
Visibly Counter Languages
and the Structure of NC1

Michael Hahn, Andreas Krebs, Klaus-Jörn Lange, and Michael Ludwig

WSI - University of Tübingen
Sand 13, 72076 Tübingen, Germany

{hahnm,krebs,lange,ludwigm}@informatik.uni-tuebingen.de

Abstract. We extend the familiar program of understanding circuit
complexity in terms of regular languages to visibly counter languages.
Like the regular languages, the visibly counter languages are NC1 -
complete. We investigate what visibly counter languages are in certain
constant depth circuit complexity classes, which we have initiated in a
previous work for AC0. We present characterizations and decidability re-
sults for various circuit classes. In particular, our approach yields a way
to understand TC0, where the regular approach fails.

1 Introduction

The family of the regular languages is well among the best studied objects in
theoretical computer science. They arise in many contexts, have many natural
characterizations and good closure and decidability properties, and have been
used as a tool to understand other objects. The nice behavior of regular language
comes at a price, which is a limited expressiveness. The class of context-free lan-
guages contains many important non-regular languages, but at the same time is
much harder to analyze. In our present line of work, we attempt to generalize
results which are known for the regular case to the non-regular case. A very
promising way of generalizing regular languages is given by the visibly pushdown
languages, which were introduced by Mehlhorn [13] in 1980 and popularized by
Alur and Madhusudan [2] in 2004. They have been an active field of research
ever since. Visibly pushdown automata are pushdown automata with the re-
striction that the input letter determines the stack operation: Push, pop or no
access to the stack. These automata have good closure and decidability prop-
erties that are comparable to those of regular languages, and still cover many
important context-free languages. The word problem is as hard as for the regular
languages, namely NC1-complete. We will consider a restriction of visibly push-
down languages. Visibly counter languages (VCLs) are languages recognized by
visibly counter automata, which are visibly pushdown automata that only have
one stack symbol, i.e. which only have a counter. In some sense, this class ap-
pears to be one of the smallest useful non-regular language classes, and hence
our starting point in the program of generalizing results beyond the realm of
regular languages.

Already in the 1980s, based in part on the result that PARTITY 6∈ AC0 [8,9],
and on Barrington’s theorem [4], deep connections between regular languages
and circuit complexity were uncovered [6]. These results showed that circuit
classes have characterizations in terms of algebraic properties of finite monoids,
which has led to the characterization of class separations in terms of properties
of regular sets. For instance, the classes ACC0 and NC1 differ if and only if no
syntactic monoid of a regular set in ACC0 contains a nonsolvable group. Indeed,
the circuit classes AC0, CC0, ACC0[n], ACC0, and NC1 can all be characterized
using finite monoids and regular languages [15].

What stands out at this point is the absence of TC0 in these results. Indeed,
TC0 does not relate to any family of regular languages: Assuming NC1 6= ACC0,
then either a regular language is NC1-hard or it is contained in ACC0 – de-
pending on whether its syntactic monoid is solvable or not. This is where our
contribution comes into play. We lift the correspondence between circuit classes
and algebraic properties of regular languages to visibly counter languages. In
previous work [10], we characterized the visibly counter languages in AC0.

Our Results We examine the intersection of visibly counter languages with
the circuit classes AC0, CC0[q], CC0, ACC0[q], ACC0, TC0, and NC1. As our
main theorem, we unconditionally prove criteria for visibly counter languages
to be complete for these classes (Theorem 17). The results are summarized in
Figure 1, which compares the known families of regular languages complete for
various circuit classes with corresponding complete classes of visibly counter
languages. Furthermore, given a visibly counter automaton, we can effectively
compute the smallest of these complexity classes that contains the language
recognized by this automaton. This also provides an effective method to decide
whether a language, given by a visibly counter automaton, is in one of these
complexity classes (Corollary 20). Decidability results for non-regular languages
classes corresponding to circuit complexity classes are rather sparse. We expect
that our more general method will help to lift various decidabilty results about
regular languages to visibly counter languages.

Circuit Class Regular Languages Visibly Counter Languages
Syntactic Monoids Stack Regular Part

CC0 Solvable Groups No Stack Solvable Groups
AC0 Quasi Aperiodic Well Behaved Quasi Aperiodic
ACC0 Solvable Monoids Well Behaved Solvable Monoids
TC0 ? Any Solvable Monoids
NC1 Finite Monoids Any Finite Monoids

Fig. 1. Circuit Classes with complete classes of regular languages [15], and complete
visibly counter classes. The classes in bold are maximal for the respective complexity
class, while in the other cells, there may be a larger complete class depending on the
separation of circuit classes.

2

As most separation questions between those languages classes are still open,
we prove equivalences to these separations. For example we show that CC0 6=
ACC0 iff CC0 containtains a non-regular visibly counter language. Assuming
that ACC0 6= TC0 6= NC1, we can show that the visibly counter languages inter-
sected with these languages are contained in logic classes using only semilinear
predicates. This observation has been explored by [12], who introduced the no-
tion of extensional uniformity, which refers to the study of the intersection of
a complexity class with a family of formal languages. For CC0[p], ACC0[p] we
provide similar but unconditional results.

Structure of the paper The paper first introduces the necessary notation in
Section 2. Then we introduce our proof method, which splits the computation
of visibly counter automata into two parts: height computations and a regular
part. After developing various lemmas in Section 4, we present the main results
in Section 5. We end with a discussion about further research.

