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Implications as Rules in Dialogical

Semantics
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Abstract

The conception of implications as rules is interpreted in
Lorenzen-style dialogical semantics. Implications-as-rules are
given attack and defense principles, which are asymmetric be-
tween proponent and opponent. Whereas on the proponent’s
side, these principles have the usual form, on the opponent’s
side implications function as database entries that can be used
by the proponent to defend assertions independent of their
logical form. The resulting system, which also comprises a
principle of cut, is equivalent to the sequent-style system for
implications-as-rules. It is argued that the asymmetries aris-
ing in the dialogical setting are not deficiencies but reflect the
pre-logical (‘structural’) character of the notion of rule.

Keywords: dialogues, rules, sequent calculus, proof-theoretic
semantics, cut

1 Introduction

Various constructive interpretations of implication have been pro-
posed, the most prominent being those based on or related to the
Brouwer–Heyting–Kolmogorov (BHK) interpretation1. The latter are
based on the transmission view, according to which a proof of an impli-
cation A→ B consists of a constructive procedure which transforms

∗This work has been supported by the ESF research project “Dialogical Founda-
tions of Semantics (DiFoS)” within the ESF-EUROCORES programme “LogICCC
– Modelling Intelligent Interaction” (DFG Schr 275/15-1) and by the French-
German ANR-DFG project “Hypothetical Reasoning” (DFG Schr 275/16-1/2).

1Cf. (Heyting, 1971; de Campos Sanz & Piecha, 2011).
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any given proof of A into a proof of B. The dialogical or game-
theoretical interpretation in Lorenzen-style dialogues2 can be viewed
as a variant of it: An implication A→ B is attacked by claiming A
and defended by claiming B. This means that in order to have a win-
ning strategy for A→ B, the proponent must be able to generate an
argument for B depending on what the opponent can offer in defense
of A. In contradistinction to standard constructive interpretations,
the attacker need not necessarily spell out a full proof of A. Instead,
the proponent may force the opponent to produce certain fragments
of a proof of A that are sufficient to successfully defend B. In this
sense one may speak of a partial or piecemeal transmission view as
being present in this approach.

2 Implications as rules

There is a more elementary view of implication, which is not based on
transmission, but on the view of A→B being a rule, which allows one
to pass over from A to B. This view is particularly supported by the
treatment of implication in natural deduction. There modus ponens
can be read as the application of A→ B as a rule, which is used to
pass from A to B, that is, modus ponens can be read as a schema of
rule application. The introduction of an implication A→ B can be
read as establishing a rule, namely by deriving its conclusion B from
its premiss A. Applications of logic such as logic programming or
deductive databases support this perspective. Reading implications
as rules motivates an alternative implication-left schema

Γ`A(→`)◦
Γ, A→B `B

in Gentzen’s sequent calculus for intuitionistic logic, yielding what we
call the sequent calculus LI ◦. This schema expresses that by assuming
the implication-as-rule A→B we are entitled to infer B from A. When
reading implications as rules, we give implication an elementary mean-
ing which is conceptually prior to the meaning of other operators. In
particular, it is explained independent of harmony or symmetry con-
siderations that would normally apply to logical connectives, simply
because it is more elementary.

2See e.g. (Lorenzen, 1960; Sørensen & Urzyczyn, 2006, Ch. 7; Felscher, 1985,
2002).
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The relationship to Gentzen’s standard schema is spelled out in
(Schroeder-Heister, 2010). Here we just point out that LI ◦ does not
have the cut elimination property. The sequent a, a→ (b ∧ c)` b (for
atomic and distinct formulas a, b, c) can only be derived by using
(Cut):

(Id)
a` a(→`)◦

a, a→ (b ∧ c)` b ∧ c

(Id)
b` b(∧`)

b ∧ c` b
(Cut)

a, a→ (b ∧ c)` b

(1)

This is the only kind of derivation where (Cut) cannot be eliminated.
Although LI ◦ does not have the cut elimination property, it does

have the weak cut elimination property. That is, every LI ◦-derivation
containing an application of (Cut) can be transformed into an LI ◦-
derivation of the form

...(→`)◦
Γ`A

...
∆, A`C

(Cut)
Γ,∆`C

(2)

where the left premiss of (Cut) is the conclusion of an application
of (→`)◦. Furthermore, the right premiss of (Cut) can be assumed
to be either the conclusion of a derivation of the above form, or it
is the endsequent in a derivation such that the cut formula A is the
result of an application of a left introduction rule in the last step.
As a consequence of the weak cut elimination property, LI ◦ has the
subformula property.3

