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Abstract. We locate the complexities of evaluating, of inverting, and
of testing membership in the image of, morphisms h : ¥* — A*. By
and large, we show these problems complete for classes within NL. Then
we develop new properties of finite codes and of finite sets of words,
which yield image membership subproblems that are closely tied to the
unambiguous space classes found between L and NL.

1 Introduction

Free monoid morphisms h : 3* — A*, for finite alphabets X and A, are an
important concept in the theory of formal languages (e.g. [7, 12]), and they
are relevant to complexity theory. Indeed, it is well known (e.g. [8]) that
NP = Closure(<A%°, HOM,..) C Closure(<A°", HOM) = R.E., where
g,AnCO denotes many-one AC’-reducibility, HOM (resp. HOM,, ) is the
set of morphisms (resp. nonerasing morphisms), and Closure denotes the
smallest class of languages containing a finite nontrivial language and
closed under the relations specified. Morphisms and their inverses also
play a role in studying regular languages and “small” complexity classes:
regular language varieties are closed under inverse morphisms [7], and
the replacement of morphisms by “polynomial length M-programs”, in
the definition of recognition by a finite monoid M, allows automata to
capture many subclasses of NC! [4, 6, 14].

Here we consider the complexity of evaluating inverse morphisms and
morphisms h : X* — A*. Specifically, we consider the simple problem
eval of computing the image of a word v under h, the problem range of
determining whether a word w € h(X*), and the problem inv of comput-
ing an element of h~!(w) given w € h(X*). We examine the fized setting,
in which the morphism is input-independent, and the variable setting, in
which the morphism is defined as part of the input.

The general framework of our results is summarized in the following
figure. In the fixed case, the eval problem characterizes the relation be-
tween the classes NC?, AC? and TCY, and the problems range and inv are
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closely related to the class NC!. Membership of inv in NC! is then to be
contrasted with Hastad’s result that there exists a fixed NC°-computable
function whose associated inversion problem is P-complete [11]. We also
observe that Closure(gﬁco, HOM ') = TC?, where HOM ~! denotes in-
verse morphisms, yielding yet another characterization of this important
subclass of NC!. In the variable case, the problem eval remains in TC’

while the range and inv problems capture complexity classes between L
and NL.

Problem Fized setting Variable setting
evaluation isometric: NCY isometric: AC?
nonisom.: TC%-complete nonisom.: TC%complete
range any h: NC! h(X) prefix code: L-complete
chosen h: NC'-complete [1] [unrestricted h:  NL-complete
inversion NC! (Functional-L)V7

Here we do not distinguish between a circuit-based language class and its functional
counterpart. A morphism h : ¥* — A" is isometric iff h applied to each a € X' yields

a word of the same length.

An important part of our results, motivated by recent interest in
classes intermediate between L and NL [2, 13, 3], is the investigation of the
probem range in the variable case. Restricting the underlying morphism
affects the complexity of the range problem, e.g. the range problem for
prefix codes is in L and is complete for this class. Now, one might expect
that imposing the code property on h(X) should render the range prob-
lem complete for an unambiguous logspace class. However the resulting
problem remains NL-complete. We therefore develop properties of codes
and of sets of words, in particular the stratification property (see Sec-
tion 4.2), which yield range subproblems of complexity identical to the
complexity of the graph accessibility problems introduced to study unam-
biguous logspace classes (see Section 2). In particular, we show that the
problem range in which h(X) is a stratified code is many-one equivalent
to the GAP problem L, capturing StUSPACE(logn), and that a variant
of range in which h(X) is a stratified left partial code is RUSPACE(logn)-
complete. This is particularly interesting since RUSPACE(logn) was only
recently found to have a complete problem [13].



