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Judging the presence or absence of a stimulus is likely the most
basic perceptual decision. A fundamental difference of detection
tasks in contrast to discrimination tasks is that only the stimulus
presence decision can be inferred from sensory evidence, whereas
the alternative decision about stimulus absence lacks sensory
evidence by definition. Detection decisions have been studied in
an intentional, action-based framework, in which decisions were
regarded as intentions to pursue particular actions. These studies
have found that only stimulus-present decisions are actively
encoded by neurons, whereas the decision about the absence of
a stimulus does not affect default neuronal responses. We tested
whether this processing mechanism also holds for abstract de-
tection decisions that are dissociated from motor preparation. We
recorded single-neuron activity from the prefrontal cortex (PFC) of
monkeys performing a visual detection task that forced a report-
independent decision. We not only found neurons that actively
encoded the subjective decision of monkeys about the presence of
a stimulus, but also cells responding actively for the decision about
the absence of stimuli. These results suggest that abstract de-
tection decisions are processed in a different way compared with
the previously reported action-based decisions. In a report-in-
dependent framework, neuronal networks seem to generate a
second set of neurons actively encoding the absence of sensory
stimulation, thus translating decisions into abstract categories.
This mechanism may allow the brain to “buffer” a decision in
a nonmovement-related framework.
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Perceptual decisions are choices among alternatives based on
sensory information. To arrive at distinct choices, sensory
input has to be classified into behaviorally meaningful categories.
The detection of a stimulus (decision about its presence or ab-
sence) is the most basic form of a perceptual decision. The pe-
culiarity of detection decisions is that only one choice alternative
can be based on sensory evidence, whereas the alternative de-
cision about stimulus absence lacks sensory information. How
does the brain arrive at categorical stimulus-absent and stimulus-
present decisions when only one response category (stimulus-
present) can rely on sensory input?

The neuronal underpinnings of perceptual decisions have
been studied extensively in an intentional, action-based frame-
work (1-3). Here, decisions are regarded as intensions to choose
among actions associated with the stimuli (1, 4). Decision-related
neurons showed activity encoding the process of converting
sensory information (5-7) or cognitive cues (8-10) into choices.
In agreement with the view that detections are discriminations of
a stimulus from noise (11), elegant studies by Romo and cow-
orkers (12, 13) reported neurons actively encoding the decision
about the stimulus presence. The decision about stimulus ab-
sence, however, was represented as a default (baseline) neuronal
response (12-16) for action-based detection decisions.

When dissociated from action preparation or studied in a re-
port-independent framework, decisions can be seen as distinct
processes that are encoded as abstract categories (17-19). In a dot-
motion discrimination task, neurons in the lateral intraparietal
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area were shown to encode the abstract decision about motion
directions independently from how they signaled the associated
motor response (20). In such discrimination and categorization
tasks, subjects decide based on sensory stimuli represented for
both alternatives. Thus, two separate neuronal populations en-
code the respective choice categories.

We investigated how abstract detection decisions, not linked
to motor actions, are implemented by single neurons in the pre-
frontal cortex (PFC) of rhesus monkeys. To ensure report-in-
dependent decisions, we designed a rule-based visual detection
task that allowed a clear dissociation of a decision about the
stimulus from motor preparation. In such a protocol, also the
stimulus absent decision is not just “noise” but a discrete category.

Results

We trained two rhesus monkeys to report the presence or ab-
sence of a visual stimulus in a rule-based delayed detection
task that allowed a clear dissociation of the decision about the
stimulus from motor preparation (Fig. 14). The visual stimulus
was presented at different intensity values centered around
perceptual threshold. For stimuli of identical intensities, the in-
ternal status of the monkey determined whether it had (“yes”
decision) or had not (“no” decision) seen the stimulus. Three
different visual objects were used to ensure that the monkeys
relied on the mere presence of the stimuli, whereas ignoring low-
level object properties. Because a rule cue informed the animal
about the appropriate motor action of how to report the de-
cision, the monkey could not prepare any motor response during
the delay period. The possible decision outcomes were classified
according to signal detection theory (Fig. 1B). The proportion of
“yes” decisions for each stimulus intensity was used to create
psychometric detection curves for both monkeys (Fig. 1 C and
D). The monkeys were only rewarded in correct trials (hits and
correct rejections). No reinforcement was given in trials in which
the monkeys failed to detect stimuli (misses), even if they were
presented below the perceptual threshold. This reward contin-
gency leads to a small bias of the monkeys to erroneously report
the presence of a stimulus in some of the stimulus absent trials
(false alarms) (Fig. 1 C and D).

