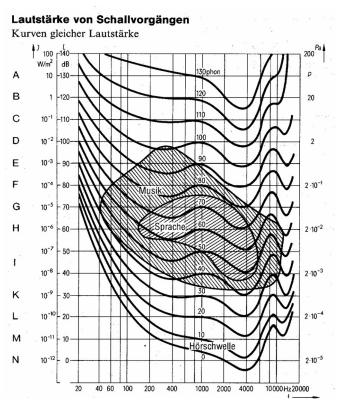
								(Grup	penni	ummer:
									Matı	ikelnı	ummer:
Aufgabe erreichte Punkte	1	2	3	4	5	6	7	8	9	10	insgesamt erreichte Punkte
Aufgabe	11	12	13	14	15	16	17	18			erreichte i unkte
erreichte Punkte											
Klausur für Medizine Bemerkungen: Die mindestens die Hälft geschriebene Formel benutzt werden. An Lösungsweg erkennlikreuzen, der Lösung Diese Klausur beste emplar vollständig i	er un te den lsamm ndere bar s gsweg	axima r Pur mlun e Hilf sein. g ist i	Mahn Mule Property (1) Smit Bei Frele	ontagonate ontagonate on the content of the content on the content	g, 3. zahl l ht wu A4 S nd ni iple-G	Augu beträ urden eite, icht e Choic	m Session Sess	omn 020 Die schen seitig ot. B fgab	e Kla rechi) dür Sei R en is	usur ner, L rfen w echen	ist bestanden, wenn ineal und eine hand-vährend der Klausur naufgaben muss der eine Lösung anzu-
	es Os	zillos	_			ogebil	dete	EKG	zu s	ehen	(Zeitbasis 400 ms/cm)
,	es Os	zillos	_			ogebil	dete	EKG	ł zu s		$({ m Zeitbasis400ms/cm})$ $55~{ m min^{-1}}$
Auf dem Schirm eine	es Os	zillos	_			ogebil	dete	EKG	ł zu s		, ,
Auf dem Schirm eine	es Os	zillos	_			ogebil	dete	EKG	ł zu s		55 min ⁻¹
Auf dem Schirm eine Die Herzfrequenz be	es Os	zillos	_			ogebil	dete	EKG	‡zu s		55 min ⁻¹ 65 min ⁻¹
Auf dem Schirm eine	es Os	zillos	_			ogebil	dete	EKG	ł zu s		55 min ⁻¹ 65 min ⁻¹ 75 min ⁻¹

 \square 1,5 ns


 \square 1,5 ms

Aufgabe 3: (6 Punkte)
a) Über eine Rolle, die an der Decke einer Lagerhalle befestigt ist, werde ein Sack Mehl mit einer Masse von 100 kg an einem Seil innerhalb von 5 Sekunden senkrecht nach oben auf eine Höhe von 20 m gezogen. Wieviel Arbeit wird dabei verrichtet? Welche Leistung wird benötigt? (2 Punkte)
b) Ein identischer Sack werde nun reibungsfrei über eine schräge Rampe, die mit dem Lagerhallenboden einen Winkel von 60° einschließt, ebenfalls vom Boden auf eine Höhe von $20\mathrm{m}$ gezogen. Wieviel Arbeit wird dabei verrichtet? (2 Punkte)
c) Der Sack fällt nun aus der Höhe von 20 m im freien Fall zu Boden. Welche Geschwindigkeit erreicht er beim Aufprall? (2 Punkte)
 Aufgabe 4: (2 Punkte) Wie schnell muss sich ein Neutron bewegen, um die gleiche kinetische Energie $E_{\rm kin}$ wie ein α -Teilchen zu haben?
\Box halb so schnell wie das $\alpha\text{-Teilchen}$
$\hfill \Box$ genauso schnell wie das $\alpha\text{-Teilchen}$
\Box doppelt so schnell wie das $\alpha\text{-Teilchen}$
\Box viermal so schnell wie das $\alpha\text{-Teilchen}$
\square sechzehnmal so schnell wie das α -Teilchen