3 Dialogical semantics

In what follows, we carry the implications-as-rules approach over to
the framework of dialogical semantics. Once an implication A→ B
has been claimed by the opponent, it is considered to be a rule in a
sort of ‘database’, which later on can be used by the proponent in
order to reduce the justification of its conclusion B to that of A. This
is achieved by allowing the proponent to defend an attack on B by
asserting A whenever A→B has been claimed by the opponent before.
In case no such claim has been made before (i.e., if no applicable rule

3See (Schroeder-Heister, 2010) for these results.
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is available in the database), the argument for B continues as usual
with an opponent attack on B (which must eventually be defended
by the proponent), depending on the respective form of B.

We first recall the standard dialogues and winning strategies for
intuitionistic logic.4 We then introduce dialogues for implications
as rules and compare them with the standard dialogues. We also
discuss the inference schema of cut and the special role it takes in
the implications-as-rules framework. We restrict ourselves to propo-
sitional logic throughout.

3.1 Dialogues and strategies

Our language consists of propositional formulas A, B, C, . . . that
are constructed from atomic formulas a, b, c, . . . with the logical
constants ¬ (negation), ∧ (conjunction), ∨ (disjunction) and → (im-
plication). Furthermore, ∨, ∧1 and ∧2 are used as special symbols.
In addition, the letters P (‘proponent’) and O (‘opponent’) are used.
An expression e is either a formula or a special symbol. For each
expression e there is a P -signed expression P e and an O-signed ex-
pression O e. A signed expression is called assertion if the expression
is a formula; it is called symbolic attack if the expression is a spe-
cial symbol. X and Y , where X 6= Y , are used as variables for P
and O.

For each logical constant the following argumentation forms deter-
mine how a complex formula (having the respective logical constant
in outermost position) that is asserted by X can be attacked by Y
and how this attack can be defended (if possible) by X:

AF(¬): assertion: X ¬A
attack: Y A
defense: no defense

AF(∧): assertion: X A1 ∧A2

attack: Y ∧i (Y chooses i = 1 or i = 2)
defense: X Ai

AF(∨): assertion: X A1 ∨A2

attack: Y ∨
defense: X Ai (X chooses i = 1 or i = 2)

4We follow the presentation of Felscher (1985, 2002), with slight deviations.
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AF(→): assertion: X A→B
attack: Y A
defense: X B

Let δ(n), for n ≥ 0, be a signed expression and η(n) a pair [m,Z], for
0 ≤ m < n, where Z is either A (for ‘attack’) or D (for ‘defense’), and
where η(0) is empty. The numbers in the domain of δ(n) are called
positions, and m in η(n) = [m,Z] refers to a position m < n. Pairs
〈δ(n), η(n)〉 are called moves. When talking about a move 〈δ(n), η(n)〉,
we write 〈δ(n) = X e, η(n) = [m,Z]〉 to express that δ(n) has the form
X e and η(n) has the form [m,Z]. A move 〈δ(n), η(n) = [m,A]〉 is
called attack move, and a move 〈δ(n), η(n) = [m,D]〉 is called defense
move. An attack 〈δ(n), η(n) = [m,A]〉 at position n on an assertion at
position m is called open at position k for n < k if there is no position
n′ such that n < n′ ≤ k and 〈δ(n′), η(n′) = [n,D]〉, that is, if there is
no defense at or before position k to an attack at position n.

We now define a D-dialogue as a (possibly infinite) sequence of
moves 〈δ(n), η(n)〉 (n = 0, 1, 2, . . .) satisfying the following conditions:

(D00) δ(n) is a P -signed expression if n is even and an O-signed
expression if n is odd. The expression in δ(0) is a complex
formula.

(D01) If η(n) = [m,A], then the expression in δ(m) is a complex
formula and δ(n) is an attack on this formula as determined
by the relevant argumentation form.

(D02) If η(p) = [n,D], then η(n) = [m,A] for m < n < p and δ(p)
is the defense of the attack δ(n) as determined by the relevant
argumentation form.

(D10) If, for an atomic formula a, δ(n) = P a, then there is an m
such that m < n and δ(m) = O a. That is, P may assert an
atomic formula only if it has been asserted by O before.

(D11) If η(p) = [n,D], n < n′ < p, n′ − n is even and η(n′) =
[m,A], then there is a p′ such that n′ < p′ < p and η(p′) =
[n′, D]. That is, if at a position p− 1 there are more than one
open attacks, then only the last of them may be defended at
position p.