While the monkeys performed the detection task, we recorded
the activity of 708 randomly selected neurons from the PFC (Fig.
2A4). We analyzed neuronal activity during the stimulus phase
(immediately after stimulus presentation) to investigate the very
early stage of decision formation, and the late-delay phase during
which motor preparation was still excluded. We applied stepwise
linear regression (SLR) analysis to study the conjoint con-
tributions of stimulus intensity and the subjective “yes” and “no”
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Fig. 1. Visual detection protocol and behavioral performance. (A) The
monkeys initiated each experimental trial by grasping a lever and fixating
a central fixation target. After 500 ms, a stimulus was displayed for 100 ms in
50% of the trials (intensity varied in nine levels, centered around the per-
ceptual threshold). In the other 50% of the trials, no stimulus was shown.
Both types of trials appeared randomly. After the delay period (2,700 ms),
a color cue appeared to indicate the rule of how to respond to a particular
decision. If a stimulus was presented, a red square cue required the monkey
to release the lever within 1,000 ms to receive a fluid reward, whereas a blue
cue demanded the monkey to keep holding the lever for another 1,200 ms.
The rule applied in the inverse way if no stimulus was presented. Thus,
movement preparation was excluded during the delay period. (B) Signal
detection theory classifies an observer’s behavioral options (hit, miss, correct
rejection, and false alarms) at detection threshold, given two stimulus con-
ditions (stimulus present or absent) and two possible decisions (“yes, stim-
ulus present” and “no, stimulus absent”). (C and D) Psychometric detection
curve for monkey H (C) and monkey M (D). Stimulus intensity is represented
as % visual contrast; visual contrast of 0 indicates absence of stimulus. [Error
bars (SEM) are so small that they are hidden behind the markers].

decisions on the discharge rates of the neurons. During both
analysis phases, we found a proportion of neurons significantly
coding the subjective judgments of monkeys about the stimulus
presence or absence [Fig. 2B; 8% (58/708) during the stimulus
phase and 18% (128/708) during the delay phase, P < 0.05, SLR
analysis]. A proportion of 14% of the cells (96/708) during the
stimulus phase and 15% of the neurons (106/708) during the
delay phase only coded the intensity of the stimulus (P < 0.05,
SLR analysis). Only 1% and 3% of the recorded neurons were
modulated by both the factors stimulus intensity and the sub-
jective decision during the stimulus and delay phase, respectively
(Fig. 2B). Neurons significantly covarying with the monkey’s
choices were termed “decision neurons.” Overall, we found
a significantly higher proportion of decision neurons in the delay
phase compared with the stimulus phase, (P < 0.01; % test).

Receiver operating characteristics (ROC) analysis was used to
quantify the probability with which the decision of the monkey
could be predicted from the neuronal responses. Choice proba-
bility indices were calculated for “yes” decisions in clearly visible,
salient stimulus trials (hits) versus “no” decisions in stimulus-
absent trials (correct rejections), as well as for “yes” (hits) versus
“no” (misses) decisions in threshold trials when stimuli were
presented close to the perceptual threshold.

