swi

usb
init

Din

Sin

Dout

Sout

D+
D-

USB
cable

Figure 5.3: This diagram shows a schematic of SWitty. At the bottom right
are the USB cable signals drawn connected to the UTMI. The UTMI is
connected with the component usb transaction, which handles all aspects
of a USB transaction. The UTMI and usb transaction are controlled by
usb init, which monitors the USB D+ and D- lines for reset signaling. The
components usb control, usb data, and usb notify contain the endpoints.
usb serswi is a serial-to-SpaceWire converter to connect the USB system
with the SpaceWire core.

• The usb control component is the implementation of endpoint zero.
Its main purpose is to inform the host that SWitty is a USB CDC
ACM device. This is done by transmitting device and configuration
descriptors when the device is first attached on the USB.

• The usb notify component implements an interrupt IN endpoint as
mandated by the CDC ACM device class. As the endpoint is not
used for SWitty, it just sets some constants for usb transaction that
result in no data being sent whenever the host sends a request to it.

• The component usb transaction checks for the correct device ad-
dress, multiplexes host requests to the correct endpoint, checks the
data integrity, and sends handshake packets at the end of a trans-
action as requested by endpoints. In short, it provides a convenient
transaction-oriented interface for endpoints, taking care of the indi-
vidual packet details.

• The UTMI chip provides the low-level electrical interface for the USB
cable lines. Its interface is described in the appendix in section A.1.3.

60 CHAPTER 5. THE SPACEWIRE-TO-USB CONVERTER SWITTY

Table 5.1: SpaceWire encoding over 8-bit byte stream.

Byte Sequence Interpretation SpaceWire Character
0x00 0x00 treated as single 0x00
0x00 0x01 EOP "100000000"
0x00 0x02 EEP "100000001"
0x00 0xff null data character "000000000"
0x00 others disallowed, signifies error "100000001"

others data byte with given value "0XXXXXXXX"

• Finally, the usb init component monitors the USB cable through the
UTMI for resets by the host, and initiates the device chirp to advertise
itself as a high-speed device.

5.2.4 SpaceWire Character 8-bit Encoding

Although a SpaceWire data character carries 8-bits of arbitrary data, two
additional characters, the EOP and the EEP need to be escaped before they
can be sent over the 8-bit data stream of the USB.

The encoding is accomplished by designating the character 0x00 as the es-
cape character in the 8-bit byte stream. Any character immediately follow-
ing the escape character is specially interpreted according to the rules in
Table 5.1. The EOP and EEP characters are encoded as the escaped 0x01
and 0x02, respectively. As the data byte consisting of all zeros is the escape
character, it, too must be escaped. It is encoded as the escaped 0xff. Other
escaped bytes signify an error. They are currently treated as an EEP, even
though technically the EEP should be issued only at the next EOP or EEP.
Non-escaped characters are data characters in the 9-bit SpaceWire repre-
sentation.

The escaped escape character collapses to a single escape character. This
provides for simpler and more robust decoding. To see this, imagine we had
encoded the null data character as "0x00 0x00", that is, as two consecutive
escape characters. Now, consider the following snippet from a byte stream:

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x34 0x67

In order to decode the byte 0x01 correctly we would need to know whether
the preceding 0x00 was meant to escape the 0x01, or whether it was to be
interpreted as a data character of all zeros in its own right. For the given
byte sequence snippet this cannot be determined without careful tracking of
the preceding history, while for the actual encoding scheme used it is clear

5.3. CONCLUSION 61

that this sequence decodes to the three SpaceWire characters "EOP 0x34
0x67".

5.3 Conclusion

SWitty is a SpaceWire-to-USB converter with a simple and elegant software
interface on Linux. Although a one-to-one and onto relation cannot be
achieved with the USB, SWitty solves all problems and annoyances that
occurred with a custom SpaceWire PCI card.

Using a standard USB device class, SWitty should be able to be used with
most any computer operating system that supports the USB, although only
Linux has been used thus far. The software interface differs between oper-
ating systems to accommodate for their respective philosophies. On Linux,
sending and receiving is achieved by simply writing and reading the device
special file /dev/ttyACM0.

Although SWitty was introduced to solve the inconveniences with the Space-
Wire PCI card, the core USB component resulting from that has a much
more general use as a way to transfer large amounts of data between soft-
ware and hardware. It is this general applicability that motivates its further
development.

62 CHAPTER 5. THE SPACEWIRE-TO-USB CONVERTER SWITTY

Conclusion and Outlook

The development of the interface controller for the low energy detector of
Simbol-X has resulted in a simple and highly extensible design. It has been
shown with various test setups that the interface controller and SpaceWire
link are capable of easily fulfilling the requirements for the detector connec-
tion with the telemetry system.

The SpaceWire protocol has been found to be extremely reliable and suited
for space applications. It is already used in recent satellite missions pro-
viding them with a fast, reliable and standardized communication protocol
as described in this work. Although financial problems have prevented the
start of phase B for Simbol-X, the emerging SpaceWire protocol will be
used in many future space missions such as the High Timing Resolution
Spectrometer onboard the planned International X-ray Observatory (IXO).

The SpaceWire-to-USB converter that is called SWitty and was created as
part of this work has greatly facilitated testing the interface controller. As
a general method for cheaply transferring large amounts of data between
hardware and software, the main USB component of SWitty is planned to
be used for testing other components of the detector electronics, in particular
the analog-to-digital converter that digitalizes the raw pixel values from the
detector matrix.

In the coming months it is planned to integrate the low energy and high
energy detectors originally foreseen for Simbol-X in the science verification
model being setup in Tübingen. The interface controller will play a major
role in that effort. It will be interesting to test the interface controller and
SpaceWire connections in context and to gather the performance character-
istics of the combined high and low energy detectors.

63

64 CONCLUSION AND OUTLOOK

Bibliography

[1] B. W. Carroll and D. A. Ostlie. An Introduction to Modern Astro-
physics. Addison-Wesley Publishing Company, Inc., 1996.

