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On a Contraction free Sequent Calculus for the Modal Logic S4

Theorem proving in the modal logic S4 is notoriously difficult, because in conventional
sequent style calculi for this logic lengths of deductions are not bounded in terms of the length
of their endsequent. This means that the usual depth first search strategy for backwards
construction of deductions of given sequents may give rise to infinite search paths and is
not guaranteed to terminate. Thus using such a search strategy prevents us not only from
obtaining a decision procedure for the logic in question, but even from arriving at a complete
proof procedure. There are two well known approaches for overcoming this problem: both
approaches rely on the fact that all formulas which occur in a deduction are subformulas of
the endsequent and that out of these formulas one may only form finitely many ”essentially
different” sequents. Thus although there is no bound on the length of all deductions of a
given sequent, we know that for any given sequent there is a number such that if the sequent
is deducible at all, then it has a deduction of length smaller than this number. Hence
by only considering deductions of appropriately bounded length one may obtain a decision
procedure. But due to the fact that using such a procedure one is forced to construct many
redundant inferences – one will, for instance, have to consecutively apply the same inference
many times – this approach is considered rather inefficient. Instead the usual technique
for deciding provability of formulas in S4 is based on loop checking: If ”essentially the
same” sequent occurs twice on a branch of a constructed deduction, then there is a shorter
deduction with the same endsequent which does not show this redundancy, and one may
backtrack. Although more efficient in terms of run time than the previous approach this loop
checking method requires quite involved implementation techniques. Now in the context of
intuitionistic propositional logic recently a third approach has been found, which is based
on so called contraction free sequent calculi, i.e. calculi for which there is a certain measure
such that for all rules of the calculi all premisses have smaller measure then the conclusion
(cf. Dyckhoff, Hudelmaier.) Thus in a contraction free calculus all deductions of a
given sequent are bounded in length by some function of the length of their endsequent and
a decision procedure is obtained by simple depth first backwards application of the rules. In
this paper we show that there is a contraction free sequent for S4, too. This calculus is more
complicated than the corresponding calculi for intuitionistic propositional logic, but still it
gives rise to a simpler decision procedure for S4 than conventional methods.

§1. Introduction
We consider a language of sequents, i.e. pairs of multisets of formulas built up from propo-
sitional variables, the Boolean connectives ¬ and∨ and the modal connective ⊓⊔.
We start from a calculus LM0 for the modal logic S4 consisting of axioms of the form M,a
⇒,a,N , where a is a propositional variable, the well known Boolean rules

E¬
M ⇒ N, v

M,¬v ⇒ N
I¬

M,v ⇒ N
M ⇒ N,¬v

E∨
M,u ⇒ N M, v ⇒ N

M,u ∨ v ⇒ N
I∨

M ⇒ N,u, v
M ⇒ N,u ∨ v

E2
M,2v, v ⇒ N
M,2v ⇒ N

I2 M0 ⇒ v
M ⇒ N,2v

and the two modal rules

where M0 results from M by omitting all formulas not of the form ⊓⊔v.
Obviously the so called weakening rule is an admissible rule of this calculus: If a sequent M
⇒N is deducible in LM0 by a deduction of length n, then both the sequent M ⇒ N,v and
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the sequent M,v ⇒N are deducible by deductions of length ≤ n. Moreover it is immediately
clear that the Boolean rules of LM0 and the rule E⊓⊔ are invertible: If a conclusion of one
of these rules is deducible in LM0 by a deduction of length n, then all its premisses are
deducible by a deduction of length ≤ n. Therefore the following holds:

Lemma 1:
a) Every LM0-deduction of a sequent M,v,v ⇒N may be transformed into a deduction of the
sequent M,v ⇒N of smaller or equal length.
b) Every LM0-deduction of a sequent M ⇒ v,v,N may be transformed into a deduction of the
sequent M ⇒ v,N of smaller or equal length.

Proof:

a) is true of axioms, and if M,v,v ⇒N is the conclusion of an inference I different from
I⊓⊔ with principal formula different from v, then the induction hypothesis applies to the
premisses and by an application of I to the transformed premisses the sequent M,v ⇒N may
be obtained. If M,v,v ⇒N is the conclusion of an I⊓⊔-inference, then either both occurrences
of v are contained in M0, in which case the induction hypothesis applies to it and M,v ⇒N
may be obtained as before, or neither occurrence of v is in M0 and one of them may be
introduced by weakening. If M,v,v ⇒N is the conclusion of a Boolean rule B with principal
formula v, then the premisses may be transformed according to the inversion principle for the
Boolean rules and the resulting sequents may be transformed by the induction hypothesis;
finally to these transformed sequents the rule B may be applied again, thereby obtaining
a deduction of M,v ⇒N. If M,v,v ⇒N is the conclusion of an E⊓⊔-inference with principal
formula v, then v is of the form ⊓⊔u and the premiss reads M,⊓⊔u,⊓⊔u,u ⇒N. The induction
hypothesis applied to this premiss yields the sequent M,⊓⊔u,u ⇒N; and the rule E⊓⊔ applied
to this gives the required deduction of M,v ⇒N.
b) is also true of axioms, and if M ⇒ v,v,N is the conclusion of an inference I different
from I⊓⊔, then the deduction of M ⇒ v,N is constructed as above. But if M ⇒ v,v,N is the
conclusion of an I⊓⊔-inference, then from its premiss we directly obtain M ⇒ v,N by a different
application of I⊓⊔ with the same principal formula, vic. by introducing only one occurrence
of v into the conclusion. qed