Neuronal selectivity of a given neuron is usually determined
by the experimental condition that elicits the highest discharge
rate. This approach ignores that suppressive effects (decreases in
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Fig. 2. Recording sites and proportion of selective cells. (A) Right shows
a top view of a monkey brain. The gray area marks the chamber location.
The circular panels on Left show the precise recording sites inside each re-
cording chamber in the lateral PFC for both monkeys. The proportion of
decision neurons at individual recording sites is color-coded. iar, inferior
arcuate sulcus; ps, principal sulcus; sar, superior arcuate sulcus. (B) Pro-
portions of neurons coding stimulus intensity and decision in both phases.

firing rates relative to baseline discharge) are sometimes the
dominant influences of a particular stimulus. Thus, we sub-
divided and classified decision neurons according to their active
modulation of neuronal activity (modulation strength) during
“yes” or “no” decisions rather than highest discharge rate.
Neurons modulating (increasing or decreasing) their firing rates
more strongly for “yes” decisions were termed “yes” neurons,
cells modulating their discharges more strongly to “no” decision
were called “no” neurons.

“Yes"” Neurons Actively Encode Decisions During the Stimulus Phase.
During the stimulus phase, virtually all decision neurons (98%)
modulated their discharge rates only for “yes” judgments (merely
one neuron was classified as a “no” cell; summary in Table S1).
Fig. 34 shows an exemplary “yes” cell that increased its discharge
rates for hits in salient stimulus trials, whereas the firing rates for
correct rejections in stimulus-absent trials remained at baseline
level. Neuronal responses for threshold trials correlated signifi-
cantly with the judgment of the monkey: for “yes” decisions,
neurons increased their activity, mirroring the firing rate in salient
stimulus trials. For erroneous “no” decisions (misses), activity
remained at baseline level, just as in stimulus absent trials. The
choice probability indices for salient and threshold trials are
depicted as a function of time in Fig. 34, Lower. Indices signifi-
cantly above chance level indicate that these discharges of neu-
rons reliably predict the decision of the monkey (P < 0.05; ROC
analysis, bootstrapping). This effect was also present on the
neuronal population level (34 cells; Fig. 3B). Several cells showed
transient suppression of the firing rate for “yes” decisions (Fig.
3C); the neuronal population data (23 units) are depicted in Fig.
3D. The population analysis includes the neuronal responses
during false alarms. Interestingly, decision neurons increased
(Fig. 3B) or decreased (Fig. 3D) the firing rates for this erroneous
“yes” decisions in a similar way as during hit trials, already during
this early decision phase. The average peak latencies of the neu-
ronal responses for false alarms and hits were comparable (neu-
rons increasing the firing rate: hit latency = 242 ms, false alarms
latency = 289 ms; neurons decreasing firing rates: hit latency =
346 ms, false alarms latency = 341 ms). Overall, during the
stimulus phase, PFC neurons represented “yes” decisions by ei-
ther increasing or decreasing their responses, whereas “no”
decisions were represented by default discharge rates.
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Fig. 3. Decision coding by “yes” neurons during the stimulus phase. (A and
C) Responses of two example neurons coding the “yes” decision by in-
creasing (A) or decreasing (C) their firing rates during the stimulus phase
(analysis window highlighted by the gray shaded area). Top depict dot raster
plots; Middle represent the corresponding spike density histograms aver-
aged and smoothed with a Gaussian kernel for illustration. The vertical black
lines indicate the presentation of the stimulus (at 500 ms) and the rule cue
(at 3,300 ms). Stimulus duration is marked by a small horizontal bar un-
derneath the x axis of each plot. Bottom show the choice probability indices
as a function of time. Dotted lines mark significance levels. (B and D) Av-
eraged and normalized responses (S/ Materials and Methods) and choice
probability indices of decision neurons grouped by response type. Shaded
regions indicate SEM; n, number of neurons.

“Yes" and “No” Neurons Actively Encode Decisions During the Delay
Phase. In striking contrast to the findings in the sample phase, the
processing of decisions in the delay phase was based on “yes”
(Fig. 4 A and B) as well as active “no” responses (Fig. 4 C and D)
(summary in Table S1). Just as in the stimulus phase, we found
neurons increasing (79 neurons; Fig. 4B) or decreasing (25 units)
their firing rates for “yes” decisions (hits and false alarms). In
addition, however, a new class of decision cells, “no” neurons,
exhibited significantly increased discharge rates whenever the
monkey decided to report the absence of a stimulus (correct
rejections and misses) (Fig. 4C; average responses of 21 neurons
in Fig. 4D). Three cells were classified as decreasing their firing
rate for “no” responses. These active “no” neurons represent an
abstract category that is neither generated by a specific input nor
linked to a preparation of a motor response.