[2] D. Clowe, M. Bradač, A. H. Gonzalez, M. Markevitch, S. W. Randall,
C. Jones, and D. Zaritsky. A Direct Empirical Proof of the Existence
of Dark Matter. The Astrophysical Journal Letters, 648:L109–L113,
September 2006.

[3] S. Corbel. GRS1915, November 2009. http://irfu.cea.fr/Sap/
Phys/Sap/Actualites/CORBEL/corbel_gb.shtml.

[4] F. Cordero. Simbol-X Detector Payload SpaceWire Utilisation Require-
ments; SX-SP-1-21-CESR; Draft Edition 2, Revision 0, 22/10/2009,
October 2009.

[5] Intel Corporation. USB 2.0 Transceiver Macrocell Interface (UTMI)
Specification, March 2001. http://www.intel.com/technology/usb/
download/2_0_xcvr_macrocell_1_05.pdf.

[6] NASA/CXC/CfA/ R.Kraft et al. (X-ray); MPIfR/ESO/APEX/
A.Weiss et al. (Submillimeter); ESO/WFI (Optical). Centaurus A,
November 2009. http://chandra.harvard.edu/photo/2009/cena/.

[7] European Cooperation for Space Standardization. SpaceWire –
links, nodes, routers and networks, July 2008. ECSS-E-ST-50-
12C, http://www.ecss.nl/forums/ecss/_templates/default.
htm?target=http://www.ecss.nl/forums/ecss/dispatch.cgi/
standards/docProfile/100302/d20060808084754/No/t100302.htm.

[8] USB Implementors Forum. Universal Serial Bus Specification, April
2000. http://www.usb.org/developers/docs/usb_20_052709.zip.

[9] Jori. USB data transfer in VHDL, April 2009. http://www.xs4all.
nl/~rjoris/fpga/usb.html.

[10] NASA/CXC/SAO. Chandra image of the Crab, November 2009. http:
//chandra.harvard.edu/photo/2008/crab/.

65

http://irfu.cea.fr/Sap/Phys/Sap/Actualites/CORBEL/corbel_gb.shtml
http://irfu.cea.fr/Sap/Phys/Sap/Actualites/CORBEL/corbel_gb.shtml
http://www.intel.com/technology/usb/download/2_0_xcvr_macrocell_1_05.pdf
http://www.intel.com/technology/usb/download/2_0_xcvr_macrocell_1_05.pdf
http://chandra.harvard.edu/photo/2009/cena/
http://www.ecss.nl/forums/ecss/_templates/default.htm?target=http://www.ecss.nl/forums/ecss/dispatch.cgi/standards/docProfile/100302/d20060808084754/No/t100302.htm
http://www.ecss.nl/forums/ecss/_templates/default.htm?target=http://www.ecss.nl/forums/ecss/dispatch.cgi/standards/docProfile/100302/d20060808084754/No/t100302.htm
http://www.ecss.nl/forums/ecss/_templates/default.htm?target=http://www.ecss.nl/forums/ecss/dispatch.cgi/standards/docProfile/100302/d20060808084754/No/t100302.htm
http://www.usb.org/developers/docs/usb_20_052709.zip
http://www.xs4all.nl/~rjoris/fpga/usb.html
http://www.xs4all.nl/~rjoris/fpga/usb.html
http://chandra.harvard.edu/photo/2008/crab/
http://chandra.harvard.edu/photo/2008/crab/

66 BIBLIOGRAPHY

[11] NASA/STScI. Hubble Space Telescope Crab mosaic, Novem-
ber 2009. http://hubblesite.org/newscenter/archive/releases/
2005/37/image/a/format/small_web/.

[12] X-ray optics. Curved mirror optics, November 2009. http:
//www.x-ray-optics.de/index.php?option=com_content&view=
article&id=59&Itemid=71&lang=en#Wolter_optics.

[13] J. A. Peacock. Cosmological Physics. Cambridge University Press,
January 1999.

[14] F. Pinsard and C. Cara. High Resolution Time Synchronization
over SpaceWire Links. 1-4244-1488-1/08 c©2008 IEEE, IEEEAC pa-
per#1158, Version 2, Updated 2007:12:07, December 2007.

[15] P. Schneider. Extragalactic Astronomy and Cosmology. Berlin:
Springer, 2006.

http://hubblesite.org/newscenter/archive/releases/2005/37/image/a/format/small_web/
http://hubblesite.org/newscenter/archive/releases/2005/37/image/a/format/small_web/
http://www.x-ray-optics.de/index.php?option=com_content&view=article&id=59&Itemid=71&lang=en#Wolter_optics
http://www.x-ray-optics.de/index.php?option=com_content&view=article&id=59&Itemid=71&lang=en#Wolter_optics
http://www.x-ray-optics.de/index.php?option=com_content&view=article&id=59&Itemid=71&lang=en#Wolter_optics

Appendix A

The Universal Serial Bus

This chapter is about the details of the Universal Serial Bus. It is used in
SWitty, but the resulting component has a much more general application
as a way to transfer large amounts of data between hardware and software.

The chapter is heavily based on the USB 2.0 specification[8]. A more general
introduction is given there. The purpose of this chapter is to give a concise
intermediate introduction to the USB, in particular to those aspects that
are used in SWitty. For the design and usage of the component, see the
chapter on SWitty, chapter 5.

A.1 USB Basics

The Universal Serial Bus (USB) has been developed during the 1990s by a
consortium of hardware manufacturers and software companies, including
Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC, and Philips. Re-
vision 0.7 of the specification was released on November 11, 1994, revision 1.0
on January 15, 1996, revision 1.1 on September 23, 1998, and revision 2.0 on
April 27, 2000. More recently revision 3.0 was made available on November
12, 2008. The topic of this chapter is the USB 2.0 specification[8], as USB 3.0
hardware was not readily available as of this writing, September 2009. It is
now promoted by the USB Implementors Forum at http://www.usb.org,
a non-profit corporation founded by the companies involved in the USB’s
development.

