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Vorwort 1997

Dies ist ein Skriptum zu einer Vorlesung, die ich zuletzt im Sommersemester 1997 gehalten
habe. In den ersten beiden Teilen orientiert es sich im wesentlichen am klassischen
Lehrbuch von Hindley und Seldin, in den letzten beiden Teilen an Barendregts Kapitel
über den getypten ë-Kalkül im Handbook of Logic in Computer Science (Band II).
Das Skriptum soll zur Orientierung über das technische Gerüst des Themas dienen.
Dementsprechend ist es nicht bis in alle Einzelheiten ausgearbeitet. So wurde auf
Stilfragen wenig Rücksicht genommen. Auch wurden elementare, aber langwierige
Beweise häufig weggelassen. Erläuternde Passagen zu Sinn und Zweck des ë-Kalküls
sowie einzelner Begriffsbildungen sind ebenfalls nicht aufgezeichnet. Hierzu seien Leser
auf die genannten Texte verwiesen.
Ich danke Michael Arndt für die Erstellung des Skriptums. Frau Natali Alt und Herrn
Reinhard Kahle danke ich für eine kritische Durchsicht des Textes. Alle verbleibenden
inhaltlichen Fehler gehen natürlich zu meinen Lasten.

Peter Schroeder-Heister

Vorwort 2016

Bei dieser aktualisierten Fassung des Skripts konnte ich auch auf die zweite Auflage des
Lehrbuchs von Hindley und Seldin zurückgreifen:

J. Roger Hindley und Jonathan P. Seldin: Lambda-Calculus and Combinators,
an Introduction, Cambridge University Press, 2008 (reprinted 2010).

Es wurde wieder darauf verzichtet, die Verwendung dieser und anderer Quellen (siehe
Literaturverzeichnis) im Einzelnen immer kenntlich zu machen.

Thomas Piecha

Preface 2017/18

This is a translation of the 2016 version, including some further corrections and additions.
Thomas Piecha
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1 The untyped ë-calculus

The ë-calculus is a formal system in which the formation and application of functions
can be expressed. We first consider the untyped version of ë-calculus, where functions
are not restricted to data types.

Motivation of the syntax

The syntax of ë-calculus will allow us to systematically form an expression for a function
of a variable x from an expression containing x, and likewise for any other variables.
Consider the expression “x − y”, which can be taken as a definition of either a function
f of x or of a function g of y, usually written as follows:

f(x) = x − y g(y) = x − y

or

f : x 7→ x − y g : y 7→ x − y

Using ë-notation, one can write instead:

f = ëx.x − y g = ëy.x − y

Equations like
f(0) = 0 − y and f(1) = 1 − y

are then written as

(ëx.x − y)(0) = 0 − y and (ëx.x − y)(1) = 1 − y

respectively. For functions of two variables like e.g.

h(x, y) = x − y k(y, x) = x − y

one can write

h = ëxy.x − y k = ëyx.x − y

One can avoid such expressions for functions of several variables by allowing for functions
of functions. For example, instead of the two-place function h, one can then use the
following one-place function h′:

h′ = ëx.(ëy.x − y)

For each number a we have
h′(a) = ëy.a − y
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and thus for each pair of numbers a, b:

(h′(a))(b) = (ëy.a − y)(b) = a − b = h(a, b)

It is therefore sufficient to consider only one-place functions. (The transition from many-
place to one-place functions is called “currying” (after H. B. Curry) or “schönfinkeling”
(after M. Schönfinkel).)
For the functions h and h′ we have here assumed that the variables x and y range over
numbers, i.e., x and y refer to objects of the type “number”. To completely specify a
function one would also have to declare the type of objects the function can return.
We will consider types later, when we study typed ë-calculus. In untyped ë-calculus, a
function like e.g. (ëx.x) can be seen as a generic identity function; applied to an arbitrary
object it simply returns the same object.

On semantics

The semantics of ë-calculus is operational. IfM can be interpreted as a function, then
(MN ) is the result of an application ofM to the argument N, in case the result exists. A
term (ëx.M ) is interpreted as a function, whose value for an argument N is calculated
by substituting N for x inM.

Example. The term (ëx.x(xy)) is interpreted as the operation of applying a function
twice to an object y. Thus, for any term N, (ëx.x(xy))N = N (Ny) in the sense that the
left and the right term have the same interpretation.

1.1 Syntax and operational semantics

Let an infinite series of variables be given (in a fixed order).

Metalinguistic symbols for variables are: u, v, w, x, y, z, x1, x2, x3, . . . . (Different symbols
denote different variables, unless stated otherwise.)

There are two variants of untyped ë-calculus:

– pure ë-calculus: no constants given.

– applied ë-calculus: finite or infinite set of constants given.

(The first two chapters deal only with untyped ë-calculus. We therefore omit the word
“untyped”.)

Definition 1.1 ë-termsë-terms (short: terms) are defined as follows:

1. All variables and constants are ë-terms (atoms). atoms

2. IfM and N are ë-terms, then (MN ) is a ë-term (application), havingM and N as application
immediate subterms.

3. IfM is a ë-term, then (ëx.M ) is a ë-term (abstraction), having x andM as immediate abstraction
subterms.
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Remark: Thus ë and e.g. ëx are not ë-terms.

Further notions:

– The length of a termM is the number of occurrences of atoms inM. length

– subtermSubterms of a term are the term itself, as well as the subterms of its immediate subterms.
All subterms of a term except itself are its proper subterms.

– We writeM
[
P
]
, if P occurs as subterm at a certain position inM.

– In the context of M
[
P
]

the expression M
[
Q
]

means that one has replaced the
occurrence of P by Q.

– The occurrence of a variable x in a termM is bound, if it belongs to a subterm ëx.P bound
ofM, otherwise it is free. free

– If x has a free occurrence inM, then x is called a free variable ofM. The set of free
variables of a termM is called FV(M ).

– M is called closed, if FV(M ) = ∅, otherwise open. closed/open

– A closed term without constants is called combinator. combinator

– Metalinguistic variables:M,N,P,Q,R, S, T, . . . for ë-terms; a, b, c, . . . for atoms.

– ë-terms can be abbreviated by omitting parentheses convention on
parentheses

as follows,as long as no ambiguities
can arise:

· Outermost parentheses can be omitted.

· We use association to the left, i.e.MNPQ stands for ((MN )P)Q.

· ëx.MN stands for (ëx.(MN )).

· ëx1x2 . . . xn.M stands for (ëx1.(ëx2.(. . . (ëxn.M )))).

– M ≏ N denotes the syntactic identity ofM and N.

M :≏ N says that M and N are syntactically identical by definition; M is the
definiendum, N is the definiens.

Remark. The terms of pure ë-calculus can be characterised grammar for termsby the following context-free
grammar, if variables have the form v0...0:

– Terminals: {ë, ., (, ), v0, 0}

– Non-terminals: {T,V }

– Start symbol: T

– Productions: T −→ V | (TT ) | (ëV.T )
V −→ v0 | V0
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Examples.
– (ëv0.(v0v00)) is a ë-term of length 3.

Immediate subterms: v0 and (v0v00)

The term is open, since v00 occurs free. The variable v0 occurs bound twice.

Abbreviated: ëv0.v0v00

– In ëxy.xy the term xy occurs once. It is ëxy.xy ≏ (ëx.(ëy.(xy))).

– In x(uv)(ëu.v(uv))uv the term uv occurs twice.

It is x(uv)(ëu.v(uv))uv ≏ ((((x(uv))(ëu.(v(uv))))u)v).

– In ëu.uv the term ëu.u does not occur.

It is ëu.u ≏ (ëu.u) and ëu.uv ≏ (ëu.(uv)).

Examples. Let x, y, z be any distinct variables. Then the following are ë-terms:

– (ëx.(xy)) (cp. last example above)

– ((ëy.y)(ëx.(xy)))

– (x(ëx.(ëx.x)))

This term has the form (MN ), whereN has two occurrences of ëx. (This is permitted,
but not recommended.)

– (ëx.(yz))

This term has the form (ëx.M ), where x does not occur inM. This is called vacuous
abstraction. Such terms stand for constant functions (i.e., for functions having for all
inputs the same output).

Examples. On parentheses:

– xyz(yx) ≏ (((xy)z)(yx))

– ëx.uxy ≏ (ëx.((ux)y))

– ëu.u(ëx.y) ≏ (ëu.(u(ëx.y)))

– (ëu.vuu)zy ≏ (((ëu.((vu)u))z)y)

– ux(yz)(ëv.vy) ≏ (((ux)(yz))(ëv.(vy)))

– (ëxyz.xz(yz))uvw ≏ ((((ëx.(ëy.(ëz.((xz)(yz)))))u)v)w)

Examples. The following closed ë-terms (combinators) get a name:

– I :≏ ëx.x

– K :≏ ëxy.x

– S :≏ ëxyz.xz(yz)

8



Definition 1.2 For anyM,N, x, we define the substitutionM [N/x] by induction onM substitution
to be the result of replacing every free occurrence of x inM by N, and changing bound
variables to avoid clashes:
1. x[N/x] :≏ N,

2. a[N/x] :≏ a, if x ̸≏ a,

3. (PQ)[N/x] :≏ (P[N/x]Q[N/x]),

4. (ëx.P)[N/x] :≏ ëx.P,

5. (ëy.P)[N/x] :≏ ëy.P[N/x], if x ̸≏ y and not: y ∈ FV(N ) and x ∈ FV(P),

6. (ëy.P)[N/x] :≏ ëz.P[z/y][N/x], if x ̸≏ y and y ∈ FV(N ) and x ∈ FV(P), where z
is the first variable (in the enumeration of all variables) with z /∈ FV(NP).

Examples.
– (ëx.zy)[(uv)/x] ≏ ëx.zy (Def. 1.2, 4)

– (ëy.x)[y/x] ≏ ëz.y (Def. 1.2, 6, for z being the first variable distinct from x and y)

– (ëy.x(ëx.x))[(ëy.xy)/x] ≏ ëy.(ëy.xy)(ëx.x), since

(ëy.x(ëx.x))[(ëy.xy)/x] ≏ (ëy.(x(ëx.x)))[(ëy.xy)/x] (parentheses)

≏ (ëy.(x(ëx.x))[(ëy.xy)/x]) (Def. 1.2, 5)

≏ (ëy.(x[(ëy.xy)/x](ëx.x)[(ëy.xy)/x])) (Def. 1.2, 3)

≏ (ëy.((ëy.xy)(ëx.x)[(ëy.xy)/x])) (Def. 1.2, 1)

≏ (ëy.((ëy.xy)(ëx.x))) (Def. 1.2, 4)

≏ ëy.(ëy.xy)(ëx.x) (parentheses)

Definition 1.3
– We define renaming of bound variables as follows: renaming of bound

variables
If y /∈ FV(M ), then let P

[
ëx.M

]
≡1α P

[
ëy.M [y/x]

]
.

– Then α-conversion (or congruence) is defined as follows: α-conversion
congruence

Let P ≡α Q, if P ≏ P1 ≡1α P2 ≡1α · · · ≡1α Pn ≏ Q.

(If P ≡α Q, we say “P is congruent to Q” or “P α-converts to Q”.)

Example. It is ëxy.x(xy) ≡α ëuv.u(uv):

ëxy.x(xy) ≏ ëx.(ëy.x(xy)) ≡1α ëx.(ëv.x(xv))

≡1α ëu.(ëv.u(uv)) ≏ ëuv.u(uv)

Lemma 1.4 For all ë-termsM,N and all variables x we have:

1. M [x/x] ≏M .
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2. If x ̸∈ FV(M ), thenM [N/x] ≏M .

3. If x ∈ FV(M ), then FV(M [N/x]) = FV(N ) ∪ (FV(M ) \ {x}).

Proof. Direct application of Definition 1.2. qed

Lemma 1.5 Let no variable bound in the ë-termM be free in ë-terms P,Q and z. Then
the following holds:

1. If z ̸∈ FV(M ), thenM [z/x][P/z] ≏M [P/x].

2. If z ̸∈ FV(M ), thenM [z/x][x/z] ≏M.

3. M [Q/x][P/x] ≏M [(Q[P/x])/x].

4. If y ̸∈ FV(P), thenM [Q/y][P/x] ≏M [P/x][(Q[P/x])/y].

5. If y ̸∈ FV(P) and x ̸∈ FV(Q), thenM [Q/y][P/x] ≏M [P/x][Q/y].

Proof. The restriction on bound variables in M excludes substitutions according to
Definition 1.2 (6).
Proofs of (1), (3) and (4) are by term induction onM.
(2) follows from (1) and Lemma 1.4 (1); (5) follows from (4) and Lemma 1.4 (2). qed

Remark. If in Lemma 1.5 the restriction on variables bound in M is lifted and ≏ is
replaced by ≡α , then the resulting statements (1)-(5) hold as well.

Lemma 1.6
1. If P ≡α Q, then FV(P) = FV(Q).

2. For each term P and all variables x1, . . . , xn there exists a term P′ with P ≡α P′, where
no variable x1, . . . , xn occurs bound in P′.

3. ≡α is an equivalence relation. That is, we have:

Reflexivity: P ≡α P.

Symmetry: If P ≡α Q, then Q ≡α P.

Transitivity: If P ≡α Q and Q ≡α M , then P ≡α M .

Proof. Exercise. qed

Lemma 1.7 (Congruence of ≡α)
IfM ≡α M ′ and N ≡α N ′, thenM [N/x] ≡α M ′[N ′/x].

Proof. See Hindley & Seldin (2008), appendix A1. qed

Remarks.
1. Substitution is well-behaved with respect to α-conversion. The result of a substitution

where N has been α-converted to a term N ′ differs only by congruence from the
result for a substitution with N.
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2. By using α-conversion one can always separate variables in a term first, to avoid more
complicated substitutions later.

3. Any two congruent terms will have identical interpretations.

Remark. In the following, we write P �1â
≡1α Q for “P �1â Q or P ≡1α Q” and P

≡1α
�1â
�1â
Q

for “P ≡1α Q or P �1â Q or Q �1â P”, etc. (Note that P �1â Q just means Q �1â P.)

Definition 1.8
– A term of the form (ëx.M )N is called â-redex (short: redex, from reducible expression), â-redex

and the corresponding termM [N/x] is its contractum. contractum

– The operation of â-contraction is defined by: â-contraction

P
[
(ëx.M )N︸ ︷︷ ︸
â-redex

]
�1â P

[
M [N/x]︸ ︷︷ ︸
contractum

]
.

– If for a term P there exists a (possibly empty) finite series of â-contractions and
renamings of bound variables ending in a term Q, i.e. if

P ≏ P1
�1â
≡1α P2

�1â
≡1α · · · �1â

≡1α Pn ≏ Q

then we say that P â-reduces to Q. Notation: P �â Q. â-reduction

– Two terms P and Q are called â-equal (or â-convertible), if the following holds: â-equality
â-conversion

P ≏ P1

≡1α
�1â
�1â
P2

≡1α
�1â
�1â

· · ·
≡1α
�1â
�1â
Pn ≏ Q

Notation: P =â Q.

– For a (possibly empty) finite or infinite series of â-contractions

P ≏ P1 �1â P2 �1â P3 �1â · · ·

we call (P1, P2, P3, . . .), or the given series itself, a â-reduction series of P. â-reduction series

Remark. By the two operations of α-conversion (resp. renaming of bound variables)
and â-contraction an operational semantics for ë-terms is given. The interpretation of operational

semanticsë-terms is defined by how they behave under these two operations.