This shows that the calculus LM0 is equivalent to the more frequently encountered S4-calculi
for sequents made up of pairs of sets of formulas (cf. Fitting), and in particular the so
called cut rule is also a derived rule of LM0: If two sequents M ⇒ c and M,c ⇒ v are
deducible by LM0, then so is the sequent M ⇒ v.

§2. Reduction to clausal form
In order to determine deducibility of sequents by our calculus LM0 we may restrict the
language to so called clausal sequents: There is a simple procedure which associates to every
sequent s,of the full language a clausal sequent C(s), such that s,is derivable by LM0 if and
only if C(s) is derivable by LM0.

Definition: (Cf. Mints)
a) A modal literal is either a propositional variable, a negated propositional variable, a for-
mula of the form ⊓⊔a, where a is a propositional variable or a formula of the form ¬⊓⊔a, where
a is a propositional variable.
b) A modal clause is a formula of the form l0∨(l1∨...)...) or ⊓⊔(l0∨(l1∨...)...)), where the li
are modal literals.
c) A clausal sequent is a sequent of the form c1, ... ,cm ⇒ a1, ... ,an, where the ci are
modal clauses and the ai are propositional variables.
For simplifying notation we let the expression [v0, ... ,vn] (n≥ 0) denote the formula v0∨(v1∨

(...∨vn) ...). Thus a formula [v0, ... ,vn] or ⊓⊔[v0, ... ,vn] is a modal clause iff all the vi are
modal literals.
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Then the following holds:

Lemma 2: The sequents in the first column of the following table are deducible by LM0 if
and only if the corresponding sequents of the second column are deducible:

M ⇒ v,N M,¬v ⇒ N

M, [A,¬¬v,B] ⇒ N M, [A, v,B] ⇒ N

M, [A,¬(u ∨ v), B] ⇒ N M, [A,¬p,B], [p,¬u], [p,¬v] ⇒ N

M, [A, u ∨ v,B] ⇒ N M, [A, u, v,B] ⇒ N

M, [A,¬2¬v,B] ⇒ N M, [A,¬2p,B],2[p, v] ⇒ N

M, [A,¬2(u ∨ v), B] ⇒ N M, [A,¬2p,B],2[p,¬u],2[p,¬v] ⇒ N

M, [A,¬22v,B] ⇒ N M, [A,¬2v,B] ⇒ N

M, [A,2¬v,B] ⇒ N M, [A,2p,B], [¬p,¬v] ⇒ N

M, [A,2(u ∨ v), B] ⇒ N M, [A,2p,B],2[¬p, u, v] ⇒ N

M, [A,22v,B] ⇒ N M, [A,2v,B] ⇒ N

M,2[A,¬¬v,B] ⇒ N M,2[A, v,B] ⇒ N

M,2[A,¬(u ∨ v), B] ⇒ N M,2[A,¬p,B],2[p,¬u],2[p,¬v] ⇒ N

M,2[A, u ∨ v,B] ⇒ N M,2[A, u, v,B] ⇒ N

M,2[A,¬2¬v,B] ⇒ N M,2[A,¬2p,B],2[p, v] ⇒ N

M,2[A,¬2(u ∨ v), B] ⇒ N M,2[A,¬2p,B],2[p,¬u],2[p,¬v] ⇒ N

M,2[A,¬22v,B] ⇒ N M,2[A,¬2v,B] ⇒ N

M,2[A,2¬v,B] ⇒ N M,2[A,2p,B],2[¬p,¬v] ⇒ N

M,2[A,2(u ∨ v), B] ⇒ N M,2[A,2p,B],2[¬p, u, v] ⇒ N

M,2[A,22v,B] ⇒ N M,2[A,2v,B] ⇒ N

(Here the formulas p on the right hand sides are propositional variables which do not occur
on the corresponding left hand sides.)