2 Preliminaries

An alphabet is a finite set Σ. A subset of Σ∗ is called a language For a word w,
|w| is the length of the word, |w|Σ the number of occurrences of symbols from Σ
in w, and wi is the letter in position i in w. For L ⊆ Σ∗, the set F (L) ⊆ Σ∗ is the
set of all factors of words in L, i.e.: F (L) = {y ∈ Σ∗ | ∃x, z ∈ Σ∗ : xyz ∈ L}.

Every language L ⊆ Σ∗ induces a congruence onΣ∗, the syntactic congruence
of L: For x, y ∈ Σ∗, x ∼L y iff for all u, v ∈ Σ∗ we have uxv ∈ L ⇔ uyv ∈ L.
The syntactic monoid is the quotient monoid Σ∗/ ∼L. The syntactic morphism
of L is the canonical projection ηL : Σ∗ → Σ∗/ ∼L.

The complexity classes we will consider are defined using circuit families.
Precisely, we will study the following classes:

– AC0: polynomial-size circuit families of constant depth with Boolean gates
of arbitrary fan-in.

– ACC0[k1, ..., kn]: AC0 circuit families plus modulo-ki-gates for each i. ACC0

is the union of ACC0[k] for all k.
– TC0: polynomial-size circuit families of constant depth with threshold gates

of arbitrary fan-in.
– NC0: polynomial-size circuit families of constant depth with bounded fan-in.
– NC1: polynomial-size circuit families of logarithmic depth with bounded fan-

in.

If for some n ∈ N the circuit with input length n is computable in some com-
plexity bound, we speak of uniformity. One prominent example is so called
DLOGTIME-uniformity. For further references on circuit complexity, cf. e.g.,
[16].

If L,L′ are languages, then a quantifier-free reduction (often called quantifier-
free projection) from L to L′ is a constant-depth circuit family for L whose only
gates are NC0 gates and an oracle gate for L′.

3

Let M,N be two monoids. We say M divides N iff there is a subset N ′ ⊆ N
and a surjective monoid morphism N ′ → M . A nontrivial monoid is simple if
it has no nontrivial monoid congruences. The simple monoids are the aperiodic
unit U1 = ({0, 1}∗, ·), the Abelian simple groups Zp (p prime), and the non-
Abelian simple groups, which are the perfect groups, whose smallest one is the
permutation group A5. Every finite monoid is divided by a simple monoid.

Related to circuit classes is the framework of logic over finite words. A
nonempty word w ∈ Σ+ defines a structure whose domain is {1, ..., |w|}. For
every a ∈ Σ, there is a predicate Qa such that w |= Qa(i) iff wi = a. Fur-
thermore, any predicate defined on N1 can be interpreted canonically in such a
structure; such predicates are called numerical predicates. Important examples
are the order predicate < with arity two and an obvious semantics, and the arith-
metic predicate + of arity three: (i, j, k) ∈ + iff i + j = k. We allow first-order
existential and universal quantification. Furthermore, we will use quantifiers over
finite monoids. Let M be a monoid, M+ ⊆ M , N ∈ N, let ψ1(x), ..., ψN (x) be
formulas, let δ : {0, 1}N → M be a map, let w ∈ Σ∗ be a word, and let v be
an assignment of variables to positions in w. Then QM,δ,M+x ψ1(x)...ψN (x) is a
formula, which is true in w under the assignment v iff

Π
|w|
i=1δ(w |= ψ1(i), ..., w |= ψN (i)) ∈M+

where the product symbol denotes the multiplication of the monoid M . In-
formally, a quantifier over a monoid labels each position with a monoid ele-
ment depending on which formulas ψi(x) are true at the position, and then
checks whether the resulting word over the monoid evaluates to an element of
M+. First order quantification is equivalent to quantification using the monoid
U1 = ({0, 1}, ·), and modulo quantifiers are equivalent to quantifiers over cyclic
groups. Furthermore, there is the majority quantifier Maj, where Maj x ψ(x)
is true if ψ(i) is true for more than half of the positions i in the word. We write
Reg for the set of regular predicates, and SL for the set of semilinear predicates,
i.e., those definable using regular predicates and +.

If Q is a set of finite monoids and quantifiers, and P is a set of predicates,
we write Q[P] for the set of formulas built from P and Q, and also for the set of
languages recognized by these formulas. We also write FO for U1 quantification,
and MOD for quantification over cyclic groups. We write arb for the set of
all numerical predicates. Then we have AC0 = FO[arb], CC0[k] = Zk[arb],
ACC0[k] = FO + Zk[arb], and TC0 = Maj[arb]; see e.g. [16].

Mehlhorn [13] and later independently Alur and Madhusudan [2] introduced
input-driven or visibly pushdown automata, which are pushdown automata in
which the input symbol determines whether a symbol is pushed or popped.
This leads to a partitioning of Σ into call, return and internal letters: Σ =
Σcall ∪ Σret ∪ Σint. We will assume that Σ has some fixed partitioning. The
height of w ∈ Σ∗ is given by ∆ : Σ∗ → Z : w 7→ |w|Σcall

− |w|Σret
. A word w is

well-matched if ∆(w) = 0 and ∆(w1...wi) ≥ 0 for all 1 ≤ i ≤ |w|.