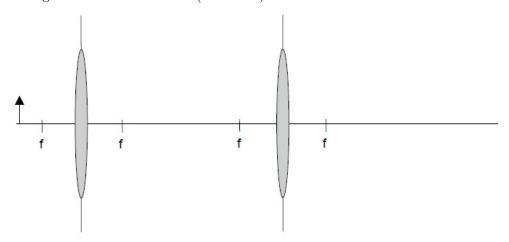
I A	Aufgabe 5: (6 Punkte)
	a) Zwei Punktladungen, die jeweils mit der positiven Ladung +e geladen sind, befinden sich im Abstand von 2m voneinander. Skizzieren Sie die Anordnung mit den zugehörigen elektrischen Feldlinien. (2 Punkte)
	b) Die beiden Ladungen werden nun jeweils auf +2e verdoppelt und auf einen Abstand von 1 m voneinander verschoben. Um welchen Faktor ändert sich die Coulombkraft, die zwischen den beiden Ladungen wirkt? Wird sie verstärkt oder abgeschwächt? (2 Punkte)
	c) Erklären Sie, warum sich elektrische Feldlinien nicht kreuzen können. (2 Punkte)
	Aufgabe 6: (4 Punkte) Vie muss man vier Widerstände mit je 30Ω verschalten, damit sich ein Gesamtwider-
	tand von 40Ω ergibt? Skizzieren Sie diese Schaltung und berechnen Sie (mit Rechenweg) len Gesamtwiderstand der gezeichneten Schaltung, um Ihre Annahme zu bestätigen.

Aufgabe 7: (6 Punkte)

- a) Drei Violinisten spielen mit einem Schallintensitätspegel von jeweils 85 dB. Wie hoch ist ihr Schallintensitätspegel insgesamt? (2 Punkte)
- b) Einer der Violinisten spielt nun (weiterhin mit dem Schall-intensitätspegel 85 dB) den Ton g' mit einer Frequenz von ca. 400 Hz. Markieren Sie den entsprechenden Punkt im Schaubild rechts. Geben Sie den ungefähren Lautstärkepegel in Phon an, dem dieser Schallintensitätspegel entspricht (unter Angabe, wie Sie auf den Wert gekommen sind). (2 Punkte)

c) Wie viele Violinisten müssten gleichzeitig spielen, damit ihr Schallintensitätspegel doppelt so laut wie derjenige der drei Violinisten wahrgenommen wird? (2 Punkte)

Aufgabe 8: (2 Punkte)


Welcher der folgenden Plattenkondensatoren hat die größte Kapazität?

- \square Fläche $A = 5 \text{ cm}^2$, Abstand d = 5 cm
- \square Fläche $A = 5 \text{ cm}^2$, Abstand d = 10 cm
- \square Fläche $A = 10 \,\mathrm{cm}^2$, Abstand $d = 5 \,\mathrm{cm}$
- \square Fläche $A = 10 \,\mathrm{cm}^2$, Abstand $d = 10 \,\mathrm{cm}$
- ☐ Die Kapazität ist von der Geometrie unabhängig.

Aufgabe 9: (6 Punkte)

a) Die Abbildung eines Gegenstands mit einer Sammellinse der Brennweite $f=30\,\mathrm{cm}$ soll viermal so groß wie der Gegenstand selbst sein. In welcher Entfernung von der Linse muss sich der Gegenstand befinden? (3 Punkte)

b) Konstruieren Sie graphisch die Abbildung des Gegenstandes in der skizzierten Anordnung zweier Sammellinsen. (3 Punkte)

Aufgabe 10: (3 Punkte)

Kreuzen Sie an, ob die beschriebenen Phänomene mit Beugung oder Brechung erklärt werden können. Es ist nur jeweils eine Lösung richtig.

Beobachtetes Phänomen:	Beugung	Brechung
Sie betrachten die Umgebung durch den Boden einer Glasflasche und stellen dabei fest, dass Sie die Umwelt verzerrt wahrnehmen.		
Sie beobachten am Himmel einen Regenbogen.		
Schallquellen können Sie auch dann hören, wenn sie sich hinter einer Hausecke befinden und Sie keinen Sichtkontakt zur Quelle haben.		
In der Mikroskopie wird durch die Verwendung von Immersionsöl die Auflösungsgrenze verringert.		
Im Mikroskop können prinzipiell nicht beliebig kleine Strukturen beobachtet werden.		
Nachts beobachten Sie durch eine feine Gardine eine entfernte Straßenlaterne. Sie stellen fest, dass Sie die fast punktförmige Lichtquelle mehrfach sehen.		

Aufgabe 11: (2 Punkte)
Ein Frosch befindet sich in Wasser mit dem Brechungsindex $n_{\rm W}=1,3$. Unter welchem Winkelbereich relativ zum Lot kann er den Himmel sehen (Brechungsindex von Luft: $n_{\rm L}=1,0$)?
☐ Er kann den Himmel nie sehen.
☐ Für alle Winkel $\leq 30^{\circ}$.
☐ Für alle Winkel $\leq 50^{\circ}$.
\square Für alle Winkel $\leq 70^{\circ}$.
☐ Er kann den Himmel unter allen seinen Blickwinkeln sehen.
Aufgabe 12: (6 Punkte)

