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Motivation

Functions of real variables are among the most important means of
investigation and presentation for the description and illustration of
economic issues and connections.

One of the central tasks in economics is the analysis of relationships
between economic variables. For example it is examined in which way:

® consumption depends on the (national) income: consumption
function;

e demand depends on the price of a good: demand function;

® quantity of a produced good depends on the used factor: production
function;

e "utility” of a household depends on the amount of the consumed
goods: utlity function.

Part 2. Functions of One Variable 4/49



Basic Definitions
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2.1 Basic Definitions

Definition: Mapping or Function

Let X, Y be sets. A rule f, which assigns every x € X exactly one y € Y
is called mapping or function of the set X in the set Y. We write:

f:X—=Y or elementwise  xeX = f(x)=yeY

Definition: Domain and Range

A (real-valued) function of a real variable x with domain D is a rule
that assigns a unique real number to each real number x in D. As x
varies over the whole domain, the set of all possible resulting values f(x)
is called the range/image of f.
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2.1 Basic Definitions

Definition: Monotonicity

Let / € R be an interval and f : /| — R a function. Then f(x) is called:

e strictly monotonically increasing if for all x;, x, € I it holds:
X1 < Xo = f(Xl) < f(X2)

® strictly monotonically decreasing if for all x;, x, € I it holds:
x1 < x = f(x1) > f(x2)

monotonically increasing if for all x;,x, € I it holds:
x1 < x2 = f(x1) < f(x)

® monotonically decreasing if for all x;,x, € [ it holds:
X1 < Xop = f(Xl) > f(Xz).
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Graphs of Functions
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2.2 Graphs of Functions

Functions (of one variable) can be presented in three different ways:
Function Table or Table of Values:

The respective function values of selected points in the domain are
provided in a table.

Functional Equation:

Equation of the form y = f(x); where y is called dependent
variable, x is called independent variable or argument of f.

Graphical lllustration:

The graph of the function is illustrated in a Cartesian coordinate
system.
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2.2 Graphs of Functions

§32a (1) EStG: Income Tax Rate

1 Collective income tax is calculated based on taxable income. 2Subje(:t to §§32b, 32d, 34, 34a, 34b and
34c it shall be in euros for the taxable income

Q until 7 834 Euro (personal exemption):
0;

@ from 7 835 Euro to 13 139 Euro:
(939.68 - y + 1 400) - y;

@ from 13 140 Euro to 52 551 Euro:
(228.74 - z + 2 397) - z + 1 007;

e from 52 552 Euro to 250 400 Euro:
0,42 - x - 8 064;

6 from 250 401 Euro :
0,45 - x - 15 576.

3,,y“ denotes one ten thousandth of the 7 834 Euro part of the taxable income exceeding the personal
exemption, rounded down to a full euro amount. 4 2 is one ten thousandth of the exceeding 13 139
Euro part of the rounded down to a full euro amount of the taxable income. B % is the taxable income
rounded down to a full euro amount. ® The resulting tax amount shall be rounded down to the nearest
full euro amount.

Quelle: www.gesetze-im-internet.de/estg/__32a.html
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2.2 Graphs of Functions
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2.2 Graphs of Functions

® Tabular summaries of a functional relation are regularly found in
empirically collected data (example: demand function).
By means of econometric methods, functional relations are
estimated based on data points.

® In econometric applications the notation y = y(x) is often found,
meaning the symbol of the function relation is identical to the
symbol of the dependent variable.

® The graph of a function is represented in set notation as follows:
Gy = {x,f(x) : x € D(f) A f(x) € range}

Functions can be classified based on various aspects. We will only
consider some function types, which are important in economic
applications.
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Digression: Piecewise Functions

Definition: Piecewise Functions

If a function is defined on a sequence of disjunct sections, such that a
seperate formula for each of these sections of the domain is given, it is
called piecewise defined.

1 for 0<x<2
f(x) = x for 2<x<4
1.5 for x>4

1+——

e R e e R R R
1 2 3 4 5 6 x
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Linear Functions
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2.3 Linear Functions

Linear functions are the most common type of functions used in
economics.

The general form of a linear function is y = ax + b, where a is the
parameter that defines the slope of the function, and b defines the
intercept.

The graph of a linear function is a straight line.