4

The concept of visibly counter automata (VCA) was introduced by Bárány
et al. [3]. Since every VPA can be determinized and this is also true for visibly
counter automata, we restrict attention to deterministic automata:

Definition 1 (m−VCA). An m−VCA A over Σ̂ = (Σcall, Σret, Σint) is a tuple
A = (Q, q0, F, Σ̂, δ0, . . . , δm), where m ≥ 0 is the threshold, Q is the set of
states, q0 the initial state, F the set of final states, and δi : Q×Σ → Q are the
transition functions.

A configuration of an m−VCA is an element of Q×N. When reading a letter
σ ∈ Σ, anm−VCAA performs the transition (q, k)

σ→ (δmin(m,k)(q, σ), k+∆(σ)).

Then w ∈ L(A) iff (q0, 0)
w→ (f, h) for f ∈ F and h ≥ 0. Visibly counter

automata, and more generally visibly pushdown automata, can only recognize
words where the height of all prefixes is non-negative. All other words are re-
jected.

Definition 2 (VCL). A language is a visibly counter language (VCL) iff it is
recognized by an m−VCA for some m.

3 Decomposing Visibly Counter Automata

A first step towards classifying visibly counter languages with concern to their
complexity was made in [10], where we gave a decidable characterization of the
visibly counter languages in AC0. The proof is based on considering separately
the computation of the height profile and the simulation of the finite-state con-
trol. In this section we survey the main points of [10].

3.1 Height Behaviour

For the height computations, the previous work considered the problem of defin-
ing unary predicates Hn(·) that are true if a position in a given word iff the
symbol at that position has height n.

We defined a notion of simple height behavior which guarantees that these
height predicates can, in some sense, be approximated in AC0. Informally, a
visibly counter language has simple height behavior if whenever a recognizing
automaton loops through a state q reading a subword w, the height profile ∆(w)
is determined by q and the length |w|. More formally, the following notions were
considered:

Definition 3 (fixed slope [10]). We say that a state q has a fixed slope if
there are numbers α ∈ Q and γ ∈ N so that if for all words w ∈ Σ∗ with
(q, h1)

w→ (q, h2) and h1 +∆(w′) ≥ m for all prefixes w′ of w it holds that:

– h2 = α|w|+ h1
– α|w′| − γ ≤ ∆(w′) ≤ α|w′|+ γ for all prefixes w′ of w

5

Definition 4 (active [10]). A state q is active if there is a word w ∈ L(A)
with positions i and j, i < j, such that after reading w1 · · ·wi, A is in q,
∆(w1 · · ·wi) > m+ |Q| and ∆(w1 · · ·wi)−∆(w1 · · ·wj) > |Q|.

The first result is that languages recognized by an m−VCA which has an
active state without fixed slope are TC0-hard (Theorem 6). This permitted the
following definition:

Definition 5 (simple height behavior [10]). If in a VCA A all active states
have a fixed slope, we say that the recognized language L(A) has simple height
behavior.

Theorem 6. If a visibly counter language does not have simple height behavior,
it is hard for TC0 by quantifier-free reductions.

In the case of simple height behavior we know that the height is computable
in FO[+]:

Theorem 7. Given some m−VCA A such that L(A) has simple height behav-
ior, we can define for every k < m a monadic predicate Hk(x) in FO[+] such
that:

– wx=i |= Hk(x) then ∆(w1 . . . wi−1) = k for arbitrary w ∈ Σ∗.
– wx=i |= Hk(x) iff ∆(w1 . . . wi−1) = k for all w ∈ L.

We let H≥m = ¬
∨m−1
k=0 Hk be the negation of these predicates. Hence for

w /∈ L the predicate might have false-positives, i.e., the predicate might suggest
a stack-height greater or equal to m while in fact it is less than m.

So in conclusion we get a dichotomy: Either the height is computable in AC0,
or it is TC0- hard.

3.2 Regular Part

For simulating the behavior of the finite state control, we considered a regu-
lar language, which simulates the actions of the automaton when the height
information is already coded into the input.

Definition 8 (Height transduction [10]). For m ∈ N we let Σm = Σ ×
{0, . . . ,m} and set ∆m(w) = min(∆(w),m). Then define
τm : {w : ∆(w) ≤ 0} → (Σm)∗ by τm(w1w2 · · ·wn) =
(w1, ∆m(ε))(w2, ∆m(w1)) · · · (wi, ∆m(w1 · · ·wi−1)) · · · (wn, ∆m(w1 · · ·wn−1))

A word w ∈ (Σm)∗ is valid if w ∈ F (τm(Σ∗)). We call i the label of the
letter (a, i) ∈ Σm.

Informally, τm labels symbols with their height up to the threshold m. For
instance, if a and b are push and pop letters respectively, then τ2(aaaab) =
(a, 0)(a, 1)(a, 2)(a, 2)(b, 2).

The action of the finite state control is modeled by a regular language, the
regular part :

6

Definition 9 (RA [10]). Let A = (Q, q0, F, Σ̂, δ0, . . . , δm) be an m−VCA. Let
M be the finite automaton M = (Q, q0, F,Σm, δ), where δ(q, (a, i)) = δi(q, a).
Then set RA := L(M).

RA is a regular language over the alphabet Σm. For ∆(w) > 0, we have
w ∈ L(A) iff τm(w) ∈ RA. In general, RA also contains words that are not in
the image of τm, and the choice of A determines which these words are.

4 Simple Monoids and the Regular Part

We now show how the concepts of simple height behavior and the regular part
can be used to more generally obtain characterizations for the visibly counter
languages in low complexity classes. It will become clear that, as in the case of
regular languages, the simple monoids contained in the language play a major
role in determining its complexity.

