
On the Complexity of Free Monoid MorphismsKlaus-J�orn Lange and Pierre McKenzie?Wilhelm-Schickard-Institut f�ur Informatik, Universit�at T�ubingenflange,mckenzieg@informatik.uni-tuebingen.deAbstract. We locate the complexities of evaluating, of inverting, andof testing membership in the image of, morphisms h : �� ! ��. Byand large, we show these problems complete for classes within NL. Thenwe develop new properties of �nite codes and of �nite sets of words,which yield image membership subproblems that are closely tied to theunambiguous space classes found between L and NL.1 IntroductionFree monoid morphisms h : �� ! ��, for �nite alphabets� and�, are animportant concept in the theory of formal languages (e.g. [7, 12]), and theyare relevant to complexity theory. Indeed, it is well known (e.g. [8]) thatNP = Closure(�AC0m ;HOMn:e:) � Closure(�AC0m ;HOM) = R:E:; where�AC0m denotes many-one AC0-reducibility, HOM (resp. HOMn:e:) is theset of morphisms (resp. nonerasing morphisms), and Closure denotes thesmallest class of languages containing a �nite nontrivial language andclosed under the relations speci�ed. Morphisms and their inverses alsoplay a role in studying regular languages and \small" complexity classes:regular language varieties are closed under inverse morphisms [7], andthe replacement of morphisms by \polynomial length M -programs", inthe de�nition of recognition by a �nite monoid M , allows automata tocapture many subclasses of NC1 [4, 6, 14].Here we consider the complexity of evaluating inverse morphisms andmorphisms h : �� ! ��. Speci�cally, we consider the simple problemeval of computing the image of a word v under h, the problem range ofdetermining whether a word w 2 h(��), and the problem inv of comput-ing an element of h�1(w) given w 2 h(��). We examine the �xed setting,in which the morphism is input-independent, and the variable setting, inwhich the morphism is de�ned as part of the input.The general framework of our results is summarized in the following�gure. In the �xed case, the eval problem characterizes the relation be-tween the classes NC0, AC0 and TC0, and the problems range and inv are? On sabbatical leave from the Universit�e de Montr�eal until August 1998.

2closely related to the class NC1. Membership of inv in NC1 is then to becontrasted with H�astad's result that there exists a �xed NC0-computablefunction whose associated inversion problem is P-complete [11]. We alsoobserve that Closure(�AC0T ;HOM�1) = TC0, where HOM�1 denotes in-verse morphisms, yielding yet another characterization of this importantsubclass of NC1. In the variable case, the problem eval remains in TC0while the range and inv problems capture complexity classes between Land NL.Problem Fixed setting Variable settingevaluation isometric: NC0nonisom.: TC0-complete isometric: AC0nonisom.: TC0-completerange any h: NC1chosen h: NC1-complete [1] h(�) pre�x code: L-completeunrestricted h: NL-completeinversion NC1 (Functional-L)NLHere we do not distinguish between a circuit-based language class and its functionalcounterpart. A morphism h : �� ! �� is isometric i� h applied to each a 2 � yieldsa word of the same length.An important part of our results, motivated by recent interest inclasses intermediate between L and NL [2, 13, 3], is the investigation of theprobem range in the variable case. Restricting the underlying morphisma�ects the complexity of the range problem, e.g. the range problem forpre�x codes is in L and is complete for this class. Now, one might expectthat imposing the code property on h(�) should render the range prob-lem complete for an unambiguous logspace class. However the resultingproblem remains NL-complete. We therefore develop properties of codesand of sets of words, in particular the strati�cation property (see Sec-tion 4.2), which yield range subproblems of complexity identical to thecomplexity of the graph accessibility problems introduced to study unam-biguous logspace classes (see Section 2). In particular, we show that theproblem range in which h(�) is a strati�ed code is many-one equivalentto the GAP problem Lstu capturing StUSPACE(logn), and that a variantof range in which h(�) is a strati�ed left partial code is RUSPACE(logn)-complete. This is particularly interesting since RUSPACE(logn) was onlyrecently found to have a complete problem [13].