2 Preliminaries

2.1 Complexity theory

We assume familiarity with basic complexity theory. In particular, recall
NC? ¢ ACY ¢ TC® C NC' C L. C StUSPACE(logn) C RUSPACE(logn)
C UL C NL C P C NP, where UL is the set of languages accepted
by logspace Turing machines which are nondeterministic with at most
one accepting computation, RUSPACE(logn) is defined like UL with
the stronger condition that, on any input, at most one path should ex-
ist from the initial configuration to any accessible configuration y, and
StUSPACE(logn) is defined like UL with yet the stronger condition that,
between any pair of configurations (x,y), at most one path should exist
from z to y. Furthermore, Functional-L, also denoted FL, is the func-
tional counterpart of L, i.e. the set of functions computable by determin-
istic Turing machines and FLY' is the set of functions computable by a
deterministic Turing machine M having access to an NL-oracle [16].

DLOGTIME uniformity of a circuit family refers to the ability for a
Turing machine equipped with an index tape allowing direct access to its
input to compute, in time O(logn), the ith bit in an appropriate binary
description of the nth circuit in the family. Specifically, the constructor
receives as input the binary representation of 7, and some string of length
n. For precise details on circuit descriptions, see [5].

Just as GAP is NL-complete and outdegree-one GAP is L-complete
[10], the obvious GAP problems Ly, Ly, and L,,, which are respectively
StUSPACE(log n)-hard, RUSPACE(logn)-hard, and UL-hard, were intro-
duced for topologically sorted graphs in [2,13]. L., is RUSPACE(logn)-
complete [13], while L, is not known to belong to StUSPACE(logn) and
L, is already NL-complete.

We will make use of the reducibilities g,AnCO and g%co, which refer to
many-one and Turing ACY reducibilities respectively.

2.2 Problem definitions

Fix a morphism h : X* — A* for finite alphabets X and A, with X
assumed ordered. In the fixed setting, the three problems of interest in
this note are:

eval(h) Given v € X*, compute h(v). The decision problem has b € ¥
and j € N as further inputs, and asks whether b is the jth symbol in
h(v).



range(h) Given w € A*, determine whether w € h(X*).

inv(h) Given w € A*, express w as h(a;, )h(ai,)--- h(a;, )w' such that,
first, |w'| is minimal, and second, v := a;, aj, - - - a;, is lexicographically
minimal with respect to the ordering of 3. The decision problem is
obtained by adding j € N as an input parameter, and asking for the
jth bit in the representation of w.

In the variable setting, the three problems of interest are eval, range,
and inv, defined as above, except that the alphabets X and A, and the
morphism h, now form part of the input.

Fix a finite alphabet I'. Let v = ajas -+ an,a; € I',n > 0. The length
of v is written |v|, and #,(v) represents the number of occurrences of
a € I'in v. For 0 <1 < j < n, we define ;v; as a;11 -+ - a;. In particular,
i—1v;j is a; if 1 > 1. By subword, we mean contiguous subword, i.e. ajas is
not a subword of ajaqas.

We encode our problems, in both the fixed and the variable settings,
as binary strings. In the fixed setting, a word v over an alphabet I is
encoded as a sequence of equal length “bytes”, each representing a letter
in I'. By the predicate Qq(v,i), a € I', v € I'*, we mean that ; jv; is
a (with Qq(v,i) false when 7 > |v]). In the variable setting, we write
Qu(v,i) as Q(a,v,i) in view of the input-dependent alphabet Y. Any
encoding which allows computing Q(a,v,i) in ACY suffices.

To encode a morphism h : X* — A* (only required in the variable set-
ting), it suffices that the predicate associated with h, denoted H (b, a,j),
where b € A, a € X, and j > 0, meaning that ;_1h(a); is b, be ACO-
computable. The predicate H(b,a,j) extends to H(b,v,j) for v € X* in
the obvious way, and computing this extension is the object of the eval
problem. We define H (b, v, j) to be false if j > |h(v)|.

For h : ¥* — A* we define max(h) as max{|h(a)| : a € X}.

3 Fixed Case

Throughout this section we fix h: X* - A*. We write the associated
predicate H(b,v,j), b€ A, v € X* j € N as Hy(v,j), in view of the fixed
alphabet 3.