Let M be a finite monoid. By the word problem of M , we denote the set

{w ∈M∗ : π(w) = 1M}

of words over M evaluating to the identity element of M , where π : M∗ →M is
the canonical morphism. Observe, this language has a neutral letter.

The intersection of a constant-depth circuit class C with the regular lan-
guages is known to be determined already by the class of simple monoids whose
word problem is in C [15]. Broadly speaking, a regular language L is in a circuit
class if and only if, for all simple monoids ‘contained in’ L, their word problems
are also in C. In the regular case, the appropriate notion of a monoid M ‘being
contained’ in a language L with syntactic morphism ηL is that there a t > 0
such that ηL(Σt) contains a monoid divided by M [5]. In the case of visibly
counter languages, the precise meaning of ‘being contained’ in the language will
be somewhat more intricate. We begin with the aperiodic unit U1, for which the
statement is the following:

Lemma 10 (Reducing U1 to L). Let L be a visibly-counter language. If L is
not regular, then the word problem of U1 can be reduced to L by a quantifier-free
reduction.

Proof. See appendix.

The other simple monoids are the simple groups. For reducing the word
problem of a group to a visibly counter language, we need a technical observation
from [10], which states that every m−VCA can be transformed into a certain
normal form, referred to as loop-normal (see Definition 24 in the appendix).
This normal form has the property that, if the automaton goes through a loop
in reading a prefix that can be completed to an accepted word, then it can still
be completed when more loops through the same state are appended. Using the
following lemma we can always assume that a given m−VCA A is loop-normal.

7

Lemma 11 ([10]). For every visibly counter language L, there is a loop-normal
m−VCA A recognizing L.

Now we can make precise in which way a simple monoid has to be ‘contained
in’ a visibly counter language to play a role in its complexity:

Definition 12. Let L be a visibly counter language. We choose a set QL of
simple monoids as follows. Let A be some loop-normal m−VCA A such that
L = L(A). Then set QL to be the set of simple monoids N such that there is a
number t > 0 and a set N ⊆ (Σm)t with N∗ ⊆ F (τm(Σ∗)) so that ηRA(N) is a
monoid divided by N .

Informally, we take those simple monoids which can be simulated by words
over a set N such that all words over N are valid. Our results will not depend
on the choice of the A used for constructing QL, as long as A is loop-normal.
Then the adequate notion of ‘RA contains G’ is that G is an element of QL, as
shown by the following lemma:

Lemma 13 (Reducing Groups to L). Let L be a visibly-counter language
and G ∈ QL a simple group. Then the word problem of G is reducible to L by
quantifier-free reductions.

Proof. See appendix.

Thus, a visibly counter language is at least as hard as the word problems of
the groups contained in QL. Putting these hardness results together, we have:

Theorem 14 (Hardness). Let L be a VCL.

– If L is non-regular, it is AC0-hard.
– If L does not have simple height behaviour, it is TC0-hard.
– If QL contains cyclic groups Zp1 , . . . , Zpk , then L is CC0[p1 · · · pk]-hard
– If QL contains a non-abelian simple group, then L is NC1-hard.

Our notion of completeness is via quantifier free reductions.

Proof. The second statement is Theorem 6. The word problem of U1 is AC0-hard,
the word problem of Zp is CC0[p]-hard, and the word problem of non-abelian
simple groups is NC1-hard. Thus, the first statement is Lemma 10, and the other
statements follow from Lemma 13.

These lower bounds on complexity are complemented by Corollary 16, which
shows that the bounds essentially are tight. We first show in Lemma 15 that,
when the height profile is already known, the language can be defined using only
quantifiers from QL:

Lemma 15. Let A be an m−VCA recognizing L. There is a QL[Reg] formula
φ with

L(φ) ∩ τm(Σ∗) = RA ∩ τm(Σ∗).

8

Proof. See appendix.

Together with our results on height behaviour and the definability of height
predicates, we find that indeed the bounds from Theorem 14 are tight:

Corollary 16 (Definability). Let L be a VCL. Then L ∈ QL + Maj[<]. Fur-
thermore, if L has simple height behavior, we have L ∈ QL + FO[SL], and if L
is regular, then L ∈ QL[SL].

Proof. See appendix.

5 Visibly Counter Languages and Circuit Classes

Putting the results from the previous section together, we have the following
unconditional completeness results for VCLs:

Theorem 17 (Main Theorem). Let L be a VCL.

– If L is regular and QL contains exactly the simple cyclic groups Zp1 , . . . ,Zpk
then L is CC0[p1 · · · pk]-complete.

– If L is non-regular and does has simple height behaviour and QL does not
contain a simple group then L is AC0-complete.

– If L is non-regular and does has simple height behaviour and QL contains
at most U1 and simple cyclic groups Zp1 , . . . , Zpk then L is ACC0[p1 · · · pk]-
complete.

– If L does not have simple height behaviour and QL does not contain a non-
abelian simple group then L is TC0-complete.

– If QL contains a non-abelian simple group then it is NC1-complete.

Our notion of completeness is via quantifier free reductions.

