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tDespite re
ent su

esses in 
ontrol theoreti
al programsfor limb 
ontrol, behavior-based 
ognitive approa
hesfor 
ontrol are somewhat la
king behind. Insights inpsy
hology and neuros
ien
e suggest that the mostimportant ingredients for a su

essful developmentalapproa
h to 
ontrol are anti
ipatory me
hanisms andhierar
hi
al stru
tures. Anti
ipatory me
hanisms arebene�
ial in handling noisy sensors, bridging sensorydelays, and dire
ting attention and a
tion pro
essing
apa
ities. Moreover, a
tion sele
tion may be imme-diate using inverse modeling te
hniques. Hierar
hiesenable anti
ipatory in�uen
es on multiple levels of ab-stra
tion in time and spa
e. This paper provides anoverview over re
ent insights in anti
ipatory, hierar
hi-
al, 
ognitive behavioral me
hanisms, reviews previousmodeling approa
hes, and introdu
es a novel modelwell-suited to study hierar
hi
al anti
ipatory behav-ioral 
ontrol in simulated as well as real roboti
 
ontrols
enarios. Introdu
tionThe autonomous 
ontrol of the own body is an es-sential 
hallenge for any 
ognitive system. Althoughestablished behavioral 
ontrol in animals and humansseems e�ortless in every day life, many 
hallenges arise.Due the 
omplex, dynami
, time lagged, noisy, and of-ten nonlinear intera
tions between body and environ-ment, e�e
tive body 
ontrol in real environments ishard. Movements of di�erent body parts in�uen
e ea
hother, 
lothing 
hange the intera
tions, mus
le for
esare state-dependent, et
. Furthermore, sensory infor-mation may be unavailable, as for example in darkness,or may be available to the brain only after a signi�
anttime delay. The brain has to learn these 
omplex, of-ten 
ontext-dependent, intera
tions to be able to indu
ee�e
tive adaptive body 
ontrol.The notion that most a
tions are goal dire
ted andthat the goal state is represented before the a
tion isperformed is labeled the ideomotor prin
iple and 
anbe tra
ed ba
k to the 19th 
entury (Herbart 1825;James 1890)). Although behaviorists later questionedCopyright 
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this view, it is now widely a

epted that behavior isin most 
ases goal oriented. Ho�mann (1993) empha-sized this insight in his theory of anti
ipatory behavior
ontrol, whi
h theorizes that a
tions are usually pre-
eded by an anti
ipatory image of the sensory e�e
ts.The image triggers that a
tion(s) that is (are) expe
tedto yield the anti
ipated e�e
ts, 
onsidering the 
urrentenvironmental 
ir
umstan
es. Di�erent sensory modal-ities and sensory aspe
ts 
an in�uen
e a
tion triggering,for example, an external e�e
t, like a tone, or also a pro-prio
eptive e�e
t, like the feeling of bending the �ngersor of pressure against the �ngertips. To 
ontrol more
omplex behavior, a
tions may be divided into simplerparts. For example, if a piano player wishes to play atone, the anti
ipation of the tone 
auses the anti
ipa-tion of the feeling of the 
orre
t hand position and thenthe �nger pressing the key. Thus, to a
hieve an over-all goal, several su

essive goals may trigger su

essivea
tions.To be able to generate su
h 
omplex behavior e�e
-tively, hierar
hi
al pro
esses are ne
essary that generategoals and partition far-rea
hing goals into suitable sub-goals. However, even if neuros
ien
e shows that brainfun
tions are stru
tured hierar
hi
ally (e.g. Poggio &Bizzi 2004), only few 
omputational arguments exist,why su
h stru
tures are advantageous.This paper reviews eviden
e for anti
ipatory guidedhuman pro
essing and derives design suggestions for
ognitive behavior systems. Similarly, we assess evi-den
e for hierar
hi
ally stru
tured me
hanisms. Thegained insights lead us to the development of a simplelearning system for studying the potential bene�ts ofhierar
hi
al anti
ipatory 
ontrol stru
tures. We intro-du
e the base model and 
on�rm su

essful behavioral
ontrol of a simple arm. In sum, this paper studies de-veloping anti
ipatory hierar
hi
ally 
ontrolled systemsthat learn e�e
tive 
ontrol stru
tures to guide 
omplexadaptive behavioral patterns.The remainder of this work is stru
tured as follows.First, we review anti
ipatory and hierar
hi
al 
ognitivestru
tures. Next, existing 
ognitive 
ontrol models are
ompared. Finally, we introdu
e our model revealingits 
urrent 
apabilities, limitations, and potentials. Ashort dis
ussion 
on
ludes the paper.