To compute the slope of a straight line in the plane two distinct points
on the line are chosen and the difference of the respective ordinate values
is related to the difference of the corresponding abscissa values. The
slope a of the straight line passing through the points X = (x1, x2) and

Y = (y1,y2) is, therefore, given by a = 2=
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2.3 Linear Functions

We consider a so-called linear system of equations which consists of two
equations with two unknowns:

ax+by = ¢

dx+ey = f
where a, b, c, d, e, and f are given. The solution of this system of
equations can be illustrated graphically by depicting the solution set of

each of the two equations as a straight line. The solution set depends on
the relation of the two lines:

e if the two lines intersect, the point of intersection is the solution of
the system of equations;

e if the lines are parallel, the system has no solution;

® if the two lines are congruent, there exist infinitely many solutions.
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2.3 Linear Functions

1. Case: Unique solution 2. Case: No solution 3. Case: co-many

solutions
X+y=5 3x+4y =2 x—y=0
x—y=-1 6x 4+ 8y = 24 2x =2y =0
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2.3 Linear Functions

Besides the above mentioned linear equations it is also possible to
illustrate linear inequalities (cf. section 1.5) graphically. In this
manner, the set of all pairs of numbers (x, y) that satisfy the
inequality y < —2x + 4 can be represented as:

y

L ]
r T

}
T
-2 2 4 x
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2.3 Linear Functions

Economic examples of linear relations:

® Linear aggregate consumption function: C = a+ bY, where
C = aggregate consumption; Y = national income. The parameter
b € [0; 1] is referred to as marginal propensity to consume. It
indicates by how many units consumption rises in the respective
economy when the income increases by one unit.

® Market for a good: Model assumptions: Linear demand function
D = a — bP and linear supply function S = o + SP. The
intersection of the two straight lines yields the equilibrium price P*
and the equilibrium quantity Q*.
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Quadratic Functions
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2.4 Quadratic Functions

If it is reasonable that a variable in some economic models decreases
down to some minimum value and then increases, or else increases up to
some maximum value and then decreases it is sensible to apply quadratic
functions.

General form of a quadratic function: y = f(x) = ax®> + bx + ¢
where a, b, and ¢ are the parameters of the functions and it is assumed
that a # 0.

The graph of a quadratic function is either a parabola that opens
upwards (a > 0) or downwards (a < 0).

Interesting points of a parabola are:

a) the intersections with the abscissa, that can be determined by
solving the equation f(x) = 0 and

b) the location of the vertex, that can often be determined using the
first derivative of the function and by solving the equation f'(x) = 0.
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2.4 Quadratic Functions

A quadratic function can have two, one, or no intersection with the
abscissa:
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Some economic models lead to quadratic functions for which the
location of the extreme point needs to be determined.

For instance, this is the case for the profit function in a monopoly
(profit is defined in this case as revenue minus costs). We will
consider such examples later in the lecture with the methods of
differential calculus.
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Polynomials
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2.5 Polynomials

Linear and quadratic functions are special cases of a general polynomial
function of the type

P(x) = a,x" 4+ a,_ x4+ axt 4 ap

where the coefficients a;,i = 1,..., n are either constants or parameters
of the polynomial.

The degree of the polynomial is defined by the highest occurring
exponent n € N.

If n =3, it is called a cubic function :
_ .3 2
y=ax>+bx"+cx+d

The graph of a cubic function can, depending on the choice of a, b, c,
and d, vary drastically.
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2.5 Polynomials
Example of a cubic cost function with:

C = ¢ — 61 ¢* 4 1500 g + 2000

x10*

L . " . . . . L
0 5 10 15 20 25 30 35 40 45
Menge q
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2.5 Polynomials

The cubic cost function represents a typical application in economics and
business studies. For polynomials with degree n it holds that they have at
most n roots in the range of real numbers or exactly n roots in the range
of complex numbers. Denoting the solutions with x;,i =1,...,n, it holds
that:

n

P(x) = T~ x)

i=1
This representation of a polynomial is called factorization.

Note: the same solution can appear multiple times; if only real
coefficients should be depicted then a modified version applies (for this
see the example in Sydszeter/Hammond (2.A.), p. 145fF; (3.A.), p.140fF).
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2.5 Polynomials

The determination of the zeros/solutions/roots is generally not an easy
task. It only works analytically for small n and, even then, not always in
closed form. Regularly numerical procedures need to be employed.