(D12) For every m there is at most one n such that η(n) = [m,D].
That is, an attack may be defended at most once.
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(D13) If m is even, then there is at most one n such that η(n) =
[m,A]. That is, a P -signed formula may be attacked at most
once.

Proponent P and opponent O are not interchangeable due to the
asymmetries between P and O introduced in (D10) and (D13): For
atomic formulas a the proponent move 〈δ(n) = P a, η(n) = [m,Z]〉 is
possible only after an opponent move 〈δ(m) = O a, η(m) = [k, Z]〉 for
k < m < n, and O can attack a P -signed formula only once, whereas
P can attack O-signed formulas repeatedly. The argumentation forms
are symmetric with respect to P and O, however, in the sense that
they are independent of whether the assertion is made by P or O.

We say that P wins a D-dialogue for a formula A if the D-dialogue
is finite, begins with the move P A and ends with a move of P such
that O cannot make another move.

A D-dialogue tree is a tree whose branches contain as paths all
possible D-dialogues for a given formula (where a path in a branch
of a tree with root node n0 is a sequence n0, n1, . . . , nk of nodes for
k ≥ 0 where ni and ni+1 are adjacent for 0 ≤ i < k).

We define a (winning) D-strategy for a formula A as a subtree S
of the D-dialogue tree for A such that S does not branch at even
positions, S has as many nodes at odd positions as there are possible
moves for O, and all branches of S are D-dialogues for A won by P .

To give an example, the following is a D-strategy for the formula
a→ ((a→ (b ∧ c))→ b):

0. P a→ ((a→ (b ∧ c))→ b)
1. O a [0, A]
2. P (a→ (b ∧ c))→ b [1, D]
3. O a→ (b ∧ c) [2, A]
4. P a [3, A]
5. O b ∧ c [4, D]
6. P ∧1 [5, A]
7. O b [6, D]
8. P b [3, D]

(In this example the D-strategy consists in only one D-dialogue, which
is not necessarily the case in general.)
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3.2 Dialogues for implications as rules

Now we introduce dialogues for the implications-as-rules approach.
Its guiding idea is the following: When making an assertion A, the
proponent P must be prepared to either defend A in the ‘standard’
way against an attack of the opponent O, or else make the assertion C
for some C, for which O has already claimed C→A, that is, for which
the implication-as-rule C→A is sufficient to generate A. This is mod-
elled by saying that every assertion of P is symbolically questioned
by O, following which P chooses which of the two ways described P
is prepared to take. Contrary to P , O is not given a choice. O’s
non-implicational assertions are attacked and defended as usual. O’s
implicational assertions are considered as providing rules which P can
use, but not question; so there are no attacks and defenses defined for
them.

We first define argumentation forms for each logical constant that
determine how a complex formula that has been asserted by the op-
ponent O can be attacked and how this attack can be defended:

AF(¬`): assertion: O¬A
attack: P A
defense: no defense

AF(∧`): assertion: OA1 ∧A2

attack: P ∧i (P chooses i = 1 or i = 2)
defense: OAi

AF(∨`): assertion: OA1 ∨A2

attack: P ∨
defense: OAi (O chooses i = 1 or i = 2)

AF(→`)◦: assertion: OA→B
attack: no attack
defense: no defense

Except for AF(→`)◦, these argumentation forms coincide with the
standard ones in case of assertions made by the opponent O.

We extend our language by the two special symbols ? and | · |. For
assertions made by the proponent P there is a pair of argumentation
forms for each logical constant (depicted below as trees having two
branches which are separated by |). An assertion A made by P can be
questioned by the opponent with the move O ?. The proponent P can
then answer this question either by allowing an attack on the assertion
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(this is indicated by the special symbol | · |; see the argumentation
forms on the left side of | below), or by asserting any C for which O has
asserted C→A at an earlier position. We call this the rule condition R:

(R) P may answer a question O ? on a formula A by choosing C
provided O has asserted the formula C→A before.