Anti
ipatory Hierar
hi
al Stru
turesIn this se
tion, we gather eviden
e for and bene�ts ofanti
ipatory and hierar
hi
al stru
tures in learning, be-havioral 
ontrol, and 
ognition in the broader sense.Anti
ipatory Behavior ControlAnti
ipatory behavior refers to behavior in whi
h 
ur-rently desired goals pre
ede and trigger the a
tion thatusually results in the desired goals. Psy
hologi
al ex-periments underline the 
on
ept of anti
ipatory behav-ior.A simple experiment 
on�rms the presen
e of e�e
trepresentations before a
tion exe
ution. Kunde (2001)paired a
tions with 
ompatible or in
ompatible e�e
ts,su
h as the presentation of a bar on the left or on theright 
ompatible or in
ompatible to a left or right keypress. Although the e�e
ts were presented only afterthe key press, rea
tion times were signi�
antly faster,when the lo
ation of target button and visual e�e
t 
or-responded. Similar e�e
ts were found for the modalitiesof intensity and duration (Kunde, Ko
h, & Ho�mann2004). Elsner and Hommel (2001) showed that rea
-tion times also in
rease if an a
tion is a

ompanied bya stimulus that does not mat
h with the expe
ted ef-fe
t, even if this stimulus 
ould be 
ompletely ignoredto 
hoose the 
orre
t response key. In all 
ases, it is 
on-
luded that anti
ipatory e�e
t representations interferewith an a
tion 
ode or also with an external stimulus.Thus, goal aspe
ts are represented before a
tion exe-
ution in terms of at least some of the sensory e�e
ts.Interestingly, it has also been shown that humans a
-quire su
h a
tion-e�e
t asso
iations mu
h easier thansituation-a
tion relations (Sto
k & Ho�mann 2002).However, the advantages of su
h anti
ipatory behav-ior remain somewhat obs
ured. What are the bene�tsof representing e�e
ts before or a
tually for a
tion exe-
ution? Other dis
iplines provide interesting insights inthis respe
t. Arti�
ial intelligen
e shows that anti
ipa-tory representations enable higher �exibility in learningand de
ision-making. In reinfor
ement learning (Sutton& Barto 1998), the DYNA ar
hite
ture (Sutton 1990)showed that model-based reinfor
ement learning me
h-anisms in
rease �exibility when goals vary or when theenvironment is partially dynami
. More re
ent investi-gations in relational reinfor
ement learning have shownsimilar advantages when the �exible propagation of re-infor
ement learning is required (Kersting, Van Otterlo,& De Raedt 2004).In 
ontrol theory, stru
tures 
apable of predi
ting fu-ture states yield more powerful 
ontrollers. For exam-ple, a forward model that predi
ts the 
onsequen
es ofa
tions may be used to 
orre
t errors in advan
e (Miallet al. 1993). The 
on
ept of 
ombining sensory and pre-di
tive information to 
ompensate for unavailable, de-layed, or highly noisy sensory feedba
k is made most ex-pli
it in the widely applied Kalman �lter (Kalman 1960;Haykin 2002). Neuros
ienti�
 studies indi
ate thatKalman �ltering-like stru
tures exist in the 
erebellum

(Barlow 2002). Additionally, it was shown that inversemodels (IMs) that dire
tly determine the a
tion ne
es-sary to obtain a desired goal result in e�
ient adaptive
ontrollers (Kawato, Furukawa, & Suzuki 1987).Thus, 
ognitive psy
hology and neuros
ien
e suggestthat anti
ipations are important for e�e
tive adaptivelearning systems. Arti�
ial intelligen
e and 
ontrol the-ory have shown that anti
ipatory stru
tures improvelearning speed and reliability, behavioral �exibility andexe
ution, and sensory robustness, resulting in e�e
tivegoal-dire
ted systems.Hierar
hies for Learning and ControlBesides the anti
ipatory indi
ators, studies and modelssuggest that 
ognitive information is pro
essed hierar-
hi
ally. Powers (1973) already stressed the importan
eof hierar
hies in behavioral 
ontrol and 
onsequent 
om-putational models of 
ognitive systems. Just re
ently,Poggio and Bizzi (2004) pointed out that hierar
hi
alstru
tures are very likely the key to not only sensorypro
essing but also motor 
ontrol. Available hierar-
hi
al models in vision (Riesenhuber & Poggio 1999;Giese & Poggio 2003) are suggested to be extended tomotor 
ontrol. Hierar
hi
al top-down in�uen
es showedto have advantageous stru
turing e�e
ts (Rao & Ballard1999).Computational motor 
ontrol models showed advan-tages of hierar
hi
al stru
tures. Considering the hierar-
hy of the mus
uloskeletal system, the spinal 
ord, anda 
ontroller in the CNS at the top, Loeb, Brown andCheng (1999) demonstrated that the spinal 
ord is ableto 
ounter most perturbations on its own. However, thespinal 
ord also re
eives task-depending input from theCNS to adjust its behavior. Thus, the spinal 
ord makesthe 
ontrol task easier for the CNS be
ause not everysingle mus
le has to be addressed. It is su�
ient to setan overall strategy to deal with most perturbations.Hierar
hi
al pro
essing models were proposed byKawato, Furukawa and Suzuki (1987), who applied ahierar
hi
al 
ontroller to a robot arm. The lowest level
ontains a simple PD-
ontroller that 
an in prin
iplehandle any task. The 
ontroller is not very e�
ient,be
ause the delayed feedba
k results in a slow 
ontrolpro
ess. A se
ond layer improves performan
e. As soonas a dire
t model of the plant is learned, it updatesthe 
ontrol signal using the expe
ted feedba
k, whi
his available mu
h faster. However, it is still ne
essaryto adjust the signal iteratively. A third level 
onsistsof an inverse model (IM) that 
al
ulates a 
ontrol sig-nal for any given goal. When the IM is a