32 Preliminaries2.1 Complexity theoryWe assume familiarity with basic complexity theory. In particular, recallNC0 � AC0 � TC0 � NC1 � L � StUSPACE(logn) � RUSPACE(logn)� UL � NL � P � NP, where UL is the set of languages acceptedby logspace Turing machines which are nondeterministic with at mostone accepting computation, RUSPACE(logn) is de�ned like UL withthe stronger condition that, on any input, at most one path should ex-ist from the initial con�guration to any accessible con�guration y, andStUSPACE(logn) is de�ned like UL with yet the stronger condition that,between any pair of con�gurations (x; y), at most one path should existfrom x to y. Furthermore, Functional-L, also denoted FL, is the func-tional counterpart of L, i.e. the set of functions computable by determin-istic Turing machines and FLNL is the set of functions computable by adeterministic Turing machine M having access to an NL-oracle [16].DLOGTIME uniformity of a circuit family refers to the ability for aTuring machine equipped with an index tape allowing direct access to itsinput to compute, in time O(log n), the ith bit in an appropriate binarydescription of the nth circuit in the family. Speci�cally, the constructorreceives as input the binary representation of i, and some string of lengthn. For precise details on circuit descriptions, see [5].Just as GAP is NL-complete and outdegree-one GAP is L-complete[10], the obvious GAP problems Lstu, Lru, and Lu, which are respectivelyStUSPACE(logn)-hard, RUSPACE(logn)-hard, and UL-hard, were intro-duced for topologically sorted graphs in [2, 13]. Lru is RUSPACE(logn)-complete [13], while Lstu is not known to belong to StUSPACE(logn) andLu is already NL-complete.We will make use of the reducibilities �AC0m and �AC0T , which refer tomany-one and Turing AC0 reducibilities respectively.2.2 Problem de�nitionsFix a morphism h : �� ! �� for �nite alphabets � and �, with �assumed ordered. In the �xed setting, the three problems of interest inthis note are:eval(h) Given v 2 ��, compute h(v). The decision problem has b 2 �and j 2 N as further inputs, and asks whether b is the jth symbol inh(v).

4range(h) Given w 2 ��, determine whether w 2 h(��).inv(h) Given w 2 ��, express w as h(ai1)h(ai2) � � � h(aik)w0 such that,�rst, jw0j is minimal, and second, v := ai1ai2 � � � aik is lexicographicallyminimal with respect to the ordering of �. The decision problem isobtained by adding j 2 N as an input parameter, and asking for thejth bit in the representation of w.In the variable setting, the three problems of interest are eval, range,and inv, de�ned as above, except that the alphabets � and �, and themorphism h, now form part of the input.Fix a �nite alphabet � . Let v = a1a2 � � � an; ai 2 �; n � 0. The lengthof v is written jvj, and #a(v) represents the number of occurrences ofa 2 � in v. For 0 � i � j � n, we de�ne ivj as ai+1 � � � aj . In particular,i�1vi is ai if i � 1. By subword, we mean contiguous subword, i.e. a1a3 isnot a subword of a1a2a3.We encode our problems, in both the �xed and the variable settings,as binary strings. In the �xed setting, a word v over an alphabet � isencoded as a sequence of equal length \bytes", each representing a letterin � . By the predicate Qa(v; i), a 2 � , v 2 � �, we mean that i�1vi isa (with Qa(v; i) false when i > jvj). In the variable setting, we writeQa(v; i) as Q(a; v; i) in view of the input-dependent alphabet �. Anyencoding which allows computing Q(a; v; i) in AC0 su�ces.To encode a morphism h : �� ! �� (only required in the variable set-ting), it su�ces that the predicate associated with h, denoted H(b; a; j),where b 2 �, a 2 �, and j � 0, meaning that j�1h(a)j is b, be AC0-computable. The predicate H(b; a; j) extends to H(b; v; j) for v 2 �� inthe obvious way, and computing this extension is the object of the evalproblem. We de�ne H(b; v; j) to be false if j > jh(v)j.For h : �� ! ��, we de�ne max(h) as maxfjh(a)j : a 2 �g.3 Fixed CaseThroughout this section we �x h : �� ! ��. We write the associatedpredicate H(b; v; j), b 2 �, v 2 ��, j 2 N as Hb(v; j), in view of the �xedalphabet �.3.1 EvaluationThe complexity of evaluating h is low, but it depends in an interestingway on whether h is isometric, i.e. whether the length of any h(w) onlydepends on jwj.