Definition 1.9
– P is in â-normal form (short: â-nf ), if no â-redex occurs in P. â-normal form

– If P �â Q holds, and Q is in â-nf, then Q is called â-normal form of P.

(We then also say that P has â-normal form Q.)

– P is called (weakly) normalisable, if there exists a â-normal form of P. normalisable

– P is called strongly normalisable, if there is no infinite â-reduction series of P. strongly
normalisable
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Remark. Note the difference between being in â-nf and having a â-nf. To see whether a
term is in â-nf, one just has to check whether it contains a â-redex or not. To show that
a term has a â-nf, one has to show that the term reduces to a â-nf (i.e., one has to show
that there exists a finite â-reduction series ending with a term in â-nf).

Examples.
– (ëx.x)N �1â N

– (ëx.y)N �1â y

– (ëx.x(xy))N �1â N (Ny)

– (ëx.(ëy.yx)z)v �1â (ëx.zx)v �1â zv, and zv is a â-normal form of (ëx.(ëy.yx)z)v.

– Ω :≏ (ëx.xx)(ëx.xx) does not have a â-normal form;Ω is not in â-nf, and there is
only an infinite â-reduction series: (ëx.xx)(ëx.xx) �1â (ëx.xx)(ëx.xx) �1â · · ·.

However, ë-terms containing the Ω-combinator can have a â-normal form. For
example, the term (ëx.y)Ω has â-nf y, since (ëx.y)Ω�1â y.

The term (ëx.y)Ω is thus weakly normalisable; but it is not strongly normalisable,
since there is an infinite â-reduction series: (ëx.y)Ω�1â (ëx.y)Ω�1â · · ·.

– (ëx.xxy)(ëx.xxy) �1â (ëx.xxy)(ëx.xxy)y �1â (ëx.xxy)(ëx.xxy)yy �1â · · ·.

The term (ëx.xxy)(ëx.xxy) has no â-normal form.

The term (ëu.v)((ëx.xxy)(ëx.xxy)) is weakly but not strongly normalisable, having
the â-normal form v.

Example. It is (ëxyz.xzy)(ëxy.x) =â (ëxy.x)(ëx.x), since

(ëxyz.xzy)(ëxy.x) ≡α (ëxyz.xzy)(ëuv.u) and (ëxy.x)(ëx.x) ≡α (ëxy.x)(ëu.u)

�1â ëyz.(ëuv.u)zy �1â ëy.(ëu.u)

�1â ëyz.(ëv.z)y ≏ ëyu.u

�1â ëyz.z ≡α ëyz.z

Lemma 1.10
1. If P �â Q, then FV(P) ⊇ FV(Q).

2. If P ≡α P′, Q ≡α Q′ and P �â Q, then P′ �â Q
′.

3. If P ≡α P′, Q ≡α Q′ and P =â Q, then P′ =â Q′.

4. IfM �â N and P �â Q, then P[M/x] �â Q[N/x].

5. IfM =â N and P =â Q, then P[M/x] =â Q[N/x].

Proof. Exercise. qed
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Lemma 1.11 The class of all â-normal forms can be defined inductively by the following
rules:

1. All atoms are in â-normal form.

2. IfM1, . . . ,Mn are in â-normal form, then aM1 . . .Mn is in â-normal form.

3. IfM is in â-normal form, then ëx.M is in â-normal form.

That is, a â-normal form has the form ëx1 . . . xn.aM1 . . .Mm, where theMi have the same
form.

Proof. We have to show thatM is in â-normal form iffM can be produced by rules
(1)-(3). The implication from right to left obvious.
It remains to show by induction onM that ifM is in â-normal form, thenM can be
produced by rules (1)-(3).
LetM be in â-normal form.

– IfM ≏ a, thenM can be produced according to rule (1).

– IfM ≏ (PQ), then (by the induction hypothesis)P andQ can be produced by applica-
tions of rules (1)-(3), where P is not an abstraction. Thus P ≏ a or P ≏ aM1 . . .Mk .
ThereforeM ≏ aQ orM ≏ aM1 . . .MkQ, which can be produced by rule (2).

– IfM ≏ ëx.P, then (by the induction hypothesis) P can be produced by (1)-(3), and
by an application of rule (3) alsoM. qed

Remark. Lemma 1.11 is about the class of all â-normal forms, not about the class of all
ë-terms having a â-normal form.

Lemma 1.12 An arbitrary ë-term has either the form shown in Lemma 1.11, or it contains
a subterm of the form ëx1 . . . xn. (ëx.M )N︸ ︷︷ ︸

head redex

M1 . . .Mm, for m, n ≥ 0.

Proof. Consider the excluded subcase ofM ≏ (PQ) in the proof of Lemma 1.11. qed

Theorem 1.13 (Church & Rosser, 1936)
1. If P �â M and P �â N, then there exists a term T such thatM �â T and N �â T .

2. IfM =â N, then there exists a term T such thatM �â T and N �â T .

Remarks.
– Property (1) is called confluence of â-reduction. Diagrammatically:

P

M N

∃T

�â �â

�â �â
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– Property (2) indicates that two â-equal terms have the same interpretation, since there
is always a term to which both reduce.

Example.
(ëx.(ëy.yx)z)v

(ëx.zx)v (ëy.yv)z

zv

�1â �1â

�1â �1â

Proof of Theorem 1.13 (2). By induction on the number of steps fromM to N.

Number of steps = 0: trivial.

Number of steps = n + 1: By the induction hypothesis we have

P1 �â T
′, . . . , Pn �â T

′

for a term T ′. For the step from n to n + 1 the situation is the following:

M ≏ P1 =â · · · =â Pn
≡1α
�1â
�1â
Pn+1 ≏ N

T ′

�â �â

and we have to show:

M ≏ P1 =â · · · =â Pn
≡1α
�1â
�1â
Pn+1 ≏ N

T ′

∃T

�â �â

�â

�â

Case 1 (≡1α ): T :≏ T ′, since Pn+1 ≡1α Pn �â T
′.

Case 2 (�1â ): T :≏ T ′, since Pn+1 �1â Pn �â T
′.

Case 3 (�1â ): Since Pn �â T ′ and Pn �1â Pn+1, there exists according to Theo-
rem 1.13 (1) a term T such that T ′ �â T and Pn+1 �â T :

Pn

T ′ Pn+1

T

�â �1â

�â �â

ThusM �â T (sinceM =â Pn) and N �â T . qed
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For the proof of Theorem 1.13 (1) we need some more definitions and lemmas. The
difficulty lies in the fact that confluence of �â cannot simply be proved by first proving
confluence of �1â , that is, by proving

if P �1â M and P �1â N, then ∃T : M �1â T and N �1â T . (∗)

Confluence of �â could be proved from (∗) by first proving the special case

if P �1â M and P �â N, then ∃T : M �â T and N �1â T

by induction on the length of the reduction series (including α-conversions) from P
to N ; schematically:

P

M N1

N2

Nn ≏ N

T1

T2

Tn ≏ T

�1â
�1â
≡α

�1â
≡α�1â

�1â

�1â

�1â

�1â

The general case could then be proved by a second induction on the length of the
reduction series (again including α-conversions) from P toM :

P

P1

P2

M

N

T1

T2

T

�1â
≡α �â

�1â
≡α �â �1â

�1â

�â

�â

However, (∗) does not hold for all ë-terms. A counterexample is

P ≏ (ëy.uyy)(Iz) (where I ≏ ëx.x)
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In this case P �1â u(Iz)(Iz) and P �1â (ëy.uyy)z �1â uzz. But u(Iz)(Iz) cannot be
contracted to uzz, that is, u(Iz)(Iz) ̸�1â uzz.
The term u(Iz)(Iz) could be reduced to uzz in one step by contracting the two non-
overlapping redexes (Iz) and (Iz) in parallel. One could thus try to prove confluence for
a relation of parallel reduction, from which confluence of �â could be proved by two
inductions as described for (∗).
However, parallel reduction cannot simply be defined as simultaneous non-overlapping
contractions, since confluence fails for such a relation as well. A counterexample can
be given for the term P ≏ (ëx.R1)R2, where R1 ≏ (ëy.xyz)w and R2 ≏ (ëu.u)v are
both redexes. The term P contracts to (ëy.R2yz)w ≏M by a (trivial) simultaneous
non-overlapping contraction. By a simultaneous non-overlapping contraction of R1 and
R2 in P we get (ëx.xwz)v ≏ N, which can only be reduced toN itself (by α-conversion)
or to vwz ≏ T (by contraction). But it is not possible to reduceM to either of those by
using only simultaneous non-overlapping contractions. That is, we have the following
situation (where arrows stand for simultaneous non-overlapping contractions):

P

M N

T

̸

̸

Nevertheless, a notion of parallel reduction (called minimal complete development) can
be given, for which confluence holds. We first define certain results of contraction.

Definition 1.14 Let R and S with R ̸≏ S be â-redexes in P, where R �1â R
′, changing

P to P′.
The residual Res(S,R) of S with respect to R is a redex in P′, defined as follows: residual

1. R is a (proper) subterm of S. Then Res(S,R) :≏ S
[
R′].

(That is, S has the form (ëx.M )N andR is inM or inN.R �1â R
′ changesM toM ′

or N to N ′, changing S to (ëx.M ′)N or (ëx.M )N ′ in P′. Then Res(S,R) is either
(ëx.M ′)N or (ëx.M )N ′.)

2. R is not a subterm of S. Then Res(S,R) :≏ S.

(That is, R and S do not overlap in P. Thus contracting R does not change the redex
S, and S is the residual w.r.t. R in P′.)

Remark. Due to the way Res(S,R) will be used, some other possible cases besides (1)
and (2) do not have to be considered.

Definition 1.15 Let R = {R1, . . . , Rn} be a set of redexes in P. A redex Ri is called
minimal, if no Rj is a proper subterm of Ri . minimal

P �mcd Q (minimal complete development of P to Q), if Q is obtained from P by the minimal complete
development
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following (non-deterministic) procedure:

(1) Choose a minimal element Ri in R.

(2) â-contract Ri in P: P �1â P
′.

(3) Let R′ =
⋃
j ̸=i Res(Rj , Ri). (R′ has thus n − 1 elements.)

(4) If R′ ̸= ∅, then go to step (1) with R := R′ and P :≏ P′.

(5) If R′ = ∅, then let Q ≡α P′.

(If P �mcd Q, we also say that P mcd-reduces to Q.)

Remarks.
1. The relation �mcd is defined relative to a chosen set R of redexes. For different sets R

there are thus different relations �mcd, and it would be more appropriate to make this
distinction clear by naming them �R

mcd, for each of the respective sets of redexes R. As
this would only complicate the presentation, we assume instead that the set of redexes
is always chosen adequately, namely in such a way that all redexes of a considered
term are elements of R.

2. The relation �mcd is not transitive, as the following example shows:

(ëx.xy)(ëz.z) �mcd (ëz.z)y and (ëz.z)y �mcd y, but (ëx.xy)(ëz.z) ̸�mcd y.

Note that the redex (ëz.z)y is not a residual of (ëx.xy)(ëz.z).

3. For R = ∅ we have P �mcd P.

Example. We consider againP ≏ (ëx.R1)R2, whereR1 ≏ (ëy.xyz)w andR2 ≏ (ëu.u)v.
It is P �mcd vwz ≏ Q. The set of redexes in P is R = {(ëx.R1)R2, R1, R2}.

(1) Choose the minimal element R1.

(2) P �1â (ëx.xwz)R2 ≏ P′

(3) R′ = {Res(P,R1),Res(R2, R1)} = {P′, R2}

(4) R′ ̸= ∅

(1) Choose the minimal element R2.

(2) P′ �1â (ëx.xwz)v ≏ P′′

(3) R′′ = {Res(P′, R2)} = {P′′}

(4) R′′ ̸= ∅

(1) Choose the minimal element P′′.

(2) P′′ �1â vwz ≏ P′′′

(3) R′′′ = ∅

(5) Let Q ≡α P′′′.
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Lemma 1.16 (Preservation of�mcd by ≡α)
If P �mcd Q and P ≡α P′, then P′ �mcd Q.

Lemma 1.17 (Preservation of�mcd by substitution)
IfM �mcdM

′ and N �mcd N
′, thenM [N/x] �mcdM

′[N ′/x].

Lemma 1.18 (Confluence of�mcd)
If P �mcd Q and P �mcd R, then there exists a term T such that Q �mcd T and R �mcd T .

Proof. By Lemma 1.16 we can assume that the given mcd-reductions do not contain
α-steps. The proof is by induction on the structure of P.

Case 1: P ≏ a. Then Q ≏ R ≏ P. Let T :≏ P.

Case 2: P ≏ ëx.P1. Then all redexes in P are in P1, and since there are no α-steps we
have Q ≏ ëx.Q1 and R ≏ ëx.R1, where P1 �mcd Q1 and P1 �mcd R1.

By the induction hypothesis there exists a term T1 such that Q1 �mcd T1 and
R1 �mcd T1. Let T :≏ ëx.T1.

Case 3: P ≏ (P1P2), and all redexes of R are in P1 and P2, that is, P itself is not reduced.

By the induction hypothesis there are terms T1 and T2 such that with

P1

Q1 R1

T1

�mcd �mcd

�mcd �mcd

and

P2

Q2 R2

T2

�mcd �mcd

�mcd �mcd

also

(P1P2)

(Q1Q2) (R1R2)

(T1T2)

�mcd �mcd

�mcd �mcd

holds.

Let T :≏ (T1T2).

Case 4: P ≏ (ëx.M )N, and the residual of P is contracted in only one of the two given
mcd-reductions; we assume it is contracted in P �mcd Q.

Then P �mcd Q has the form

P ≏ (ëx.M )N �mcd (ëx.M ′)N ′ �1â M
′[N ′/x] ≏ Q

(whereM �mcdM
′ and N �mcd N

′).

The other given mcd-reduction P �mcd R has the form

P ≏ (ëx.M )N �mcd (ëx.M ′′)N ′′ ≏ R

(whereM �mcdM
′′ and N �mcd N

′′).

By the induction hypothesis forM and N there exist termsM+ and N+ such
that
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M

M ′ M ′′

M+

�mcd �mcd

�mcd �mcd

and

N

N ′ N ′′

N+

�mcd �mcd

�mcd �mcd

Let T :≏M+[N+/x]. Then by Lemma 1.17:

Q ≏M ′[N ′/x] �mcdM
+[N+/x]

Furthermore, by first separating the α-conversions in the mcd-reductions for
M ′′ and N ′′ as follows

M ′′ �mcdM
∗ ≡α M+ N ′′ �mcd N

∗ ≡α N+

where we assume that M ′′ �mcdM
∗ and N ′′ �mcd N

∗ are without α-steps, we
obtain R �mcd T :

R ≏ (ëx.M ′′)N ′′ �mcd (ëx.M ∗)N ∗ �1â M
∗[N ∗/x] ≡α M+[N+/x]

Case 5: P ≏ (ëx.M )N, and both given mcd-reductions contract the residual of P.