3.1 Evaluation

The complexity of evaluating h is low, but it depends in an interesting
way on whether h is isometric, i.e. whether the length of any h(w) only
depends on |w].



Proposition 1. eval(h) € Functional-NC® if ¥, pe s:|h(a)| = |h(D)].

Proof. Let h be isometric and let ¢ = |h(a)| (= max(h)) for any a € X.
Then, for v € X*, b € A, and j € N, we have Hy(v,j) < (Ja €
[Qa(v,[5/c]) N Hy(a,j mod c)]. Since X' is fixed, the existential quan-
tification over a can be done in NCU. Hence, for each j, 1 < j < ¢ |v],
there is an NC° subcircuit C; computing the jth symbol in h(v). The
circuit for eval(h) is a parallel arrangement of these C;, 1 < j < ¢ |v].
Uniformity is argued in the technical appendix.

It follows that, when h is isometric, the decision problem eval(h) €
AC. Interestingly, the converse also holds: if h is not isometric, then
eval(h) ¢ Functional-AC? and the decision problem eval(h) ¢ ACY, as
follows from:

Theorem 2. If h is nonisometric, then the decision problem eval(h) is
TC°-hard under S%CO.

Proof. Since h is not isometric, there exist a,b € X, s,t € N, such that
\h(a)] = s and |h(b)| = s + ¢ with £ > 0. We claim that MAJORITY,
i.e. the language of all words v over the alphabet {a,b} having |v|/2 <
#u(v), §%C0—reduces to computing the length of h(v). This implies that
the extended predicate Hy(v,j), v € X*, is TChard, because |h(v)]
is trivially expressed as the largest j, 1 < j < |v| - max(h), such that
Vies Hp(v, j). And computing the extended predicate Hy(v, j) is precisely
the decision problem eval(h).

To prove the claim that MAJORITY reduces to computing |h(v)],
note that |v]/2 < #4(v) iff s-[v|+1t-|v]/2 < s-|v|+t-#p(v). Now the left
hand side of the latter equality can be computed in AC® because s and ¢
are constants. As to the right hand side, it is precisely |h(v)| = s #4(v) +
(s+1)-#p(v) = s-|v] +t-#p(v). Hence one can test |v]/2 < #4(v) in
ACP, once an oracle gate provides the value of |h(v)|. Hence MAJORITY
§%C0—reduces to computing |h(v)].

Corollary 3. The decision problem eval(h) is in ACY iff h is isometric.
On the other hand, we prove in the appendix that a fixed morphism
can always be evaluated in T'C?, so that the reduction from MAJORITY

to eval(h) exhibited in Theorem 2 can in fact be reversed:

Theorem 4. For each morphism h, the decision problem eval(h) € TCP.



Corollary 5. If h is a nonisometric morphism, then the decision problem
eval(h) is TC°-complete under §$CO.

The next corollary is also justified in the appendix:

Corollary 6. TC" = C’losure(ﬁ%cﬂ,HOM*I).

3.2 Range membership

We now turn to the problem of testing whether a word w € A* belongs
to h(X*). Since X* is regular and the regular languages are closed under
morphisms, h(X*) is regular. Hence range(h) € NC'. On the other hand,
Schutzenberger in 1965 exhibited the following family of finite biprefix
codes (i.e. codes having the property that no code word is a proper prefix
or a proper suffix of another code word) over the binary alphabet {a,b}:

Cy = {a", a" *ba,a” 2b,ba" '} U {a'ba" " |1 <i<n-—3}

Schiitzenberger [17] proved that, for each n, the symmetric group S,
divides (i.e. is an epimorphic image of a submonoid of) the syntactic
monoid of the Kleene closure C}; of C,. Thus:

Theorem 7. For every morphism h, range(h) € NC'. Furthermore,

there exists a morphism h such that range(h) is NC'-complete under
<A

Proof. By Schiitzenberger [17], S5 divides the syntactic monoid of the
Kleene closure C? of C5 = {aaaaa,acaaba,aaad, aabaa, abaaa, bacaa}.
Now Straubing [18, Theorem IX.1.5] proves that any nonsolvable regular
language, as is the case here with C¢ because S; is a nonsolvable group,
is NC'-complete. (In reality, the reducibility used by Straubing is neither
many-one nor uniform, but the membership tests in Straubing’s languages
v 'Kov~! and the evaluation of ) at the end of his argument can be
transformed into a single membership test in a finite Boolean combination
of the u ' Kv~! languages). Setting X = C5, A = {a,b}, and defining
h(w) for each w € X' as the word w € A*| yields a morphism h : X* — A*
such that h(X*) = CZ. Hence, for this h, range(h) is NC!-complete.