Proof:

This lemma is well known: For instance from a deduction of M,⊓⊔[A,¬⊓⊔(u∨v),B] ⇒ N
we obtain the required deduction of M,⊓⊔[A,¬⊓⊔p,B],⊓⊔[p,¬u] ⊓⊔[p,¬v] ⇒ N by a cut with
the LM0-deducible sequent ⊓⊔[A,¬⊓⊔p,B], ⊓⊔[p,¬u],⊓⊔[p,¬v] ⇒ ⊓⊔[A,¬⊓⊔(u∨v),B], whereas given
a deduction of M,⊓⊔[A,¬⊓⊔p,B],⊓⊔[p,¬u], ⊓⊔[p,¬v] ⇒ N we obtain the required deduction of
M,⊓⊔[A,¬⊓⊔(u∨v),B] ⇒ N by changing all occurences of p to u∨v and cutting out the two
LM0-deducible formulas ⊓⊔[u∨v,¬u] and ⊓⊔[u∨v,¬v] from the resulting endsequent. qed

From this lemma we easily obtain a procedure for reducing a given sequent of arbitrary form
to a clausal sequent. This procedure consists of two steps:
a)Applying the property expressed by the first row of the above table to the formulas vi on
the right hand side of a given sequent a1, ... ,am,⊓⊔d1, ... ,⊓⊔dn ⇒ v1, ... ,vq, p1, ... ,pr

(where the ai are not of the form ⊓⊔b, the vi are not propositional variables and the pi are
propositional variables), we arrive at a new sequent which has only propositional variables
on its right hand side and which has at most twice as many connectives as the given sequent.
b) Applying the remaining rows to the resulting sequent [a1], ... ,[am],⊓⊔[d1], ... , ⊓⊔[dn],[¬v1],
... ,[¬vq] ⇒ p1, ... ,pr it is easily seen, that at each step the number of connectives inside one
of the square brackets of this sequent, which do not belong to modal literals, decreases. This
number is bounded by the number of all connectives of the sequent which is itself bounded
by twice the number of connectives of the original sequent. Since at each step the number
of connectives of a sequent is at most increased by 1, this shows the required

Lemma 3: There is a procedure which converts any sequent s into a clausal sequent C(s)
such that the number of connectives of C(s) is at most four times the number of connectives
of s and s is deducible by LM0 iff C(s) is deducible. qed
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Now unfortunately in an LM0-deduction of a clausal sequent there will usually occur sequents
which aren’t clausal, vic. sequents occurring as premisses of applications of E¬ and having
a formula ⊓⊔a on their right hand side. But the following lemma shows that we may combine
such applications of E¬ with an immediately preceding application of I⊓⊔ into a single new
rule, thus preserving clausal forms for all sequents of a deduction:

Lemma 4: There is a transformation sending every LM0-deduction of a given sequent into a
deduction of the same sequent such that in the new deduction every premiss of an application
of E¬ with principal formula ,¬⊓⊔v is the conclusion of an application of I,with principal
formula ⊓⊔v.

Proof:

We consider a maximal application I of E¬ with principal formula ¬⊓⊔v and premiss s for
which ⊓⊔v is not the principal formula of the inference leading to s and we use recursion on
the maximal number of successive sequents preceding s in which ⊓⊔v occurs on the right hand
side to turn it into an E¬-inference having the required property: If this number is 1, then
either s is an axiom or ⊓⊔v must have disappeared because of some application of I⊓⊔ with
principal formula different from ⊓⊔v and in both cases the E¬-inference I may be dropped. If
this number is greater than 1 and the inference leading to s is either a Boolean inference with
principal formula not of the form ¬⊓⊔w or an E⊓⊔-inference, then this inference may be shifted
down past the E¬-inference, thereby lowering the recursion parameter. But if the inference
leading to s is another E¬-inference J with principal formula ¬⊓⊔w, then its premiss is the
conclusion of an I⊓⊔-inference with principal formula ⊓⊔w and again the inference I may be
dropped. Using this technique we will eventually turn all E¬-inferences of a given deduction
into inferences of the form required by this lemma. qed

Using this lemma we may now replace any pair of inferences consisting of an application of I⊓⊔
with principal formula ⊓⊔v and an application of E¬ with principal formula ¬⊓⊔v immediately
following it by a new inference leading directly from the premiss of the I⊓⊔-inference to the
conclusion of the E¬-inference. This gives us the new calculus LM1 which has the axioms
and the rules E∨ and E⊓⊔ of LM0 and the following divided E¬-rule:

E¬s
M ⇒ a,N
M,¬a ⇒ N

(a a propositional variable) E¬d M0 ⇒ a
M,¬2a ⇒ N

Now in an LM1-deduction of a clausal sequent there occur only clausal sequents, and the
rules just mentioned are the only rules of LM0 which are applicable to clausal sequents.
Therefore since LM1 shall only be used for clausal sequents, it does not need any further
rules; in particular it does not need any I-rules for the following lemma to hold:

Lemma 5: The calculi LM0 and LM1 are equivalent as regards deducibility of clausal se-
quents.

qed

Therefore the rules E¬s and E∨ are invertible rules of this calculus, too, and we may safely
extend the E∨-rule to disjunctions of arbitrary length, showing the following:

Lemma 6: The following calculus LM2 is equivalent to LM1: LM2 has the axioms and the
rule E¬d of LM1 and it has he rules E∨ and E⊓⊔ in the form