5Proposition 1. eval(h) 2 Functional-NC0 if 8a;b2�jh(a)j = jh(b)j.Proof. Let h be isometric and let c = jh(a)j (= max(h)) for any a 2 �.Then, for v 2 ��, b 2 �, and j 2 N , we have Hb(v; j) , (9a 2�)[Qa(v; dj=ce) ^Hb(a; j mod c)]. Since � is �xed, the existential quan-ti�cation over a can be done in NC0. Hence, for each j, 1 � j � c � jvj,there is an NC0 subcircuit Cj computing the jth symbol in h(v). Thecircuit for eval(h) is a parallel arrangement of these Cj , 1 � j � c � jvj.Uniformity is argued in the technical appendix.It follows that, when h is isometric, the decision problem eval(h) 2AC0. Interestingly, the converse also holds: if h is not isometric, theneval(h) =2 Functional-AC0 and the decision problem eval(h) =2 AC0, asfollows from:Theorem 2. If h is nonisometric, then the decision problem eval(h) isTC0-hard under �AC0T .Proof. Since h is not isometric, there exist a; b 2 �, s; t 2 N , such thatjh(a)j = s and jh(b)j = s + t with t > 0. We claim that MAJORITY,i.e. the language of all words v over the alphabet fa; bg having jvj=2 �#b(v), �AC0T -reduces to computing the length of h(v). This implies thatthe extended predicate Hb(v; j), v 2 ��, is TC0-hard, because jh(v)jis trivially expressed as the largest j, 1 � j � jvj � max(h), such thatWb2� Hb(v; j). And computing the extended predicateHb(v; j) is preciselythe decision problem eval(h).To prove the claim that MAJORITY reduces to computing jh(v)j,note that jvj=2 � #b(v) i� s � jvj+ t � jvj=2 � s � jvj+ t �#b(v). Now the lefthand side of the latter equality can be computed in AC0 because s and tare constants. As to the right hand side, it is precisely jh(v)j = s �#a(v)+(s + t) � #b(v) = s � jvj + t � #b(v). Hence one can test jvj=2 � #b(v) inAC0, once an oracle gate provides the value of jh(v)j. Hence MAJORITY�AC0T -reduces to computing jh(v)j.Corollary 3. The decision problem eval(h) is in AC0 i� h is isometric.On the other hand, we prove in the appendix that a �xed morphismcan always be evaluated in TC0, so that the reduction from MAJORITYto eval(h) exhibited in Theorem 2 can in fact be reversed:Theorem 4. For each morphism h, the decision problem eval(h) 2 TC0.

6Corollary 5. If h is a nonisometric morphism, then the decision problemeval(h) is TC0-complete under �AC0T .The next corollary is also justi�ed in the appendix:Corollary 6. TC0 = Closure(�AC0T ;HOM�1).3.2 Range membershipWe now turn to the problem of testing whether a word w 2 �� belongsto h(��). Since �� is regular and the regular languages are closed undermorphisms, h(��) is regular. Hence range(h) 2 NC1. On the other hand,Sch�utzenberger in 1965 exhibited the following family of �nite bipre�xcodes (i.e. codes having the property that no code word is a proper pre�xor a proper su�x of another code word) over the binary alphabet fa; bg:Cn := fan; an�1ba; an�2b; ban�1g [faiban�i�1 j 1 � i � n� 3g:Sch�utzenberger [17] proved that, for each n, the symmetric group Sndivides (i.e. is an epimorphic image of a submonoid of) the syntacticmonoid of the Kleene closure C�n of Cn. Thus:Theorem 7. For every morphism h, range(h) 2 NC1. Furthermore,there exists a morphism h such that range(h) is NC1-complete under�AC0m .Proof. By Sch�utzenberger [17], S5 divides the syntactic monoid of theKleene closure C�5 of C5 = faaaaa; aaaaba; aaab; aabaa; abaaa; baaaag.Now Straubing [18, Theorem IX.1.5] proves that any nonsolvable regularlanguage, as is the case here with C�5 because S5 is a nonsolvable group,is NC1-complete. (In reality, the reducibility used by Straubing is neithermany-one nor uniform, but the membership tests in Straubing's languagesu�1Kv�1 and the evaluation of at the end of his argument can betransformed into a single membership test in a �nite Boolean combinationof the u�1Kv�1 languages). Setting � = C5, � = fa; bg, and de�ningh(w) for each w 2 � as the word w 2 ��, yields a morphism h : �� ! ��such that h(��) = C�5 . Hence, for this h, range(h) is NC1-complete.3.3 InversionRecall the de�nition of problem inv(h). By using inv(h) to determinewhether jw0j > 0, the decision problem range(h) reduces to the decision