3.3 Inversion

Recall the definition of problem inv(h). By using inv(h) to determine
whether |w'| > 0, the decision problem range(h) reduces to the decision
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problem inv(h), under S,’%CO if an obvious encoding is chosen. Hence there
is an h such that the decision problem inv(h) is NC!-hard (by Theorem
7). Our goal in this section is to show that inv(h) is in Functional-NC',
which holds, clearly, iff the decision problem inv(h) is in NC?.

Suppose that a word w € h(X*). Then if h(X) were a code, i.e. if
it had the property that any word in A(X*) is uniquely expressible as a
sequence of elements from h(XY), then computing h~!(w) would simply
require computing all the positions i, 1 <4 < |w|, at which w splits into
w = af with a, 8 € h(X*). This set of positions would uniquely break
w up into words from A(X). Since these positions can be computed in
NC! because h(X*) is a regular language, this strategy would solve such
instances of inv(h) in NC!. Interestingly, we can combine this strategy
with a greedy approach and solve the general case in which h(Y) is not
a code. The next theorem is proved in the technical appendix:

Theorem 8. For every morphism h, inv(h) is in Functional-NC".

4 Variable Case

4.1 Evaluation

The fixed case construction for eval(h) carries over to the variable case
eval. We must compute the predicate H (b, v, j), i.e. determine whether
the jth symbol in A(v) is b. In the following let w(v) be the Parikh vector
of a word v and M), the growth matrix of the morphism h, i.e. (M), is
the number of by symbols in h(a;). Then, H(b,v,j) holds iff there exists
1 € N and a € X such that

m(ovi-1)Mpl < j < 7m(ovi) Myl and Q(a,v,i) and h(a);_(r(ov;_)M,1) = b-

Now the computation of M}, out of h and the computations of 7(yv; 1) M1
and 7(gv;) M1 out of v can be done in TC?. Indeed, the integers involved
in these computations are small, i.e. their absolute values are polynomial
in the input size, and arithmetic with such integers can even be carried
out in ACY [5, Lemma 10.5]. But the computation of the Parikh vectors
needs counting and is TC%-hard. Hence computing H (b, v, j) is TC%hard
and eval € Functional-TC, which we record as:

Theorem 9. The decision problem eval is TC°-complete w.r.t. §%Cﬂ.

We note that eval restricted to isometric morphisms is in ACY.



4.2 Range membership

Our problem range is precisely the Concatenation Knapsack Problem
considered by Jenner [9], who showed that:

Theorem 10. (Jenner) range is NL-complete.

Recall that a nonempty set C C A* is a code if C freely generates C*,
and that C' is a prefiz code if C' has the prefix property, i.e. if no word
in C has a proper prefix in C. Define prefixcoderange to be the range
problem restricted to input morphisms h : X* — A* such that h(XY) is a
prefix code. The easy proof of the following is included in the appendix:

Theorem 11. prefixcoderange is L—complete.

In view of Theorems 10 and 11, it is natural to ask for properties of
h(X) allowing the range problem to capture concepts between L and NL
like symmetry or unambiguity. For instance, one might reasonably expect
codes to capture unambiguity, and thus the obvious problem coderange
to be complete for one of the unambiguous space classes between L and
NL. But the mere problem of testing for the code property is NL-hard as
shown by Rytter [15]. In the following subsection, we introduce a more
elaborate approach which is able to capture unambiguity.