Finally, we also investigated the neuronal selectivity of delay
phase decision neurons to the rule cue and the instructed motor
action during the rule cue phase. For both “yes” and “no” decision
neurons, decision activity remained the dominant factor well into
the rule cue phase (Fig. 5 4 and B). To identify the proportions of
decision neurons responding to decision, stimulus intensity, rule
cue, and motor action during the cue presentation, we next per-
formed a sliding SLR analysis by using these factors (Fig. 5C).
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Fig. 4. Decision coding by “yes” and “no” neurons during the delay phase.
(A and C) Raster plots, spike density functions, and choice probability indices
for neurons increasing their activity for “yes” decisions (A) or for “no” deci-
sions (C) during the delay phase. (B and D) Normalized averaged responses (S/
Materials and Methods) of the corresponding groups. Active “no” decision
neurons newly emerged during the delay phase. Same layout as in Fig. 3.

Selectivity for the color cue or the motor action was absent during
the delay analysis period. Only after a latency of ~100 ms after
rule cue onset, decision cells started to encode the color of the
rule cue and, most dominantly, the instructed motor action.

Discussion

We found single neurons in the PFC that encode abstract “yes”
and “no” decisions during a visual detection task. In this percep-
tual decision task that dissociated the decision both from low-level
sensory processing and preparatory motor activity, the neuronal
activity covaried with the subjective reports of monkeys about the
percepts. A very small proportion of decision neurons showed an
additional significant effect of the intensity of the visual stimulus;
thus, we report a predominantly categorical, binary activation
pattern of “yes” or “no” decision coding. During the stimulus
phase, decision neurons exclusively either increased or decreased
their firing rates for “yes” decisions, whereas “no” responses were
represented by baseline discharge rates. During the delay period,
however, neurons also actively encoded “no” decisions. We pro-
pose that the coding of abstract, report-independent decisions is
fundamentally similar to the representation of abstract categories
(21), even if one choice alternative is devoid of sensory evidence.
Our data thus extend previous findings about the representation of
perceptual decisions in detection tasks (12).

Behavioral Relevance of the Perceptual Decision Encoding. Decision
neurons modulated their firing rates according to the sensory
percept of monkeys: Activity signaling categorical “yes” decisions
(hits and false alarms) was different from neuronal responses to
correct rejections and misses (as shown by SLR analysis). The
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Fig. 5. Selectivity of decision cells during rule cue presentation. (A and B)
Averaged neuronal activity of “yes” (A) and “no” delay phase decision neurons
(B) is shown throughout the trial during “yes” and “no” decisions separated
according to the rule cue (requiring a particular motor action). The figure has
the same layout as in Fig. 3. (C) Proportion of all “yes” and “no” delay phase
decision neurons significantly selective for the factors decision, stimulus in-
tensity, motor action, and rule cue during the cue phase. The vertical black line
at 3,300 ms depicts the onset of the rule cue. On average, the monkeys per-
formed a motor action 300 ms after the rule cue onset in release trials. The gray
area highlights the analysis window of the delay phase. No selectivity for the
rule cue or the motor action is present during the delay phase analysis window.

behavioral relevance of these responses becomes clear in the
analysis of error trials. Miss trials clearly mimicked the responses
to correct rejections during stimulus and delay phase. Similarly,
a population analysis revealed that false alarm responses re-
sembled the neuronal representations of hit trials. (The small
number of false alarm trials precluded an analysis for individual
cells). The slightly lower response amplitude of average false
alarm responses compared with hit activity most likely reflects
the different causes for such erroneous “yes” decisions that can
appear during the course of a trial.