Proof. For all these completeness statements, the hardness part was shown in
Theorem 14. Completeness follows from Corollary 16 as follows. If L is regular
and QL = {Zp1 , ...,Zpk}, we have L ∈ (Zp1 , ...,Zpk)[Reg] ⊂ (Zp1 , ...,Zpk)[arb] =
CC0[p1, ..., pk]. If QL contains a non-abelian simple group, L is NC1-hard by
Barrington’s theorem, and since all VCLs are in NC1, L is NC1-complete. Now
assume L is nonregular but all monoids in QL are commutative. If L has simple
height behaviour, it is in FO + QL[SL], which is in ACC0[p1, ..., pk] whenever
QL ⊆ {U1, p1, ..., pk}. If QL contains no group, L ∈ FO[SL] ⊂ AC0. Finally, if L
does not have simple height behaviour, we have L ∈ Maj[<] ⊂ TC0 by Corollary
16, since all abelian groups are computable in Maj[<].

This result shows that separation conjectures for these circuit classes are
equivalent to conjectures about the membership of visibly counter languages in
these classes, for instance:

Corollary 18. ACC0 = TC0 iff ACC0 ∩VCL = TC0 ∩VCL
CC0 = ACC0 iff CC0 ∩VCL = CC0 ∩Reg

9

Hence, while the separation between ACC0 and TC0 cannot be reduced to a
question about regular languages, it can indeed be viewed as a question about
visibly counter languages.

We also obtain decidability results, assuming a visibly counter language is
encoded by any m−VCA recognizing it. We can show this rather abstractly
for arbitrary circuit classes. Precisely, by a (constant-depth) circuit class C over
a set of gates, we mean the class of languages recognized by constant-depth,
polynomial size circuit families over this set of gates. We assume that any class
is closed under quantifier-free reductions, i.e., has bounded fan-in boolean gates.
By results of [15], the regular languages in any such class are already determined
by the simple monoids whose word problems are in the class. For all such classes,
we have:

Corollary 19. Let C be a circuit class. There is a computable reduction from
the membership problem of V CL ∩ C to the membership problem of Reg ∩ C.

Proof. First consider the case when AC0 ⊆ C. It was shown in [10] that it
is decidable whether an m−VCA A has simple height behavior. If L(A) does
not have simple height behaviour and TC0 6⊆ C, then certainly L(A) 6∈ C by
Theorem 6. Otherwise, membership in C only depends on the groups in QL by
Lemma 13 and Corollary 16. The construction of loop-normal automata in [10]
is constructive, so the set QL is computable, and we obtain a reduction from
the membership problem of VCL ∩ C to the membership problem of Reg ∩ C.
Now if AC0 ⊆ C, then since C is closed under quantifier-free reductions, L(A)
must be regular if L(A) ∈ C by Lemma 10. We can decide as follows whether
L(A) is regular. L(A) certainly is regular if there is a constant C such that
whenever a word in L(A) has a symbol at height N , then no later symbol can
have height < N − C. To decide this property, it suffices to search for a word
w with ∆(w) < −2(m + |Q|), where Q is the state set of A, that occurs in a
word of L(A), i.e., w ∈ F (L(A)). In any other case, L(A) cannot be regular by
a pumping argument. �

Since membership in TC0 ∩ Reg and ACC0 ∩ Reg at most depends on the
presence of nonsolvable groups and thus is decidable, we get:

Corollary 20. Given a VCL L, it is decidable whether L is in AC0, CC0,
ACC0, or TC0, respectively.

However, it has to be noted that for most classes, the concrete decision algo-
rithm depends on open questions about the separation of classes, as applying it
to suitable languages would immediately settle these questions. The algorithm
is unconditionally known in the case of AC0 due to its separation from ACC0,
and also for ACC0[p] for p a prime number by a result of [14]:

Corollary 21. A visibly counter language L is in ACC0[p] for p a prime number
if and only if L has simple height behavior, and QL ⊆ {U1,Zp}.

Under the separation conjectures, we also obtain uniformity results:

10

Corollary 22. If TC0 6= NC1, then TC0 ∩ VCL ⊆ Maj[<] ⊆ DLOGTIME-
uniform TC0.

If ACC0 6= TC0, then ACC0 ∩ VCL ⊆ FO + MOD[+] ⊆ DLOGTIME-
uniform ACC0.

Proof. Regular languages with solvable syntactic monoids are computable in
Maj< and in FO+MOD[+]. The claim then follows from Corollary 16. �

We now explore a somewhat different and more abstract interpretation of our
results. Let S be the set consisting of the quantifiers over simple finite monoids.
For each subset Q ⊆ S, we have a logic class Q[SL], so we obtain a lattice
L = {Q[SL] | Q ⊆ S} of logic classes. When A is a class of finite simple monoids
and M 6∈ A is also simple, then the word problem of M is not in A[SL] [11]. We
can show unconditionally:

Corollary 23. Given a visibly counter language L with simple height behaviour,
one can effectively compute the smallest logic class of L that can define L.

Proof. See appendix.

Assuming a similar statement holds for the majority quantifier, i.e., that
whenever A is a (possibly empty) set of perfect groups and G 6∈ A is also perfect,
then the word problem of G is not in A+ Maj[<], then this holds for all visibly
counter languages, when Maj is added to S.

6 Discussion

This work considered relations between complexity classes and families of for-
mal languages. This line of research has hitherto mainly been pursued for regular
languages, since their syntactic monoids are finite and thus are open to algebraic
methods. We made a step to extend these results towards nonregular languages.
The most natural candidate to choose were the visibly pushdown languages,
where we focused on visbly counter languages. We derived decidable character-
izations for ACC0, CC0, and TC0, and indeed for a very large class of circuit
classes, and related our results to the open questions of the relationships of these
classes.

As a next step we naturally want to extend our approach. For instance,
we will try to generalize our results to all visibly pushdown languages, but we
probably will need new methods.

