25 easy pieces in MATHSTAT

"I fear not the man who has practiced 10,000 kicks once, but I fear the man who has practiced one kick 10,000 times."

Bruce Lee

- 1: Write the expectation of a random variable (r.v.) Z, $\mathbb{E}[Z]$, extensively
 - a) for a discrete random variable,
 - b) for a continuous random variable.
- **2:** Var(Z) can be written as $\mathbb{E}[Y]$. What is Y?
- **3:** Write Var(Z) extensively
 - a) for a discrete random variable,
 - b) for a continuous random variable.
- **4:** What does the cumulative density function or cumulative distribution function (c.d.f.) tell you?
- **5:** X is a continuous r.v. How are the c.d.f. $F_X(x)$ and the density function (d.f.) $f_X(x)$ related?
- **6:** Cov(X,Y) can be written as $\mathbb{E}[Z]$. What is Z?
- 7: Write Cov(X, Y) extensively for X and Y
 - a) as discrete random variables,
 - b) as continuous random variables.
- **8:** Express $\mathbb{E}_{XY}[XY]$ as a function of Cov(X,Y).
- **9:** Write $\mathbb{E}_{XY}[XY]$ extensively for X and Y
 - a) as discrete random variables,
 - b) as continuous random variables.
- **10:** g(X) denotes a measurable function of the r.v. X (like e.g. X^2 , $\ln(X)$). Write $\mathbb{E}[g(X)]$ extensively for a continuous r.v. X.

11: X and Y are continuous random variables. Z = g(X,Y) is a measurable function. Write $\mathbb{E}[g(X,Y)]$ extensively.

12: X and Y are continuous random variables. What does the joint c.d.f. $F_{XY}(x,y)$ tell you? Write $F_{XY}(x,y)$ extensively. What does the joint p.d.f. $f_{XY}(x,y)$ (discrete case) tell you?

13: X and Y are continuous random variables. How are $F_{XY}(x,y)$ and $f_{XY}(x,y)$ related?

14: If X and Y are independent:

- a) $F_{XY}(x, y) =$,
- b) $f_{XY}(x, y) = .$

15: If X and Y are independent:

- a) $\mathbb{E}_{XY}(XY) =$,
- b) Cov(X, Y) = .

16: If X and Y are independent:

$$\mathbb{E}_{XY}[h(X)g(Y)] = .$$

17:
$$\mathbb{E}_{XY}[X+Y] =$$
,

$$\mathbb{E}_{XYZ}[X+Y+Z] =,$$

$$Var(X + Y) = .$$

18: Write extensively for X and Y

- a) as discrete random variables,
- b) as continuous random variables:

$$f_{X|Y}(X|Y=y)$$

$$\mathbb{E}_{X|Y}[X|Y=y]$$

$$\mathbb{E}_{X|Y}[X^2|Y=y]$$

19:
$$\mathbb{E}[aX] =$$
,

$$Var(aX) =$$
,

(a is non-random scalar).

20: For $\underline{X} = (X_1, X_2, \dots, X_n)'$

$$\mathbb{E}[\underline{X}] = \mu, \ \mu = ?$$

$$Var(\underline{X}) = \Sigma, \ \Sigma = ?$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

(A is a non-random matrix).

$$\underline{Z} = A \cdot \underline{X},$$

$$\mathbb{E}[\underline{Z}] =$$

$$Var(\underline{Z}) = .$$

21:
$$Y = a + b \cdot X$$

$$\mathbb{E}[Y] =$$

$$\mathbb{E}[Y|X=x] = .$$

22: Given the joint density $f_{XY}(x,y)$: how do you get $f_X(x)$ and $f_Y(y)$?

- a) for discrete random variable,
- b) for continuous random variable.

23: Under which conditions can $f_{XY}(x,y)$ be obtained from $f_X(x)$ and $f_Y(y)$?

24: X and Y are jointly normally distributed

$$\begin{pmatrix} X \\ Y \end{pmatrix} \sim BVN\left(\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho_{XY}\right).$$

What is the relation of parameters and moments? $X \sim$

 $Y \sim$

$$X|(Y=y) \sim$$

$$Y|(X=x) \sim$$

$$\mathbb{E}[X|Y=y] =$$

$$Var(X|Y=y) =$$

25: X, Y and Z are normally distributed.

$$W = a \cdot X + b \cdot Y + c \cdot Z$$

How is W distributed?