The USB was developed to replace the myriad of incompatible connectors
and differing protocols at the time by a single easy-to-use and safe standard
for connecting peripheral devices to a computer. Apart from featuring plug-
and-play, the USB’s connectors are designed to be easily pluggable. They
are designed such that it is impossible to create an illegal link.

67

http://www.usb.org

68 APPENDIX A. THE UNIVERSAL SERIAL BUS

Host

Roothub

Hub 1

Hub 2

Hub 3

Func

Hub 4

Hub 5

Hub 6 Hub 7

Func

Func

Func Func

Func Func

Tier 1

Tier 2

Tier 3

Tier 4

Tier 5

Tier 6

Tier 7

Figure A.1: This figure shows the USB tiered star topology. Each device is
connected to a hub in the next higher tier. Hubs multiplex the connections
to the port they are attached to. (adapted from Figure 4-1 of the USB 2.0
specification[8])

Initially, the USB supported 12 Mbit/s and 1.5 Mbit/s transfer rates, termed
full-speed and low-speed. The purpose of low-speed devices was to allow for
cheaper and lighter peripherals with thinner cables. With USB 2.0 the need
for higher transfer speeds was addressed by introducing high-speed with a
transfer rate of 480 Mbit/s. Low-speed, full-speed, and high-speed periph-
erals can all be connected with the same cables.

A competing standard is IEEE 1394, termed ”FireWire”. It emerged around
the same time as the USB, but is more expensive and not quite as ubiquitous
as the USB.

In the following, the basic setup and terminology of the USB is explained.

A.1.1 Topology

USB devices are arranged in a tiered star topology as shown in Figure A.1,
where a hub is a device that provides USB ports for additional peripheral
devices, called functions. As shown in the figure, there may be no more than

A.1. USB BASICS 69

7 tiers. The electrical design constrains a USB cable to a maximum length
of 5 m, or 3 m for low-speed devices. The last hub can only be part of a
USB peripheral, so the maximum length that a USB peripheral can be from
the host computer is 30 m. The USB was designed as a desktop peripheral
system, so these constraints were deemed acceptable.

At the top is the root hub inside the host computer. Within a tier, a hub is
the center star for the functions and hubs attached directly to it from the
next tier. Two functions cannot be connected directly or indirectly with
each other. The USB plugs are designed to make such illegal connections
impossible.

A function is downstream of the hub it is connected to, the host is upstream.
The port on a function is called a downstream port or an upstream facing
port. Similarly, the downstream facing port on a hub is called the upstream
port of the link between function and hub. In this view, commands are
generated at the host, flowing downstream towards a function.

A function is viewed as consisting of several endpoints, physically corre-
sponding to a FIFO each. An endpoint may either be an IN or an OUT
endpoint depending on the direction of data flow as seen from the host.
Only the endpoint zero may communicate bidirectionally. All others may
only be IN or OUT. Thus, an IN endpoint can only send data to the host,
while an OUT endpoint receives data from the host.

The USB is designed so that a software running on the host computer is effec-
tively communicating directly with the endpoints in a function. Addressing
the particular function in question is the task of the USB subsystem in-
side the operating system. Conversely, the function is responsible for only
participating in transactions destined for itself.

Upon attachment, each function gets assigned a unique 7-bit address. Before
assignment the function must respond to the null-address. Thus, a maximum
total of 127 functions may be connected to any single root hub.

An endpoint is identified by a 4-bit endpoint number and the direction of
data flow. Endpoint zero is bidirectional. Thus, per function there may be
at most 15 IN and 15 OUT endpoints in addition to endpoint zero.

A set of endpoints is collected into an interface. There may be more than
one interface in a function. More on that later in section A.2.4.

A.1.2 Physical Layer

A USB cable physically consists of the data lines D+ and D-, a ground line,
and a +5 V power line.

70 APPENDIX A. THE UNIVERSAL SERIAL BUS

The two data lines can be in any of four states: SE0, K, J, and SE1. SE0
is short for “single ended zero”, and indicates that there is no link activity.
The “single ended one”, SE1, is not allowed in a high-speed link.

The states K and J represent the logical 1 and 0, where the signal D+ is high
and D- is low for the K state, and vice versa for the J state. Together, D+
and D- provide a single differential signal for data transfer.

Only one side of a USB link can drive the D+ and D- signals at a time.
The protocol defines which end of the link is currently driving, and which
is receiving.

To provide a basic level of error detection and clock synchronization during
transfers, USB data streams employ bit stuffing and NRZI encoding. Packets
are started with 32 sync bits, used to synchronize the receiving clock with
the sender. The end of a USB packet is indicated with a 2-bit end-of-packet
marker. These low-level mechanisms are not the topic of this work, but are
defined in chapters 6 and 7 of the USB 2.0 specification[8].

A.1.3 USB 2.0 Transceiver Macrocell Interface

Intel developed in 2001 the USB 2.0 Transceiver Macrocell Interface, or
UTMI[5] for short. The most important reason being that only few FPGAs
can run at 480 MHz required for high-speed devices. Thus, the most im-
portant task of a chip implementing the UTMI is to convert the high-speed
frequency serial data to 60 MHz parallel data.

To accomplish this, a UTM must revert bit stuffing and NRZI encoding. In
addition to that, a UTM takes care of sync bits and end-of-packet markers,
and allows setting the termination resistors for high-speed and full-speed
operation.

Receiving a packet follows the following logic:

• When the UTM detects a valid sequence of sync bits on the bus, it
raises the signal RXACTIVE.

• When the UTM has successfully decoded and deserialized a byte, it
raises the signal RXVALID, and publishes the data on the bus RXDATA.

• On the next clock cycle the UTM puts the next byte on RXDATA, or
else RXVALID is lowered. The application must react immediately.

• When an end-of-packet marker or an error has been detected, the UTM
pulls RXACTIVE low.

Sending a packet works as follows.