Then P �mcd Q has the form

P ≏ (ëx.M )N �mcd (ëx.M ′)N ′ �1â M
′[N ′/x] ≏ Q

and P �mcd R has the form

P ≏ (ëx.M )N �mcd (ëx.M ′′)N ′′ �1â M
′′[N ′′/x] ≏ R

We argue as in case 4 and choose T :≏M+[N+/x]. By Lemma 1.17 we obtain
the result. qed

Remark. The proof of confluence of �mcd depends crucially on the fact that all redexes
are already present in the initial term, which enables us to control them.

Proof of Theorem 1.13 (1). Using confluence of �mcd (Lemma 1.18) one can show that

if P �mcdM and P �â N, then there exists a term T such thatM �â T and N �mcd T

by an induction according to the scheme:

19



P

M N1

N2

Nn ≏ N

T1

T2

Tn ≏ T

�mcd
�1â
≡α

�1â
≡α�mcd

�mcd

�mcd

�mcd

�mcd

Note that P �1â Q implies P �mcd Q, P �mcd Q implies P �â Q, and �â is transitive.
Therefore:

If P �1â M and P �â N, then there exists a term T such thatM �â T and N �â T .

From this the result follows by an induction according to the scheme:

P

P1

P2

M

N

T1

T2

T

�1â
≡α �â

�1â
≡α �â �â

�â

�â

�â

That is, we obtain:
P

M N

T

�â �â

�â �â

qed
Corollary 1.19
1. IfM and N are â-normal forms of P, thenM ≡α N .

(That is, â-normal forms are unique modulo congruence.)

2. IfM =â N and N is in â-nf, thenM �â N .

(By the Church-Rosser Theorem, bothM and N reduce to a term T . Since N is in
â-normal form, N ≡α T . ThusM �â N .)
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3. IfM =â N, then either bothM andN have no â-nf, or both have the same â-nf (modulo
congruence).

4. IfM =â N andM,N are in â-normal form, thenM ≡α N .

(Thus ë-calculus is consistent in the sense that not all ë-terms are â-equal; in other
words, the relation =â is not trivial. Consider the two terms ëxy.xy and ëxy.yx. Both
terms are in â-normal form, but they are not congruent. By the corollary, they are not
â-equal.)

Definition 1.20
– A leftmost reduction series (short: L-reduction series) is a â-reduction series, in leftmost reduction

serieswhich always the leftmost redex is contracted. A redex (ëx1.M1)N1 is to the left of
(ëx2.M2)N2 (in the considered term), if ëx1 stands to the left of ëx2.

– A quasi-leftmost reduction series (short: QL-reduction series) is a â-reduction series quasi-leftmost
reduction series(M1,M2,M3, . . .) such that for eachMi that is not the last element of the series there

is an Mj and an Mj+1 with j ≥ i such that in the contraction ofMj to Mj+1 the
leftmost redex inMj is contracted.

Remarks.
1. A quasi-leftmost reduction series is a â-reduction series, in which every now and then

the leftmost redex is contracted.

2. Leftmost reduction series correspond to lazy evaluation in programming languages.

Example. A leftmost reduction series for the term

redex 1︷ ︸︸ ︷
((ëx.x) ((ëy.yy)(ëz.z))︸ ︷︷ ︸

redex 2

) ((ëu.u)(ëv.v))︸ ︷︷ ︸
redex 3

is given by:

((ëx.x)((ëy.yy)(ëz.z)))︸ ︷︷ ︸
leftmost redex

((ëu.u)(ëv.v)) �1â ((ëy.yy)(ëz.z))︸ ︷︷ ︸
leftmost redex

((ëu.u)(ëv.v))

�1â ((ëz.z)(ëz.z))︸ ︷︷ ︸
leftmost redex

((ëu.u)(ëv.v))

�1â (ëz.z)((ëu.u)(ëv.v))︸ ︷︷ ︸
leftmost redex

�1â (ëu.u)(ëv.v)︸ ︷︷ ︸
leftmost redex

�1â ëv.v

Theorem 1.21 If a ë-term M has a â-normal form, then each leftmost reduction series
beginning withM terminates (and thus also each quasi-leftmost reduction series forM ).
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Remarks.
1. For the proofs see Barendregt (2012), § 13.2.

2. The contraposition of this theorem is especially useful: In order to show that a term
M has no â-normal form, it is sufficient to show that there exists a non-terminating
leftmost or quasi-leftmost reduction series beginning withM.

Theorem 1.22 There exist fixed-point combinators Y, i.e., combinators such that fixed-point
combinators1. Yx =â x(Yx),

or even

2. Yx �â x(Yx).

Proof.
1. For the combinator

Υ :≏ ëx.(ëy.x(yy)) (ëy.x(yy))︸ ︷︷ ︸
≏:M

we have
Υx �â MM �â x(MM ) �â x(Υx)

However, (2) does not hold for Υ. (This fixed-point combinator is due to Curry; cp.
Rosenbloom, 1950.)

2. For the combinator
Θ :≏ (ëzx.x(zzx)) (ëzx.x(zzx))︸ ︷︷ ︸

≏:N

we have
Θx �â (ëx.x(NNx))x �â x(NNx) ≏ x(Θx)

Thus (1) obviously holds for Θ, too. (This fixed-point combinator was given by
Turing, 1937.) qed

Corollary 1.23 For each N there is anM such that for n ≥ 0:My1 . . . yn =â N [M/x].

Proof. LetM :≏ Y (ëxy1 . . . yn.N ) for a fixed-point combinator Y. qed

Remarks.
1. If for Y we choose the fixed-point combinator Θ, i.e.M :≏ Θ(ëxy1 . . . yn.N ), then

evenMy1 . . . yn �â N [M/x] holds.

2. Each “intuitive” equation of the form xy1 . . . yn = N defining x by a term N, where
x itself may occur in N (i.e. the equation is “self-referential” in this sense) has some
termM as its solution.

3. A solutionM does not always represent a computable function. The corollary only
tells us that there always is a solutionM in the “realm of ë-terms”.
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Theorem 1.24 M is a fixed-point combinator, i.e.Mx =â x(Mx), iffM is a fixed point
of SI, i.e. ifM =â SIM.

Proof. (See Barendregt, 2012, Lemma 6.5.3.)
It is SI =â ëyz.z(yz).
LetM be a fixed point of SI, i.e.M =â SIM. ThenMN =â SIMN =â N (MN ), i.e.M
is a fixed-point combinator.
LetMx =â x(Mx). ThenMx is not in in normal form, since otherwiseMx and x(Mx)
would be congruent.
ThusMx �â xP and x(Mx) �â xP for some term P. Moreover,M �â ëz.N, sinceM
being a combinator it cannot begin with a variable. Therefore

ëx.Mx =â ëx.(ëz.N )x =â ëx.N [x/z] =â M

(That is, ç-conversion, as defined below, is provable forM.)
ThusM =â ëx.Mx =â ëx.x(Mx) =â SIM. qed

Definition 1.25
– A term of the form ëx.Mx is called ç-redex, if x /∈ FV(M ). The term M is its ç-redex
contractum. contractum

– The operation of ç-contraction is defined by: ç-contraction

P
[
ëx.Mx

]
�1ç P

[
M

]
, if x /∈ FV(M ).

– It is P �âç Q (i.e. P âç-reduces to Q), if P ≏ P1

≡1α
�1â
�1ç
P2

≡1α
�1â
�1ç

· · ·
≡1α
�1â
�1ç
Pn ≏ Q. âç-reduction

– It is P =âç Q (i.e. P is âç-equal to Q), if P ≏ P1

≡1α
�1â
�1â
�1ç
�1ç

P2

≡1α
�1â
�1â
�1ç
�1ç

· · ·

≡1α
�1â
�1â
�1ç
�1ç

Pn ≏ Q. âç-equality

(The âç-equal terms are also called âç-convertible. If no â-contractions occur, then âç-conversion
we speak of ç-conversion =ç.) ç-conversion

Remark. Intuitively, âç-equality says that the meaning of a term depends only on its
behaviour w.r.t. applications to another term (in other words, if extensionality obtains;
cp. Lemma 1.38).

Lemma 1.26 Lemma 1.10 holds as well for �âç .

Theorem 1.27 Church-Rosser holds for âç-reduction.

Proof. See Hindley & Seldin (2008), appendix A2B.
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1.2 The ë-definability of recursive functions

Definition 1.28 LetM 0N :≏ N andM n+1N :≏M (M nN ).
Then Church numerals are defined as follows: n :≏ ëxy.xny. Church numerals

Remarks.
1. The notationM n is here used only in combinationsM nN , never alone.

2. Cp. Wittgenstein (1922), 6.021: “A number is the exponent of an operation”.

3. If m =â n, then m = n, since Church numerals are in â-normal form.

4. We have nPQ �â P
nQ.

Lemma 1.29 There exist combinators N,V,D and R with the following properties:

1. Nk =â k + 1 (successor)

2. Vk + 1 =â k (predecessor)

3. DPQ 0 =â P (pairing- or conditional combinator; if-then-else)

DPQk + 1 =â Q

4. RPQ 0 =â P (recursion combinator)

RPQk + 1 =â Qk(RPQk)

Remarks.
1. Dnm corresponds to the ordered pair ⟨n,m⟩, since according to (3) one can select

the first or the second element.

2. DPQn corresponds to the operator if n = 0 then P, else Q.

Proof of Lemma 1.29.
1. N :≏ ëuxy.x(uxy)

3. D :≏ ëxyz.z(Ky)x

2. V :≏ ëx.x(ëz.D(N(z 0))(z 0))(D00)1

We show by induction on k:

(ëz.D(N(z 0))(z 0)︸ ︷︷ ︸
≏:P

)k+1(D00) =â Dk + 1k

Induction base:

P1(D00) =â D(N(D000))(D000) =â D(N0)0 =â D10

Induction step: Let Pk+1(D00) =â Dk + 1k. Then

Pk+2(D00) =â P(Pk+1(D00))

=â P(Dk + 1k) (induction hypothesis)
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=â D(N(Dk + 1k 0))(Dk + 1k 0)

=â D(Nk + 1)k + 1

=â Dk + 2k + 1

Therefore
Vk + 1 =â k + 1P(D00)1

=â Pk+1(D00)1

=â Dk + 1k 1

=â k

4. R :≏ Θ(ëuxyz.Dx(y(Vz)(uxy(Vz)))z)

By Corollary 1.23, R is a solution of Rxyz =â Dx(y(Vz)(Rxy(Vz)))z. qed

Remark. The recursion combinator R can also be given without using a fixed-point
combinator. See Hindley & Seldin (2008), proof of theorem 4.11, where the recursion
combinator is given as a strongly normalising term.

Definition 1.30 A ë-term P defines (or represents) a k-ary number-theoretic function ë-definability
f, if for all m1, . . . , mk the following holds: Pm1 . . . mk ≃â f(m1, . . . , mk). Using the
abbreviation m⃗ for m1, . . . , mk the latter is also written P m⃗ ≃â f(m⃗).

P m⃗ ≃â n means that

P m⃗ =â n ⇐⇒ f(m⃗) = n, if f(m⃗) is defined,

P m⃗ has no â-normal form, if f(m⃗) is not defined.

Definition 1.31 The primitive recursive functions are defined inductively as follows: primitive recursive
function1. The number 0: N0 →N is a 0-ary primitive recursive function.

2. The successor function s : N→N with s(n) = n + 1 is primitive recursive.

3. For each n ≥ 1 and i ≤ n the projection ðni : Nn→N, where

ðni (m1, . . . , mn) = mi (m1, . . . , mn ∈ N),

is primitive recursive.

4. If n ≥ 1 and 1 ≤ i ≤ k, and h : Nk→N and all gi : Nn→N are primitive recursive,
then so is the function f : Nn→N, defined by composition as follows:

f(m1, . . . , mn) = h(g1(m1, . . . , mn), . . . , gk(m1, . . . , mn))

5. If k ≥ 0, and g : Nk→N and h : Nk+2 →N are primitive recursive, then so is the
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function f : Nk+1 →N, defined by recursion as follows:

f(0, m1, . . . , mk) = g(m1, . . . , mk)

f(n + 1, m1, . . . , mk) = h(n, f(n,m1, . . . , mk), m1, . . . , mk)

Remark. Instead of h(g1(m⃗), . . . , gk(m⃗)) we also write (h ◦ [g1; . . . ; gk])(m⃗).

Theorem 1.32 Every primitive recursive function is ë-definable.

Proof. We present ë-terms that correspond to clauses (1)-(5) in Definition 1.31.

1. 0 : N0 →N is ë-defined by the term 0.

2. s : N→N is ë-defined by the term N.

3. ðni : Nn→N is ë-defined by the term ëx1 . . . xn.xi .

4. If h : Nk→N and gi : Nn→N are ë-defined by P and Qi , respectively, (1 ≤ i ≤ k),
and f : Nn→N is given by f(m⃗) := (h ◦ [g1; . . . ; gk])(m⃗) for all m⃗ = (m1, . . . , mn),
then the function f : Nn→N is ë-defined by the term ëx⃗.P(Q1x⃗) . . . (Qk x⃗), where
Qi x⃗ :≏ (. . . (Qix1) . . .)xn.

5. If g : Nk→N and h : Nk+2 →N are ë-defined by ë-terms P and Q, and f : Nk+1 →N
is given by

f(0, m⃗) = g(m⃗)

f(n + 1, m⃗) = h(n, f(n, m⃗), m⃗)

then f is ë-defined by the term ëux⃗.R(Px⃗)(ëuv.Quvx⃗)u.

Proof by induction on n:
Induction base:

(ëux⃗.R(Px⃗)(ëuv.Quvx⃗)u)0m⃗ =â R(P m⃗)(ëuv.Quv m⃗)0

=â P m⃗

=â g(m⃗) (by presupposition on g)

Induction step:

(ëux⃗.R(Px⃗)(ëuv.Quvx⃗)u)n + 1m⃗ =â R(P m⃗)(ëuv.Quv m⃗)n + 1

=â (ëuv.Quv m⃗)n(R(P m⃗)(ëuv.Quv m⃗)n)

=â Qn(R(P m⃗)(ëuv.Quv m⃗)n)m⃗

=â Qn((ëux⃗.R(Px⃗)(ëuv.Quvx⃗)u)n m⃗)m⃗

=â Qnf(n, m⃗)m⃗ (induction hypothesis)

=â h(n, f(n, m⃗), m⃗) (by presupp. on h)

qed
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Example. The function add : N2 → N with add(n,m) = n + m is defined primitive
recursively as follows:

add(0, m) = ð1
1(m)

add(n + 1, m) = (s ◦ ð3
2)(n, add(n,m), m)

The ë-definition of the function ð1
1 is the term ëx.x ≏ I, and the ë-definition of compo-

sition s ◦ ð3
2 is the term ëy1y2y3.N((ëx1x2x3.x2)y1y2y3).

By schema (5) the ë-definition of add is thus the term

Add ≏ ëux.R(Ix)(ëuv.(ëy1y2y3.N((ëx1x2x3.x2)y1y2y3))uvx)u

All redexes generated by this schematic translation can be contracted, yielding the
following simplified term:

Add�â ëux.Rx(ëuv.Nv)u

The computation of 1 + 1 (using Lemma 1.29, 4 and 1) is as follows:

Add11 �â R1(ëuv.Nv)1

=â (ëuv.Nv)0(R1(ëuv.Nv)0)

�â N(R1(ëuv.Nv)0)

=â N1

=â 2

Definition 1.33 A function f : Nn→N (for n ≥ 0) is called partial recursive iff there exist partial recursive
functionprimitive recursive functions g and h, such that for all m⃗ = (m1, . . . , mn)

f(m⃗) = h(ìk.g(m⃗, k) = 0)

where the ì-operator is defined as follows:

(ìk.g(m⃗, k) = 0) :=


the smallest k, such that g(m⃗, k) = 0 holds,

if there exists such a k;

undefined, if no such k exists.