The representation of the polynomial by factorization can also be used to
reduce the degree of the polynomial by one. Is it possible for example to
guess a solution x; then it applies:

P)/(x =x) = (x =) - (x = x,)

Is the polynomial not in the factorized form it is possible to reduce the
degree of the polynomial analogously by polynomial-division. Here the
polynomial is divided in much the same way as a number.
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2.5 Polynomials

Example of Polynomial-Division:

(—x3 +4x> —x —6) +(x—2)=-x>+2x+3

—x3 4 2x? — [ —x3(x—=2)
2x% — x
2x% — 4x —
3x —6
=6 —[3(x—2)
0
Thus, itis (—x3 +4x2 —x —6) + (x —2) = —x% + 2x + 3.
However, because also —x? + 2x + 3 = —(x + 1)(x — 3), it results:

—x3—|—4x2—x—6:—(X—I—l)(x—3)(x—2)
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2.5 Polynomials

The ratio of two polynomials P(x) and Q(x) is called rational function
of the form

P(x)

Qx) -

Characteristic for the graph of a rational function are poles and/or
asymptotes.

f(x) =

. 3 .
As an example the function f(x) = — X s shown here:
—x2+4x—1
ﬁl Illé 3x
af AR Lr-rer
.J.I\_/ ]
= =
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2.5 Polynomials

The general form of a power function is: f(x) = Ax" where x > 0 is set
without loss of generality (w.l.o.g.) and A and r are arbitrary constants.

The shape of the graph depends crucially on the value of r:

Rootfct.
0<r<l1

Parabola
r>1

Hyperbola
r<o0
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Exponential Functions
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2.6 Exponential Functions

Growth and shrinkage processes play a major role in economics. To model
or describe such phenomena, exponential functions are frequently used.

The general form of an exponential function is f(x) = Aa*, where A and
a > 0 are the parameters of the function.

Remarks:

® The interpretation of growth processes gets particularly clear when
using the time with label t as independent variable.

® Note the difference between the power function f(x) = x? on the
one hand and the exponential function f(x) = a* on the other hand!

® |n case of the exponential function the independent variable is in the
exponent.
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2.6 Exponential Functions

Graphs of the exponential function for a varying base a:

a>1 O<axl1

2|
(x)=0.2"

1 AT

Make yourself clear how the above graphs change for varying a.

Example: Growth of a bacterial culture.
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2.6 Exponential Functions
An important special case constitutes the natural exponential function
with base e = 2.718..., Euler's number.

Notation wise either f(x) = e* or f(x) = exp(x) is used to denote this
function.

The natural exponential function is either monotonically increasing or
monotonically decreasing:
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2.6 Exponential Functions

In statistics the natural exponential function plays a crucial role as
density function of the normal distribution.

The density function of the standard normal distribution follows as

1 x?
f(x)=—exp|—— | .
()=o)
The graph of the density function of the standard normal distribution is
the well known Gaussian bell curve:
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Logarithmic Functions
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2.7 Logarithmic Functions

Taking the logarithm is besides taking the root a second inversion of
exponentiation. By taking the root the base of the power is determined,
whereas by taking the logarithm the exponent of the power is
determined.

Logarithm
The number x with b* = a is called the logarithm of a to the base b and
is denoted logp(a).

The general form of a logarithmic function is f(x) = log, x where a > 0
and a # 1 is the base of the function.
Of particular importance as bases are the values

® 3 =10 (common logarithm; notation log x) and

® 3 = e (natural logarithm; notation In x)
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2.7 Logarithmic Functions

The logarithmic function is either monotonically increasing (for bases
a > 1) or monotonically decreasing (for bases 0 < a < 1):

£

f(x)=log x

Furthermore, it holds that the larger the base the flatter the logarithmic
function.
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2.7 Logarithmic Functions

What does logarithm actually mean?
— The word logarithm means the same as exponent or superscript.

Starting point for the understanding of the logarithm is the equivalence
of the exponential equation x = a” and y = log, x, the logarithm of x to
the base a.

That is, y is the exponent with which the base a must be exponentiated
to get x. For every arbitrary base a € RT \ {1} and the strictly positive
exponents x and y the logarithmic laws hold.

Logarithmic Laws

log,(x - y) = log, x + log, y log,(x/y) = log, x —log, y

log, x" = r - log, x (reR)
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2.7 Logarithmic Functions

From these rules of calculation two important special cases follow:

® IOga(l/X) = loga(xil) = logaX
* log,(V/x) = log,(x"/") = 1 log, x

Note: There are no transformations for log(x + y) or log(x — y).
In general: log, a¥ = x and a'°&:* = x.
Especially for the common or the natural logarithm it holds:

® log 10 = x and 10"°8* = x

® IneX =xand e"* = x.