“No” Neurons. The presence of active “no” neurons—in addition
to active “yes” neurons—is an important finding of our study.
During the delayed decision process, “no” cells encoded the de-
cision actively by modulating their activity more strongly for “no”
decisions, even in the absence of sensory evidence. One possible
explanation for our finding is that decisions irrespective of motor
preparation require additional neuronal representations com-
pared with decisions in previous task designs (12, 13, 22, 23). Deco
and coworkers used the term “type ‘no’ neurons” for cells that
showed a transient peak activity during stimulus presentation and
suppressed activity during the delay period whenever the monkey
reported stimulus presence (24). Importantly, these neurons were
reported to maintain baseline activity if no stimulus was presented.
According to the definition we use in our study, these neurons
would most likely correspond to “yes” neurons increasing their
firing rate in the stimulus phase and decreasing the firing rate
during the delay phase for “stimulus present” decisions.

Two Processing Steps of Abstract Decisions. Our physiological
results argue for two discrete processing steps involved in ab-
stract decisions in detection tasks, implemented by “yes” cells in
the stimulus phase and by “yes” and “no” cells during the delay
phase. During the stimulus phase, the responses might reflect the
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subjective experience of the stimulus, based on the accumulation
of sensory information (12). The emergence of “no” neurons in
the delay phase likely constitutes a second active decision-pro-
cessing step transforming the subjective experience to abstract
categories in rule-based detection tasks.

In an abstract, report-independent decision protocol, in which
the appropriate motor response is instructed later, a default motor
action cannot easily be defined. From the computational per-
spective, “buffering” of the decision in a nonmovement-related
framework (21) and applying two sets of active decision neurons
(“yes” and “no” cells) would constitute an advantage. The prin-
ciple of using two sets of active neurons is also implemented in
(delayed) report-dependent (6, 7, 25-27) and report-independent
(20) coding and models of decisions in discrimination tasks. In
such comparison tasks, decision can be based on the evaluation of
sensory evidence (e.g., “rightward” versus “leftward” motion), so
the information of two sets of neurons actively coding the two
alternative categories can be “translated” into a movement-related
framework. With the applied detection task, we show that this
coding scheme is a fundamental principle in representing abstract
decisions. Our data show that, if sensory evidence is not available
in the absence of sensory stimulation, the second set of active
coding neurons is purposefully generated in neuronal networks.

The question of how the second active decision-processing step
and the emergence of “no” neurons in abstract decisions is gener-
ated requires further investigation. One speculation might be that
information during the stimulus phase is transferred and further
processed throughout the delay phase. Another possibility might be
that this late decision processing is triggered by midbrain dopamine
(DA) neurons. A recent study reports high levels of DA activity for
high uncertainty, which arises internally because of the evaluation
of a sensory stimulus (28). Because stimulus-absent events carry
a high level of uncertainty, this DA activity might account for the
active “no” decision responses we measured in the PFC.

To guide behavior, the accuracy of neuronal decision signals
should improve if information is combined across neurons. Sen-
sory-related decisions have been found to rely on neurons with
increasing and decreasing response profiles (13, 25). We find that
both “yes” and “no” decision categories are encoded by facilita-
tion and suppression. However, combining both apparently op-
posing information streams by a simple linear summation or
averaging pooling rule would diminish/cancel out the information.
A mechanistically similar situation occurs during the discrimina-
tion of opposite directions. Here, computational models suggest
pooling profiles that specify how each neuron (tuned to its pre-
ferred direction) contributes to the decision (29). These pooling
profiles result in opposite weighting of the contribution of neurons
tuned to opposite directions. The difference of the weighted
responses is used to determine the decision. Cells found in our
study that encode the same decision category based on increasing
and decreasing activity (but not opposing decisions) could exploit
the same pooling principle within a decision category. To take full
advantage of both information streams, pooling might rely on the
difference between averaged subpopulations of neurons increasing
and neurons decreasing their responses. This pooling-rule might
be achieved if a subpopulation of increased-discharge decision
neurons excites a downstream neuron, whereas a subpopulation of
suppressed neurons inhibits this neuron.

Intentional and Report-Independent Frameworks. Our data suggest
that the best-suited neuronal representations of decision may
be implemented depending on the nature of the behavioral
task (intentional or report-independent). Decisions that can be
formed as intensions to pursue a particular action may not re-
quire an abstract decision; thus, a direct link between stimulus
activity (sensory input) and premotor activity (motor output)
might be established. Therefore, the abstract decision may not
even be represented as a discrete processing step at all (21, 30).