E∨

M,a1 ⇒ N . . . M, ap ⇒ N

M ⇒ b1, N . . . M ⇒ bq, N

M,2c1 ⇒ N . . . M,2cr ⇒ N

M,¬2d1 ⇒ N . . . M,¬2ds ⇒ N
M, v ⇒ N

E2

M,2v, a1 ⇒ N . . . M,2v, ap ⇒ N

M2v ⇒ b1, N . . . M2v ⇒ bq, N

M,2v,2c1 ⇒ N . . . M,2v,2cr ⇒ N

M,2v,¬2d1 ⇒ N . . . M,2v,¬2ds ⇒ N
M,2v ⇒ N
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where v is the formula [a1, ... ,ap,¬b1, ... ,¬bq,⊓⊔c1, ... ,⊓⊔cr,¬⊓⊔d1, ... ,¬⊓⊔ds], the ai,bj,ck and
dl are propositional variables, p+q+r+s > 0 and v is meant to represent any permutation of
its subformulas. qed

§3. The calculus
Here we note, that the rule E¬s of LM1 is a special case of the rule E∨ and that due to the
invertibility of the E¬s-rule the formulas bi in the rules E∨ and E⊓⊔ may be put to the right
hand side of the premisses in the second row, whereas the formulas ¬⊓⊔di have to remain
on the left hand side, because the rule E¬d is not directly invertible. Still we show in the
next lemma that any LM2-deduction may be transformed in such a way that these formulas
can immediately be put to the right hand sind, too. For this purpose we call the premisses
in the first and second rows of the E∨- and E⊓⊔-rules α-premisses, those in the third row
β-premisses and those in the fourth row γ-premisses.

Lemma 7: There is a transformation sending any LM2-deduction of a given sequent into
another deduction of the same sequent, such that in the new deduction every γ-premiss is
the conclusion of an application of E¬d.

Proof:

In order to construct such a deduction from a given arbitrary deduction we consider a
maximal γ-premiss s = M,⊓⊔v,¬⊓⊔d ⇒ N of an inference I of our deduction, which isn’t the
conclusion of an application of E¬d (here v =[a1, ... ,ap,¬b1, ... ,¬bq,⊓⊔c1, ... ,⊓⊔cr,¬⊓⊔d1, ...
,¬⊓⊔ds,¬⊓⊔d]), and we use recursion on the maximal number of successive sequents preceding
s in which ¬⊓⊔d occurs: If it is 0, then either s is an axiom or it is the conclusion of an
application of E¬d with principal formula different from ¬⊓⊔d. In both cases the inference
whose premiss s is may be dropped. If this number is greater than 0, and the inference J
leading to s is an application of E¬s, then we may shift J down past I in the usual way and
lower the recursion parameter. But if J is by an application of a multipremiss rule, e.g. E⊓⊔,
then we proceed as follows:
Let w be [e1, ... ,et,¬f1, ... ,¬fu,⊓⊔g1, ... ,⊓⊔gv,¬⊓⊔h1, ... ,¬⊓⊔hw], let M be L,⊓⊔w and let
L,⊓⊔w,⊓⊔v ⇒ N be the conclusion of I, let L,⊓⊔w,⊓⊔v,ai ⇒ N and L,⊓⊔w,⊓⊔v ⇒ bj ,N be its α-
premisses, L,⊓⊔w,⊓⊔v,⊓⊔ck ⇒ N its β-premisses and L,⊓⊔w,⊓⊔v,¬⊓⊔dl ⇒ N and s its γ-premisses:
then the premisses of J are of the form L,⊓⊔w,⊓⊔v, ¬⊓⊔d,ei′ ⇒ N resp. L,⊓⊔w,⊓⊔v, ¬⊓⊔d ⇒

fj′ ,N resp. L,⊓⊔w,⊓⊔v, ¬⊓⊔d,⊓⊔gk′ ⇒ N resp. L,⊓⊔w,⊓⊔v, ¬⊓⊔d,¬⊓⊔hl′ ⇒ N. Now since I was
a maximal inference not obeying the lemma, the sequents L,⊓⊔w,⊓⊔v, ¬⊓⊔d,¬⊓⊔hl′ ⇒ N are
immediately preceded by sequents L0,⊓⊔w,⊓⊔v ⇒ bl′ . Thus we may shift the J-inference below
the I-inference:
From the I-premisses different from s we obtain by weakening sequents L,⊓⊔w,⊓⊔v,ai,ei′ ⇒ N,
sequents L, ⊓⊔w,⊓⊔v,ei′ ⇒,bj ,N, sequents L,⊓⊔w, ⊓⊔v,⊓⊔ck,ei′ ⇒ N and sequents L,⊓⊔w,⊓⊔v,¬⊓⊔dl,ei′