It holds: In1 =0 and log1 = 0.
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2.7 Logarithmic Functions
Pocket calculators and also mathematical software packages only contain
the common and natural logarithm.

Starting point for the so-called change of base is again the exponential
equation &’ = x.
Taking log, on both sides and transforming equivalently yields:

1
log. x = —— log, x
ga |Ogb a gb b

i.e. the logarithm of x to the base a is proportional to the logarithm of x
to the base b! Sensibly we choose for the base b either 10 or e and get

Formulas for the Change of Base

logx Inx
log,.x = —— = —.
loga Ina
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2.7 Logarithmic Functions
The Duplication Problem:

The logarithm turns out to be useful for answering questions of the kind
»How long does it take for a stock/ population, that grows at a fixed
rate, to double, triple,...7".

This will be illustrated here using an example from financial mathematics.

Consider a (savings) account with an investment amount Kj; the interest
rate is fixed at p% and the amount of interest is reinvested. How long
does it take until the money in the account has doubled solely through
interest payments?

Starting point: K, = K, - g; from this follows through appropriate
transformation, exploiting the information that K; = 2 - Kp:
In2
t=—.
Ing
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Composite, Inverse, and Implicit Functions
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2.8 Composite, Inverse, and Implicit Functions

The shifting of graphs of a function and the analysis of the resulting
effects are the basic instruments of many economic studies. It is, thus,
important that you know how a "right shift" can occur.

We consider the following two important cases (for ¢ > 0):

® y=1f(x)+c — Shift along the ordinate;
e y=1f(x+c) — Shift along the abscissa;

v
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2.8 Composite, Inverse, and Implicit Functions

For real functions, the arithmetic operations of addition, subtraction,
multiplication and division can be applied. Examples for this can be found
e.g. in Sydaeter / Hammond (2.A., 3.A.) chapter 5.2.

Of particular importance in this context is the operation of
composing/chaining functions, which we want to take a closer look at
here.

A so-called exterior function z = f(y) and a so-called kernel/interior
function y = g(x) yield a composite/chained function as follows:

z=f(g(x)) =fog(x) where x € D(g) .

Requirement for the composition: The range of the interior function g
must be a subset of the domain of the exterior function f, i.e. it must
hold: range(g) C D(f).
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2.8 Composite, Inverse, and Implicit Functions

An important application of the concept of composite functions are
monotone transformations of functions.

Definition: Monotone Transformation

Let I C R, g be a real-valued function and f : | — R be a strictly
monotonously increasing function. Then the composite function

fog(x) = f(g(x))
constitutes a (positive) monotone transformation of g(x).
Examples for monotone transformations:

e Addition of an arbitrary constant;

Multiplication of a positive number;
® Exponentiation of an odd number;

Taking the logarithm;
® Forming the exponential function.
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2.8 Composite, Inverse, and Implicit Functions

Definition: Symmetry

In general three types of symmetry can be distinguished.

If for all x in the domain of fit holds:
@ (—x) = f(x), then fis called an even function, fis symmetric
about the y-axis.
® f(—x) = —f(x), then fis called an odd function, fis
symmetric about the origin.

©® f(a+ x) = f(a— x), then fis called symmetric about the line
x=a
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2.8 Composite, Inverse, and Implicit Functions

Definition: Inverse Function

A function y = f(x) with x € D(f); y € range(f) is called unique, if
there exists for every value y exactly one value x. For the unique function
y = f(x) there exists an inverse function x = g(y) = f~*(y). It holds
D(f~1) = range(f) and range(f 1) = D(f).

The graphs of a function and its inverse are symmetric about the line
X=y.

v v y
g[x]:xi—l/,y:x +

gx)=3x-3
v =

=x
fx)=V3x+9

) = (x+1)}

Theorem: Let f be a strictly monotone function in D(f). Then it exists
an inverse function for f, f~1, with D(f~!) = range(f). The inverse does
not hold.
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2.8 Composite, Inverse, and Implicit Functions

Up to this point we only considered functions for which the dependent
variable y was explicitly described as a function of the independent
variable x in the form of y = f(x). In economic applications, however,
situations regularly occur in which a function is defined by an equation of

the form:
F(x,y)=c

Such a function is called implicitly defined function.
Note: Explicitly defined functions can always be transformed into an
implicit form, the other way around this is not always possible. Examples

of implicitly defined functions (graphs of equations) are circle and ellipse
equations. For a center point (xo, yo) it holds for these:

r=+(x—=x)2+(y — y0)? or (x _3X0)2 " (v —b)/o)2 _1
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