Merten and Nieder
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Our data indicate a complementary mechanism of decision
processing, one that is deployed by the monkey brain when an
abstract decision is forced. According to this hypothesis, deciding
does not inevitably mean to plan a motor response (31). Rather,
if required, decisions can be represented in an abstract pro-
cessing step separated from motor effector systems, thus per-
mitting complex operations between decision and action. Our
results suggest that, if a rule cue were to be introduced in action-
based detection tasks, the same kind of mechanism as observed
in the current detection study would presumably emerge.

Brain Areas Encoding Abstract Decisions. Although early sensory
brain areas reflect the physical properties of a stimulus (12, 32), the
correlation between neuronal discharges and interpretation (sub-
jective experience) of a stimulus progressively increase across higher
cortical hirarchy and result in a choice of an appropriate behavior
(13, 33). We selected the PFC, a classical association area known to
operate at the apex of the cortical hierarchy, as a candidate struc-
ture. PFC neurons have been shown to be engaged in highly abstract
processes (34) including evaluation of sensory information (19, 35),
decision-related processes (25, 36, 37), and abstract behavioral
planning (38-40). Moreover, human fMRI suggested this area as an
abstract decision-making module that is functionally separate from
the motor systems (31, 41). We show that neurons in the PFC are
strongly involved in the processing of abstract decisions.

However, other highly associative brain areas might also be
strong candidates for the processing of abstract decision in-
formation. The medial premotor cortex (MPC) has been reported
to be crucial for linking sensory information to action investigated
from a motor perspective (37, 42, 43). The anterior cingulate
cortex (ACC) has also been shown to reflect the intention for
a particular action based on sensory (44) or reward information
(45). It would be interesting to investigate whether and how these
areas encode abstract decisions.

Materials and Methods

Behavioral Protocol. Two rhesus monkeys (Macaca mulatta) were trained to
report the presence or absence of a visual stimulus (Fig. 1A). The stimulus
consisted of a gray object (4° of visual angle) presented at nine levels of
contrast close to the perception threshold (monkey H: 4.1%, 3.2%, 2.4%,
2.0%, 1.7%, 1.4%, 1.1%, 0.7%, 0.4%; monkey M: 4.1%, 3.2%, 2.4%, 2.8%,
2.0%, 1.7%, 1.4%, 1.1%, 0.7%), measured with a J16 Digital Photometer
(Tektronix). The shape of the object was chosen randomly from a set of
three objects: square, circle, and hexagon for monkey H; cross, triangle, and
rhomboid for monkey M. The area of the object was kept constant to
maintain the same visual contrast of the stimulus across different shapes.
Monkeys kept their gaze within 1.75° of visual angle of the fixation target
during stimulus and delay period. Eye movements were monitored with an
infrared eye-tracking system (ISCAN). CORTEX program (National Institute of
Mental Health) was used for experimental control and behavioral data ac-
quisition. For the behavioral analysis, we gathered the proportion of “yes”
decisions for stimulus present (hits) and stimulus absent (false alarms) trials
(15021 and 14830 trials for monkey H; 14207 and 14326 trials for monkey M).
For each stimulus intensity and type of decision, we pooled trials requiring
lever release and holding trials from all recording sessions (Fig. 1 B and C).

Neurophysiological Recordings. Extracellular single-cell activity was recorded by
using arrays of four to eight glass-coated tungsten microelectrodes of 1 MQ
impedance (Alpha Omega) (S/ Materials and Methods). All of the surgery
procedures were carried out under aseptic conditions and under general an-
esthesia in accordance with the guidelines for animal experimentation ap-
proved by the local authorities, the Regierungsprasidium Tubingen, Germany.
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Data Analysis. Data analysis was performed by using MATLAB (MathWorks).
We studied all well-isolated neurons and focused our analysis on two decision
periods: a 300-ms interval after stimulus onset shifted by the individual re-
sponse latency of the cell (stimulus phase) and a 1,000-ms window starting
1,900 ms after stimulus onset (delay phase).