A.1. USB BASICS 71

XcvrSelect

TermSelect

D+/D-
SE0

Chirp K K J K J K J
K J K J SE0 SOF

Device Chirp Host Chirps

High-Speed ModeFull-Speed Mode

Figure A.2: USB High-Speed Detection Handshake. After the reset via an
extended SE0, the device chirp lasts for at least 1 ms, and at most 7 ms.
The host responds with alternating K and J states each lasting at least 40 µs
and at most 60 µs. After six K and J states, the function enables its high-
speed termination resistors. The host drives a SE0 for 100 µs to 500 µs be-
fore entering normal high-speed operation with the first start-of-frame packet
(SOF). (Figure 25 in the UTMI specification [5])

• The application puts the data on the parallel bus TXDATA of the UTM
and raises the signal TXVALID.

• The UTM then sends the sync bits and the data byte, and then raises
the signal TXREADY to inform the application.

• The application must then put the next byte on TXDATA, or lower
TXVALID to indicate that an end-of-packet marker should be sent.

The D+/D- signals are exported with the 2-bit bus LineState.

With the signals XcvrSelect and TermSelect the termination resistors on
the D+/D- lines are chosen to select between high-speed and full-speed op-
eration.

A.1.4 High Speed Detection Handshake

All USB peripherals initially connect as full-speed devices. That is, Xcvr-
Select and TermSelect are set high for full-speed operation. With the
high-speed detection handshake, it is determined if both device and host are
high-speed capable.

The high-speed detection handshake is initiated after a reset. When the
function detects an SE0 on the D+/D- lines for at least 3 ms, then this indi-
cates a reset, and the function initiates the high-speed detection handshake,
as shown in Figure A.2.

72 APPENDIX A. THE UNIVERSAL SERIAL BUS

To advertise itself as a high-speed capable device, the function drives a K
state on the D+/D- lines for between 1 ms and 7 ms. For this, the transceiver
must be set to high-speed mode by putting XcvrSelect low. The high-
speed signaling level is lower than that of full-speed, as schematically shown
in Figure A.2. This is called the device chirp, and it is below the detection
threshold of full- and low-speed only hubs.

If the hub is high-speed capable, it responds with the host chirp by driving
alternating K and J states. When the function has detected six K’s and J’s,
it switches to high-speed termination resistors by pulling TermSelect low
on the UTMI. Now high-speed operation is enabled. The hub may drive a
few more K and J chirps, and then drive SE0 for a short time to indicate
the end of the high-speed detection handshake.

The device is prevented from detecting a reset by the continuous sending of
start-of-frame (SOF) packets as discussed below in section A.2.2.

A.2 USB Communication Protocol

While the last section was mostly concerned with the electrical level of the
USB, this section explains how the logical interface works by defining what
a packets are and how they are exchanged. It is essential to keep in mind
that the USB is a host centric protocol. That is, all transfers are initiated
by the host.

A.2.1 Packets

A USB packet is started with a sequence of sync bits, either 8 bits long for
full-speed communication, or 32 bits for high-speed. It is ended with a 2-bit
end-of-packet marker. These are identified and stripped by the UTMI, and
will thus be ignored in the following discussion.

The first bit transmitted via the UTMI is the packet identification byte, the
PID. Possible values for the four low bits are shown in Table A.1. The high
bits are set to the bitwise complement of the low bits, e.g.

p3 p2 p1 p0 p3 p2 p1 p0

If the received PID is not mirrored in the high bits, then this indicates an
error and the packet must be ignored.

The PID decides which of the following three types of packet is being sent.

A.2. USB COMMUNICATION PROTOCOL 73

Table A.1: Lower PID bits. The upper PID bits are the bitwise complements,
as described in the text. Only those shown are needed for a USB 2.0 function.
The complete list of PID types is in Table 8-1 of the USB 2.0 specification[8].
It includes two more data PIDs for isochronous transfers, three more special
PIDs for hubs, and one reserved for future use.

Type PID Value Description
Token OUT 0001 Initiates OUT transaction

IN 1001 Initiates IN transaction
SOF 0101 Start-Of-Frame
SETUP 1101 Initiates OUT transaction on control pipe

Data DATA0 0011 Data packet with toggle bit 0
DATA1 1011 Data packet with toggle bit 1

Handshake ACK 0010 Acknowledge error-free delivery
NAK 1010 Temporarily cannot receive or accept data
STALL 1110 Endpoint requires host interaction
NYET 0110 Endpoint is not yet ready

Special PING 0100 Check if bulk OUT endpoint is ready to
accept data

• Token packets other than SOF have the following four fields for a total
of three bytes, where the CRC5 field covers only the address and the
endpoint number fields.

PID
(8 bits)

Address
(7 bits)

Endpoint no.
(4 bits)

CRC5
(5 bits)

The CRC is checked by calculating the residual of the last two bytes.

• Data packets have the following form with the CRC16 covering the
data bytes but not the PID.

PID
(8 bits)

· · ·
(8 bits each)

CRC16
(16 bits)

• Finally, handshake packets and the PING special packet consist of only
the PID.

PID
(8 bits)

In this discussion the sync bits and the end-of-packet markers have been left
out, since the UTMI does not pass these on.

74 APPENDIX A. THE UNIVERSAL SERIAL BUS

A.2.2 USB Frames and Microframes

The host must send Start-Of-Frame (SOF) packets at the start of every
frame for full-speed devices, or at the start of every microframe for high-
speed devices.

A frame lasts 1 millisecond, a microframe 125 microseconds.

SOF packets have the following formatting, where the time is an 11-bit
number that is incremented at the start of every frame.

PID
(8 bits)

Time
(11 bits)

CRC5
(5 bits)

For high-speed devices, 8 identical SOF packets are sent per frame, each
indicating the start of a microframe.

SOF packets serve two purposes. For one, it insures link activity, so the
function does not suspend or reset. Additionally, the SOF can be used as a
timing source for the function, when the function, for example, operates as
an audio device.