7problem inv(h), under�AC0m if an obvious encoding is chosen. Hence thereis an h such that the decision problem inv(h) is NC1-hard (by Theorem7). Our goal in this section is to show that inv(h) is in Functional-NC1,which holds, clearly, i� the decision problem inv(h) is in NC1.Suppose that a word w 2 h(��). Then if h(�) were a code, i.e. ifit had the property that any word in h(��) is uniquely expressible as asequence of elements from h(�), then computing h�1(w) would simplyrequire computing all the positions i, 1 � i � jwj, at which w splits intow = �� with �; � 2 h(��). This set of positions would uniquely breakw up into words from h(�). Since these positions can be computed inNC1 because h(��) is a regular language, this strategy would solve suchinstances of inv(h) in NC1. Interestingly, we can combine this strategywith a greedy approach and solve the general case in which h(�) is nota code. The next theorem is proved in the technical appendix:Theorem 8. For every morphism h, inv(h) is in Functional-NC1.4 Variable Case4.1 EvaluationThe �xed case construction for eval(h) carries over to the variable caseeval. We must compute the predicate H(b; v; j), i.e. determine whetherthe jth symbol in h(v) is b. In the following let �(v) be the Parikh vectorof a word v and Mh the growth matrix of the morphism h, i.e. (Mh)ik isthe number of bk symbols in h(ai). Then, H(b; v; j) holds i� there existsi 2 N and a 2 � such that�(0vi�1)Mh1 < j � �(0vi)Mh1 and Q(a; v; i) and h(a)j�(�(0vi�1)Mh1) = b:Now the computation ofMh out of h and the computations of �(0vi�1)Mh1and �(0vi)Mh1 out of v can be done in TC0. Indeed, the integers involvedin these computations are small, i.e. their absolute values are polynomialin the input size, and arithmetic with such integers can even be carriedout in AC0 [5, Lemma 10.5]. But the computation of the Parikh vectorsneeds counting and is TC0-hard. Hence computing H(b; v; j) is TC0-hardand eval 2 Functional-TC0, which we record as:Theorem 9. The decision problem eval is TC0{complete w.r.t. �AC0T .We note that eval restricted to isometric morphisms is in AC0.

84.2 Range membershipOur problem range is precisely the Concatenation Knapsack Problemconsidered by Jenner [9], who showed that:Theorem 10. (Jenner) range is NL{complete.Recall that a nonempty set C � �� is a code if C freely generates C�,and that C is a pre�x code if C has the pre�x property, i.e. if no wordin C has a proper pre�x in C. De�ne pre�xcoderange to be the rangeproblem restricted to input morphisms h : �� ! �� such that h(�) is apre�x code. The easy proof of the following is included in the appendix:Theorem 11. pre�xcoderange is L{complete.In view of Theorems 10 and 11, it is natural to ask for properties ofh(�) allowing the range problem to capture concepts between L and NLlike symmetry or unambiguity. For instance, one might reasonably expectcodes to capture unambiguity, and thus the obvious problem coderangeto be complete for one of the unambiguous space classes between L andNL. But the mere problem of testing for the code property is NL-hard asshown by Rytter [15]. In the following subsection, we introduce a moreelaborate approach which is able to capture unambiguity.4.2.1 Strati�ed sets of words and morphismsDe�nition 12. a) Let C � �� be arbitrary. De�ne a relation �C � ���as a �C b i� some word in C contains ab as a subword.b) C is said to be strati�ed if �C forms a unique maximal acyclic chaina1 �C a2 �C � � � �C an; in that case, the word �(C) := a1a2 � � � an 2 �� iscalled the strati�cation of C. (Example: The set fa; b; ab; bcg � fa; b; cg�is strati�ed, while fa; bg, fab; bag and fab; acg are not.)Let C � �� be strati�ed, where we assume from now on that such astrati�ed set makes use of all the letters in �. Clearly, any word x 2 Cis a subword of �(C). Then, any word w 2 �� is uniquely expressible asw = �1�2 : : : �k, where each �i is a maximal common subword of w and�(C).Proposition 13. Let C � �� be a strati�ed set.a) For any w 2 ��, w 2 C� i� its canonical decomposition w =�1�2 : : : �k into maximal subwords common with �(C) satis�es �i 2 C�for each i.