Excluding Nonabstract, Object Feature-Selective Neurons. To ensure that the
studied neurons encoded abstract object properties irrespective of low-level
visual features, we only analyzed cells, whose responses generalized over all
three presented objects. We performed a Kruskal-Wallis test to analyze the
selectivity of neurons for the three types of objects. For this test, hit trials of all
intensities were grouped by object type. Only few neurons showed significantly
different discharge rates for at least one of the three object types: (5% during
the stimulus and delay phase). These cells were excluded from further analysis.

SLR Analysis. The SLR analysis (46) was used to investigate the relationship
of firing rate with stimulus intensity and firing rate with monkey’s choice
(43, 46, 47). We fitted the neuronal activity during stimulus and delay
analysis phases to an arbitrary linear function of both factors: intensity (all
tested values) and decision (“yes” decision: hits and false alarms vs. “no
decision: misses and correct rejections). The firing rate (FR) can be formu-
lated as FR = ag + aint X INT + a4 X D, where aj,; and aq are the coefficients
that quantify the firing rate dependence on intensity (INT) and decision (D),
respectively. For the analysis of the rule cue phase (Fig. 5C), a sliding SLR
analysis was calculated. Here, the dependence of firing rates on intensity
(INT), decision (D), action (A), and rule cue (R) was assessed according to the
equation FR = ag + ajnt X INT + ag X D + a, X A + a, x R (S Materials and
Methods). We chose a significance level of 5% to determine which factors
had a significant effect on the firing rates. Coefficients were included in the
model if the P value for a predictor was below this level. Mulicollinearity did
not affect the calculations (S/ Materials and Methods).

"

Classification of Decision Cells into “Yes” and “No” Neurons. Neurons showing
a significant effect of decision (SLR analysis) were classified according to the
modulation strength of their firing rates during “yes” and “no” decisions. As
a measure of the modulation strength (M), we used the mean absolute
change of the firing rate (FR) in intervals of t = 100 ms, which were shifted in
10-ms steps M =1 3°7, [4TR|. The starting point of the modulation analysis
(i = 1) for both phases was advanced from the defined phase onset to a time
point at which the firing rates for the “yes” and “no" decisions started to
diverge significantly (see ROC analysis); the analysis ended (i = n) at the
defined offset of the respective phase. The firing rate was convolved with
a Gaussian kernel (bin width 150 ms; step 1 ms). If the modulation strength
(M) was larger during “yes” decisions compared with the modulation
strength during “no” decisions, the neuron was classified as a “yes” neuron.
For stronger modulation during “no” decisions, the neuron was assigned to
the “no” neuron class.

ROC Analysis. To analyze the representation of the abstract decision across
time, we compared the discharge rates of salient hit trials to correct rejections
and activity in hit trials to misses of threshold trials. Sliding ROC analysis was
used to calculate choice probability indices, which estimated the strength of
decision coding (S/ Materials and Methods).

Response Latency. Latency calculations of neuronal responses were based on
the sliding ROC analysis. No significant latency difference was found between
cells coding only stimulus intensity (239 ms) and neurons coding the decision
(194 ms) (P > 0.05, Wilcoxon test).
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S| Materials and Methods

Neurophysiological Recordings. We recorded single-cell activity
from the lateral prefrontal cortex (PFC) (left hemisphere, around
the principal sulcus) of both monkeys. The location of the re-
cording sites and the placement of the recording chambers were
reconstructed in stereotactic coordinates by using magnetic res-
onance images of individual monkey brains (Fig. 24). Electrodes
were inserted each recording day by using a grid with 1-mm
spacing. Neurons were selected at random in every recording
session; no attempt was made to preselect neurons according to
response properties. Signal acquisition, amplification, filtering,
digitalization, and spike sorting (offline) were accomplished by
using the Plexon system (Plexon).