In the present context, SOF packets are ignored, but could be used to send
a time character over the SpaceWire link.1

A.2.3 Transactions and Transfer Types

Transferring data between the function and the host is done via transactions
on the USB. A transaction most generally consists of the exchange of 3
packets, a token packet, a data packet, and a handshake packet, as shown
below.

Token Data Handshake

The USB is a host-centric protocol. Only the host can send token packets
and thus initiate a transaction. The PID of the token packet identifies the
type and destination of the transaction as per Table A.1.

For OUT and SETUP transactions, the data packet is sent by the host to
the function. For IN transactions, the function needs to respond by sending
a data packet to the host.

The handshake packet is sent by that end of the link that did not send the
data packet. It is used to acknowledge the success of a transaction.

1SOF packets and Frames are more closely described in section 8.4.3 of the USB 2.0
specification[8].

A.2. USB COMMUNICATION PROTOCOL 75

The USB distinguishes four types of transfers. These are control transfers,
bulk transfers, interrupt transfers, and isochronous transfers. A transfer of
data consists of one or more transactions.

• Control transfers are associated with endpoint zero. This type of
transfer is the only one that is bidirectional. It is used for configuring
and enumerating a device.

• Bulk transfers feature guaranteed data delivery. Together with control
transfers they are the main topic of this chapter. Bulk transfers are
generally used in mass storage devices. Data rates up to 40 MB/s can
be achieved with this kind of transfer.

• Interrupt transfers are used to deliver data reliably with low latency, as
is desirable for human interface devices such as a mouse or keyboard.
Interrupt transfers can sustain a maximum data rate of 24 MB/s.

• Isochronous transfers guarantee bandwidth negotiated at attach time,
but there is no guarantee of data delivery. The handshake packet is
not part of an isochronous transfer. Isochronous transfers are useful
for streaming audio or video where the timely arrival of the data is
more important than its integrity.

The abstract communication of the host with an endpoint is called a pipe.
A pipe may use any of the transfer methods described, resulting in a control
pipe, a bulk pipe, an interrupt pipe, or an isochronous pipe.

A.2.4 Device Descriptors

A device is described by descriptors, defined in section 9.6 of the USB 2.0
specification. The hierarchy of descriptors is depicted in Figure A.3. At the
top is the device descriptor. It includes general information about the device
such as the vendor and product id, as well as the number of configuration
descriptors.

A device may have one or more configuration descriptors, although typically
there is only one. It is the host that chooses the configuration. The descrip-
tor informs the host of the number of interfaces within the configuration and
the maximum amount of power the device is going to drain from the bus.

A configuration may have multiple interfaces. An interface is a set of end-
points acting together to achieve a function. The interface descriptor in-
cludes the interface class id and the number of endpoints in this interface.
The interface class is used by the host operating system to load the device
driver for that specific class.

76 APPENDIX A. THE UNIVERSAL SERIAL BUS

Device Descriptor

Configuration 1

Interface 1

EP 1 OUT

EP 1 IN

Interface 2

EP 2 IN

Configuration 2

Interface 1

EP 1 OUT

EP 2 OUT

Interface 2

EP 1 IN

EP 2 IN

Figure A.3: A device is described by exactly one device descriptor. One
out of many configurations can be chosen. Each configuration can consist
of multiple interfaces. An endpoint is abbreviated as EP. It is identified by
its endpoint number and the direction of data flow as seen from the host.
Each interface can have as many endpoints as desired. Endpoint zero and
functional descriptors are not shown.

Normally, a device driver in the host operating system binds to the endpoints
of a single interface. Exceptions to this rule must specify the device class
in the device descriptor. The communications device class for modems and
Ethernet adapters used in this work is such an exception. In that case the
endpoints from two interfaces act together as a single interface.

To describe an interface more fully, the USB allows for functional descrip-
tors. They are specific to the interface class and, for the purposes of this
work, are filled with some default values.

Finally, an endpoint descriptor specifies for each endpoint the address and
direction, the transfer type, and the maximum packet size. The endpoint
address and direction are encoded in a single byte, where the lower 4 bits
are the endpoint address, and the highest bit is the direction, 0 for OUT and
1 for IN. The other bits must be set to 0. The transfer type of an endpoint
is specified in the lowest 2 bits of a byte, as shown in the following table.

A.2. USB COMMUNICATION PROTOCOL 77

00 = Control
01 = Isochronous
10 = Bulk
11 = Interrupt

The other bits are reserved for isochronous endpoints, and must otherwise
be set to zero.

The configuration, interface, functional, and endpoint descriptors are all
transmitted together when the configuration descriptor is requested. The
total length of these descriptors is specified in the configuration descriptor.

A.2.5 Control Transfers

A control transfer generally occurs in three stages, each stage forming a
3-packet transaction as described in section A.2.3.

Setup stage Data stage Status stage

In the setup stage, data is transferred from the host to the endpoint. The
endpoint responds by sending data to the host during the data stage. In the
status stage the host acknowledges the reception of the data.

The data stage may be left out for some setup transfers. During the status
stage the endpoint then transfers data from the function to the host. No
data in the status stage indicates success.

The data packet in the setup stage carries the following information.

bmRequestType
(8 bits)

bRequest
(8 bits)

wValue
(16 bits)

wIndex
(16 bits)

wLength
(16 bits)

The bmRequestType and the bRequest fields determine what actions are
taken by the function, and how the other fields are to be interpreted. Not
all actions need to be implemented by a device. Table A.2 summarizes the
bare minimum that is needed for a function’s endpoint zero.

A.2.6 The usbmon Linux Kernel Module

The Linux kernel, developed by Linus Torvalds starting in 1991 and many
others since, provides within the sysfs pseudo-filesystem the debugfs. It
is mounted at /sys/kernel/debug, and allows kernel modules to export
debugging information of arbitrary formatting to userspace applications.