4.2.1 Stratified sets of words and morphisms

Definition 12. a) Let C C A* be arbitrary. Define a relation po C Ax A
as a p¢ b iff some word in C' contains ab as a subword.

b) C is said to be stratified if pc forms a unique maximal acyclic chain
a1 pc az pc -+ Pc ap; in that case, the word o(C) := ajas---a, € A* is
called the stratification of C. (Example: The set {a, b, ab,bc} C {a,b,c}*
is stratified, while {a, b}, {ab,ba} and {ab,ac} are not.)

Let C C A* be stratified, where we assume from now on that such a
stratified set makes use of all the letters in A. Clearly, any word z € C
is a subword of o(C'). Then, any word w € A* is uniquely expressible as
w = a1y ...qk, where each «; is a maximal common subword of w and

o(C).

Proposition 13. Let C C A* be a stratified set.

a) For any w € A*, w € C* iff its canonical decomposition w =
a1y . .. g into maximal subwords common with o(C) satisfies a; € C*
for each 1.



b) C is a code iff each subword of its stratification o(C) is expressible
in at most one way as a concatenation of words from C.

Testing whether a finite set C C A* is stratified is L-complete. On
the other hand, although stratification may seem like an overwhelming

restriction, stratifiedrange, i.e. the range problem for stratified i(Y),
is NL-hard:

Theorem 14. stratifiedrange is NL-complete.

Proof. To see that stratifiedrange is in NL, we first test deterministi-
cally in log space whether C'is stratified. Then we use the fact that range
€ NL. The construction used to show NL-hardness is strongly inspired
by a proof in [8] and is included in the appendix.

Hence, like coderange, but for a different reason, stratifiedrange
is NL-complete and thus does not appear to capture an unambiguous
logspace class. It is stratifiedcoderange, namely the problem range
restricted to the case of a stratified code h(X), which bears a tight re-
lationship to StUSPACE(logn). The following theorem is proved in the
appendix:

Theorem 15. stratifiedcoderange and Lg, are many-one logspace-
equivalent.

Hence stratifiedcoderange is StUSPACE(logn)-hard, and although we
are unable to claim a complete problem for StUSPACE(logn), we have
come very close, since even the StUSPACE(logn)-hard language Ly,
specifically tailored to capture StUSPACE(logn), is only known to be
in RUSPACE(logn) [13]. On the other hand, we can claim a complete
problem for the unambiguous class RUSPACE(logn), as follows.
Proposition 13 states that the code property of a stratified set C
translates into the unique expressibility of every expressible subword of
the stratification of C' as an element of C*. Let us relax this condition
and define a stratified set C' to be a left partial code if no prefix of o(C)
can be expressed in two ways as an element of C*. Furthermore, we let
Ipcstratification be the special case of the leftpartialcoderange prob-
lem in which we are only asked to determine whether o(h(X)) € h(X™),
i.e. Ipcstratification is the language of all morphisms h : X* — A* such
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that h(X) is a left partial code and the stratification of h(X) is in h(X*).
Then!:

Theorem 16. lpcstratification is RUSPACE(log n)-complete.

Proof sketch. The construction used in Theorems 14 and 15 in effect
proves that lpcstratification and L,, are many-one logspace equiva-
lent. Here L., is the language of graphs having a path from source to
target, but required to possess the unique path property only from the
source to any accessible node. This is precisely the property which corre-
sponds to the action of canonically expressing the stratification of a left
partial code. We then appeal to the main result of [13], namely that L,,
is RUSPACE(log n)-complete.

4.3 Inversion

The class (Functional-L)V’" can be defined equivalently as the set of func-
tions computed by single valued N L—transducers. We have:

Theorem 17. Problem inv is in (Functional-L)N*.

Proof. To solve inv, we use the algorithm and the automaton constructed
in Theorem 8. Here, instead of first producing @, we start the determinis-
tic logspace simulation of the automaton. Whenever the simulation would
require reading a letter from w, we appeal to an NL-oracle to test whether
the current input position breaks w up into a prefix and a suffix in h(X*)
(an NL-oracle can test this by Theorem 10). This concludes the proof.