⇒ N and we combine these with the J-premiss L,⊓⊔w,⊓⊔v, ¬⊓⊔d,ei′ ⇒ N to form the premisses
of an E⊓⊔-inference leading to L,⊓⊔w,⊓⊔v,ei′ ⇒ N. Similar E⊓⊔-inferences provide us with the
sequents L,⊓⊔w,⊓⊔v ⇒ fj′ ,N and L,⊓⊔w,⊓⊔v, ⊓⊔gk′ ⇒ N, and combining these with the sequents
L,⊓⊔w,⊓⊔v,¬⊓⊔hl′ ⇒ N which result from L0,⊓⊔w,⊓⊔v ⇒ bl′ we obtain all the premisses of an
E⊓⊔-inference leading to L,⊓⊔w,⊓⊔v ⇒ N, i.e. the conclusion of I. Now in the new deduction
the recursion parameter has decreased and at the same time – although the total number
of E⊓⊔-inferences has increased – the sum of the recursion parameters of inferences on the
single branches of our deduction has not increased. Therefore we may successively eliminate
all the E⊓⊔-inferences in our deduction which violate the condition expressed in this lemma.

qed

Now as before we may combine any E∨- resp. E⊓⊔-inference with the E¬d inferences leading
to its γ-premisses into a single new inference and we obtain the calculus LM3 consisting of
the usual axioms and the two rules
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E∨

M,a1 ⇒ N . . . M, ap ⇒ N

M ⇒ b1, N . . . M ⇒ bq, N

M,2c1 ⇒ N . . . M,2cr ⇒ N

M0 ⇒ d1 . . . M0 ⇒ ds

M,v ⇒ N
E2

M,2v, a1 ⇒ N . . . M,2v, ap ⇒ N

M2v ⇒ b1, N . . . M2v ⇒ bq, N

M,2v,2c1 ⇒ N . . . M,2v,2cr ⇒ N

M0,2v ⇒ d1 . . . M0,2v ⇒ ds

M,2v ⇒ N

which are to be read as before, except that in case p+q+s = 0, the number r has to be > 1.
Now the E∨-rule also comprises the E¬d-rule of LM2 thus we have shown:

Lemma 8: The calculi LM2 and LM3 are equivalent . qed

Now the rule E∨ isn’t invertible any more, but it still holds that if its conclusion is deducible,
then so are its α- and β-premisses. This shows:

Lemma 9: Every LM3-deduction of a sequent M,v,v ⇒N may be transformed into a deduction
of the sequent M,v ⇒N of smaller or equal length.

Proof:

This is true of axioms, and if M,v,v ⇒N is the conclusion of an inference I with principal
formula different from v, then the premisses of this inference contain either both occurrences
of v or none and to the former ones the induction hypothesis applies. Thus by an application
of I to these transformed premisses and to those which contain no occurrence of v the sequent
M, v ⇒N may be obtained. If M,v,v ⇒N is the conclusion of an E∨-inference with principal
formula v, then the above mentioned restricted inversion principle for E∨ may be applied
to the α- and β-premisses and then these premisses may be transformed according to the
induction hypothesis, whereas the γ-premisses do not contain v. Thus by applying E∨ to the
transformed α- and β-premisses and to the original γ-premisses we arrive at the required
deduction of M,v ⇒ N. Finally if our sequent is the conclusion of an E⊓⊔-inference with
principal formula v, then the induction hypothesis directly applies to all premisses and the
required sequent may be derived by a similar application of E⊓⊔ to the transformed premisses.

qed

Now while for the rule E∨ all premisses have smaller length than the conclusion, this is not
the case for E⊓⊔. Therefore we need the following

Lemma 10:
a) Every LM3-deduction of a sequent M,⊓⊔[A,u] ⇒N or a sequent M,⊓⊔[A,⊓⊔u] ⇒N may be
transformed into a deduction of the sequent M, ⊓⊔u ⇒N of smaller or equal length.
b) A sequent M,⊓⊔[A,⊓⊔u],⊓⊔u ⇒N is deducible by LM3 iff the sequent M,⊓⊔u ⇒ N is deducible.

Proof:

a) This is true for axioms, and it is trivially preserved under inferences with principal
formulas different from ⊓⊔[A,u] resp. ⊓⊔[A,⊓⊔u]. For an E⊓⊔-inference with principal formula
⊓⊔[A,u] resp. ⊓⊔[A,⊓⊔u] one premiss contains u resp. ⊓⊔u and to this premiss the induction
hypothesis applies and yields a sequent with two occurrences of u resp. ⊓⊔u. Thus by an
application of the preceding lemma we obtain deductions of the required sequents.
b) If M,⊓⊔[A,⊓⊔u],⊓⊔u ⇒N is deducible, then a) and Lemma 9 show that M,⊓⊔u ⇒ N is de-
ducible, too. If this latter sequent is dedcucible, then weakening shows that M,⊓⊔[A,⊓⊔u],⊓⊔u
⇒N is deducible. qed
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From this follows:

Lemma 11: The calculus LM4 consisting of the usual axioms, the rule E∨ and the two
E⊓⊔-rules

E2s

M,2v, a1 ⇒ N . . . M,2v, ap ⇒ N

M,2v ⇒ b1, N . . . M,2v ⇒ bq, N

M,2c1 ⇒ N . . . M,2cr ⇒ N

M,2v ⇒ N
E2d

M,2v̄, a1 ⇒ N . . . M,2v̄, ap ⇒ N

M2v̄ ⇒ b1, N . . . M2v̄ ⇒ bq, N

M,2v,2c1 ⇒ N . . . M,2v,2cr ⇒ N

M0,2v ⇒ d1 . . . M0,2v ⇒ ds

M,2v ⇒ N

where v is the formula [a1, ... ,ap,¬b1, ... ,¬bq,⊓⊔c1, ... ,⊓⊔cr,¬⊓⊔d1, ... ,¬⊓⊔ds], s = 0 for
E⊓⊔s, s > 0 for E⊓⊔d and v̄is the formula [a1, ... ,ap,¬b1, ... ,¬bq,⊓⊔c1, ... ,⊓⊔cr], deduces all
the sequents which LM3 deduces. (Henceforth we shall call formulas v with s = 0 shallow
formulas and those with s > 0 deep formulas.)

Proof:
All we have to show, is that the E⊓⊔-rule of LM3 is admissible for this new calculus: So given
all the premisses of an application of E⊓⊔ Lemma 10 allows us to transform all its β-premisses
into a form suitable for premisses of our new E⊓⊔-rules. Moreover if the principal formula
v of the given application of E⊓⊔ is deep, then the same lemma allows us to transform this
formula into v̄ in all α-premisses. Thus we may deduce the conclusion of any application of
E⊓⊔ from its premisses by applying either the rule E⊓⊔s or E⊓⊔d. qed

This shows one half of the

Lemma 12: The calculi LM3 and LM4 are equivalent.

Proof:
To proof the other direction we have to show that both E⊓⊔-rules of LM4 are admissible for
LM3: For E⊓⊔s this follows directly from Lemma 10. For E⊓⊔d we rely on the equivalence of
LM3 and LM0: Suppose we are given all the premisses of an application of E⊓⊔d, then from
the γ-premisses M0,⊓⊔v ⇒ dl, we may deduce in LM0 the sequents M,⊓⊔v,¬⊓⊔dl ⇒ N, and from
the β-premisses we may as before deduce the sequents M,⊓⊔v, ⊓⊔ck ⇒ N. Thus by suitable
applications of the rules E¬ and E∨ from all premisses we may deduce the sequent

M, . . . ∨ ¬(¬2v̄ ∨ ¬ai) ∨ . . . ∨ ¬(¬2v̄ ∨ ¬bj) ∨ . . . ∨ ¬(¬2v ∨ ¬2ck) ∨ . . .

. . . ∨ ¬(¬2v ∨ ¬¬2dl) ∨ . . . ⇒ N.

But we may also deduce

M,2v ⇒ . . . ∨ ¬(¬2v̄ ∨ ¬ai) ∨ . . . ∨ ¬(¬2v̄ ∨ ¬bj) ∨ . . .

. . . ∨ ¬(¬2v ∨ ¬2ck) ∨ . . . ∨ ¬(¬2v ∨ ¬¬2dl) ∨ . . . , N.

Thus by an application of the cut rule we may deduce the required conclusion M,⊓⊔v ⇒ N
of E⊓⊔d. qed

Now for LM4 the β-premisses of both E⊓⊔-rules and the α-premisses of E⊓⊔d are shorter than
the conclusion, whereas for the γ-premisses of both rules and the α-premisses of E⊓⊔s this
does not hold. We deal with the latter premisses first:



9

Lemma 13: There is a transformation which converts every LM4-deduction of a given sequent
into another LM4-deduction of the same sequent in which no α-premiss of an application of
E⊓⊔s is the conclusion of an application of E⊓⊔d.

Proof:
Given an arbitrary LM4-deduction w.l.o.g. we consider a maximal α-premiss s = M,⊓⊔v,a
⇒ N of an application of E⊓⊔s, which is the conclusion of an application of E⊓⊔d (here
v =[a,a1,...,ap,¬b1,...,¬bq,⊓⊔c1,..., ⊓⊔cr]), and we use recursion on the maximal number of
successive applications of E⊓⊔d preceding s: This number cannot be 0, and thus we let w
= [e1, ... ,et,¬f1, ... ,¬fu,⊓⊔g1, ... ,⊓⊔gv,¬⊓⊔h1, ... ,¬⊓⊔hw] be the principal formula of the
application J of E⊓⊔d leading to s, we let M be L,⊓⊔w and we let L,⊓⊔w,⊓⊔v ⇒ N be the
conclusion of I, the sequents s and L,⊓⊔w,⊓⊔v,ai ⇒ N and L,⊓⊔w,⊓⊔v ⇒ bj ,N its α-premisses,
L,⊓⊔w,⊓⊔v,⊓⊔ck ⇒ N its β-premisses: then the premisses of J are of the form L,⊓⊔w,⊓⊔v, a,ei′