78 APPENDIX A. THE UNIVERSAL SERIAL BUS

Table A.2: Summary of important setup requests implemented in usb_

control. vhd . The SETUP packet column displays the values of the bm-
RequestType, bRequest, wValue, wIndex, and wLength fields in the setup
stage of a control transfer in hexadecimal notation. The Request column dis-
plays the common name, and the function response is listed in the last col-
umn. The complete list is found in chapter 9 of the USB 2.0 specification[8].

SETUP packet Request Function Response
00 05 00XX 0000 0000 set

address
Set device address to xx. Re-
turn empty status stage.

80 06 0100 0000 ZZZZ get
descriptor

Return up to zzzz bytes of the
device descriptor.

80 06 02YY 0000 ZZZZ get
descriptor

Return up to zzzz bytes of the
configuration descriptor with
index yy.

00 09 00NN 0000 0000 set
configura-

tion

Choose and set the configura-
tion with index nn.

When loaded, the usbmon kernel module creates pseudo-files in /sys/
kernel/debug/usb/usbmon in the most recent kernel version 2.6.31, or one
directory higher on older kernels. The directory listing may look like this:

0s 0u 1s 1t 1u 2s 2t 2u 3s 3t 3u 4s 4t 4u

The numbers in the filenames indicate the root hub number, the letter the
format. The ’0’-files are not corresponding to a root hub, but instead
display information from all root hub.

We are only concerned with ’u’ formatted files. They display the transac-
tions that transfer data over the bus. Each line stands for a transaction.
The first column in a line displays a time in microseconds since an arbitrary
point in the past. The second column tells us whether the host is “submit-
ting” (S) the transaction, or if the host is expecting a “callback” (C) from
the device. The example below shows the traffic between the hub and the
host when a device is first attached.

520006582 S Ci:2:001:0 s a3 00 0000 0001 0004 4 <
520006823 C Ci:2:001:0 0 4 = 00010000
520006856 S Ci:2:001:0 s a3 00 0000 0002 0004 4 <
520006874 C Ci:2:001:0 0 4 = 00010000
520006892 S Ci:2:001:0 s a3 00 0000 0003 0004 4 <
520006909 C Ci:2:001:0 0 4 = 01050100
520007086 S Co:2:001:0 s 23 01 0010 0003 0000 0

A.2. USB COMMUNICATION PROTOCOL 79

520007146 C Co:2:001:0 0 0
520007216 S Ci:2:001:0 s a3 00 0000 0004 0004 4 <
520007233 C Ci:2:001:0 0 4 = 00010000
520108143 S Ii:2:001:1 -115:2048 4 <
520108274 S Ci:2:001:0 s a3 00 0000 0003 0004 4 <
520108315 C Ci:2:001:0 0 4 = 01050000
520108456 S Co:2:001:0 s 23 03 0004 0003 0000 0
520108492 C Co:2:001:0 0 0
520159161 S Ci:2:001:0 s a3 00 0000 0003 0004 4 <
520159404 C Ci:2:001:0 0 4 = 03051000
520210259 S Co:2:001:0 s 23 01 0014 0003 0000 0
520210289 C Co:2:001:0 0 0

The third column consists of four fields delimited by colons. In the first field,
Ci stands for “control IN”, Co for “control OUT”, Bi for “bulk IN”, Bo for
“bulk OUT”. Interrupt transfers are coded with a I, isochronous transfers
with Z, with the direction appended as i for “IN” and o for “OUT”.

The second field in that column is the bus number, the third is the device
address, and the last is the endpoint number. In this case the host is com-
municating with endpoint zero of the hub the device was attached to. The
hub is on bus 2 and has device address 001.

The rest of the line is transaction specific. An ’s’ at the beginning indicates
that this is a setup transaction. The numbers are hexadecimals delimited
by whitespace. They show the words in the setup request as described in
section A.2.5.

The data and status stages of a control transfer are depicted in a line ending
in “<status> <nbytes> = ...”, where <status> is generally 0, <nbytes>
is the number of bytes in the data stage, and the ellipsis stands for the
individual bytes in groups of four.

Not all transactions are printed, only those that transfer data.

Thus, in this sequence you can see the host polling the hub for the status
of the newly attached function until receiving the final status that indicates
the function is a high-speed device. The high-speed detection handshake as
per section A.1.4 is performed during this time.

A.2.7 Enumeration

Once it is established that the device is properly attached and is acting as
a high-speed device, the host starts the enumeration process using a control
pipe with endpoint zero, implemented in the file usb_control.vhd.

80 APPENDIX A. THE UNIVERSAL SERIAL BUS

Before enumeration, the device responds to address 0, and only endpoint
zero is active. During enumeration the host sets the device address, reads
its descriptors, and sets its configuration.

The host first requests the device descriptor, and then resets the device, and
only then begins the actual enumeration process. This is done because some
functions expect this legacy behavior introduced by the Microsoft Windows
operating system. For instance, functions exist that return only 16 of the
18 device descriptor bytes the first time.

The usbmon output looks like the following. The second line is continued on
the third, indicated here by a backslash and indentation.

520210427 S Ci:2:000:0 s 80 06 0100 0000 0040 64 <
520210832 C Ci:2:000:0 0 18 = 12010002 02000040 9afb9afb \

10000000 0001
520210942 S Co:2:001:0 s 23 03 0004 0003 0000 0
520210962 C Co:2:001:0 0 0
520261274 S Ci:2:001:0 s a3 00 0000 0003 0004 4 <
520261500 C Ci:2:001:0 0 4 = 03051000
520312306 S Co:2:001:0 s 23 01 0014 0003 0000 0
520312335 C Co:2:001:0 0 0

In this case the host reads the device descriptor in the first line, and it is
returned by the function in the second. The rest is the reset and re-detection
traffic with the hub.

To set the device address, the host sends a SETUP transaction of type
SET ADDRESS to endpoint zero.

520312361 S Co:2:000:0 s 00 05 0004 0000 0000 0
520312518 C Co:2:000:0 0 0

Here, the address is set to 4. From now on the function may only respond
to transactions going to address 4.