If a smallest k always exists, then the function total recursive
function

f(m⃗) = h(ìk.g(m⃗, k) = 0) is called
recursive or total recursive.

Theorem 1.34 Every partial recursive function is ë-definable.
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Proof. We consider partial recursive functions

f(m⃗) := h(ìk.g(m⃗, k) = 0),

where g and h shall be primitive recursive functions, ë-defined by terms P and Q,
respectively (cp. Theorem 1.31).

Approach: To compute ìk.g(m⃗, k) = 0 one can write a program F such that F (k)
outputs k if g(m⃗, k) = 0, and otherwise calls F (k + 1). If we run this
program for k = 0 we obtain the smallest k such that g(m⃗, k) = 0.

We thus have to find a corresponding termM such that (in crude terms) the
following holds:

Mx⃗y = (if Px⃗y = 0, then y, elseMx⃗y + 1)

The function f(m⃗) could then be represented by the term ëx⃗.Q(Mx⃗ 0).

Consider the equation
Mx⃗y =â Dy(Mx⃗(Ny))(Px⃗y) (⋆)

By Corollary 1.23, Θ (ëux⃗y.Dy(ux⃗(Ny))(Px⃗y))︸ ︷︷ ︸
≏:Z

is a solution of this equation

Claim: f is ë-defined by the term ëx⃗.Q(ΘZx⃗ 0).
It is sufficient to show

ΘZ m⃗ 0 =â k1, if k1 is the smallest k with g(m⃗, k) = 0

(since then Qk1 =â f(m⃗)).
We will show:

If g(m⃗, k) ̸= 0 for all k < k1, then ΘZ m⃗ 0 =â Dk1(ΘZ m⃗k1 + 1)(P m⃗k1). (⋆⋆)

This entails:

If k1 is the smallest k with g(m⃗, k) = 0, then ΘZ m⃗ 0 =â k1, since P m⃗k1 =â 0.

Proof of (⋆⋆) by induction on k1:

For k1 = 0: ΘZ m⃗ 0 =â D0(ΘZ m⃗ 1)(P m⃗ 0) by (⋆)

For k1 > 0:

ΘZ m⃗ 0 =â Dk1 − 1(ΘZ m⃗k1) (P m⃗k1 − 1)︸ ︷︷ ︸ (induction hypothesis)

=â l + 1 for an l ≥ 0, since g(m⃗, k1 − 1) ̸= 0;

thus P m⃗k1 − 1 ̸=â 0
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=â ΘZ m⃗k1

=â Dk1(ΘZ m⃗k1 + 1)(P m⃗k1) by (⋆)

It remains to show:

If f(m⃗) is undefined, i.e., if g(m⃗, k) ̸= 0 for all k and given m⃗, then ΘZ m⃗ 0
has no â-normal form.

By (⋆) we have:
ΘZ m⃗k1 =â Dk1(ΘZ m⃗k1 + 1)(P m⃗k1)

and since we have chosen Θ (and not Υ) as fixed-point combinator we even have (cp.
the remark after Corollary 1.23):

ΘZ m⃗k1 �â Dk1(ΘZ m⃗k1 + 1)(P m⃗k1)

By supposition P m⃗k ̸=â 0 for every k. Therefore:

ΘZ m⃗ 0 �â D0(ΘZ m⃗ 1)(P m⃗ 0) �â ΘZ m⃗ 1

�â D1(ΘZ m⃗ 2)(P m⃗ 1) �â ΘZ m⃗ 2

�â D2(ΘZ m⃗ 3)(P m⃗ 2) �â ΘZ m⃗ 3

�â · · ·

This â-reduction series is quasi-leftmost. That is, from time to time a leftmost term is
contracted, namely a term of the form DMN l + 1. Moreover, the reduction series is not
terminating. The term ΘZ m⃗ 0 has therefore no â-normal form (cp. Theorem 1.20). qed

Theorem 1.35 Every ë-definable function is partial recursive.

Sketch of proof. Let f be an n-ary function which is ë-defined by a term P. Then

f(k1, . . . , kn) = that k for which the equation Pk1 . . . kn = k is endformula of the
shortest derivation in ëâ (see Section 1.3) ending with a formula of
the form Pk1 . . . kn = m, if there exists such a derivation in ëâ .

Otherwise f(k1, . . . , kn) is undefined.

Using Gödelisation (cp. the remark on p. 33) f can be seen to be a partial recursive
function. qed

1.3 The formal theories ëâ and ëâç

Our treatment of the ë-calculus has so far been based on the operational semantics
for ë-terms given by â-contraction, α-conversion and possibly ç-contraction. We now
consider formal systems that are sound and complete with respect to this semantics.
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Definition 1.36 We define the formal theories ëâ andëâç,whose formulas are all equations formal theories
ëâ and ëâçof the formM = N for ë-termsM,N .

(α) ëx.M = ëy.M [y/x], if y /∈ FV(M )

(â) (ëx.M )N =M [N/x]

(ñ) M =M (reflexivity)

ëâç has in addition:

(ç) ëx.Mx =M , if x /∈ FV(M )

The rules are:

(ó) M = N
N =M

(symmetry)

(ô) M = N N = P
M = P

(transitivity)

(ì) N = N ′

MN =MN ′

(í) M =M ′

MN =M ′N

(î) M =M ′

ëx.M = ëx.M ′ (weak extensionality)

(Formulas above the rule bar are called premisses, the formula below is called conclusion.)

Let Γ be a set of formulas and A a formula. A derivation of A from Γ in ëâ or ëâç is a derivation
tree (branching upward),

– whose leaves are axioms of ëâ , resp. ëâç, or formulas in Γ,

– whose other (non-leaf) nodes are formulas inferred by a rule application from the
immediately preceding formulas (i.e., formulas standing directly above),

– and whose root node is A.

The elements of Γ are also called assumptions, and the formulaA is also called endformula.
If T is a formal theory, then

T ,Γ ⊢ A

means that A is derivable in T from assumptions Γ. If Γ = ∅, then the derivation of A in
T is also called proof (of A in T ), i.e. proof

ëâ ⊢M = N means thatM = N is provable in ëâ .

ëâç ⊢M = N means thatM = N is provable in ëâç.

The two formal theories ëâ� and ëâç� are defined like the systems ëâ and ëâç, formal theories
ëâ� and ëâç�respectively, but without rule (ó), i.e. without symmetry.
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Then

ëâ� ⊢M = N means thatM = N is provable in ëâ�;

ëâç� ⊢M = N means thatM = N is provable in ëâç�.

Example. The derivation

(â)
(ëy.yx)z = zx

(î)
ëx.(ëy.yx)z = ëx.zx

(í)
(ëx.(ëy.yx)z)v = (ëx.zx)v

(â)
(ëx.zx)v = zv

(ô)
(ëx.(ëy.yx)z)v = zv

is a proof of (ëx.(ëy.yx)z)v = zv in any of the above systems.

Lemma 1.37
1. M �â N ⇐⇒ ëâ� ⊢M = N

2. M �âç N ⇐⇒ ëâç� ⊢M = N

3. M =â N ⇐⇒ ëâ ⊢M = N

4. M =âç N ⇐⇒ ëâç ⊢M = N

Proof. Exercise. qed

Remark. The relations on the left side are based on the operational semantics for ë-terms.
The provability relations on the right side are based on the respective formal theories.
The lemma thus says that the formal theories are sound (“⇐=”) and complete (“=⇒”)
for the respective corresponding operational semantics.

Lemma 1.38 If, in the definition of ëâç, we replace axiom (ç) by the rule

MP = NP for all P
(÷)

M = N

or by the rule
Mx = Nx(æ) if x /∈ FV(NM )
M = N

then in the resulting systems the same equations are derivable as before.

Remark. Rule (÷) is a so-called ù-rule, i.e. a rule having infinitely many premisses.
We only consider rule (æ) here. Both rules, as well as the axiom schema (ç), express
extensionality of =. extensionality
For the equality of functions f and g extensionality means:

For all x: If f(x) = g(x), then f = g.

One would not require extensionality for the equality of programs; one would rather
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understand equality intensionally in this case. The theory ëâ (resp. ëâ�) is intensional intensional
as well, i.e. we do not have:

For all terms X : If ëâ ⊢MX = NX , then ëâ ⊢M = N .

(A counterexample can be obtained using the termsM ≏ y and N ≏ ëx.yx.)
On the other hand, systems having (ç), (÷) or (æ) are extensional.

Proof of Lemma 1.38.
“(ç) =⇒ (æ)”:

(ç)
ëx.Mx =M(ó)
M = ëx.Mx

Mx = Nx(î)
ëx.Mx = ëx.Nx(ô)

M = ëx.Nx
(ç)
ëx.Nx = N(ô)

M = N

Thus applications of (æ) can always be replaced by a derivation of this form.

“(æ) =⇒ (ç)”:
(â)

(ëx.Mx)x =Mx
(æ)

ëx.Mx =M

Thus any application of the axiom (ç) can be replaced by a derivation of this form. qed

1.4 Undecidability results

Theorem 1.39 (Church, 1936b)
The set NFâ := {M |M has â-normal form} is not decidable.

Sketch of proof. Consider an enumeration of the unary partial recursive functions
f1, f2, . . . such that the function u with u(m, n) :≃ fm(n) is partial recursive (such an
enumeration exists).
Let u be ë-defined by the term P. Then the following holds:

Pmn has â-normal form ⇐⇒ u(m, n) is defined.

Suppose NFâ were decidable. Then the following function g would be a total recursive
function:

g(n) :=

u(n, n) + 1 if u(n, n) is defined

1 otherwise

Then g = fk for some k. Since fk is total, we have

u(k, k) = fk(k) = g(k) = u(k, k) + 1

Contradiction. qed
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Remark. In what follows we presuppose that ë-terms can be encoded as natural numbers
in such a way that different terms are always encoded by different numbers. Such an
encoding is called Gödelisation. The number encoding a termM is called Gödel number
ofM, written M . Then the ë-term M is the church numeral that corresponds to the
Gödel number M ofM.

Theorem 1.40 (Church, 1936b) The relation =â is not decidable.

Sketch of proof. We can recursively enumerate all terms that are â-equal to a given term.
For example, we can produce derivations of the corresponding equations in ëâ , and use
Lemma 1.37 (3).
Let

f(m, k) := Gödel number of the k-th term that is â-equal to the term with Gödel
number m;

h(m) :=

0 if m is the Gödel number of a term in â-normal form,

1 otherwise.

The functions f and h are primitive recursive. We assume they are ë-defined by the
terms F and H, respectively.
Consider the equation

Mxy =â D1(Mx(Ny))(H (Fxy))

By Corollary 1.23, the following is a solution of this equation:

Υ(ëuxy.D1(ux(Ny))(H (Fxy))︸ ︷︷ ︸
≏:V

)

Then the following holds:

– (Υ(ëuxy.V ))m 0 =â 1, if m is the Gödel number of a term that is â-equal to a term
in â-normal form.

– Otherwise (Υ(ëuxy.V ))m 0 has no â-normal form.

Suppose =â were decidable. Then (Υ(ëuxy.V ))M 0 =â 1 would be decidable. Thus
NFâ would be decidable, contradicting Theorem 1.39. qed

Theorem 1.41 (Church, 1936a) First-order logic PL is not decidable.

Sketch of proof. The relation =â is not decidable.
Thus, by Lemma 1.37 (3), the formal theory ëâ is not decidable either.

ëâ can be translated into a PL-formula:

– we use Gödel numbers to encode ë-terms;
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– (Gödel) numbers can be represented by PL-terms x,f(x), f(f(x)), . . . in an obvious
way (interpret the term f as the successor function); we abbreviate these terms as
follows:

0 :≏ x

1 :≏ f(x)

2 :≏ f(f(x))
...

– we use the binary relation symbol E to represent equality (=) in ëâ ;

– using E we translate the 8 axiom schemata and rules of ëâ into 8 PL-formulas F1 to
F8 as follows:

1. Rule (ó)
M = N
N =M

is translated into the PL-formula

E(M , N ) → E( N , M )

2. Rule (ô)
M = N N = P

M = P

is translated into the PL-formula

E(M , N ) ∧ E( N , P ) → E(M , P )

And so on for the remaining rules and axiom schemata (variable conditions may be
assumed and do not have to be translated).

Then the following holds:

ëâ ⊢M = N ⇐⇒ PL ⊢ (F1 ∧ . . . ∧ F8) → E(M , N )

Suppose PL were decidable. Then ëâ would be decidable as well, and by Lemma 1.37 (3)
also â-equality (=â), contradicting Theorem 1.40. qed
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2 Combinatory Logic

Combinatory logic (short: CL) is as powerful as ë-calculus, but without making use of
bound variables. This simplifies substitution, and we do not need α-conversion. However,
CL-terms are less transparent than ë-terms.
To motivate the abandonment of bound variables we consider the law of commutativity
for addition:

for all x, y: x + y = y + x

where the variables x and y occur bound. To avoid this binding of variables we first
introduce an addition operator A:

A(x, y) = x + y (for all x, y)

and then define an operator C by

(C(f))(x, y) = f(y, x) (for all f, x, y)

The law of commutativity can then be given as follows:

A = C(A)

In this formulation no bound variables occur (at least not immediately).
The operator C is an example of a combinator. Further examples are:

B (B(f, g))(x) = f(g(x)) composition of two functions
B′ (B′(f, g))(x) = g(f(x)) reverse composition of two functions
S (S(f, g))(x) = f(x, g(x)) (stronger) composition of two functions
I I(f) = f identity
K (K(c))(x) = c forms constant functions

2.1 Syntax and operational semantics

Let an infinite series of variables be given (in a fixed order). We assume that these
variables are the same as in ë-calculus.
K and S shall be given as constants. If a system contains additional constants, then it is
called applied, otherwise pure. We only investigate pure combinatory logic.

Definition 2.1 CL-termsCL-terms are defined as follows:

1. All variables and constants (i.e. atoms) are CL-terms. atoms

2. If X and Y are CL-terms, then the application (XY ) is a CL-term as well, having X application
and Y as immediate subterms.
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Further notions:

– A closed CL-term has no variables. closed

– A combinator has only K and S as atoms. combinator

– Metalinguistic variables (also with indexes):

· for CL-terms: U,V,W,X,Y,Z, . . .

· for atoms: a, b, c, . . .

– FV(X ) denotes the set of variables in X.

– On parentheses convention on
parentheses

:

· Outermost parentheses can be omitted.

· We use association to the left, i.e. UVWX stands for ((UV )W )X .

– X ≏ Y denotes again the syntactic identity of X and Y.

– The length of a term and the notion of (proper) subterm are defined as for ë-terms. length

Examples.
– Sxy(Ky)(KKSS) is a CL-term.

– S(KS) is a CL-term (and a combinator).

Definition 2.2 As no bound variables can occur in CL-terms, substitution Y [U/x] is substitution
simply defined as follows:

1. x[U/x] :≏ U,

2. a[U/x] :≏ a, if x ̸≏ a,

3. (VW )[U/x] :≏ (V [U/x]W [U/x]).