Then the argumentation forms for assertions made by P are as follows:

AF(`¬): assertion: P ¬A
question: O ?
choice: P |¬A| P C (R)
attack: OA
defense: no defense

AF(`∧): assertion: P A1 ∧A2

question: O ?
choice: P |A1 ∧A2| P C (R)
attack: O∧i (i = 1 or 2)
defense: P Ai

AF(`∨): assertion: P A1 ∨A2

question: O ?
choice: P |A1 ∨A2| P C (R)
attack: O∨
defense: P Ai (i = 1 or 2)

AF(`→): assertion: P A→B
question: O ?
choice: P |A→B| P C (R)
attack: OA
defense: P B

In the case of an attack O∧i according to the argumentation form
AF(`∧) the opponent O chooses i = 1 or i = 2, and in the case of a
defense P Ai to an attack O∨ according to the argumentation form
AF(`∨) the proponent P chooses i = 1 or i = 2. The argumentation
forms on the left (i.e., the respective left branches) correspond to the
argumentation forms of D-dialogues (where the device of question and
choice moves is not needed). The argumentation forms on the right
(i.e., the respective right branches) reflect the implications-as-rules
view.

For assertions of atomic formulas a made by the proponent P an
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argumentation form is given by the rule condition (R) itself:

AF(R): assertion: P a
question: O ?
choice: P C only if O has asserted C→ a before

In addition, we define an argumentation form AF(Cut) such that any
expression e (i.e., question, symbolic attack or formula) stated by O
can be followed by a move P A, which can then be followed by the
move OA, for any cut formula A:

AF(Cut): statement: O e
cut: P A
cut: OA

This argumentation form differs from the others in that the move O e
need not be an assertion (i.e. the statement of a formula) but can
be the statement of any expression e (i.e., question, symbolic attack
or formula). Another difference is that the cut formula is completely
independent of the expression e. Calling the P -move an attack and
the subsequent O-move a defense as in the other argumentation forms
would thus be inadequate. We therefore simply speak of cut moves
in both cases. The idea behind cut is that at any (even) position,
instead of proceeding in the original way, P can introduce an arbitrary
formula A as a lemma. P must then later be prepared both to defend
this lemma A as an assertion and to defend his original claim given
this lemma, that is, given the opponent’s claim of A.

Formally, we extend the definition of moves: For δ(n) being a
signed expression and η(n) being a pair [m,Z] for 0 ≤ m < n, Z is
now either A (for ‘attack’), D (for ‘defense’), Q (for ‘question’), C
(for ‘choice’) or Cut . As before, pairs 〈δ(n), η(n)〉 are called moves,
where η(m) is empty for m = 0 and in case of Cut . We have thus the
following types of moves:

attack move 〈δ(n) = X e, η(n) = [m,A]〉,
defense move 〈δ(n) = X A, η(n) = [m,D]〉,

question move 〈δ(n) = O ?, η(n) = [m,Q]〉,
choice move 〈δ(n) = P |A|, η(n) = [m,C]〉,

〈δ(n) = P A, η(n) = [m,C]〉,
cut move 〈δ(n) = X A, η(n) = [Cut ]〉.

(A question move can only be made by O and a choice move can only
be made by P . The other types of moves are available for both the
proponent P and the opponent O.)
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A D◦-dialogue, which is a dialogue based on the implication-as-
rules view plus cut, is now defined as a sequence of moves 〈δ(n),
η(n)〉 (n = 0, 1, 2, . . .) satisfying the following conditions:

(D00◦) δ(n) is a P -signed expression if n is even and an O-signed
expression if n is odd. The expression in δ(0) is a (complex
or atomic) formula.

(D01◦) If η(n) = [m,A], then for m < n the expression in δ(m) is a
complex formula for even n, or, for odd n, the expression is of
the form |B| for a complex formula B. In both cases δ(n) is
an attack as determined by the relevant argumentation form.

(D02) is the same as above.

(D03◦) If η(n) = [m,Q] (for odd n), then for m < n the expression
in δ(m) is a (complex or atomic) formula, η(m) = [l, Z] for
l < m, Z = A, D, C or Cut (where l is empty if Z = Cut),
and the expression in δ(n) is the question mark ‘?’.

(D04◦) If η(n) = [m,C] (for even n), then η(m) = [l, Q] for l <
m < n and δ(n) is the choice answering the question δ(m) as
determined by the relevant argumentation form.

(D05◦) If η(n) = [Cut ] for even n, then η(m) = [l, Z] (where l is
empty if Z = Cut) for l < m < n and δ(n) is a formula (i.e.
the cut formula). If η(n) = [Cut ] for odd n, then η(n− 1) =
[Cut ] and δ(n) = OA for δ(n− 1) = P A.

(D11) and (D12) are the same as above.

(D13◦) If m is even, then there is at most one n such that η(n) =
[m,Z] for Z = Q or Z = A. That is, a P -signed formula, resp.
a P -signed expression of the form |B|, may be questioned,
resp. attacked, at most once.