⇒ N resp. L,⊓⊔w,⊓⊔v, a ⇒ fj′ ,N resp. L,⊓⊔w,⊓⊔v,a, ⊓⊔gk′ ⇒ N resp. L0,⊓⊔w,⊓⊔v, ⇒ hl′ and the
inference J is shifted down past I as follows:
We use the given sequent L,⊓⊔w,⊓⊔v,a,ei′ ⇒ N and the sequents L,⊓⊔w,⊓⊔v,ai,ei′,⇒ N and
L,⊓⊔w,⊓⊔v,ei′ ⇒ bj ,N and L,⊓⊔w,⊓⊔v,⊓⊔ck,ei′ ⇒ N (where these latter sequents are obtained
from the corresponding I-premisses by weakening) as premisses of an application of E⊓⊔s
leading to L,⊓⊔w,⊓⊔v,ei′ ⇒ N. Similarly we obtain deductions of the sequents L,⊓⊔w,⊓⊔v ⇒

fj′ ,N resp. L,⊓⊔w,⊓⊔v, ⊓⊔gk′ ⇒ N and from these and L0,⊓⊔w,⊓⊔v, ⇒ hl′ using an E⊓⊔d-inference
with principal formula ⊓⊔w we arrive at a deduction of L,⊓⊔w,⊓⊔v ⇒ N where the recursion
parameter has decreased by 1. Now the number of E⊓⊔s-inferences may have increased in
this new deduction, but the maximal sum of recursion parameters on any branch of our
deduction cannot have increased. Hence we may in this way eliminate all the α-premisses
of E⊓⊔s which are conclusions of applications of E⊓⊔d. qed

This lemma is applied for proving completeness of the calculus LM5 which in addition to
the modal operator ⊓⊔ uses a new operator ◦ to be substituted for ⊓⊔ in certain situations:
LM5 has besides the usual axioms the rules E∨, E⊓⊔s and E⊓⊔d in the following form:

E∨

M2, a1 ⇒ N . . . M2, ap ⇒ N

M2,⇒ b1, N . . . M2,⇒ bq, N

M2,2c1 ⇒ N . . . M2,2cr ⇒ N

M3 ⇒ d1 . . . M3 ⇒ ds

M,v ⇒ N

E2s

M1,◦v, a1 ⇒ N . . . M2,◦v, ap ⇒ N

M1,◦v ⇒ b1, N . . . M1,◦v ⇒ bq, N

M2,2c1 ⇒ N . . . M2,2cr ⇒ N

M,2v ⇒ N
E2d

M2,2v̄, a1 ⇒ N . . . M2,2v̄, ap ⇒ N

M2,2v̄ ⇒ b1, N . . . M2,2v̄ ⇒ bq, N

M2,2c1 ⇒ N . . . M2,2cr ⇒ N

M3,2v ⇒ d1 . . . M3,2v ⇒ ds

M,2v ⇒ N

where M1 results from M by replacing any formula ⊓⊔v with deep v by ◦v, M2 results from M
by replacing any formula ◦v by ⊓⊔v, and M3 results from M by omitting all non modalized
formulas, i.e. all formulas not of the form ⊓⊔v or ◦v. There is no rule for introducing the
operator ◦, thus any application of one of the rules of LM5 becomes a valid application of
the corresponding LM4-rule if we replace any ◦ in all premisses and in the conclusion by a
⊓⊔. This shows that if M,◦v ⇒ N is deducible by LM5, then M,⊓⊔v ⇒ N is deducible by LM5

and by LM4; and in general: if M ⇒ N is deducible by LM5, then M2⇒ N is deducible by
LM5 and by LM4 – one half of the equivalence of LM4 and LM5. For the proof of the other
direction we call a formula ⊓⊔v distant in a deduction d of a sequent M,⊓⊔v ⇒ N iff below any
conclusion of an inference with principal formula ⊓⊔v there is a conclusion of an E∨-inference
or a β-premiss. Then we show
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Lemma 14: Any LM4-deduction d of a sequent M ⇒ N may be transformed into an LM5-
deduction of the sequent M4 ⇒ N , where M4 results from M by replacing any number of
formulas ⊓⊔v distant in d by ◦v.