Definition 2.3
– A term of form KXY or SXYZ is called weak redex (short: redex). weak redex

– The operation of weak contraction is defined by: weak contraction

U
[
KXY

]
�1w U

[
X
]

U
[
SXYZ

]
�1w U

[
XZ(YZ)

]
– If there is a (possibly empty) finite series of weak contractions from a term X to a

term Y, i.e. if
X ≏ V1 �1w V2 �1w · · ·�1w Vn ≏ Y

then X (weakly) reduces to weak reductionY. Notation: X �w Y.

– Two terms X and Y are weakly equal weak equality
weak conversion

(or weakly convertible), if

X ≏ V1
�1w
�1w V2

�1w
�1w · · · �1w

�1w Vn ≏ Y

(where U �1w
�1w W means “U �1w W orW �1w U”). Notation: X =w Y.
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– For a (possibly empty) finite or infinite series of weak contractions

X ≏ X1 �1w X2 �1w X3 �1w · · ·

we call (X1, X2, X3, . . .), or the given series itself, a weak reduction series for X. weak reduction series

Definition 2.4
– X is in weak normal form (short: weak nf ), if X contains no weak redex. weak normal form

– If X �w Y holds, and Y is in weak normal form, then Y is a weak normal form of X.
(We also say that X has the weak normal form Y.)

– X is (weakly) normalisable normalisable, if there is a weak normal form of X.

– X is strongly normalisable, if there is no infinite weak reduction series for X. strongly
normalisable

Examples.
1. Let B :≏ S(KS)K. Then BXYZ �w X (YZ):

S(KS)KXYZ �w KSX (KX )YZ by S(KS)KX �1w KSX (KX )

�w S(KX )YZ by KSX �1w S

�w KXZ(YZ) by S(KX )YZ �1w KXZ(YZ)

�w X (YZ) by KXZ �1w X

(Cp. the operator B mentioned earlier.)

2. It is SKKX �w X, i.e. SKK behaves as the identity operator I mentioned earlier.

We define I :≏ SKK.

Remarks.
1. Weak reduction �w is invariant under substitution (cp. Lemma 1.10), i.e. it holds: If
X �w Y and U �w V, then U [X/z] �w V [Y/z].

2. The Church-Rosser property holds (cp. Theorem 1.13):

– IfX �w U andX �w V, then there exists a term T such thatU �w T andV �w T.

– If X =w Y, then there exists a term T such that X �w T and Y �w T.

2.2 The formal theory CLw

Definition 2.5 We define the formal theory CLw, whose formulas are all equations of the formal theory CLw
form X = Y for CL-terms X,Y.

Axioms of CLw are all instances of the following axiom schemata:

(K) KXY = X

(S) SXYZ = XZ(YZ)
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(ñ) X = X (reflexivity)

The rules are:

(ó) X = Y
Y = X

(symmetry)

(ô) X = Y Y = Z
X = Z

(transitivity)

(ì) X = X ′

YX = YX ′

(í) Y = Y ′

YX = Y ′X

The notions derivation and proof are defined analogously to Definition 1.36, and

CLw ⊢ X = Y means that X = Y is provable in CLw,

CLw� ⊢ X = Y means that X = Y is provable in CLw without rule (ó).

Lemma 2.6
1. X =w Y ⇐⇒ CLw ⊢ X = Y.

2. X �w Y ⇐⇒ CLw� ⊢ X = Y.

Proof. Exercise. qed

2.3 On the relation between ë-calculus and CL

To investigate the relation between ë-calculus and combinatory logic we consider
translations of CL-terms into ë-terms and vice versa.

Definition 2.7 For a CL-term X the ë-term Xë is defined as follows:

1. xë :≏ x

2. Kë :≏ ëxy.x

3. Së :≏ ëxyz.xz(yz)

4. (XY )ë :≏ XëYë

(We here identify congruent ë-terms; this means that M ≏ N in case M ≡α N, for
ë-termsM,N.)

Lemma 2.8
1. If X �w Y, then Xë �â Yë.

2. If X =w Y, then Xë =â Yë.

Proof. Use CLw� and ëâ�, resp. CLw and ëâ . qed
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Remark. The converse direction does not hold.
For example, we have SëKë =â Kë(SëKëKë), but not SK =w K(SKK). None of the
CL-terms contracts, while both ë-terms contain redexes.

Definition 2.9 For a ë-termM the CL-termMCL is defined as follows:

1. xCL :≏ x

2. (MN )CL :≏MCLNCL

3. (ëx.M )CL :≏ [x].MCL

where [x].Y (“abstraction x dot Y”) for CL-terms Y is defined as follows:

1. [x].x :≏ SKK (abbreviated: I :≏ SKK);

2. [x].Y :≏ KY, if x /∈ FV(Y );

3. [x].Ux :≏ U, if x /∈ FV(U );

4. [x].(UV ) :≏ S([x].U )([x].V ), if none of the preceding cases applies.

Example. It is [x].xxz ≏ S([x].xx)([x].z) ≏ S(S([x].x)([x].x))(Kz) ≏ S(SII)(Kz).

Remarks.
1. The expression [x].Y is metalinguistic; [x].Y is not a CL-term, but only represents a

CL-term.

2. It is x /∈ FV([x].Y ). In this respect [x] behaves like a variable-binding operator.

Lemma 2.10 We have ([x].Y )Z �w Y [Z/x].

Proof. By induction on the structure of Y :

1. Y ≏ x: ([x].x)Z ≏ IZ �w Z ≏ x[Z/x]

2. Y is an atom and Y ̸≏ x: ([x].Y )Z ≏ KYZ �w Y ≏ Y [Z/x]

3. Y ≏ (UV ):

– x /∈ FV(Y ): ([x].Y )Z ≏ KYZ �w Y ≏ Y [Z/x]

– x /∈ FV(U ) and V ≏ x: ([x].Y )Z ≏ UZ ≏ Ux[Z/x]

– none of the preceding cases:

([x].Y )Z ≏ S([x].U )([x].V )Z

�w ([x].U )Z(([x].V )Z)

�w (U [Z/x])(V [Z/x]) (induction hypothesis)

≏ Y [Z/x] qed

Corollary 2.11 (Combinatorial completeness)
Let V be a term with {x1, . . . , xn} ⊆ FV(V ). Then there exists a term U without
occurrences of x1, . . . , xn such that UX1 . . . Xn �w V [X1/x1] . . . [Xn/xn].
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Proof. Choose U :≏ [x1]. . . . [xn].V. qed

Remark. Thus every combinator U that is given by a “new” contraction

UX1 . . . Xn �w W

whereW is constructed from X1, . . . , Xn only, can be defined in CL by a variable-free
term.
Using only S and K we can thus express “all possible” combinators.

Lemma 2.12
1. For CL-terms X we have: (Xë)CL ≏ X .

2. For ë-termsM we have: (MCL)ë =âç M .

Proof.
1. By induction on the structure of X :

– (xë)CL ≏ xCL ≏ x

– (Kë)CL ≏ (ëxy.x)CL ≏ [x].([y].x) ≏ [x].Kx ≏ K

– (Së)CL ≏ (ëxyz.xz(yz))CL

≏ [x].([y].([z].xz(yz)))

≏ [x].([y].S([z].xz)([z].yz))

≏ [x].([y].Sxy)

≏ [x].Sx

≏ S

– ((UV )ë)CL ≏ (UëVë)CL ≏ (Uë)CL(Vë)CL ≏ UV (the latter by i.h.)

2. By induction on the structure ofM :

– M ≏ x: (xCL)ë ≏ xë ≏ x

– M ≏ (PQ):
((PQ)CL)ë ≏ (PCLQCL)ë ≏ (PCL)ë(QCL)ë =âç PQ (the latter by i.h.)

– M ≏ (ëx.M ′): We have to show ((ëx.M ′)CL)ë ≏ ([x].(M ′)CL)ë =âç ëx.M ′.
Induction on the structure ofM ′:

· ([x].xCL)ë ≏ Ië ≏ SëKëKë =â ëx.x
· if x /∈ FV((PQ)CL):

([x].(PQ)CL)ë ≏ (K(PQ)CL)ë

≏ Kë((PQ)CL)ë

≏ (ëxy.x)((PQ)CL)ë where y /∈ FV(PQ)

=â ëy.((PQ)CL)ë

=âç ëy.(PQ) (induction hypothesis)
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· if x /∈ FV(PCL) and QCL ≏ x:

([x].(PQ)CL)ë ≏ ([x].(PCLQCL))ë

≏ ([x].(PCLx))ë

≏ (PCL)ë

=âç P (induction hypothesis)

=ç ëx.(Px)

≏ ëx.(PQ)

· otherwise: ([x].(PQ)CL)ë ≏ (S([x].PCL)([x].QCL))ë

≏ Së([x].PCL)ë([x].QCL)ë

=âç Së(ëx.P)(ëx.Q) (induction hypothesis)

≏ (ëuvy.uy(vy))(ëx.P)(ëx.Q)

=â ëy.(ëx.P)y((ëx.Q)y)

=â ëx.(PQ) qed

Corollary 2.13 By Lemma 2.8 we thus have:MCL =w NCL =⇒ M =âç N.

Remark. However, we do not have (MCL)ë =â M .
A counterexample is ((ëx.yx)CL)ë ≏ ([x].yx)ë ≏ yë ≏ y ̸=â ëx.yx.

Differences between ë-calculus and CL

None of the following statements holds:

MCL �w NCL =⇒ M �â N MCL �w NCL ⇐= M �â N

MCL =w NCL =⇒ M =â N MCL =w NCL ⇐= M =â N

Thus â-reducibility of a ë-termM to a ë-term N cannot be shown by using translations
(;) and weak reducibility as follows:M ;MCL �w NCL ; N.
The problem with “=⇒” is that

(ç) [x].Xx = X , if x /∈ FV(X )

holds in CLw, since we have

(ëx.Mx)CL ≏ [x].MCLx ≏MCL, if x /∈ FV(M ).

The problem with “⇐=” is that

X = X ′
(î)

[x].X = [x].X ′
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does not hold in CLw, since we have

[x].Sxyz ≏ S([x].Sxy)([x].z)

≏ S(S([x].Sx)([x].y))(Kz)

≏ S(SS(Ky))(Kz)

and

[x].xz(yz) ≏ S([x].xz)([x].yz)

≏ S(S([x].x)([x].z))(K(yz))

≏ S(SI(Kz))(K(yz))

Hence Sxyz =w xz(yz), but not [x].Sxyz =w [x].xz(yz).

Extensionality

Adding (î) to CLw yields full extensionality (æ):

(ç)
[x].Xx = X

(ó)
X = [x].Xx

Xx = Yx(î)
[x].Xx = [x].Yx

(ô)
X = [x].Yx

(ç)
[x].Yx = Y

(ô)
X = Y

In ëâ : (î) holds eo ipso, while adding (ç) yields extensionality.
In CLw: (ç) holds eo ipso, while adding (î) yields extensionality.
This shows how the two systems differ.

Strong reduction

We define strong reduction >− by extending CLw� by strong reduction

X >− Y(î)
[x].X >− [x].Y

Then we have for ë-termsM,N :

M �âç N =⇒ MCL >−NCL

The converse direction MCL >− NCL =⇒ M �âç N does, however, not hold, since
X >− Y does not imply Xë �âç Yë.
We only have

MCL >−NCL =⇒ M =âç N

Now ç-conversion is an instance of (ñ) and holds in arbitrary directions. For ë-terms
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M,N we therefore have:

M =âç N ⇐⇒ MCL >−<NCL

where >−< is the symmetric closure of>−. Then the following holds for CL-terms X,Y :

X >−<Y ⇐⇒ Xë =âç Yë.

Weakening of [x].Y

In order to be able to represent â-equality (instead of only âç-equality) in CLw, one can
weaken the definition of [x].Y in such a way that (ç) does no longer hold automatically;
for example by removing clause

3. [x].Ux :≏ U, if x /∈ FV(U )

from the definition of [x].Y.
However, even in this case (î) does not hold, since

[x].Sxyz ≏ S(S(S(KS)I)(Ky))(Kz)

and (as before)

[x].xz(yz) ≏ S(SI(Kz))(K(yz))

Again, we do not have [x].Sxyz =w [x].xz(yz), while Sxyz =w xz(yz) does hold.
However, using the modified definition of [x].Y one can show

ëâ ⊢M = N ⇐⇒ (CLw + ⊗) ⊢MCL = NCL

(CLw + ⊗) ⊢ X = Y ⇐⇒ ëâ ⊢ Xë = Yë

where ⊗ is an extension of CLw by a certain rule schema or by a certain finite set of
axioms (cp. the formal theory CLæâ in Hindley & Seldin (2008), Ch. 9).

Soundness

For the modified definition of [x].Y we do not have (Së)CL =w S. However, by a further
modification it is possible to obtain for =â the following (instead of Lemma 2.12 for
=âç):

1. For CL-terms X : (Xë)CL ≏ X .

2. For ë-termsM : (MCL)ë =â M .

The evaluation in CLw of translated ë-terms is then sound. This fact is often used in
functional programming.
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Completeness

Regarding completeness the following holds: We consider an extended language where
additional functions can be evaluated (so-called ä-rules). The corresponding reductions
are �1âä , �âä and �1lâä (l for leftmost), resp. �1wä and �wä . We then have:

If M �1lâä N, where M is closed and does not have the form [x].P, then
MCL �1wä NCL.

If a second-order typed system with primitive types Int, Bool and Char is given, in which
a fixed-point operator Υ exists and whereM has a primitive type, then the following
holds:

M �lâä N =⇒ MCL �wä NCL

This means that everything that can be found in ëâ can be found in CLw by a translation.
This fact is e.g. used in the functional programming language Miranda (see Turner,
1979).
For a constant c with some primitive type (which by definition is in â-normal form) we
thus get

ëä ⊢M = c =⇒ M =âä c

=⇒ M �lâä c

=⇒ MCL �wä c

=⇒ CLwä ⊢MCL = c

as well as the converse

CLwä ⊢MCL = c =⇒ MCL =wä c

=⇒ MCL �wä c

=⇒ (MCL)ë︸ ︷︷ ︸
=â M

�âä c

=⇒ ëâ ⊢M = c

Every computation of a value forM can thus also be done in CLw.
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3 The simply typed ë-calculus

There are two variants of typing ë-terms:

1. Curry-style typingCurry-style typing: Terms are the terms of the untyped theory. Every term has a
(possibly empty) set of possible types (implicit typing, type assignment).

2. Church-style typingChurch-style typing: Terms have associated types, which are usually unique (explicit
typing).

We consider only Curry-style typing in the following, and moreover in its most simple
form that has only so-called simple types. The simply typed ë-calculus is called ë→. We
follow the treatment in Barendregt (1992). (Since we consider only the simply typed
ë-calculus, we omit the specifier “simply”.)

Remark. For ë→ strong normalisability holds. Hence not all recursive functions are
definable in ë→; the partial recursive functions are not ë→-definable at all, but there are
also total recursive functions which are not definable.
We define the function F as follows (for some adequate enumeration of typed terms):

F (n,m) =


k iff the n-th typed term applied to the

argument m has the â-normal form k,

0 otherwise.

But then the (total) function g(n) := F (n, n) + 1 cannot be definable in ë→: Let g be
defined in ë→ by the p-th typed term. Then g(p) = F (p, p); however, by definition
g(p) = F (p, p) + 1. Contradiction.