A promising approach appear to be forest algebras [7], which complement
the horizontal Alur monoid [1] by a vertical counterpart. They could provide us
with purely algebraic proofs of our results without the need for combinatorial
arduousness, and possibly extend to general visibly pushdown languages.

11

References

1. Rajeev Alur, Viraj Kumar, P. Madhusudan, and Mahesh Viswanathan. Congru-
ences for Visibly Pushdown Languages. In Lúıs Caires, Giuseppe F. Italiano, Lúıs
Monteiro, Catuscia Palamidessi, and Moti Yung, editors, ICALP, volume 3580 of
Lecture Notes in Computer Science, pages 1102–1114. Springer, 2005.

2. Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In László Babai,
editor, STOC, pages 202–211. ACM, 2004.

3. Vince Bárány, Christof Löding, and Olivier Serre. Regularity Problems for Visibly
Pushdown Languages. In Bruno Durand and Wolfgang Thomas, editors, STACS
2006, 23rd Annual Symposium on Theoretical Aspects of Computer Science, Mar-
seille, France, February 23-25, 2006, Proceedings, volume 3884 of Lecture Notes in
Computer Science, pages 420–431. Springer, 2006.

4. David A. Mix Barrington. Bounded-width polynomial-size branching programs
recognize exactly those languages in NC1. J. Comput. Syst. Sci., 38(1):150–164,
1989.

5. David A. Mix Barrington, Kevin J. Compton, Howard Straubing, and Denis
Thérien. Regular languages in nc1. J. Comput. Syst. Sci., 44(3):478–499, 1992.

6. David A. Mix Barrington and Denis Thérien. Finite monoids and the fine structure

of NC1. J. ACM, 35(4):941–952, 1988.
7. Mikolaj Bojanczyk and Igor Walukiewicz. Forest algebras. In Jörg Flum, Erich

Grädel, and Thomas Wilke, editors, Logic and Automata: History and Perspectives
[in Honor of Wolfgang Thomas]., volume 2 of Texts in Logic and Games, pages
107–132. Amsterdam University Press, 2008.

8. Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the
polynomial-time hierarchy. In FOCS, pages 260–270, 1981.

9. Johan H̊astad. Almost optimal lower bounds for small depth circuits. In STOC,
pages 6–20. ACM, 1986.

10. Andreas Krebs, Klaus-Jörn Lange, and Michael Ludwig. Visibly Counter Lan-
guages and Constant Depth Circuits. In Ernst W. Mayr and Nicolas Ollinger,
editors, 32nd International Symposium on Theoretical Aspects of Computer Sci-
ence, STACS 2015, March 4-7, 2015, Garching, Germany, volume 30 of LIPIcs,
pages 594–607. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

11. Andreas Krebs and A. V. Sreejith. Non-definability of Languages by Generalized
First-order Formulas over (N, +). In Proceedings of the 27th Annual IEEE Sympo-
sium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28,
2012, pages 451–460. IEEE Computer Society, 2012.

12. Pierre McKenzie, Michael Thomas, and Heribert Vollmer. Extensional uniformity
for boolean circuits. SIAM J. Comput., 39(7):3186–3206, 2010.

13. Kurt Mehlhorn. Pebbling mountain ranges and its application to DCFL-
recognition. In Jaco de Bakker and Jan van Leeuwen, editors, Automata, Lan-
guages and Programming, volume 85 of Lecture Notes in Computer Science, pages
422–435. Springer Berlin Heidelberg, 1980.

14. Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean
circuit complexity. In STOC, pages 77–82, 1987.

15. Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity.
Birkhäuser, Boston, 1994.

16. Heribert Vollmer. Introduction to circuit complexity - a uniform approach. Texts
in theoretical computer science. Springer, 1999.

12

A Appendix

Proof of lemma 10 The word problem of U1 is the language AND = 1∗ ⊆ {0, 1}∗.
Let q be the number of states of A. If the stack height of A during the run of all
words in L is bounded by a constant, then L is already regular as the counter can
be simulated by finitely many states. Similar if there is a constant c such that
for all w in L the stack height never decreases more than c during the accepting
run of w, we could count the stack height up to the threshold c+m by finitely
many states and L is regular.

Otherwise for every constant c we will find a word w where the stack height
decreases by more than c during the computation of A on w. We will show that
we can reduce AND to L in this case. Let w ∈ L be such a word where the stack
height decreases by at least m+ q+ 2. This allows us to split the word w = stuv
such that the stack height after processing s is m and while processing t and u
is always at least m and after processing st is h > m+ q+1 and after processing
stu is m < h′ < h− q. As the stack height increases while processing t by more
than q we can find a loop in the states that increases of dt the stack height,
similar we can find a decreasing of du loop while processing u. This allows us
to split w further to w = st1t2t3u1u2u3v where t2 and u2 induce a loop in the

states. Hence we have wn = st1t
ndy
2 t3u1u

ndx
2 u3v ∈ L for all n ∈ N.

We will now reduce AND to L. Let k be the stack height in the accepting
run of w after processing w. Note that this is the same height as in the accepting
run of wn after processing wn.

Let k be an arbitrary number and let n = km. Then wn has at least n push
letters. Let Bi,n ⊆ N be the positions of ik+1-th up to the ik+k-th push letter of
w. Also let b be any pop letter in Σ. We define a map f from x1 . . . xm ∈ {0, 1}∗
to y1 . . . yn ∈ Σ∗. Informally speaking, this mapping will map 1n to wn and
hence to a word in L, and all other words to a word not in L by decreasing the
stack height below 0. The latter is easily accomplished by flipping k push letters
of w to pop letters for every 0 encountered in the input.