Stepwise Linear Regression (SLR) Analysis. Neuronal responses
during the rule cue were analyzed in the period starting 200 ms
before the rule cue onset and ending 300 ms after the rule cue
onset. Sliding SLR analysis was calculated for analysis windows of
100-ms duration, slid in steps of 10 ms for the factors intensity
(INT), decision (D), action (4), and rule cue (R). The number of
neurons significantly encoding each factor in each analysis win-
dow was convolved with a Gaussian kernel (bin width 10 ms; step
1 ms) for the plot (Fig. 5C).

To test for the presence of multicollinearity, we calculated the
variance inflation factor (VIF) VIF = 1/(1 — R?), where R is the
coefficient of the correlation of both explanatory variables de-
cision and intensity. As a common rule of thumb VIF > 5 are
used as cut off values for too high multicollinearity (1, 2). None
of the VIF values calculated for every neuron exceeded the
cutoff value.

Receiver Operating Characteristic (ROC) Analysis. To characterize
how neurons represent the abstract decision across time, we
applied sliding ROC analysis (3) to consecutive overlapping time
windows of 300 ms moved in 50 ms steps across the trial. We
compared the discharge rates of salient (>2.4% visual contrast)
hit trials to discharge rates of correct rejections. Further, hit
trials of threshold stimuli (2.0%, 1.7%, 1.4%, and 1.1% of visual
contrast) were compared to miss threshold trials. To exclude

1. Kutner MH, Nachtsheim C, Neter J (2004) Applied Linear Regression Models (McGraw-
Hill/rwin, New York).

2. O'Brien RM (2007) A caution regarding rules of thumb for variance inflation factors.
Qual Quant 41:673-690.

"Yes"” neurons

possible stimulus intensity biases in the analysis of four different
intensities of hit or miss trials, equal numbers of trials of each
stimulus intensity were included in the comparison for each cell.

To estimate the extent to which neuronal activity in both
phases was influenced by the decision, we calculated the choice
probability index (4) (area under the ROC curve). Values of 0.5
indicated chance-level discrimination; values >0.5 denoted
neurons with higher firing rates for hits compared with misses or
correct rejections; choice probability indices <0.5 signified cells
with higher discharge rates for misses and correct rejections. We
used bootstrapping to assess whether the indices were signifi-
cantly different from 0.5. For this analysis, we constructed 1,000
resamples of the observed discharge rates, each of which was
obtained by random sampling with replacement keeping the
original number of trials for each condition. Then, we calculated
the choice probability index for each resample, and compared
the resulting distribution of the indices to the value of the
original dataset. If 95% of the bootstrapped values were higher/
lower than the original value, it was considered statistically
significant (P < 0.05). Confidence intervals, depicted in Figs. 3
and 4, were calculated by using the bootstrap technique for
each interval.

To calculate the response latency of the neurons, sliding ROC
analysis with time windows of 50 ms slid by 1 ms was used. We
defined the latency for each cell as the time after stimulus onset,
but no later than 500 ms, for which the choice probability index
exceeded for 50 consecutive windows the 95% threshold of the
bootstrapped data. If no value could be determined, a default
latency corresponding to the 75th percentile of the response
latency distribution of a given recording was used (179 ms).

Population Analysis and Normalization. For the group analysis of
each cell class, we normalized and averaged responses of all
significantly selective cells. Normalized activity was calculated by
subtracting the mean baseline activity and dividing by the SD of
the baseline activity (300 ms period before stimulus onset). Spike
density histograms for single neurons were averaged over trials
and convolved with a Gaussian kernel (bin width 150 ms; step size
1 ms) for illustrative purposes only.

3. Green DM, Swets JA (1966) Signal Detection Theory and Psychophysics (Wiley, New York).

4. Britten KH, Newsome WT, Shadlen MN, Celebrini S, Movshon JA (1996) A relationship
between behavioral choice and the visual responses of neurons in macaque MT. Vis
Neurosci 13:87-100.

Number of neurons classified as “yes” and “no” decision

“No” neurons

Table S1.
neurons

1
Stimulus phase 34
Delay phase 79

l 1 1
23 1 0
25 21 3

1, increasing firing rate; |, decreasing firing rate.
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