3.1 Implicit typing

Remarks. 1. To avoid unnecessary complications we exclude certain kinds of ë-terms,
namely

– terms in which a variable occurs free as well as bound,

– (sub)terms of the form ëx.M, in which ëx occurs also inM.

(That is, terms like (x(ëx.(ëx.x))), for example, are not considered.) Note that this
is not an essential restriction of the expressive power of our language.

2. We use ó, ô, ó1, ó2, . . . as metalinguistic variables for types.

Definition 3.1 The set of types of ë→ is defined as follows: types

1. type variablesType variables α, â, ã, ä, α1, α2, . . . are types.

2. If ó and ô are types, then (ó→ô) is a type (also called function type). function type

It is ó1→ó2→ · · · →ón−1→ón an abbreviation of ó1→(ó2→(· · · (ón−1→ón) · · · )); that
is, we use association to the right for function types.
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– A judgement has the formM : ó for a ë-termM and a type ó. judgement

The termM is called the subject of the judgement. (The type ó is then also called the subject
predicate. One says “M has type ó” or something like that.)

– A declaration is a judgement whose subject is a term variable. declaration

– A basis Γ is a finite set of declarations whose subjects are pairwise distinct. basis

– A sequent has the form Γ ⊢M : ó for a basis Γ and a judgementM : ó. sequent

Definition 3.2 Sequents Γ ⊢M : ó expressing that the judgementM : ó holds in basis Γ
can be derived in the calculus ë→, which is given by the axiom scheme calculus ë→

(Id) Γ, x : ó ⊢ x : ó

together with the following →-introduction and →-elimination rules:

Γ, x : ó ⊢M : ô
(→I)

Γ ⊢ (ëx.M ) : ó→ô
Γ ⊢M : ó→ô Γ ⊢ N : ó(→E)

Γ ⊢ (MN ) : ô

If Γ ⊢M : ó is derivable in ë→, then we write Γ ⊢ë→ M : ó or Γ ⊢M : ó. (Thus we often derivable
identify sequents with the assertion of their derivability. What is meant in each case
should be clear from the context.)

Examples.
1. It is ⊢ë→ ëxy.x : ó→ô→ó:

(Id)
x : ó, y : ô ⊢ x : ó

(→I)
x : ó ⊢ ëy.x : ô→ó

(→I) ⊢ ëx.ëy.x : ó→ô→ó

That is, the combinator K has type ó→ô→ó.

2. It is ⊢ë→ ëxyz.xz(yz) : (ó→ô→ô′)→(ó→ô)→ó→ô′:

Let Γ = {x : ó→ô→ô′, y : ó→ô, z : ó}.

(Id)
Γ ⊢ x : ó→ô→ô′ (Id)

Γ ⊢ z : ó
(→E)

Γ ⊢ xz : ô→ô′
(Id)

Γ ⊢ y : ó→ô (Id)
Γ ⊢ z : ó

(→E)
Γ ⊢ yz : ô

(→E)
x : ó→ô→ô′, y : ó→ô, z : ó ⊢ xz(yz) : ô′

(→I)
x : ó→ô→ô′, y : ó→ô ⊢ ëz.xz(yz) : ó→ô′

(→I)
x : ó→ô→ô′ ⊢ ëyz.xz(yz) : (ó→ô)→ó→ô′

(→I)
⊢ ëxyz.xz(yz) : (ó→ô→ô′)→(ó→ô)→ó→ô′

That is, the combinator S has type (ó→ô→ô′)→(ó→ô)→ó→ô′.

Remark. One can add constants. Corresponding declarations for constants are then
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added to every basis. An example is the fixed-point combinator Y : (ó→ó)→ó for all
types ó in the programming language ML.

Definition 3.3
– A closed termM is called typable, if ⊢M : ó for a type ó. typable

– A termM with free variables x1, . . . , xn is called typable, if Γ ⊢ M : ó for a type ó,
where Γ = {x1 : ó1, . . . , xn : ón} for certain types ó1, . . . , ón.

– Let Γ = {x1 : ó1, . . . , xn : ón} be a basis. Then let Γ(xi) := ói .

– Let V be a set of variables and Γ a basis. Then the restriction of Γ to V is defined by restriction

Γ|V := {x : ó | x ∈ V and Γ(x) = ó}

– The domain of Γ is dom(Γ) := {x1, . . . , xn}. domain

– type substitutionType substitution: ó[ô/α] signifies the simultaneous replacement of all occurrences of
the type variable α in type ó by type ô. (See also Definition 3.11.)

For a basis Γ = {x1 : ó1, . . . , xn : ón} the expression Γ[ô/α] signifies the result of type
substitutions ói [ô/α], for 1 ≤ i ≤ n, in Γ.

Remark. For sequents Γ ⊢ M : ó one refers toM : ó also as a hypothetical judgement,
since it depends on the basis Γ; for sequents ⊢M : ó one refers toM : ó as a categorical
judgement.

Example. The term xx is not typable. Consider

(Id)  
x : ó→ô, x : ó ⊢ x : ó→ô (Id)  

x : ó→ô, x : ó ⊢ x : ó
(→E)  

x : ó→ô, x : ó ⊢ xx : ô

This is not a correct derivation, since the subjects of the basis {x : ó→ô, x : ó} are not
pairwise distinct.
Consequently, ëx.xx is not typable, since any corresponding derivation would have to
begin as shown above. Hence, for example Ω has no type as well.

Lemma 3.4
1. If Γ ⊆ Γ′ for bases Γ and Γ′, then (Γ ⊢M : ó =⇒ Γ′ ⊢M : ó). (monotony)

2. If Γ ⊢M : ó, then FV(M ) ⊆ dom(Γ).

3. If Γ ⊢M : ó, then Γ|FV(M ) ⊢M : ó.

4. If Γ ⊢ x : ó, then (x : ó) ∈ Γ.

5. If Γ ⊢ (ëx.M ) : ó, then ó ≏ ó1→ó2 for some ó1, ó2 and Γ, x : ó1 ⊢M : ó2.

6. If Γ ⊢MN : ó, then Γ ⊢M : ô→ó and Γ ⊢ N : ô for a ô.

7. If Γ ⊢M : ó andM ′ is subterm ofM, then Γ′ ⊢M ′ : ó′ for some Γ′, ó′.

8. If Γ ⊢M : ó, then Γ[ô/α] ⊢M : ó[ô/α].
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9. If Γ, x : ó ⊢M : ô and Γ ⊢ N : ó, then Γ ⊢M [N/x] : ô.

10. If Γ ⊢M : ó andM �â M
′, then Γ ⊢M ′ : ó. (subject reduction)

Remarks.
1. The latter says that types are invariant under subject reduction.

2. However, invariance under subject expansion �â does not hold; that is, ifM �â M
′

and Γ ⊢M : ó, then in general Γ ⊢M ′ : ó does not hold.

Example: Although I�â KI(ëx.xx) and ⊢ I : ó→ó, we have ⊬ KI(ëx.xx) : ó→ó.

3. Lemma 3.4 (4)-(6) is also referred to as “generation lemma” in the literature.

In the following we show that all typable terms are strongly normalising. (Weak
normalisability was already shown by Turing; strong normalisability goes back to Tait,
1967.) The converse does not hold: For example, the term ëx.xx in â-nf is not typable.

Definition 3.5
– Let SN be the set of strongly normalisable ë-terms. SN

– For sets A,B of ë-terms let A→B := {M | for all N ∈ A it isMN ∈ B}.

– The interpretation of types is defined inductively as follows: interpretation
(of types)

JαK := SN, for all type variables α;

Jó→ôK := JóK→JôK.

Remark. The interpretation of a function type is a set of ë-terms having the desired
transition property A→B w.r.t. the given domain A and co-domain B .

Definition 3.6 A set A of terms is called saturated, if the following holds (for n ≥ 0): saturated

(a) A ⊆ SN,

(b) xR1 . . . Rn ∈ A, if x is a term variable and R1, . . . , Rn ∈ SN,

(c) (ëx.M )NR1 . . . Rn ∈ A, if (M [N/x])R1 . . . Rn ∈ A for N,R1, . . . , Rn ∈ SN.

SAT := {A | A saturated}. SAT

Lemma 3.7 For every type ó of ë→ it holds that JóK is saturated.

Proof.
1. ó is a type variable. We have to show: SN is saturated.

(a) SN ⊆ SN.

(b) xR1 . . . Rn ∈ SN, if R1, . . . , Rn ∈ SN.

(c) Let (M [N/x])R1 . . . Rn ∈ SN with N,R1, . . . , Rn ∈ SN.

Then alsoM ∈ SN, since otherwise (M [N/x])R1 . . . Rn could not be strongly
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normalisable. We consider (ëx.M )NR1 . . . Rn. Then every reduction series has
the following form, whereM �â M

′, N �â N
′ and Ri �â R′

i for 1 ≤ i ≤ n:

(ëx.M )NR1 . . . Rn �â (ëx.M ′)N ′R′
1 . . . R

′
n

�1â M
′[N ′/x]R′

1 . . . R
′
n

�â . . .

We know that if S �â T and P �â Q, then P[S/x] �â Q[T/x]. Thus:

(M [N/x])R1 . . . Rn �â (M ′[N ′/x])R′
1 . . . R

′
n �â · · ·

Since this series terminates, the first series terminates as well.

Therefore (ëx.M )NR1 . . . Rn is strongly normalisable.

2. ó is a function type ó1→ó2. Let A = Jó1K and B = Jó2K.

If A and B are saturated, then so is A→B :

(a) LetM ∈ A→B . By Definition 3.6 (b) we have x ∈ A for all variables x (case
n = 0). ThusMx ∈ B . SinceMx is strongly normalisable, alsoM is strongly
normalisable. Therefore A→B ⊆ SN.

(b) LetM ∈ A. Then M ∈ SN. Hence xR1 . . . RnM ∈ B for Ri ∈ SN. Thus also
xR1 . . . Rn ∈ A→B .

(c) LetM ∈ A. ThenM ∈ SN.

Then (ëx.P)NR1 . . . RnM ∈ B , if (P[N/x])R1 . . . RnM ∈ B .

Then (ëx.P)NR1 . . . Rn ∈ A→B , if (P[N/x])R1 . . . Rn ∈ A→B . qed

Definition 3.8
– A valuation is a function ñ : variables→ ë-terms. valuation

– Let ñ be a valuation. Then the interpretation of a termM under ñ is: interpretation
(of terms)

JM Kñ :=M [ñ(x1)/x1, . . . , ñ(xn)/xn]

where {x1, . . . , xn} is the set of all free variables inM.

– A valuation ñ satisfiesM : ó, if JM Kñ ∈ JóK. Notation: ñ ⊨M : ó. satisfiability

– A valuation ñ satisfies a basis Γ, if ñ ⊨ x : ó for all (x : ó) ∈ Γ.

Notation: ñ ⊨ Γ.

– A basis Γ satisfiesM : ó, if:

For all valuations ñ: If ñ ⊨ Γ, then ñ ⊨M : ó.

Notation: Γ ⊨M : ó.
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Lemma 3.9 (Soundness) If Γ ⊢M : ó, then Γ ⊨M : ó.

Proof. By induction on the structure of the derivation of Γ ⊢M : ó.

Case (Id): Let Γ = Γ′ ∪ {x : ó} andM ≏ x. It is Γ′, x : ó ⊢ x : ó.

Suppose ñ ⊨ Γ′ ∪ {x : ó}, then ñ ⊨ x : ó as a special case. Hence Γ′, x : ó ⊨ x : ó.

Case (→I): LetM ≏ ëx.N. Then ó ≏ ó1→ó2 and Γ, x : ó1 ⊢ N : ó2.

By the induction hypothesis we have Γ, x : ó1 ⊨ N : ó2.

That is, if ñ ⊨ Γ and ñ(x) ∈ Jó1K, then JN Kñ ∈ Jó2K.

Then J(ëx.N )xKñ ∈ Jó2K, since Jó2K is saturated.

That is, if ñ ⊨ Γ and ñ(x) = Q ∈ Jó1K, then Jëx.N KñQ = J(ëx.N )xKñ ∈ Jó2K.

Hence Jëx.N Kñ ∈ Jó1→ó2K.

Case (→E): LetM ≏ PQ. Then Γ ⊢ P : ô→ó and Γ ⊢ Q : ô.

By the induction hypothesis we have Γ ⊨ P : ô→ó and Γ ⊨ Q : ô.

That is, if ñ ⊨ Γ, then JPKñ ∈ Jô→óK and JQKñ ∈ JôK.

Then JPQKñ ∈ JóK by Definition of J K, since JPQKñ = JPKñJQKñ. qed

Theorem 3.10 If Γ ⊢M : ó, thenM is strongly normalisable.

Proof. Suppose Γ ⊢ M : ó. Then by soundness Γ ⊨ M : ó. That is, it holds for all
valuations ñ: If ñ ⊨ Γ, then ñ ⊨M : ó.
Let ñid(x) := x for every free variable x in M. Then ñid ⊨ Γ, since x ∈ JóK for every
x (since JóK is saturated). Therefore ñid ⊨ M : ó, i.e. M ≏ JM Kñid ∈ JóK. Since JóK is
saturated,M is strongly normalisable. qed

3.2 The type assignment algorithm

In the following, we present an algorithm that assigns types to terms. If a given term
is typable, the algorithm assigns a type; otherwise the algorithm outputs fail. This
immediately solves the two most important decidability problems concerning implicit
type assignment:

1. GivenM and ó, does ⊢M : ó hold? (type checking) type checking

2. GivenM, is there a ó with ⊢M : ó ? (typability) typability

A further decidability problem is the following:

3. Given ó, is there anM with ⊢M : ó ? (type inhabitation) type inhabitation

This is solved by the Curry-Howard isomorphism (see Section 3.3).

We begin with some preliminaries on substitution and unification of type variables and
types.
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Definition 3.11
– A substitution (in types) is a function s : type variables→ types, where s(α) ̸≏ α only substitution

(in types)for finitely many α.

We write s also as {α1 = ó1, . . . , αn = ón}, if s(αi) = ói .

– Obviously, s determines a function s̄ from types to types:

s̄(α) :≏ s(α)

s̄(ó→ô) :≏ s̄(ó)→ s̄(ô)

We identify s and s̄ and write s(ó) or ó[ó1/α1, . . . , ón/αn].

– For a basis Γ = {x1 : ó1, . . . , xn : ón} let s(Γ) = {x1 : s(ó1), . . . , xn : s(ón)}.

– For substitutions s1 and s2 the composition s1 ◦ s2 (short: s1s2) is defined naturally.

Correspondingly, s1 ◦ s2(ó) ≏ s1(s2(ó)).

– A unifier for ó and ô is an s with s(ó) ≏ s(ô). unifier

A unifier for a set of equations E = {ó1 = ô1, . . . , ón = ôn} is an s with s(ói) ≏ s(ôi)
for all i with 1 ≤ i ≤ n.

– Amost general unifier (mgu) for ó and ô (w.r.t.E) is a unifier s such that for every other most general unifier
unifier s ′ for ó and ô (w.r.t. E) the following holds: s ′ = s1 ◦ s for a substitution s1.

We write s = mgu(ó, ô), respectively s = mgu(E).

– It is ô a variant of ó, if there are s1 and s2 with s1(ô) ≏ ó and s2(ó) ≏ ô. variant

Examples.
1. α→(â→α) and α→(â→â) have {α/â} as mgu.