Hence we define f(y)j = b if j ∈ Bi,n and xi = 0, otherwise f(y)j = (wn)j .
This defines a quantifier free projection from AND to L. �

Definition 24 (Loop-Normal). An m−VCA A is called loop-normal if for all

x, y ∈ Σ∗ with ∆(xy1 · · · yk) ≥ m for 0 ≤ k ≤ |y| and (q0, 0)
x→ (q, h1)

y→ (q, h2),
q ∈ Q then either q is a dead state, or one of the following is true, depending on
∆(y):

– If ∆(y) > 0, then for each z ∈ Σ∗ such that ∆(xyz) ≥ 0, there is a partition
of z into z = z1z3 and a word z2 ∈ Σ∗ so that for all i ≥ 0 we have that
xyyiz1z

i
2z3 ∈ L(A) iff xyz ∈ L(A).

– If ∆(y) < 0, then there is a partition of x into x = x1x3 and a word x2 ∈ Σ∗
so that for all i ≥ 0 and for all for each z ∈ Σ∗ such that ∆(xyz) ≥ 0, we
have that x1x

i
2x3yy

iz ∈ L(A) iff xyz ∈ L(A).
– If ∆(y) = 0, then for all i ≥ 0 and for each z ∈ Σ∗ such that ∆(xyz) ≥ 0,
xyiz ∈ L iff xyz ∈ L(A), and

13

if δi = δm for m− |Q| < i < m.

Proof of lemma 13. In the following, we denote by a the projection of a ∈ (Σm)∗

to the first component.

Case A: G is abelian. Thus G = Zp for some prime p.
If L does not have simple height behaviour, then by Theorem 6, it is hard

for TC0 by quantifier-free reductions. Since the word problems of abelian groups
have TC0 circuits, this yields a quantifier-free reduction from G to L.

Now assume L has simple height behaviour. In the following we identify the
elemnts of the cyclic group G with {0, 1, 2 · · · , p − 1}. We now want to reduce
the word problem of G to L.

The word problem WPG of G consists of all those words w ∈ {0, 1, 2 · · · , p−
1}∗ for which

∑|w|
j=1 wj = 0 mod p. We now consider the set Lp := WPG∩{0, 1}∗.

WPG is reduced to Lp by the AC0-computable homomorphism i → 0p−i−11i.
Hence it suffices to reduce Lp to L(A).

Since , for the set G from the definition of QL, there is a subset G′ such that
ηRA

(G′) ∼= G by Cauchy’s theorem. So we may assume ηRA
(G) ∼= G. Let t be as

in the definition of QA.
Let ψ : G → G be an assignment of group elements to words of length t such

that ηRA
(ψ(g)) = g for each g ∈ G, where we have identified ηRA(G) with G.

BecauseA has simple height behavior, we know that ∆(ψ(g)) is independent of g,
since if ∆(ψ(g)) 6= ∆(ψ(g′)),ψ(g)p and ψ(g′)p would be two words demonstrating
A not to have simple height behavior. We continue ψ to a morphism G∗ → Σ∗,
assigning words over Σ to words over G.

Take g := 1 ∈ Zp = G.

– Case I: ∆(ψ(g)) = 0. Since all words over ψ(G) are valid, we know that
all w ∈ ψ(G) start and end at the same height. Now there is a separating
pair of words u, v ∈ (Σm)∗ such that, say, uψ(1G)v ∈ RA and uψ(g)v 6∈ RA,
and uψ(1G)v ∈ L(A) and uψ(g)v 6∈ L(A). This yields a quantifier-free-
computable map fg : G∗ → Σ∗ by w 7→ uψ(w)v.

– Case II: ∆(ψ(g)) 6= 0. We assume ∆(ψ(g)) to be greater 0; the other case
can be seen analogously.
Since all words over G∗ are valid, we know G ⊆ (Σ × {m})t. Again, there
is a separating pair of words u, v ∈ (Σm)∗ such that, say, uψ(1G)v ∈ RA
and uψ(g)v 6∈ RA. Since ∆(g) is independent of g, we can choose them so
that uψ(1G)v ∈ L(A) and uψ(g)v 6∈ L(A). We may assume that A is in
the same state after reading u and uψ(1G). Hence, since A is loop-normal,
v is partitioned into v1v3 such that there is a word v2 such that for g ∈ G,

uψ(g)ψ(g)nv1v
n
2 v3 ∼RA uψ(g)v1v3. Hence, for w ∈ G∗, uψ(1G)ψ(w)v1v

|w|
2 v3

is in L(A) if w evaluates to 1G and not in L(A) if w evaluates to g. Then
we can define a quantifier-free-computable map fg : G∗ → Σ∗ by w 7→
uψ(1Gw)vv2

|w|v3.

14

Now by Fermat’s little theorem, h|G|−1 = g for each h 6= 0 = 1G and 1G
for h = 1G . We now want to reduce Lp to L(A). For a w ∈ {0, 1}∗ we consider
the word v which is the product of the conjunction wi1 ∧wi2 · · · ∧wip−1 over all
(p − 1)-tuples 1 ≤ i1, · · · , ip−1 ≤ n. If i is the number of 1-symbols in w then
v contains ip−1 1-symbols. Thus we have, w ∈ Lp iff fg(v) ∈ L(A). Since the
mapping w → v is AC0-computable, we have (many-one) reduced WPG to L(A).