(D14◦) O can question a formula C if and only if (i) C has not yet
been asserted by O, or (ii) C has already been attacked by P .

The notions ‘dialogue won by P ’, ‘dialogue tree’ and ‘strategy’ as
defined for D-dialogues are directly carried over to the corresponding
notions for D◦-dialogues.

The conditions defining D◦-dialogues are similar to those defining
D-dialogues. Two important differences are the absence of condition
(D10) and the additional condition (D14◦) in the former. The absence
of (D10) is compensated for by allowing O to question assertions of
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atomic formulas made by P , and by the presence of (D14◦). Con-
dition (D00◦) allows D◦-dialogues to start with the assertion of an
atomic formula, contrary to the restriction to complex formulas in
D-dialogues. Conditions (D03◦) and (D04◦) have been added for the
question and choice moves, respectively, and condition (D05◦) has
been added for the cut moves. Note that by (D05◦) the opponent O
can make a cut move only immediately after a cut move made by P .

For example, a D◦-strategy for the formula a→ ((a→ (b∧ c))→ b)
is the following (for comparison, see the above D-strategy for this
formula):

0. P a→ ((a→ (b ∧ c))→ b)
1. O ? [0, Q]
2. P |a→ ((a→ (b ∧ c))→ b)| [1, C]
3. O a [2, A]
4. P (a→ (b ∧ c))→ b [3, D]
5. O ? [4, Q]
6. P |(a→ (b ∧ c))→ b| [5, C]
7. O a→ (b ∧ c) [6, A]
8. P b ∧ c [Cut ]
9. O ? [8, Q] O b ∧ c [Cut ]

10. P a [9, C] P ∧1 [9, A]
11. O b [10, D]
12. P b [7, D]

The moves at positions 0–4 and at positions 4–7 + 12 (in the right
dialogue) are made according to the argumentation form AF(`→).
In the choice moves at positions 2 resp. 6 the proponent P can only
choose |a → ((a → (b ∧ c)) → b)| resp. |(a → (b ∧ c)) → b|, since O
has not asserted any implications before that could be used as rules
by choosing their antecedents. This is different in the choice move
at position 10 (in the left dialogue): The opponent O has claimed
the implication a→ (b ∧ c) before at position 7, whose succedent is
exactly the formula asserted by P at position 8, which is questioned
by O at position 9. The proponent P can now use this implication
as a rule by answering the question on b ∧ c with the assertion of
its antecedent a in the choice move at position 10. This assertion
cannot be questioned further due to condition (D14◦); likewise for
the assertion of b at position 12. Hence both dialogues are won by P ,
and we have a D◦-strategy.

It can be shown that there is no D◦-strategy without cut moves for
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the formula a→((a→(b∧c))→b). The above D◦-strategy corresponds
to the LI ◦-derivation (1). Furthermore, it can be shown that the
weak cut elimination property also holds for D◦-strategies. That is,
every D◦-strategy containing cut moves can be transformed into a D◦-
strategy of the form5

...
m. OA→B [m− 1, Z]

...
n. P B [Cut ]

n+ 1. O ? [n,Q] OB [Cut ]
n+ 2. P A [n+ 1, C] s2
n+ 3. O ? [n+ 2, Q]

s1
where the O-move at position m is either an attack or a defense (i.e.,
either Z = A or Z = D), and the move 〈δ(n + 1) = OB, η(n + 1) =
[Cut ]〉 is the uppermost cut move made by O (i.e., there is no cut
move at positions k < n − 1). The O-move at position n + 3 might
not be possible due to (D14◦). In this case the left dialogue ends
with the P -move at position n + 2. Moreover, the substrategy s2 is
either of the same form as the above D◦-strategy, or it depends on a
sequence of moves made according to AF(¬`), AF(∧`), AF(∨`) or
AF(→`)◦. This corresponds to the properties of LI ◦-derivations (cf.
the LI ◦-derivation (2) above).

It can be shown that the sequent calculus LI ◦ is sound and com-
plete with respect to the dialogical semantics given by D◦-dialogues.

4 Discussion

We have presented a Lorenzen-style dialogue framework for the inter-
pretation of implications as rules which is equivalent to the sequent
calculus LI ◦ incorporating this interpretation. The dialogical frame-
work is not as straightforward as LI ◦, which can be read as the proof-
theoretic semantics for implications as rules. Does this speak against
the dialogical approach, or perhaps against the idea of implications as
rules?