The host then starts reading the descriptors, starting with the device de-
scriptor.

520324323 S Ci:2:004:0 s 80 06 0100 0000 0012 18 <
520324557 C Ci:2:004:0 0 18 = 12010002 02000040 9afb9afb \

10000000 0001

Next, the host requests the configuration descriptor, and, appended to it,
all the interface, functional, and endpoint descriptors.

A.2. USB COMMUNICATION PROTOCOL 81

520324665 S Ci:2:004:0 s 80 06 0200 0000 0009 9 <
520324793 C Ci:2:004:0 0 9 = 09023e00 02010080 7f
520324832 S Ci:2:004:0 s 80 06 0200 0000 003e 62 <
520324921 C Ci:2:004:0 0 62 = 09023e00 02010080 7f090400 \

00010202 01000524 00200104 24020005 24060001

As you can see, the configuration descriptor is requested twice. The first
time only 9 bytes are requested. The third of these (0x3e = 62) specifies
the total number of bytes including all other descriptors, so only the second
time does the host know that it should be requesting 62 bytes.

With the following setup command, the host chooses configuration 1.

520325482 S Co:2:004:0 s 00 09 0001 0000 0000 0
520325638 C Co:2:004:0 0 0

At this stage, the operating system loads the drivers appropriate to the
interfaces of the configuration. In this case, the Linux kernel loads the
cdc acm module, which takes control of the device, and sends some device
class specific commands pertaining to the state of the physical serial line.
Since SWitty does not have a real serial line, these are ignored.

520372346 S Co:2:004:0 s 21 22 0000 0000 0000 0
520372545 C Co:2:004:0 0 0
520372592 S Co:2:004:0 s 21 20 0000 0000 0007 7 = 80250000 \

000008
520372796 C Co:2:004:0 0 7 >

The function is now fully enumerated and ready for use.

For completeness, here is the traffic between the host and the hub upon
device-detach.

530596754 C Ii:2:001:1 0:2048 1 = 08
530596809 S Ii:2:001:1 -115:2048 4 <
530596899 S Ci:2:001:0 s a3 00 0000 0003 0004 4 <
530596934 C Ci:2:001:0 0 4 = 00010100
530597024 S Co:2:001:0 s 23 01 0010 0003 0000 0
530597046 C Co:2:001:0 0 0
530602374 S Ci:2:001:0 s a3 00 0000 0003 0004 4 <
530602400 C Ci:2:001:0 0 4 = 00010000
530628303 S Ci:2:001:0 s a3 00 0000 0003 0004 4 <
530628350 C Ci:2:001:0 0 4 = 00010000
530654326 S Ci:2:001:0 s a3 00 0000 0003 0004 4 <
530654354 C Ci:2:001:0 0 4 = 00010000
530680317 S Ci:2:001:0 s a3 00 0000 0003 0004 4 <
530680345 C Ci:2:001:0 0 4 = 00010000
530706291 S Ci:2:001:0 s a3 00 0000 0003 0004 4 <
530706319 C Ci:2:001:0 0 4 = 00010000

82 APPENDIX A. THE UNIVERSAL SERIAL BUS

A.2.8 Bulk Transfers

Bulk transfers allow the highest data rates of up to 40 MB/s with guaranteed
delivery. As opposed to the other transfer types, bulk transfers have the
lowest priority, so if many devices with isochronous or interrupt transfers
flood the USB, then bulk transfers are slow. Also, if the cable connection is
bad, bulk transfers need to be repeated which also results in a lower than
optimal transmission rate, but it does insure data integrity.

High-speed bulk endpoints must have a FIFO size of 512 bytes.

The PING flow control mechanism is used to save bandwidth on the USB
when sending large data packets to a bulk OUT endpoint. The host sends
a PING token packet to the bulk OUT endpoint until the endpoint has
room for another 512 bytes and responds with an ACK handshake. If the
endpoint does not have room for another 512 bytes, it responds with a
NYET handshake. In this way, the bus is only burdened by an up-to-512-
byte packet when the endpoint has room for it. Multiple sendings of that
packet are reduced to error conditions.2

Bulk transfers guarantee data delivery. To achieve this the USB employs
data toggle synchronization by using the DATA0 and DATA1 PIDs from
Table A.1 in alternating order.

Each side of the USB link keeps a data toggle bit, which is initially set to 0.
The bit is toggled whenever the transaction was successful as seen by that
side of the link. When no errors occur, the two toggle bits on the two sides
of the link are kept in sync.

The sending side will toggle its data toggle bit when it receives a successful
ACK handshake for a transaction. The receiving side toggles its bit when-
ever the data packet is received without error and with the correct toggle
bit.

Receiving a data packet with an unexpected toggle bit implies that an error
occurred during the handshake, and that the current packet is the same as
the last packet. The receiving side must then ignore the packet, yet send
an ACK handshake. The sending side must resend the same packet until it
receives a valid ACK handshake. That way, the toggle bits on the sending
and receiving sides are synchronized.3

2The PING flow control mechanism is described in section 8.5.1 of the USB 2.0
specification[8].

3The toggle mechanism is specified in section 8.6 of the USB 2.0 specification[8].

A.3. USB DEVICE CLASSES 83

A.3 USB Device Classes

The USB employs the notion of standardized device classes. The most
common classes are the mass storage device class used in memory sticks and
the human interface device class for mice and keyboards. Here, the USB
CDC ACM device class is used to emulate a serial device.

A.3.1 Communications Device Class

The USB communications device class was designed for modems and tele-
phone line connectors, and can be used to provide a serial line converter.

With regards to other USB device classes, the communications device class
is special in that it adds another complication. It uses multiple interfaces
together to act as a single interface, in this context called a union.

For the communications device class abstract control model (CDC ACM),
two interfaces define the device. In addition, endpoint zero is used for line
management. A bulk IN and a bulk OUT endpoint make up the data inter-
face to generically move data across the USB. An interrupt IN endpoint is
used for the notification interface for call management in modems, so it is
not needed here, and always returns a NAK handshake.