Case B: G is non-abelian
Let G and t be as in the definition of QL. Since G divides ηRA(G), there is a

monoid U ⊆ ηRA(G) and a surjective monoid morphism φ : U → G.
As above, choose an assignment ψ : G → G of group elements to words of

length t such that φ(ηRA
(ψ(g))) = g for each g ∈ G.

We now modify ψ in such a way that ∆(ψ(g)) is independent of g. Since
G = {g1, ..., gn} is simple and nonabelian, it is perfect, and every element can be
represented as a product of commutators. Now [g, h] = ghg|G|−1h|G|−1, and thus
is also represented by a word of length |G| · (|ψ(g)| + |ψ(h)|). Since g|G| = 1G ,
any element can be represented by a word in which each ψ(gi) occurs exactly
|G| times. We now replace ψ(g) by the words constructed in this manner. Then
|ψ(g)| and ∆(ψ(g)) are independent of g.

We choose some element g 6= 1G and construct a map fg exactly as in the
abelian case. Now consider the operation G → G which leaves 1G fixed and
transforms every other element into g. Since every operation on a finite perfect
group is expressible by polynomial expressions, the composition of fg with this
operation is also quantifier-free and defines a many-one reduction from the word
problem of G to L.

�

Proof of lemma 15. Since the syntactic monoid of RA is finite, there is t > 0
such that ηRA(Σt) = ηRA(Σ2t). Now add an internal letter µ to Σ, obtaining
an alphabet Σ′m, and pad all words of RA ⊆ (Σm)∗ ⊆ (Σ′m)∗ by appending
< t many copies of (µ, i), where i is chosen such that the labeling is valid, so
that every word has a length dividable by t We view the resulting language R′

as a regular language over the alphabet Ξ := (Σ′m)t. We intersect R′ ⊆ Ξ∗

with a star-free language rejecting all words containing an invalid two-character
subword in Ξ2 = (Σ′m)2t, obtaining a regular language R′′. The intention of this
construction is to remove groups that cannot occur in valid inputs. Let M be
the syntactic monoid of R′′ ⊆ Ξ∗. Let N be a simple monoid dividing M . We
want to show N ∈ QL. Let g1, g2 ∈M be elements mapped to two generators of
N by the morphism φ by which N divides M . Let Gi := (Σm)t ∩ η−1R′′(gi) ⊆ Ξ.
We now want to show that there are words γi ∈ Gi such that any product over
them is valid. This will then show that N can be obtained using valid words,
and therefore is in QL.

– Case I : Both Gi contain words in {Σ × {m}}∗. Then any product of such
words is valid.

15

– Case II : One Gi, say G1, only contains words which contain some label < m.
Let γ1 be one such word, and let γ2 ∈ G2. We know that γ1γ2 and γ2γ1 are
valid, since the congruence class of words containing an invalid two-character
subword is a zero for M and cannot be contained in φ−1(N). We now want
to deduce that all products of γ1, γ2 must be valid. If both words start and
end with a label < m, any product will be valid. Now assume γ1 starts or
ends with a symbol labeled m. Since γ1γ1 is valid and γ1 contains a position
labeled < m, we have ∆(γ1) = 0. Thus γ2 starts and ends with a position
labeled m, and all products are valid. Furthermore, if γ1 starts and ends
with a symbol labeled < m, then γ2 also starts and ends with this position,
and all products are valid.

In both cases, {γ1, γ2}∗ ⊆ F (τm(Σ∗)), and ηR′({γ1, γ2}∗) = N . But then
ηRA({γ1, γ2}∗) must be divided by N , since N is simple. So N ∈ QL. Thus, R′′

is definable in FO +QL[<] over the alphabet Ξ by a result of [15]. Hence, it is
definable in FO +QL[Reg] over the alphabet Σm. It is clear that removing the
additional copies of (µ, i) preserves definability in this logic. Since the R′ and R′′

agree on the valid words, we have obtained the desired formula φ if U1 ∈ QL. �

Proof of Lemma 16. We have an FO +QL[Reg] formula φ from Lemma 15.
We replace the letter predicates Q(a,k)(x) by (Qa(x) ∧ Hk(x)) when k < m,
and by (Qa(x) ∧ H≥m(x)) when k = m. The resulting formula φ′ operates on
words in Σ∗. The height predicates Hk and H≥m can be computed for any word
in Maj[<], and since regular predicates are definable in Maj[<], we obtain a
Maj +QL[<]-formula for L. Now if L has simple height behavior, we have the
FO[+]-definable height predicates from theorem 7. For w ∈ L, we have w |= φ′

since L has simple height behavior. However, for words outside the language,
there may be false positives in the H≥m predicate. We refer to the proof of
Theorem 27 in [10] for the argument that the precise definition of the height
predicates ensures that false positives do not cause problems and the formula φ′

defines L. �

Proof of Corollary 23. Given A, one can compute an upper bound on the
logic C using Lemma 16, since the groups needed for the formula in Lemma 15
can be computed by considering the syntactic monoid of the regular language
constructed in proof of that lemma. Let C ′ be some other logic class that can
define L(A). Since A has simple height behavior, C = FO + QL[SL]. C ′ must
contain all groups in QL by Lemma 13 and the mentioned result of [11]. �

16

	Visibly Counter Languages and the Structure of NC1