9b) C is a code i� each subword of its strati�cation �(C) is expressiblein at most one way as a concatenation of words from C.Testing whether a �nite set C � �� is strati�ed is L-complete. Onthe other hand, although strati�cation may seem like an overwhelmingrestriction, strati�edrange, i.e. the range problem for strati�ed h(�),is NL-hard:Theorem 14. strati�edrange is NL-complete.Proof. To see that strati�edrange is in NL, we �rst test deterministi-cally in log space whether C is strati�ed. Then we use the fact that range2 NL. The construction used to show NL-hardness is strongly inspiredby a proof in [8] and is included in the appendix.Hence, like coderange, but for a di�erent reason, strati�edrangeis NL-complete and thus does not appear to capture an unambiguouslogspace class. It is strati�edcoderange, namely the problem rangerestricted to the case of a strati�ed code h(�), which bears a tight re-lationship to StUSPACE(logn). The following theorem is proved in theappendix:Theorem 15. strati�edcoderange and Lstu are many-one logspace-equivalent.Hence strati�edcoderange is StUSPACE(logn)-hard, and although weare unable to claim a complete problem for StUSPACE(logn), we havecome very close, since even the StUSPACE(logn)-hard language Lstu,speci�cally tailored to capture StUSPACE(logn), is only known to bein RUSPACE(logn) [13]. On the other hand, we can claim a completeproblem for the unambiguous class RUSPACE(logn), as follows.Proposition 13 states that the code property of a strati�ed set Ctranslates into the unique expressibility of every expressible subword ofthe strati�cation of C as an element of C�. Let us relax this conditionand de�ne a strati�ed set C to be a left partial code if no pre�x of �(C)can be expressed in two ways as an element of C�. Furthermore, we letlpcstrati�cation be the special case of the leftpartialcoderange prob-lem in which we are only asked to determine whether �(h(�)) 2 h(��),i.e. lpcstrati�cation is the language of all morphisms h : �� ! �� such

10that h(�) is a left partial code and the strati�cation of h(�) is in h(��).Then1:Theorem 16. lpcstrati�cation is RUSPACE(logn)-complete.Proof sketch. The construction used in Theorems 14 and 15 in e�ectproves that lpcstrati�cation and Lru are many-one logspace equiva-lent. Here Lru is the language of graphs having a path from source totarget, but required to possess the unique path property only from thesource to any accessible node. This is precisely the property which corre-sponds to the action of canonically expressing the strati�cation of a leftpartial code. We then appeal to the main result of [13], namely that Lruis RUSPACE(logn)-complete.4.3 InversionThe class (Functional-L)NL can be de�ned equivalently as the set of func-tions computed by single valued NL{transducers. We have:Theorem 17. Problem inv is in (Functional-L)NL.Proof. To solve inv, we use the algorithm and the automaton constructedin Theorem 8. Here, instead of �rst producing bw, we start the determinis-tic logspace simulation of the automaton. Whenever the simulation wouldrequire reading a letter from bw, we appeal to an NL-oracle to test whetherthe current input position breaks w up into a pre�x and a su�x in h(��)(an NL-oracle can test this by Theorem 10). This concludes the proof.We remark that the deterministic version of inv, namely the restric-tion of inv in which h is a pre�x code, belongs to Functional-L.Since computing the inv function allows answering the range ques-tion, we have NL � Linv, and by the previous theorem NL = Linv. Thisimplies that FLNL = FLinv, i.e. that the inv function is Turing-completefor FLNL.References1. E. Allender, V. Arvind, and M. Mahajan, Arithmetic Complexity, Kleene Closure,and Formal Power Series, DIMACS Tech _Rep. 97-61, September 1997.1 A corresponding restriction to the strati�edcoderange problem could be de�ned,but this restriction is many-one equivalent to strati�edcoderange. This does notappear to be the case with lpcstrati�cation and leftpartialcoderange.