We remark that the deterministic version of inv, namely the restric-
tion of inv in which h is a prefix code, belongs to Functional-L.

Since computing the inv function allows answering the range ques-
tion, we have NL C L™V and by the previous theorem NL = L™V This
implies that FLNL = FLinv, i.e. that the inv function is Turing-complete
for FLND.
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Technical Appendix

Uniformity argument in the proof of Proposition 1:

To see that the NCU circuit obtained is DLOGTIME-uniform, let s be
the (constant) size of the description of any C; subcircuit. When the
DLOGTIME constructor needs to determine the kth bit in the description
of the complete circuit, it first checks that £ < s-c:|v|, and then determines
the relevant subcircuit by computing j = [k/s]. Note that (the binary
representation of) |v| is DLOGTIME-computable from an input of length
| [5], and that the school method suffices to compute s - ¢ - |v|, j, and
k mod s, since k is a log n-bit number. The constructor must then seek the
bit k mod s within the description of C};. This bit is easily computed unless
it pertains to an input gate of C';, in which case the constructor computes
[7/c] and makes use of the fact that C; only ever reads (bits within the
binary encoding of) the [j/¢|th symbol in |v|. Note that j mod ¢ is
DLOGTIME-computable as well.

Proof of Theorem 4:

Let the cardinality of X be m. In order to compute Hy(v, j), i.e. to check
whether the jth symbol of h(v) is a b, we first have to find the integer
i fulfilling k& := |h(opvi—1)|] < j < |h(ov;)|. Then we must locate the ith
symbol in v, say @ € X, and check that h(a);_, = b. Let I, be the length
of h(a,) where aq,as,...,a, are the elements of . Then, Hy(v, j) holds
iff, for some 7, 1 <i < n,

Z;T:I(lu - #au (01)2;1)) < and h(iflvi)jfk = b,

where k = |h(ovi—1)|, and h(;_1v;);—p is the (j — k)th letter of h(;_1v;).
Now, for a given i, evaluating the above sum is easily reduced in AC®
to a single operation of counting the number of ones in a zero-one string
(say by producing, for each symbol a,, in gv;_1, a zero-one string of length
max(h) having exactly [,, ones). This counting operation, akin to iterated
integer addition, can be done in TCP. So can the comparison with j and,
obviously, the test for h(;_1v;);_x = b. By working on all i in parallel
and connecting the results with ACY circuitry, a DLOGTIME-uniform
TCO-circuit for Hy(v, j) takes shape.

Proof of Corollary 6:

C: Clearly AC° C Closure(g%co), so that L := {0'17]i > j}isin Closure(g%co).
Now define h : {a,b,c}* — {0,1}* by h(a) := 0, h(b) := 00, and h(c) := 1.

By definition, h~ (L) is in Closure(g%co, HOM ). But also,
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v € MAJORITY iff #(v) > |v]/2
iff (o] + #p(v) > 3 |v]/2
i B(oc 1) = 0103, § = Jof + #(0) > [3+ 0]/2] = j
iff h(vel*101/21) € L
iff we!*11/21 € h=1(L).

Since ¢/*1"/21 ig ACY-computable from v, we have MAJORITY S,‘%CO
h~'(L). Hence MAJORITY is in Closure(g%co,HOM’l), and so is all
of TCY.

D: By induction on the number of steps in the representation of a
language as a member of Closure(g%co, HOM'). In the inductive step,
it is required to exhibit a TCP circuit simulating an AC? circuit with oracle
gates for membership tests of the form v € h~!(Y), for some morphism
h and some Y € TC". This is possible by simulating each gate in TC?
using Theorem 4.