What makes the dialogical presentation difficult to grasp at first

5Where the moves at positions m, n+ 1, n+ 2 and n+ 3 can even be assumed
to refer to the immediately preceding moves, respectively.
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sight is that the usual symmetry between proponent and opponent
is lost. Although P and O play different roles in any Lorenzen-style
dialogue game, with respect to the attack and defense principles we
normally have a perfect symmetry. Just attacks and defenses are de-
fined, not different ways of attacking and defending for P or O. This
idea is so deeply rooted in the dialogical paradigm that giving it up
may appear as giving up the dialogical setting itself as a foundational
approach. The counterargument from the implications-as-rules view
would be that implication is different from the other connectives, and
that this difference requires an asymmetric treatment. If one wants
to formally keep symmetry for implication as a logical connective, one
could distinguish between implications A→B and rules A⇒B, and
reduce implications to rules by separate inferences. An attack on an
implication A → B would be defended by claiming a rule A ⇒ B.
Asymmetry would only come in for the rule A⇒ B considered as a
‘structural entity’, not yet for the implication A→ B. This way of
proceeding involves, of course, some duplication of notation.

The asymmetry in the treatment of implication brings another
asymmetry with it: The proponent can now defend a proposition A
by means of the rule condition independent of the logical form of A,
as an alternative to the ‘standard’ defense of A which depends on
its logical form. This possibility is open only to the proponent and
does not fit into the dialogical schema which decomposes formulas
according to their logical form.

However, principles of decomposition and symmetry should not
be taken as sacrosanct, in particular as rules are not logical constants
but belong to the general structural framework on top of which logical
constants are defined. Given that P has the dialogical role of claiming
something to hold, and O the role of providing the assumptions under
which something is supposed to hold, the rule A⇒ B means for P
that B must be defended on the background A, whereas O only grants
with A⇒ B the right to use it as a rule, without any propositional
claim. This is exactly what is expressed in the dialogue rules for
implications-as-rules presented in this paper.

A crucial aspect here is the significance which is given to modus
ponens. For the implications-as-rules view, modus ponens is essential
for the meaning of implication as it expresses the idea of application,
which is the characteristic feature of a rule. In a natural-deduction set-
ting with rules made explicit, the application of a rule A1, . . . , An⇒B
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is framed as a generalized modus ponens, which, when applied to pre-
misses A1, . . . , An, yields the conclusion B (Schroeder-Heister, 2012).
The system LI ◦ can be viewed as a calculus representing the idea of
modus ponens at the sequent-calculus level. The standard interpreta-
tion of implication in the dialogical setting corresponds instead to the
symmetric sequent calculus LI which is based on the ‘implications-as-
links’ view. According to this view, an implication A→ B which is
introduced on the left side of the sequent sign by means of Gentzen’s
implication-left schema

Γ`A B,∆`C
(→`)

Γ, A→B,∆`C

links an occurrence of A on the right side of the left premiss with an
occurrence of B on the left side of the right premiss of this rule.

The standard dialogical approach favours sequent-style reasoning
in the sense of (→`). We have shown that natural-deduction style
reasoning, into which the idea of implications-as-rules fits very neatly,
and which can be given a sequent-style rendering via LI ◦, can be fully
represented in the dialogical setting. This representation has the price
that implications-as-rules receive an asymmetric treatment, which ul-
timately reflects differences between natural deduction and the sym-
metric sequent calculus LI rather than deficiencies of the dialogical
setting or of the system LI ◦ being modelled.

This situation is slightly complicated by the presence of cut. In
order to achieve full deductive power, the presence of implications-as-
rules required the use of (restricted) cut as a primitive rule. In the
natural-deduction setting this is easily accommodated, as conclusions
of applications of assumption rules can be premisses of elimination
rules without creating a maximum formula. In the dialogical setting
the handling of cut is difficult and by far not as plausible as in proof
systems, since one has to model the claim of the cut formula by P
and O according to the pattern of attack and defense. It should be
remarked, however, that in a general natural-deduction setting with
rules of arbitrary levels and general principles of definitional reflection,
it might be reasonable to use a weaker notion of rule without the
presupposition of cut, so that this problem disappears at the general
level6.

6This is investigated in forthcoming work by Lars Hallnäs and the second au-
thor.
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Overall this paper demonstrates again that the dialogical frame-
work is versatile enough to deal with approaches originally developed
in the realm of proof-theoretic semantics. In the end, more general
arguments are needed if one wants to give preference either to proofs
or to dialogues as the appropriate foundational approach.
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