112. E. Allender and K.-J. Lange, StUSPACE(log n) � DSPACE(log2 n= log log n),Proc. of the 7th ISAAC, Springer LNCS vol. 1178, pp. 193{202, 1996.3. E. Allender and K. Reinhardt, Making nondeterminism unambiguous, Proc. of the38th IEEE FOCS , pp. 244{253, 1997.4. D. A. M. Barrington. Bounded-width polynomial-size branching programs recog-nize exactly those languages in NC1. J. Comput. System Sci., 38:150{164, 1987.5. D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1.Journal of Computer and System Sciences, 41:274{306, 1990.6. D. Barrington and D. Th�erien, Finite Monoids and the Fine Structure of NC1, J.of the ACM, 35(4):941-952, 1988.7. S. Eilenberg, Automata, Languages and Machines, Academic Press, Vol. B, (1976).8. P. Flajolet and J. Steyaert, Complexity of classes of languages and operators, Rap.de Recherche 92 de l'IRIA Laboria, novembre 1974.9. B. Jenner, Knapsack problems for NL, Information Processing Letters 54 (1995),pp. 169-174.10. N. Jones. Space-bounded reducibility among combinatorial problems. Journal ofComputer and System Sciences, 11:68{85, 1975.11. J. H�astad, Computational Limitations for Small-Depth Circuits, PhD Thesis,M.I.T., ACM Doctoral Dissertation Awards, MIT Press (1987).12. T. Harju and J. Karhum�aki, Morphisms, in Handbook of Formal Languages, ed. G.Rozenberg and A. Salomaa, Springer, 1997.13. K.-J. Lange, An unambiguous class possessing a complete set, Proc. 14th AnnualSymp. on Theoret. Aspects of Computer Science, Springer LNCS vol. 1200, pp.339{350, 1997.14. P. McKenzie, P. P�eladeau and D. Th�erien, NC1: The Automata-Theoretic View-point, Computational Complexity 1:330-359, 1991.15. W. Rytter, The space complexity of the unique decipherability problem, Informa-tion Processing Letters 23 (1986), pp. 1{3.16. W. Ruzzo, J. Simon and M. Tompa, Space-bounded hierarchies and probabilisticcomputations J. Computer and Systems Science 28, 216{230, 1984.17. M. Sch�utzenberger, On �nite monoids having only trivial subgroups, Informationand Control 8, 190{194, 1965.18. H. Straubing, Finite automata, formal logic, and circuit complexity, Birkh�auser,Boston, 1994.

12 Technical AppendixUniformity argument in the proof of Proposition 1:To see that the NC0 circuit obtained is DLOGTIME-uniform, let s bethe (constant) size of the description of any Cj subcircuit. When theDLOGTIME constructor needs to determine the kth bit in the descriptionof the complete circuit, it �rst checks that k � s�c�jvj, and then determinesthe relevant subcircuit by computing j = dk=se. Note that (the binaryrepresentation of) jvj is DLOGTIME-computable from an input of lengthjvj [5], and that the school method su�ces to compute s � c � jvj, j, andk mod s, since k is a log n-bit number. The constructor must then seek thebit k mod s within the description of Cj. This bit is easily computed unlessit pertains to an input gate of Cj , in which case the constructor computesdj=ce and makes use of the fact that Cj only ever reads (bits within thebinary encoding of) the dj=ceth symbol in jvj. Note that j mod c isDLOGTIME-computable as well.Proof of Theorem 4:Let the cardinality of � be m. In order to compute Hb(v; j), i.e. to checkwhether the jth symbol of h(v) is a b, we �rst have to �nd the integeri ful�lling k := jh(0vi�1)j < j � jh(0vi)j: Then we must locate the ithsymbol in v, say a 2 �, and check that h(a)j�k = b. Let l� be the lengthof h(a�) where a1; a2; : : : ; am are the elements of �. Then, Hb(v; j) holdsi�, for some i, 1 � i � n,�m�=1(l� �#a�(0vi�1)) < j and h(i�1vi)j�k = b;where k = jh(0vi�1)j, and h(i�1vi)j�k is the (j � k)th letter of h(i�1vi).Now, for a given i, evaluating the above sum is easily reduced in AC0to a single operation of counting the number of ones in a zero-one string(say by producing, for each symbol a� in 0vi�1, a zero-one string of lengthmax(h) having exactly l� ones). This counting operation, akin to iteratedinteger addition, can be done in TC0. So can the comparison with j and,obviously, the test for h(i�1vi)j�k = b. By working on all i in paralleland connecting the results with AC0 circuitry, a DLOGTIME-uniformTC0-circuit for Hb(v; j) takes shape.Proof of Corollary 6:�: Clearly AC0 � Closure(�AC0T), so that L := f0i1j ji � jg is inClosure(�AC0T).Now de�ne h : fa; b; cg� ! f0; 1g� by h(a) := 0; h(b) := 00, and h(c) := 1.By de�nition, h�1(L) is in Closure(�AC0T ;HOM�1). But also,