Proof of Theorem 8:

Consider an instance w € A* of inv(h), that is, given w, we wish to
compute a decomposition w = h(a;, )h(a;,)- - h(a;, )w' such that, first,
\w'| is minimal, and second, v := a;, a;, - - - a;,, is lexicographically minimal
with respect to the ordering of Y. Since the longest w-prefix in A(X*) is
easily determined in NC! knowing that range(h) € NC!, we assume in the
sequel that w € h(X*), i.e. that w' is the empty word. We also assume with
no loss of generality that Y is ordered in such a way that |h(a;)| < |h(a;)]|
implies a; < a;. We write X for h(X) and let X = {w,wy, -, wy} C A*
such that |w;| < |wy| < --- < |wg| = max(h).

As a first step, the input w = biby---b, € A* is transformed into
a word w = (b1,71)(b2,72) - (bn,vn) € (A")* where A" := A x {0,1},
having the property that v; = 1iff by ---b; € X* and b1 - b, € X*. As
seen above, this is possible in NC'.

Now the strategy will be to scan @ from left to right, keeping track
of the possible words w; € X which, at any one time, remain candidates
to express the prefix of w read so far. (To indicate that a word remains
possible, in the automaton formalisation below, a “+” symbol is stored in
the corresponding state vector.) When a position 4 in @ is reached which
splits w into a prefix in X* and a suffix in X*, the lexicographically least
expression for the prefix is recorded, the set of current possible words is
reset to “all possible words”, and the procedure continues with the suffix.

To make this formal, we define a finite automaton A operating on
input w. A is in fact a finite transducer, but instead of cluttering the
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definition of A further by formally defining its output function, we will
make plain which transitions output a word from X forming part of the
desired decompositon of w.

Let A:= (Z, A',6, 29, 20), where Z := {FYU{+, —}¥x{1,2,.-- max(h)},
20 := (+,---,+;1), and the transition function ¢ : Z x A" — Z is de-
fined as follows. First, §(F,.) := F, and then, for 6, € {4+, —},1 < j <
max(h),b € A and vy € {0,1}

0 ((91a 02a e ,9k§j>, (ba’}/)) =
IF v = 1 A (Bi<i<kti = + A|wi| = j A (w;); = b)
THEN 2z, (and output w; as the next word in the decomposition
of w)
ELSE IF j < max(h)
THEN (0,605,---,60};5 +1)
ELSE F
where 6; is defined as “+” iff [§; = + and (w;); = b].

With the proviso that the “Jy<;<;” above selects the least such ¢ when
one exists, the resulting transducer A correctly outputs the lexicograph-
ically least sequence of words from X expressing w. In fact, the set of
positions {7 : 1 <4 < |w|, A is in state zy after reading ¢(w);} marks the
desired decomposition of w. Since this set equals {i : A accepts ¢(0),},
an NC! circuit can perform parallel membership tests in the regular lan-
guage accepted by A in order to solve inv(h), proving that inv(h) is in
Functional-NC!.

Proof of Theorem 11:

It is easy to verify, even in ACY, that an input morphism A has the pre-
fix property, hence is a prefix code. In that case, determining whether w €
h(X*) can be done deterministically in log space. Hence prefixcoderange €
L. Let G = (V, f) be an outdegree-one digraph, i.e. V. ={1,2,--- ,n > 2}
and f : V — V is such that i < f(i) for all i < n. Such graphs have
an L-hard accessibility problem. A path exists from node 1 to node n in
G iff 23---n € h(X*), where ¥ =V \ {n}, A=V, and for 1 <i < n,
h(i) = (i4+1)(i4+2) - - - f(4). Since h(X') has the prefix property, this shows
that prefixcoderange is L-hard.

Proof of Theorem 14:

We reduce from the accessibility problem of node n from node 1 in a
topologically ordered graph G = (V = {1,--- ,n},0 # E C {(i,j)]1 <i<
j < n}). We will in fact prove that a very special case of stratifiedrange,
namely the problem of testing whether the stratification o(C) of a strat-
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ified set C is in C* (think of C as the image of some alphabet X of size
|C| under an obvious morphism h, and of o(C) as the only word tested
for membership in h(X*) = C*), is already NL-hard.