2. â→(α→â) and (ã→ã)→ä have {ã → ã/â, α → (ã → ã)/ä} as mgu.

Remark. Two mgus w.r.t. the same set are always variants of each other. In this sense
mgus are unique.

Theorem 3.12 There exists an algorithm (called “unification algorithm”) which yields for unification algorithm
every system of equations E an mgu for E, if E is unifiable, and outputs fail, if E is not
unifiable.

Proof. See logic programming. One algorithm (due to Herbrand) consists of transforma-
tion rules for systems of equations E = {ó1 = ô1, . . . , ón = ôn} where E1 ∪̇ E2 denotes
the union of disjoint sets E1 and E2:

(id)
E ∪̇ {ó = ó}

E

(sym)
E ∪̇ {ó = α}

if ó is not a type variable
E ∪ {α = ó}
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(fail)
E ∪̇ {α = ó}

if α occurs in ó
fail

(subst)
E ∪̇ {α = ó}

if α does not occur in ó and α occurs in E
E[ó/α] ∪ {α = ó}

(func)
E ∪̇ {ô1→ô2 = ó1→ó2}
E ∪ {ô1 = ó1, ô2 = ó2}

One can show that the application of these rules to a system of equations always terminates.
The result is either fail or {α1 = ó1, . . . , αn = ón}, where {α1 = ó1, . . . , αn = ón} is the
mgu for E. qed

Remarks.
1. The rule name (sym) refers to the symmetry of equations, which is made use of in the

rule to shift type variables from right to left (but not the other way around).

2. In applications of (subst) we will note the respective substitutions to the right of the
rule bar.

We now map sequents Γ ⊢M : ó to such systems of equations E.

Definition 3.13
For sequents Γ ⊢ M : ó the associated system of equations E(Γ ⊢M : ó) is defined as associated system of

equationsfollows:

1. E(Γ ⊢ x : ó) := {ó = Γ(x)},

2. E(Γ ⊢ ëx.M : ó) := {ó = α→â} ∪ E(Γ, x : α ⊢M : â) for new type variables α, â ,

3. E(Γ ⊢MN : ó) := E(Γ ⊢M : α→ó) ∪ E(Γ ⊢ N : α) for a new type variable α.

Remark. The type assignment algorithm comprises two main steps: (1) formulate the type assignment
algorithmassociated system of equations E(Γ ⊢M : ó); (2) apply the unification algorithm.

Examples.
1. E(x : α ⊢ x : â) = {â = α}

2. E(⊢ ëxy.x : α→â) = {α→â = α1→α2} ∪ E(x : α1 ⊢ ëy.x : α2)
= {α→â = α1→α2, α2 = α3→α4} ∪ E(x : α1, y : α3 ⊢ x : α4)
= {α→â = α1→α2, α2 = α3→α4, α4 = α1}

Solution:

{α→â = α1→α2, α2 = α3→α4, α4 = α1}
(func) {α = α1, â = α2, α2 = α3→α4, α4 = α1}

(subst) [α3→α4/α2]
{α = α1, â = α3→α4, α2 = α3→α4, α4 = α1}

(subst) [α1/α4]
{α = α1, â = α3→α1, α2 = α3→α1, α4 = α1}

Therefore ⊢ ëxy.x : α1→(α3→α1).
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Remark: We here started with E(⊢ ëxy.x : α→â) instead of E(⊢ ëxy.x : ó). This is
not a problem in this example. However, starting with a type of a specific form might
result in not finding solutions that could be found by starting with the unspecific ó.
Starting with ó is thus preferable in general.

3. E(⊢ ëx.xx : ó) = {ó = α1→α2} ∪ E(x : α1 ⊢ xx : α2)
= {ó = α1→α2} ∪ E(x : α1 ⊢ x : α3→α2) ∪ E(x : α1 ⊢ x : α3)
= {ó = α1→α2, α3→α2 = α1, α1 = α3}

Attempted solution:

{ó = α1→α2, α3→α2 = α1, α3 = α1}
(sym) {ó = α1→α2, α1 = α3→α2, α3 = α1}

(subst) [α3→α2/α1]
{ó = (α3→α2)→α2, α1 = α3→α2, α3 = α3→α2}

(fail)
fail

The system of equations cannot be solved, since α3 = α3→α2 blocks termination.
Hence, the term ëx.xx is not typable.

Lemma 3.14 (Soundness and completeness)
1. Let s be a solution to E(Γ ⊢M : ó). Then s(Γ) ⊢M : s(ó) holds.

2. If s(Γ) ⊢ M : s(ó), then the following holds: There exists an s ′ which interprets the
type variables in Γ and ó like s , and s ′ is a solution to E(Γ ⊢M : ó). Type variables
which are interpreted differently by s and s ′ can always be chosen from a fixed set of
type variables V with V ∩ FV(Γ ∪ {ó}) = ∅.

Proof.
1. Induction on the structure ofM :

CaseM ≏ x: The substitution s is a solution to E(Γ ⊢ x : ó), i.e. s(ó) = s(Γ(x)).
Hence x : s(ó) occurs in s(Γ). Therefore s(Γ) ⊢ x : s(ó).

CaseM ≏ ëx.P: If s is a solution to E(Γ ⊢ ëx.P : ó), then s is a solution to

{ó = α→â} ∪ E(Γ, x : α ⊢ P : â).

By the induction hypothesis s(Γ), x : s(α) ⊢ P : s(â) holds. Therefore

s(Γ) ⊢ ëx.P : (s(α)→s(â)) = s(ó)

holds.

CaseM ≏ PQ: If s is a solution to E(Γ ⊢ PQ : ó), then s is a solution to

E(Γ ⊢ P : α→ó) and E(Γ ⊢ Q : α).
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By the induction hypothesis we have

s(Γ) ⊢ P : s(α→ó) and s(Γ) ⊢ Q : s(α).

Therefore s(Γ) ⊢ PQ : s(ó) holds.

2. Induction on the structure ofM :

CaseM ≏ x: It is s(Γ) ⊢ x : s(ó), i.e. (x : s(ó)) ∈ s(Γ). Hence s(ó) = s(Γ(x))
holds.

Thus s itself is a solution to E(Γ ⊢ x : ó).

CaseM ≏ ëx.P: It is s(Γ) ⊢ ëx.P : s(ó), i.e. s(ó) = ó1→ó2 for certain ó1, ó2, and
it is s(Γ), x : ó1 ⊢ P : ó2.

Let s ′ be similar to s , but extended by α1 7→ ó1 and α2 7→ ó2 with new α1, α2. Then
s ′(Γ), x : α1 ⊢ P : s ′(α2).

Hence s and s ′ coincide for all type variables occurring in Γ and ó, and s ′ is a
solution to {ó = α1→α2}.

By the induction hypothesis there exists a solution s ′′ to E(Γ, x : α1 ⊢ P : α2) such
that s ′′ coincides with s ′ for all type variables in Γ, α1, α2.

Moreover, we can assume that type variables which are interpreted differently by
s ′ and s ′′ do not occur in ó, i.e. s ′(ó) = s ′′(ó).

Hence s ′′ also solves {ó = α1→α2} ∪ E(Γ, x : α1 ⊢ P : α2), i.e. E(Γ ⊢ ëx.P : ó),
and s ′′ coincides with s for all type variables in Γ and ó.

CaseM ≏ PQ: It is s(Γ) ⊢ PQ : ó, i.e. s(Γ) ⊢ P : ô→s(ó) and s(Γ) ⊢ Q : ô for
some ô.

We define s ′ as s, extended by α 7→ ô, where α is new. Then s ′ coincides with
s for all type variables in Γ and ó. We thus have s ′(Γ) ⊢ P : s ′(α)→s ′(ó) and
s ′(Γ) ⊢ Q : s ′(α).

By the induction hypothesis there exist solutions s ′′1 and s ′′2 toE(Γ ⊢ P : α→ó) and
E(Γ ⊢ Q : α), respectively, which coincide with s ′ for all type variables in Γ, ó, α.

Moreover, we can assume that new type variables introduced in the construction
of E(Γ ⊢ P : α→ó) and E(Γ ⊢ Q : α) are different to each other.

Then s ′′1 ∪s ′′2 is a solution toE(Γ ⊢ P : α→ó)∪E(Γ ⊢ Q : α), i.e. toE(Γ ⊢ PQ : ó),
and it coincides with s on all type variables in Γ and ó. qed

In ë→ different types can be assigned to a given typable term. However, all such types
are substitution instances of a so-called principal type.

Definition 3.15
– We call ó a principal type for a closed termM, if the following holds: If ⊢M : ó and principal type

⊢M : ó′, then there exists a substitution s such that ó′ = s(ó).

– We call ⟨Γ, ó⟩ a principal pair forM, if the following holds: If Γ ⊢M : ó and Γ′ ⊢M : ó′, principal pair
then there exists a substitution s such that ó′ = s(ó) and Γ′ ⊇ s(Γ).
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Examples.
1. α→α is a principal type of I.

2. ⟨{x : (α→α)→â}, â⟩ is a principal pair for xI.

Theorem 3.16 There exists an algorithm which yields for every closed termM a principal
type and for every open (or closed) termM a principal pair, ifM is typable at all, and
which outputs fail otherwise.

Proof. We consider arbitrary termsM. The result for closed terms is then a special case
for the empty basis.
Let Γ0 := {x1 : α1, . . . , xn : αn} and ó0 := â , where x1, . . . , xn are the free variables inM.
Every mgu-solution to E(Γ0 ⊢M : ó0) is a principal pair forM, if there exists a solution;
otherwise we get output fail.

1. M has a type ⇐⇒ Γ ⊢M : ó for certain Γ, ó
⇐⇒ s(Γ0) ⊢M : s(ó0) for a certain s
⇐⇒ E(Γ0 ⊢M : ó0) is solvable (Lemma 3.14)

2. Let s be an mgu-solution to E(Γ0 ⊢M : ó0). Then s(Γ0) ⊢M : s(ó0).

Let now Γ′ ⊢M : ó′ and Γ̃ := Γ′|FV(M ). Then Γ̃ ⊢M : ó′.

Choose s ′ such that s ′(Γ0) = Γ̃, and s ′(ó0) = ó′. Then s ′(Γ0) ⊢M : s ′(ó0).

Then by Lemma 3.14 (2) the following holds for some s ′′ which interprets the type
variables in Γ0 and ó0 like s ′: s ′′ is a solution to E(Γ0 ⊢M : ó0).

Since s is an mgu, we have s ′′ = s1 ◦ s for some s1, i.e. ó′ = s ′′(ó0) = s1(s(ó0)).

Moreover, we have that Γ ⊇ Γ̃ with Γ̃ = s ′′(Γ0) = s1(s(Γ0)).

Hence ⟨s(Γ0), s(ó0)⟩ is a principal pair forM. qed

Theorem 3.17
1. Typability is decidable.

2. Type checking is decidable.

Proof.
1. Let a closed termM be given. The algorithm of Theorem 3.16 outputs a principal

type ó, ifM is typable, otherwise fail.

2. To check whether ⊢M : ó′ for a given ó′ we apply the algorithm of Theorem 3.16
to M. IfM has a type, then we obtain a type assignment ⊢ M : ó with principal
type ó. Since ó is principal, there must then be a substitution s such that ó′ = s(ó), if
ó′ is a type ofM. Whether there is such a substitution s can be checked by a simple
algorithm. qed

Theorem 3.18 Type inhabitation is decidable.
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Proof. There is a termM with ⊢M : ó iff there is a proof of ó (as formula) in positive
implication logic. This follows from theCurry-Howard isomorphism (see the next section).
Since positive implication logic is decidable, type inhabitation is decidable as well. qed

3.3 The Curry-Howard isomorphism

There is a certain correspondence between typed ë-calculus and logic, which can be
roughly described as follows:

Typed ë-calculus Logic

type formula, proposition
typable open term derivation with assumptions
typable closed term proof (derivation without assumptions)
â-contraction contraction of derivation
typable term in â-normal form derivation in normal form
â-equality equality of derivations

Definition 3.19
– Type variables are also called propositional variables, types also (implicational) formulas. formulas

– A finite set of formulas is called context. context

Metalinguistic variables for contexts are ∆,∆′, . . .

– positive implication
logic P→

Positive implication logic P→ is given by the axiom scheme

(Id) ∆, ó ⊢ ó

and the two rules:

∆, ó ⊢ ô
(→I)

∆ ⊢ ó→ô
∆ ⊢ ó→ô ∆ ⊢ ó(→E)

∆ ⊢ ô

(P→ is called positive implication logic, since negation does not occur.)

– ∆ ⊢P→ ó means that ∆ ⊢ ó is derivable in P→. derivable

– For a judgementM : ó let (M : ó)◦ ≏ ó.

– For a basis Γ = {x1 : ó1, . . . , xn : ón} let Γ◦ be the context {ó1, . . . , ón}.

Lemma 3.20 If Γ ⊢ë→ M : ó, then Γ◦ ⊢P→ ó.

Proof. By application of ◦ to every judgement in the ë→-derivation of Γ ⊢M : ó one
obtains a P→-derivation of Γ◦ ⊢ ó. qed

Lemma 3.21 There exists an algorithm which yields for every typable termM a derivation
of ∆ ⊢ ó in P→ such that ∆ = Γ◦ and Γ ⊢ë→ M : ó.
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Proof. The algorithm mentioned in Theorem 3.16 can generate for every typable term
M its principal pair ⟨Γ, ó⟩; this can then be transformed directly into a P→-sequent
∆ ⊢ ó with ∆ = Γ◦. The P→-rule application necessary to derive this sequent in the last
step is always determined by the form ofM. qed

This means: Every typable termM encodes a derivation in P→. From this derivation
one can obtain by substitution all derivations of Γ◦ ⊢ ó in P→ which correspond to
derivations of Γ ⊢M : ó in ë→.

Lemma 3.22 For every derivation of ∆ ⊢ ó in P→ one can construct a term M and a
derivation of Γ ⊢M : ó in ë→ such that Γ◦ = ∆.

Proof. Induction on the structure of the derivation of ∆ ⊢ ó in P→ (where ∆ =
{ó1, . . . , ón}):

Case (Id): All formulas ó occurring in instances of (Id) of P→ are replaced by type
declarations x : ó. The variable x is chosen in such a way that

· all occurrences of a formula ó have the same corresponding declaration x : ó;

· different formulas ó and ô have corresponding declarations x : ó and y : ô with
different variables x and y.

Case (→I): The derivation in P→ ends with

ó1, . . . , ón, ó ⊢ ô
(→I)

ó1, . . . , ón ⊢ ó→ô

For the premiss ó1, . . . , ón, ó ⊢ ô there is by the induction hypothesis a derivation in
ë→ of x1 : ó1, . . . , xn : ón, x : ó ⊢M : ô. We extend this derivation by an application of
(→I) in ë→ to obtain x1 : ó1, . . . , xn : ón ⊢ ëx.M : ó→ô.