13v 2 MAJORITY i� #b(v) � jvj=2i� jvj+#b(v) � 3 � jvj=2i� h(vcd3�jvj=2e) = 0i1j , i = jvj+#b(v) � d3 � jvj=2e = ji� h(vcd3�jvj=2e) 2 Li� vcd3�jvj=2e 2 h�1(L):Since cd3�jvj=2e is AC0-computable from v, we have MAJORITY �AC0mh�1(L). Hence MAJORITY is in Closure(�AC0T ;HOM�1), and so is allof TC0.�: By induction on the number of steps in the representation of alanguage as a member of Closure(�AC0T ;HOM�1). In the inductive step,it is required to exhibit a TC0 circuit simulating an AC0 circuit with oraclegates for membership tests of the form v 2 h�1(Y), for some morphismh and some Y 2 TC0. This is possible by simulating each gate in TC0using Theorem 4.Proof of Theorem 8:Consider an instance w 2 �� of inv(h), that is, given w, we wish tocompute a decomposition w = h(ai1)h(ai2) � � � h(aik)w0 such that, �rst,jw0j is minimal, and second, v := ai1ai2 � � � aik is lexicographically minimalwith respect to the ordering of �. Since the longest w-pre�x in h(��) iseasily determined in NC1 knowing that range(h) 2 NC1, we assume in thesequel that w 2 h(��), i.e. that w0 is the empty word. We also assume withno loss of generality that � is ordered in such a way that jh(ai)j < jh(aj)jimplies ai < aj . We write X for h(�) and let X = fw1; w2; � � � ; wkg � ��such that jw1j � jw2j � � � � � jwkj = max(h).As a �rst step, the input w = b1b2 � � � bn 2 �� is transformed intoa word bw = (b1;
1)(b2;
2) � � � (bn;
n) 2 (�0)� where �0 := � � f0; 1g,having the property that
i = 1 i� b1 � � � bi 2 X� and bi+1 � � � bn 2 X�. Asseen above, this is possible in NC1.Now the strategy will be to scan bw from left to right, keeping trackof the possible words wj 2 X which, at any one time, remain candidatesto express the pre�x of w read so far. (To indicate that a word remainspossible, in the automaton formalisation below, a \+" symbol is stored inthe corresponding state vector.) When a position i in bw is reached whichsplits w into a pre�x in X� and a su�x in X�, the lexicographically leastexpression for the pre�x is recorded, the set of current possible words isreset to \all possible words", and the procedure continues with the su�x.To make this formal, we de�ne a �nite automaton A operating oninput bw. A is in fact a �nite transducer, but instead of cluttering the

14de�nition of A further by formally de�ning its output function, we willmake plain which transitions output a word from X forming part of thedesired decompositon of w.Let A := (Z;�0; �; z0; z0), where Z := fFg[f+;�gk�f1; 2; � � � ;max(h)g,z0 := h+; � � � ;+; 1i, and the transition function � : Z � �0 �! Z is de-�ned as follows. First, �(F; :) := F , and then, for �i 2 f+;�g; 1 � j �max(h); b 2 � and
 2 f0; 1g� (h�1; �2; � � � ; �k; ji; (b;
)) :=IF
 = 1 ^ (91�i�k�i = + ^ jwij = j ^ (wi)j = b)THEN z0 (and output wi as the next word in the decompositionof w) ELSE IF j < max(h)THEN h�01; �02; � � � ; �0k; j + 1iELSE Fwhere �0i is de�ned as \+" i� [�i = + and (wi)j = b].With the proviso that the \91�i�k" above selects the least such i whenone exists, the resulting transducer A correctly outputs the lexicograph-ically least sequence of words from X expressing w. In fact, the set ofpositions fi : 1 � i � jwj; A is in state z0 after reading 0(bw)ig marks thedesired decomposition of w. Since this set equals fi : A accepts 0(bw)ig,an NC1 circuit can perform parallel membership tests in the regular lan-guage accepted by A in order to solve inv(h), proving that inv(h) is inFunctional-NC1.Proof of Theorem 11:It is easy to verify, even in AC0, that an input morphism h has the pre-�x property, hence is a pre�x code. In that case, determining whether w 2h(��) can be done deterministically in log space. Hence pre�xcoderange 2L. Let G = (V; f) be an outdegree-one digraph, i.e. V = f1; 2; � � � ; n � 2gand f : V ! V is such that i < f(i) for all i < n. Such graphs havean L-hard accessibility problem. A path exists from node 1 to node n inG i� 23 � � � n 2 h(��), where � = V n fng, � = V , and for 1 � i < n,h(i) = (i+1)(i+2) � � � f(i). Since h(�) has the pre�x property, this showsthat pre�xcoderange is L-hard.Proof of Theorem 14:We reduce from the accessibility problem of node n from node 1 in atopologically ordered graph G = (V = f1; � � � ; ng; ; 6= E � f(i; j)j1 � i <j � ng). We will in fact prove that a very special case of strati�edrange,namely the problem of testing whether the strati�cation �(C) of a strat-