The cdc acm module of the Linux kernel creates the device special file /dev/
ttyACM0. When writing to it, the USB subsystem directs the data straight
to the bulk OUT endpoint of the data interface. Data that the bulk IN
endpoint sends is directed towards /dev/ttyACM0, and can be captured by
reading from that file.

To prevent the tty layer to apply special interpretations to the data stream
the stty command needs to be invoked upon every reboot as follows:

$ stty -F /dev/ttyACM0 raw -echo -echoe

It is needed to disable special modem interpretation of data characters.

A.4 Conclusion

A simple method to transfer large amounts of data from software to hardware
and vice versa was needed. Instead of using hardware that needs custom
drivers, the standardized USB CDC ACM device class was used that is
supported by many operating systems, including the Linux kernel.

On Linux, a device special file /dev/ttyACM0 is created upon attachment,
which must be initialized after every reload of the cdc acm driver. Receiving

84 APPENDIX A. THE UNIVERSAL SERIAL BUS

data from the hardware is then as simple as reading from the file, and sending
data is as simple as writing to it.

The component is realized as a VHDL module that makes use of a UTMI
chip, as is available on many FPGA development boards. As such it is not
only simple to use, but also cheap.

In principle, speeds up to 40 MB/s are supported, although great care needs
to be taken on the application side in the FPGA as well as the cable qual-
ity. In case of error, the USB resends a transaction, which can reduce the
transmission rate. Practical speeds are in the 10 MB/s range.

Danksagung

Ich danke allen, die mir bei dieser Diplomarbeit geholfen haben. Die nette
Atmosphäre Im Sand hat entscheidend zum Erfolg beigetragen. Ganz be-
sonders danke ich den folgenden Institutsmitgliedern:

Prof. Dr. Andrea Santangelo, der mir das Gebiet der Hochenergie-
astrophysik vertraut machte und mir diese Diplomarbeit ermöglichte.

Dr. Eckhard Kendziorra, dessen fortwährende Einsatz mich immer
gut mit HiWi Stellen versorgte und mich ans Institut holte.

Dr. Christoph Tenzer und Thomas Schanz, die mich in die
FPGA-Programmierung einführten und durch deren unverzichtbare
Expertise die Entwicklung der Elektronik ein leichtes wurde.

Stefan Schwarzburg, dessen Linux-Enthusiasmus und Programmier-
kompetenz die Weiterentwicklung der fpipe zum Spass werden liessen.

Giuseppe Distratis, der mir die Grundlagen des USB Standards auf
freundliche Weise in den Kopf hämmerte.

Jürgen Dick, der mir bei der Anfertigung elektronischer Bauteile
tatkräftig half.

Daniel Maier für allerlei Diskussionen über dies und jenes und dem
SVM Messstand.

Außerdem danke ich meiner Familie, die mich immer unterstützt hat. Auch
danke ich allen Mitgliedern des Instituts, die mit mir Fußball gespielt haben
so lange es ging und die Kaffeepause mit Diskussionen, Experimenten und
Wettbewerben ausschmückten und mir ermöglichten die Lichtgeschwindig-
keit zu messen.

Vielen, vielen Dank!

85

86 DANKSAGUNG

Plagiaterklärung

Hiermit erkläre ich, Henry Sebastian Grasshorn Gebhardt, dass ich die Di-
plomarbeit mit dem Titel Development of Data Acquisition and Detector
Controller Electronics for the Low Energy X-Ray Detector of the Simbol-X
Space Mission selbständig verfasst und dabei keine anderen als die angege-
benen Quellen und Hilfsmittel benutzt habe.

Tübingen, den 1. Dezember 2009

87

	Deutsche Zusammenfassung
	Preface
	X-ray Emission in the Universe
	Emission Mechanisms
	Blackbody Radiation
	Inverse Compton Scattering
	Synchrotron Radiation
	Bremsstrahlung
	Emission and Absorption Lines

	Astronomical Sources of X-rays
	Active Galactic Nuclei
	Cosmic X-ray Background
	X-ray Binaries
	Supernova Remnants
	Intracluster Gas

	The Simbol-X Mission
	The Rise of Astronomical Instruments
	Previous X-Ray Missions
	Simbol-X
	Wolter Optics
	X-ray Detector System

	The Interface Controller
	Interface Controller Requirements
	General IFC Design Considerations
	Equality
	Uniqueness
	Simplicity
	Beauty

	IFC components
	SpaceWire core
	Receiver
	Sender
	ADC_control
	SEQ_control
	EPP_control
	PWR_control

	Additional components for testing
	EPP data simulator
	ECH_control
	SIN_control

	Summary

	The SpaceWire Protocol
	SpaceWire Basics
	Basic Signals and Connectors
	Low Voltage Differential Signaling
	Data Strobe Encoding
	Characters and Control Codes
	The Parity Bit
	Packets

	Establishing a SpaceWire Link
	Flow Control
	The Run State
	Link-Level Error Notification: The Exchange of Silence

	Application Side Interface
	Conclusion

	The SpaceWire-to-USB Converter SWitty
	Test Setup with a SpaceWire PCI Card
	SpaceWire interfacing teletype
	Software Interface and Features
	The Universal Serial Bus
	SWitty Design
	SpaceWire Character 8-bit Encoding

	Conclusion

	Conclusion and Outlook
	Bibliography
	The Universal Serial Bus
	USB Basics
	Topology
	Physical Layer
	USB 2.0 Transceiver Macrocell Interface
	High Speed Detection Handshake

	USB Communication Protocol
	Packets
	USB Frames and Microframes
	Transactions and Transfer Types
	Device Descriptors
	Control Transfers
	The usbmon Linux Kernel Module
	Enumeration
	Bulk Transfers

	USB Device Classes
	Communications Device Class

	Conclusion

	Danksagung
	Plagiaterklärung