Set A1= {(i. )|(i.5) € B} U{G 7)) € BYU {0, R, (k,n+ 1)1 <
k < n}. Then, for each 1 < i < n, let w(i) be the concatenation
of (i,7)(i,7) over all (i,7) € E in ascending order of the js. Observe
that w(i) is empty if there are no outgoing edges from node i. Now let
w(0) :=(0,1)(0,2)...(0,n), let w(n+1) := (1,n+1)(2,n+1) ... (n,n+1),
and set w := w(0)w(1)w(2) - - w(n)w(n+1). Now define C as the set con-
taining the following words: 1) the word w(0)w(1)...w(n), 2) the word
w()w(2) ... w(n+1), 3) any subword of w of the form (7, j) ... (4, k), with
the exception of such subwords for which # = 0 and k£ = n + 1. Since all
words in C are subwords of w and no symbol occurs more than once, p¢ in-
duces no cycle on A. Moreover, since E # (), the words w(0)w(1) ... w(n)
and w(1)w(2) ... w(n + 1) have a common subword, so that pc forms a
unique maximal chain on A. Hence C is stratified with o(C) := w. Fi-
nally, there is a path from node 1 to node n in G iff o(C) can be written
as a concatenation of words from C (a much stronger statement holds, as
will be seen in the proof of Theorem 15). This concludes the reduction.

Proof of Theorem 15:

We begin with the reduction from stratifiedcoderange to Lg,,. On in-
put (h : X* — A* w) we will construct deterministically in logspace a
GAP instance (G, s, t) such that h(X) is a stratified code and w € h(X*)
if and only if G is strongly unambiguous, i.e. there are no two different
paths joining any two nodes ¢ and 7, and there is a path from s to ¢. First,
check that h(X) is stratified. If this is not the case set (G, s, t) to be some
fixed unsolvable GAP instance with no path from s to £. Second, compute
o(h(X)) = arag ... a,. Third, construct a graph G := ({0,1,...,n}, E),
where E consists of all edges (i,7), i < j, such that a;11...a; € h(X).
These operations can be performed in deterministic logspace. Now, for
each ¢ < j, there is a bijection between distinct expressions of a;y1 ... a;
as an element of h(X)* and distinct paths from node 7 to node j in G.
Hence using Proposition 13, h(X) is a code if and only if G is strongly un-
ambiguous. We now decompose w into w = a; - - - ayy, such that each oy is
a maximal subword of o(h(2)). Thus for each k we have ay, = a;, 41 - - aj,
for some 0 < iy < jr < n. Then o € h(X*) if and only if there is a path
in G from node i; to node ji. Hence h is a code and w € h(X™*) exactly
when each (G, i, jx) € Lgpu, 1 < k < m. The statement now follows from
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the easy fact that L., is closed under conjunctive reducibilities, i.e.: that
(Lstu$)* <m Lstu-

To reduce Ly, to stratifiedcoderange, we use the construction of
Theorem 14, where a topologically sorted graph G is transformed into a
stratified set of words C in such a way that there is a path from node 1
to node n iff 0(C') € C*. We now show that G is strongly unambiguous if
and only if C is a code. If, on the one hand, two distinct paths in G lead
from some node ¢ to some node j, then clearly, there exist two distinct
expressions of the subword of ¢(C) which begins with the symbol (0, 7)
and ends with (j,n 4+ 1), as an element of C*.

On the other hand, assume that C' is not a code. By Proposition 13 we
know that there exists a subword v of o(C) which possesses two different
decompositions v = ¢ ¢, = cll ‘.- c’m, for some ci,c; € C. C consists
of two special words (enforcing stratification) together with the subset
{y € A*|3,, :w=zyz, 3 jx : y € (i,5)A*(4, k) }. Obviously, only words
from the latter subset can be used to build an ambiguous decomposition
of v since the two special words do not start with a barred symbol or
do not end with an unbarred one. Thus v is of the form mv’ (.7", k) for
some i,7,7 ,k <nand v € A* Then (¢, ,¢p) # (cl,- -,c;n,) implies

the existence of two different paths in G leading from node j to node i,
concluding the proof.