15i�ed set C is in C� (think of C as the image of some alphabet � of sizejCj under an obvious morphism h, and of �(C) as the only word testedfor membership in h(��) = C�), is already NL-hard.Set � := f(i; j)j(i; j) 2 Eg [f(i; j)j(i; j) 2 Eg [f(0; k); (k; n+ 1)j1 �k � ng. Then, for each 1 � i � n, let w(i) be the concatenationof (i; j)(i; j) over all (i; j) 2 E in ascending order of the js. Observethat w(i) is empty if there are no outgoing edges from node i. Now letw(0) := (0; 1)(0; 2) : : : (0; n), let w(n+1) := (1; n+1)(2; n+1) : : : (n; n+1),and set w := w(0)w(1)w(2) � � � w(n)w(n+1). Now de�ne C as the set con-taining the following words: 1) the word w(0)w(1) : : : w(n), 2) the wordw(1)w(2) : : : w(n+1), 3) any subword of w of the form (i; j) : : : (j; k), withthe exception of such subwords for which i = 0 and k = n+ 1. Since allwords in C are subwords of w and no symbol occurs more than once, �C in-duces no cycle on �. Moreover, since E 6= ;, the words w(0)w(1) : : : w(n)and w(1)w(2) : : : w(n + 1) have a common subword, so that �C forms aunique maximal chain on �. Hence C is strati�ed with �(C) := w. Fi-nally, there is a path from node 1 to node n in G i� �(C) can be writtenas a concatenation of words from C (a much stronger statement holds, aswill be seen in the proof of Theorem 15). This concludes the reduction.Proof of Theorem 15:We begin with the reduction from strati�edcoderange to Lstu. On in-put (h : �� ! ��; w) we will construct deterministically in logspace aGAP instance (G; s; t) such that h(�) is a strati�ed code and w 2 h(��)if and only if G is strongly unambiguous, i.e. there are no two di�erentpaths joining any two nodes i and j, and there is a path from s to t. First,check that h(�) is strati�ed. If this is not the case set (G; s; t) to be some�xed unsolvable GAP instance with no path from s to t. Second, compute�(h(�)) = a1a2 : : : an. Third, construct a graph G := (f0; 1; : : : ; ng; E),where E consists of all edges (i; j), i < j, such that ai+1 : : : aj 2 h(�).These operations can be performed in deterministic logspace. Now, foreach i < j, there is a bijection between distinct expressions of ai+1 : : : ajas an element of h(�)� and distinct paths from node i to node j in G.Hence using Proposition 13, h(�) is a code if and only if G is strongly un-ambiguous. We now decompose w into w = �1 � � ��m such that each �k isa maximal subword of �(h(�)). Thus for each k we have �k = aik+1 � � � ajkfor some 0 � ik < jk � n. Then �k 2 h(��) if and only if there is a pathin G from node ik to node jk. Hence h is a code and w 2 h(��) exactlywhen each (G; ik; jk) 2 Lstu; 1 � k � m. The statement now follows from

16the easy fact that Lstu is closed under conjunctive reducibilities, i.e.: that(Lstu$)� �m Lstu.To reduce Lstu to strati�edcoderange, we use the construction ofTheorem 14, where a topologically sorted graph G is transformed into astrati�ed set of words C in such a way that there is a path from node 1to node n i� �(C) 2 C�. We now show that G is strongly unambiguous ifand only if C is a code. If, on the one hand, two distinct paths in G leadfrom some node i to some node j, then clearly, there exist two distinctexpressions of the subword of �(C) which begins with the symbol (0; i)and ends with (j; n + 1), as an element of C�.On the other hand, assume that C is not a code. By Proposition 13 weknow that there exists a subword v of �(C) which possesses two di�erentdecompositions v = c1 � � � cm = c01 � � � c0m0 for some ci; c0i 2 C. C consistsof two special words (enforcing strati�cation) together with the subsetfy 2 ��j9x;z : w = xyz;9i;j;k : y 2 (i; j)��(j; k)g. Obviously, only wordsfrom the latter subset can be used to build an ambiguous decompositionof v since the two special words do not start with a barred symbol ordo not end with an unbarred one. Thus v is of the form (i; j)v0(j0 ; k) forsome i; j; j0 ; k � n and v0 2 ��. Then (c1; � � � ; cm) 6= (c01; � � � ; c0m0) impliesthe existence of two di�erent paths in G leading from node j to node j0 ,concluding the proof.