a) Eine optische Anordnung bestehe wahlweise aus einem Gitter mit der Gitterkonstante $d=2\,\mu\mathrm{m}$ oder einem Einzelspalt mit der Spaltbreite a, sowie einem Schirm im Abstand von 1 m hinter dem optischen Element. Optisches Element und Schirm sind in üblicher Anordnung, d.h. senkrecht zur optischen Achse, aufgebaut. Zunächst falle grünes Licht der Wellenlänge $\lambda=532$ nm parallel zur optischen Achse und damit senkrecht auf das Gitter bzw. den Spalt ein. Wie groß muss die Spaltbreite a sein, damit die Interferenzmaxima 2. Ordnung der beiden optischen Elemente jeweils unter den gleichen Winkeln zur optischen Achse auftreten? Wie groß ist dieser Winkel? Wie groß ist der Abstand dieser Interferenzmaxima 2. Ordnung zur optischen Achse auf dem Schirm? (3 Punkte)

b) Nun werden der Einzelspalt bzw. das Gitter aus a) statt mit grünem mit rotem Licht der Wellenlänge 633 nm beleuchtet. Entfernen sich die Positionen der Interferenzmaxima der beiden optischen Elemente im Vergleich zu a) von der optischen Achse, oder rücken sie näher an diese heran? Erscheinen die Interferenzmaxima 2. Ordnung für die beiden Elemente nun unter unterschiedlichen Winkeln, oder weiterhin unter identischen Winkeln? Begründen Sie Ihre Aussagen. (3 Punkte)

Aufgabe 13: (2 Punkte)
Beschreiben Sie das sogenannte hydrodynamische Paradoxon und nennen Sie eine Anwendung oder ein Beispiel, bei dem das Paradoxon ausgenutzt wird bzw. auftritt.
Aufgabe 14: (2 Punkte)
Welche Aussage zur Diffusion ist falsch?
$\hfill \Box$ Der Diffusionsstrom ist proportional zum Konzentrationsgefälle in einer Mischung
$\hfill \square$ Angestrebt wird die vollständige Entmischung der verschiedenen Substanzen
☐ Die Diffusion endet beim Zustand maximaler Entropie
$\hfill \Box$ Die zeitliche Änderung der Konzentration ist proportional zur Änderung des Gradienten der Konzentration
$\hfill \Box$ Die Diffusion wird angetrieben durch die Brownsche Molekularbewegung
Aufgabe 15: (2 Punkte) Das in der Positronenemissionstomographie (PET) eingesetzte radioaktive Nuklid 18 F zerfällt mit einer Halbwertszeit von 110 Minuten. Die Aktivität A einer Probe mit diesem Nuklid sinkt demnach auf 10% ihres ursprünglichen Wertes in einem Zeitraum von etwa
☐ 16 Stunden
☐ 32 Stunden
☐ 6 Stunden
☐ 2 Tagen
☐ 4 Stunden
Aufgabe 16: (2 Punkte) Wie dick muss eine Blei-Schicht (mit Halbwertsdicke $x_{\rm H}=1,3{\rm cm}$) sein, um ankommende γ -Strahlung durch Absorption im Material auf 1% der Ursprungsintensität zu reduzie-
ren? \square 4,6 cm
\square 4,6 mm
\square 7,1 cm
\square 8,6 cm
□ 8,6 mm

A	ufgabe 17: (6 Punkte)
	a) Wie groß ist die Photonenenergie von Röntgenstrahlung der Wellenlänge $\lambda=0.249\mathrm{nm?}$ (2 Punkte)
	b) Warum muss in der Röntgendiagnostik die Röntgenstrahlung ein Aluminium-Filter passieren, bevor sie auf den Patienten trifft? (2 Punkte)
	c) In welcher Weise hängt die Grenzwellenlänge $\lambda_{\rm Grenz}$ des Röntgenspektrums von der Betriebsspannung der Röhre ab? (2 Punkte)
	☐ proportional ☐ quadratisch
	 □ exponentiell □ umgekehrt proportional □ logarithmisch
A	ufgabe 18: (3 Punkte)
Sc	nter einem Messmikroskop werden Erythrozyten (rote Blutkörperchen) als kreisförmige cheibchen gesehen. Für einen Erythrozyten wird ein Durchmesser von $d=8\mu\mathrm{m}$ mit ner Messunsicherheit von $\Delta d=\pm0.1\mu\mathrm{m}$ bestimmt. Wie groß ist der relative Fehler

Anhang

 \bullet Erdbeschleunigung $g=9.81\,\mathrm{m/s^2}$

bei Angabe der Querschnittsfläche A?

- Lichtgeschwindigkeit im Vakuum $c = 3 \cdot 10^8 \, \mathrm{m/s}$
- Plancksches Wirkungsquantum $h = 4{,}136 \cdot 10^{-15}\,\mathrm{eV \cdot s}$

Diese Seite ist absichtlich unbedruckt.