Case (→E): The derivation in P→ ends with

ó1, . . . , ón ⊢ ó→ô ó1, . . . , ón ⊢ ó(→E)
ó1, . . . , ón ⊢ ô

For the premisses ó1, . . . , ón ⊢ ó→ô and ó1, . . . , ón ⊢ ó there are by the induction
hypothesis derivations in ë→ of

x1 : ó1, . . . , xn : ón ⊢M : ó→ô and x1 : ó1, . . . , xn : ón ⊢ N : ó

Note that each type ói is assigned to exactly one variable xi . By an application of
(→E) we thus obtain a derivation in ë→ of x1 : ó1, . . . , xn : ón ⊢MN : ô. qed

Theorem 3.23 (Curry-Howard isomorphism)
LetMP be the derivation in P→ which corresponds to a termM typable in ë→, as given
by Lemma 3.21. Let Πë be the ë→-term which corresponds to a derivationΠ in P→, as
given by Lemma 3.22. Then the following holds:
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1. (Πë)P is a derivation in P→ from which we can obtainΠ by substitution of formulas for
propositional variables.

2. (MP)ë is (modulo the renaming of free and/or bound variables) a term which results
fromM by identification of free or bound variables.

Proof. By Lemmas 3.21 and 3.22. qed

An example for (2) is the ë-term
u(zx)(zy)

for which the type assignment algorithm yields

u : α→α→â, z : ã→α, x : ã, y : ã ⊢ë→ u(zx)(zy) : â

For Γ = {u : α→α→â, z : ã→α, x : ã, y : ã} we have Γ◦ = {α→α→â, ã→α, ã}. The
corresponding derivation (u(zx)(zy))P in P→

(Id)
Γ◦⊢α→(α→â)

(Id)
Γ◦⊢ã→α (Id)

Γ◦⊢ã
(→E)

Γ◦⊢α
(→E)

Γ◦⊢α→â

(Id)
Γ◦⊢ã→α (Id)

Γ◦⊢ã
(→E)

Γ◦⊢α
(→E)

Γ◦⊢â

yields
α→α→â, ã→α, ã ⊢P→ â.

According to Lemma 3.22, a ë-term of the form u(zx)(zx), where x and y are identified,
corresponds to this derivation.
The reason for this identification of variables is that information is lost in going from ë→
to P→, which cannot be regained by going from P→ to ë→. Note that by Lemma 3.22
the mapping of variables to formulas (= types) in instances of (Id) of ë→ can never
result in two variables having the same type. That is, by going from ë→ to P→ a sequent
of the form Γ, x : ó, y : ó ⊢M : ô cannot occur.
In view of this loss of information one might prefer the weaker term correspondence instead
of isomorphism. However, for a variant of natural deduction this loss of information can
be avoided (see Troelstra & Schwichtenberg, 2001, Ch. 6; cp. also Sørensen & Urzyczyn,
2006, Ch. 4).

The Curry-Howard isomorphism induces reducibility and equality relations for deriva-
tions which correspond to �â and =â . These relations are investigated in proof theory,
most prominently on the basis of the calculus of natural deduction (see Prawitz 2006).
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Consider the â-redex (ëx.M )N with type ô:

D1

Γ, x : ó ⊢M : ô
(→I)

Γ ⊢ ëx.M : ó→ô
D2

Γ ⊢ N : ó(→E)
Γ ⊢ (ëx.M )N : ô

It is

(ëx.M )N �1â M [N/x]

To this there corresponds a contraction �◦
1â for derivations in natural deduction:

[ó]n

D◦
1
ô (→I)n
ó→ô

D◦
2
ó (→E)

ô

�◦
1â

D◦
2
ó

D◦
1
ô

where all occurrences of the assumption ó which are discharged by (→I) are replaced by
copies of the derivation ending with ó:

D◦
2
ó

If there are no such occurrences, then the derivation is transformed into

D◦
1
ô

The replacement of all occurrences of the assumption ó corresponds to the replacement
of all occurrences of x inM by N, i.e. to the substitutionM [N/x].
Normalisability of ë-terms corresponds to normalisability of derivations in natural
deduction and vice versa. If two derivations have the same normal form, then they are
equal in the sense of â-equality.
The left derivation represents an argumentation in which a lemma of the form ó→ô is
used. This lemma does no longer occur in the right, contracted derivation. Normalisability
of derivations ensures that by using a lemma only those things can be shown that could
also be shown directly, i.e. without the lemma. This justifies the use of lemmas, which
allows in general for shorter derivations.
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4 The polymorphic typed ë-calculus

The polymorphic typed ë-calculus is also called System F or typed ë-calculus of 2nd
order, short: ë2.

Motivation: For example, the identity function id ≏ ëx.x : α→α should be independent
of a special type α. That is, one would like to have id ≏ ëx.x : ∀α.(α→α).

Definition 4.1
– The set of types of ë2 is defined as follows: types

1. type variablesType variables α, â, ã, ä, α1, α2, . . . are types.

2. If ó and ô are types, then (ó→ô) is a type (called function type). function type

3. If α is a type variable and ó is a type, then ∀α.ó is a type (called universal universal type
(polymorphic) type).

– The universal quantifier ∀ binds stronger than →.

∀α1α2 . . . αn.ó stands for (∀α1.(∀α2.(. . . (∀αn.ó)))).

– Occurrences of the type variable α in ∀α.ó are called bound. bound

The set of free type variables FV(ó) for a type ó is defined analogously to FV(M ) for free type variable
ë-termsM.

– A substitution ó[ô/α] is only allowed, if ô is freely substitutable for α in ó (i.e. if ô
does not contain a variable which would in ó[ô/α] become bound by ∀).

Definition 4.2 type assignmentType assignment in ë2 is defined by the axiom scheme

(Id) Γ, x : ó ⊢ x : ó

and the rules:

Γ, x : ó ⊢M : ô
(→I)

Γ ⊢ (ëx.M ) : ó→ô
Γ ⊢M : ó→ô Γ ⊢ N : ó(→E)

Γ ⊢MN : ô

Γ ⊢M : ó(∀I) if α /∈ FV(Γ)
Γ ⊢M : ∀α.ó

Γ ⊢M : ∀α.ó(∀E)
Γ ⊢M : ó[ô/α]

If Γ ⊢M : ó is derivable in ë2, then we write Γ ⊢ë2 M : ó. derivable

Examples.
1. It is ⊢ë2 ëx.x : ∀α.(α→α):

(Id)
x : α ⊢ x : α(→I) ⊢ ëx.x : α→α(∀I)

⊢ ëx.x : ∀α.(α→α)

It is also ⊢ë2 ëx.x : ∀α.α→∀â.â and ⊢ë2 ëx.x : ∀â.(∀α.α→â).
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2. It is ⊢ë2 ëxy.y : ∀α.∀â.(α→(â→â)):

(Id)
x : α, y : â ⊢ y : â

(→I)
x : α ⊢ ëy.y : â→â

(→I)
⊢ ëxy.y : α→(â→â)

(∀I)
⊢ ëxy.y : ∀â.(α→(â→â))

(∀I)
⊢ ëxy.y : ∀α.∀â.(α→(â→â))

3. It is ⊢ë2 ëx.xx : ∀â.(∀α.α→â):

(Id)
x : ∀α.α ⊢ x : ∀α.α(∀E) [α→â/α]
x : ∀α.α ⊢ x : α→â

(Id)
x : ∀α.α ⊢ x : ∀α.α(∀E) [α/α]
x : ∀α.α ⊢ x : α

(→E)
x : ∀α.α ⊢ xx : â

(→I) ⊢ ëx.xx : ∀α.α→â
(∀I)

⊢ ëx.xx : ∀â.(∀α.α→â)

It is also ⊢ë2 ëx.xx : ∀â.(∀α.α→(â→â)) and ⊢ë2 ëx.xx : ∀α.α→∀â.â .

Definition 4.3 We define a transition relation ó = ô and its transitive closure ó ⊒ ô as transition relation
follows:
– Let ó = ô (“ó transitions into ô”), if

ô ≏ ∀α.ó for a type variable α (ô is a generalisation of ó),

or

ó ≏ ∀α.ó1 and ô ≏ ó1[ó2/α] for a type ó2 (ô is a specialisation of ó).

– Let ó ⊒ ô iff there are n ≥ 0 such that ó ≏ ó1 = · · · = ón ≏ ô.

Remarks.
1. The relation = is not symmetric:

It holds that if ó = ∀α.ó, then ∀α.ó = ó. But if ∀α.ó1 = ó1[ó2/α], then in general
we do not have ó1[ó2/α] = ∀α.ó1.

2. Intuitively, ó ⊒ ô means that Γ ⊢M : ô is derivable from Γ ⊢M : ó by applications
of ∀-rules only.

Lemma 4.4 LetΓ be given. Then ó ⊒ ô for ó ≏ ó1 = · · · = ón ≏ ô, where no type variable
occurring free in Γ is generalised in a step from ói to ói+1, iff there is a (sub-) derivation of
the following form:

Γ ⊢M : ó

..
.

Γ ⊢M : ô

 only ∀-rules.
Proof. Definition of ⊒. qed
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Lemma 4.5
1. If Γ ⊢ x : ó, then there is a type ó′ with ó′ ⊒ ó such that (x : ó′) ∈ Γ.

2. If Γ ⊢ ëx.M : î, then there are types ó and ô such thatΓ, x : ó ⊢M : ô and (ó→ô) ⊒ î.

3. If Γ ⊢ MN : ô, then there are ó and ô′ with ô′ ⊒ ô such that Γ ⊢ M : ó→ô′ and
Γ ⊢ N : ó.

4. If Γ, x : ó ⊢M : ô and Γ ⊢ N : ó, then Γ ⊢M [N/x] : ô.

Remark. Cp. Lemma 3.4 (4)-(6) and (9). The other assertions in Lemma 3.4 hold for
ë2 as well.

We will prove subject reduction (cp. Lemma 3.4, 10) in the following.

Definition 4.6 Let ó0 be the type ó without quantifier prefix (i.e. initial quantifiers are
discarded).

Examples.
1. (∀α1 . . . .∀αn.ó)0

≏ ó

2. (∀α.(∀â.â→α))0
≏ ∀â.â→α

Lemma 4.7 If (ó→ô) ⊒ (ó′→ô′), then (ó′→ô′) ≏ s(ó→ô) for a substitution s, i.e.
ó′→ô′ is more special than ó→ô.

Proof. Let (ó→ô) ≏ ó1 = · · · = ón ≏ (ó′→ô′).
We show: ó0

i ≏ si(ó→ô) for every si (1 ≤ i ≤ n).
This implies the lemma, since (ó′→ô′)0 ≏ (ó′→ô′).

Proof by induction on n:

For n = 1: s1 is the empty substitution.

For n = m + 1: Let ó0
m ≏ sm(ó→ô).

· Let óm+1 ≏ ∀α.óm. Then ó0
m+1 ≏ ó0

m, i.e. sm+1 := sm.

· Let óm ≏ ∀α.ñ and óm+1 ≏ ñ[ñ1/α]. Then let sm+1 := sm[ñ1/α], where sm[ñ1/α]
differs from sm only by α 7→ ñ1. qed

Theorem 4.8 (Subject reduction) If Γ ⊢M : ó andM �â M
′, then Γ ⊢M ′ : ó.

Proof. We consider the case M ≏ (ëx.P)Q �1â P[Q/x] ≏M ′. From this the rest
follows.

Suppose Γ ⊢ (ëx.P)Q : ó holds.

By Lemma 4.5 (3) there are then types ô and ó′ with ó′ ⊒ ó such that

Γ ⊢ ëx.P : ô→ó′ and Γ ⊢ Q : ô.
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By Lemma 4.5 (2) there are then types ô and ó′ ⊒ ó as well as types ô′ and ó′′ such that

Γ, x : ô′ ⊢ P : ó′′ and Γ ⊢ Q : ô

with (ô′→ó′′) ⊒ (ô→ó′).

By Lemma 4.7 there is then a type ô and ó′ ⊒ ó such that

Γ, x : ô ⊢ P : ó′ and Γ ⊢ Q : ô

where ô and ó′ are more special than ô′ and ó′′, respectively.

By Lemma 4.5 (4) there is thus a type ó′ ⊒ ó such that Γ ⊢ P[Q/x] : ó′.

By Lemma 4.4 therefore Γ ⊢ P[Q/x] : ó. qed

Next we will prove that every term typable in ë2 is strongly normalisable.

Definition 4.9
– A valuation in SAT is a function í : type variables→ SAT. valuation

– We define a semantics of types relative to valuations í; A is a set of terms: semantics

1. JαKí := í(α),

2. Jó→ôKí := JóKí→JôKí ,

3. J∀α.óKí :=
⋂
A∈SAT JóKí[α 7→A].

Lemma 4.10 For every type ó and every valuation í it holds that JóKí is saturated (cp.
Lemma 3.7).

Proof. Analogously to the proof of Lemma 3.7. It remains to show that SAT is closed
under intersection; but this is trivial. qed

Definition 4.11 We define satisfiability as follows, where for valuations ñ and interpreta- satisfiability
tions JM Kñ of terms Definition 3.8 applies:

1. ñ, í ⊨M : ó :⇐⇒ JM Kñ ∈ JóKí ;

2. ñ, í ⊨ Γ :⇐⇒ ñ, í ⊨ x : ó for all (x : ó) ∈ Γ;

3. Γ ⊨M : ó :⇐⇒ For all valuations ñ, í it holds: If ñ, í ⊨ Γ, then ñ, í ⊨M : ó.

Lemma 4.12 (Soundness) If Γ ⊢M : ó, then Γ ⊨M : ó.

Theorem 4.13 If Γ ⊢M : ó, thenM is strongly normalisable.

Proof. Suppose Γ ⊢M : ó. Then by soundness Γ ⊨M : ó holds. That is, for all valuations
ñ, í it holds: If ñ, í ⊨ Γ, then ñ, í ⊨M : ó.
Since JóKí is saturated for every valuation í, we have ñid, í ⊨ Γ for every valuation í,
where ñid(x) := x for every variable x. Hence ñid, í ⊨ M : ó holds, i.e. M ∈ JóKí .
ThereforeM is strongly normalisable. qed
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Remarks.
1. For ë2 the problems of typability, type checking and type inhabitation are undecidable.

2. ë2 has more typable terms than ë→.

The term ëx.xx is an example of a strongly normalisable term which is not typable in
ë→ but which is typable in ë2.

3. Is typability in ë2 = normalisability ?

No. However, every term in normal form is typable in ë2; i.e. for every termM in
normal form the following holds:

x1 : ∀α.α, . . . , xn : ∀α.α ⊢M : ó for a type ó, where x1, . . . , xn are free variables inM.

4. But it is strong normalisability = typability in ë∩ (System D).

There are no universal types in ë∩, but so-called intersection types ó ∩ ô, for which
the following type assignment rules hold:

Γ ⊢M : ó Γ ⊢M : ô(∩I)
Γ ⊢M : ó ∩ ô

Γ ⊢M : ó ∩ ô(∩E)
Γ ⊢M : ó

Γ ⊢M : ó ∩ ô(∩E)
Γ ⊢M : ô

ThusM : ó ∩ ô expresses thatM has both type ó and type ô.

It is ⊢ë∩ ëx.xx : ((ó→ô) ∩ ó)→ô:

(Id)
x : (ó→ô) ∩ ó ⊢ x : (ó→ô) ∩ ó

(∩E)
x : (ó→ô) ∩ ó ⊢ x : ó→ô

(Id)
x : (ó→ô) ∩ ó ⊢ x : (ó→ô) ∩ ó

(∩E)
x : (ó→ô) ∩ ó ⊢ x : ó

(→E)
x : (ó→ô) ∩ ó ⊢ xx : ô

(→I)
⊢ ëx.xx : ((ó→ô) ∩ ó)→ô
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