Proof:
Suppose we are given an LM4-deduction of a sequent s. We may assume that it has the
property expressed by Lemma 13. If the final inference of this deduction is an application of
E∨, then by the induction hypothesis the deductions of all premisses may be transformed
into LM5-deductions of the same sequents and these are the premisses of an E∨-inference of
LM5-inference leading to the required sequent. If the final inference is an application of E⊓⊔d,
then by the induction hypothesis the α- and β-premisses are deducible by LM5 and these
are the corresponding premisses of an E⊓⊔d-inference of LM5 leading to the required sequent.
But the γ-premisses necessary for this inference are obtained from the given γ-premisses by
replacing sufficiently many distant formulas ⊓⊔v by ◦v, because all the distant formulas of
s are distant in all γ-premisses, too. Therefore the required sequent is deducible by LM5.
If the final inference I is an application of E⊓⊔s with principal formula ⊓⊔v, where v = [a1,
... ,ap,¬b1, ... ,¬bq,⊓⊔c1, ... ,⊓⊔cr] and the formula ⊓⊔v is not distant in an α-premiss P of
I, then by the property of Lemma 13 there is a chain of α-premisses preceding P and such
that one of these α-premisses is the conclusion of another inference with principal formula
⊓⊔v. In this case we may drop the inference I. Otherwise the formula ⊓⊔v is distant in all
a-premisses of I, and also all the distant formulas of our sequent M,⊓⊔v ⇒ N in its deduction
d are distant formulas in all α-premisses, too. Now again by the property of Lemma 13 in
the α-premisses at least all formulas ⊓⊔w with w deep are distant. Thus by the induction
hypothesis all sequents M4,⊓⊔v,ai ⇒ N resp. M4,⊓⊔v ⇒ bj ,N are deducible, and they are the
α-premisses of an LM5-application of E⊓⊔s leading to M4,⊓⊔v ⇒ N. Moreover as before the
transformed deductions of the β-premisses again yield the β-premisses of a corresponding
LM5-inference leading to the required conclusion M,⊓⊔v ⇒ N. Thus this latter sequent is
deducible by LM5. qed

The calculus LM5 shows one single obstacle to contraction freeness, vic. the presence of
the principal formula of an E⊓⊔d-inference in the γ-premisses. This obstacle is removed by
considering the calculus LM having the usual axioms, the rules E∨ and E⊓⊔s of LM5 and the
rule E⊓⊔d in the form

E2d

M2,2v̄, a1 ⇒ N . . . M2,2v̄, ap ⇒ N

M2,2v̄ ⇒ b1, N . . . M2,2v̄ ⇒ bq, N

M2,2c1 ⇒ N . . . M2,2cr ⇒ N

M3,◦v ⇒ d1 . . . M3,◦v ⇒ ds

M,2v ⇒ N

In order to proof completeness of this calculus we call a formula ⊓⊔v distant in a deduction d
of a sequent M, ⊓⊔v ⇒ N iff v is deep and below any conclusion of an inference with principal
formula ⊓⊔v there is a conclusion of an E∨-inference or an α-premiss or a β-premiss. Then
we reproof Lemma 14 as:

Lemma 15: Any LM5-deduction d of a sequent M ⇒ N may be transformed into an LM-
deduction of the sequent M4 ⇒ N, where M4 results from M by replacing any number of
formulas ⊓⊔v distant in d by ◦v .

Proof:
If the last rule applied in a given LM5-deduction of our sequent s = M ⇒ N is E∨, then
all premisses are deducible by LM by the induction hypothesis, and moreover they are the
LM-premisses of an inference leading to M4 ⇒ N. Therefore this sequent is deducible by LM,
too. If the last rule applied is E⊓⊔s, then the induction hypothesis gives us LM-deductions
of all β-premisses, and these are the required LM-premisses for an inference leading to M4
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⇒ N. But in the α-premisses all deep formulas are marked by a ◦. Thus we may also use
the α-premisses of our LM5-inference as α-premisses of an LM-inference leading to M4 ⇒

N. Finally if the last inference is by an application of E⊓⊔d with principal formula ⊓⊔v and
there is a γ-premiss P of this inference in which ⊓⊔v is not distant, then there is a chain
of γ-premisses preceding P which contains another occurrence of P. In this case the last
inference may be dropped. Otherwise the formula ⊓⊔v is distant in the deductions of all
γ-premisses, and furthermore all formulas distant in our given deduction of s are distant in
all γ-premisses, too. Therefore by the induction hypothesis we obtain all the γ-premisses
necessary for an LM-application of E⊓⊔d leading to M4 ⇒ N. But the α- and β-premisses for
such an inference are obtained as before, hence in all cases we arrive at an LM-deduction of
the required sequent M4 ⇒ N. qed

The calculus LM now has the desired property that there is a measure µ, such that in every
one of its rules the measure of the conclusion is greater than the measures of all premisses:
namely we may take µ(s) for a sequent s to be (the total number of connectives of s times
(the number of ⊓⊔’s plus the number of ◦’s)) minus the number of ◦’s, and moreover there
holds the

Theorem: A sequent is valid in S4 if and only if it is deducible by LM. qed
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In: P. Martin-Löf, G. Mints(eds.): COLOG-88
(Springer LNCS 417), pp. 198-231