urate, the
ontroller sele
ts a feasible 
ontrol signal instantly. In
ase of a failure, the lower levels indu
e the (slower andless e�e
tive) 
ontrol. The more a

urate the modelsin the higher levels, the more they in�uen
e the 
ontrolsignals.Despite the ubiquitous hints on the importan
e of hi-erar
hi
al pro
essing and the �rst model from Kawatoand 
olleagues, it remains somewhat un
lear why hier-ar
hies are advantageous. One advantage may be the



general de
omposability of our environment due to timeand spa
e 
onstrains (Simon 1969; Gibson 1979) Com-putational advantages 
an be found in arti�
ial intelli-gen
e studies.Re-
onsidering reinfor
ement learning, it has be-
ome 
lear that hierar
hi
al pro
essing me
hanisms aremandatory for e�e
tive reward propagation and �exi-ble learning (Barto & Mahadevan 2003). Hierar
hi
alstru
tures are formed that 
an trigger options, that is,abstra
t a
tion representations in
luding goals. Mostre
ent publi
ations have shown that su
h hierar
hi-
al representations may be learned by using simplestatisti
s of the environment sear
hing for de
ompos-able sub-stru
tures (Butz, Swarup, & Goldberg 2004;Simsek & Barto 2004).Thus, hierar
hi
al 
ontrol enables the dis
overy andrepresentation of more distant and abstra
t dependen-
ies as well as in
reases �exibility in behavioral learningand de
ision making, as well as in sensory pro
essing atdi�erent levels of abstra
tion in time and spa
e.Merging BothAs we have seen, 
ognitive pro
essing is guided by an-ti
ipations that improve sensory pro
essing and behav-ioral 
ontrol. Hierar
hies yield more �exible represen-tations for anti
ipatory learning and behavior. The re-view suggests that the 
ombination of anti
ipatory andhierar
hi
al stru
tures may be a promising approa
h tounderstand and model human motor learning and 
on-trol.The review suggests several requirements for a 
og-nitive 
ontroller. First, the 
ontroller must representa goal in terms of desired sensory inputs. Partial, un-derspe
i�ed, and even 
ontradi
ting goals may be rep-resented in di�erent sensory modalities. Se
ond, goalrepresentations should not only be modular but alsohierar
hi
al. Higher level goal representations are usu-ally more abstra
t in time and spa
e and trigger lowerlevel, more 
on
rete, sensory dependent goal represen-tations. Third, the representations should be learnedby intera
ting with the environment. Learning ar
hi-te
ture and learning biases, however, are provided inadvan
e.Biologi
al PlausiblityTo model motor learning and 
ontrol, not only fun
-tional 
onstraints have to be taken into a

ount. Ad-ditionally, the stru
ture of the motor 
ontrol systemand the me
hanisms that modify the stru
ture duringlearning should be biologi
ally plausible.Neural networks are 
onsidered realisti
 models ofknowledge representation in the brain (Georgopoulus1995). In the 
ase of multilayer neural networks, thisplausibility holds only for an already learned networknot for the training me
hanisms. For single layer net-works, the Hebbian learning rule (Hebb 1949) providesan biologi
ally plausible learning algorithm. It statesthat 
onne
tions between neurons are strengthened, if

both neurons are ex
ited at the same time and weak-ened otherwise. Thus, it forms a basis for asso
iativelearning. Unfortunately, Hebbian learning only worksfor single layer neural networks that 
an only 
omputelinear separable fun
tions that are too simple for mo-tor 
ontrol. However, to over
ome this problem a
tionsand goals 
an be represented in a form, that divides thelearning spa
e in small parts, thus that non linear goal- a
tion mappings 
an be stored.Before we introdu
e our model, whi
h 
an satisfythese 
onstraints, we review other related systems.Cognitive Movement ControllersNumerous 
omputational models for motor learningand 
ontrol have been proposed. Most of them addressspe
i�
 stages of movement generation, for exampletraje
tory formation (Cruse, Steinkühler, & Burkamp1998; Hirayama, Kawoto, & Jordan 1993) or 
oordi-nate transformation (Salinas & Abbott 1995). Othersare tra
king referen
e signals, relying on IMs and feed-ba
k 
ontrollers (Kalveram 2004; Kalveram et al. 2005;Kawato, Furukawa, & Suzuki 1987), whi
h might be
ombined in a single 
ontrol stru
ture (Stroeve 1996;1997). Some approa
hes gate a number of single 
on-trol stru
tures to be able to qui
kly adapt to 
hang-ing limb properties (Wolpert & Kawato 1998; Haruno,Wolpert, & Kawato 2001) or to 
ombine motor primi-tives (Berthier et al. 1992).While ea
h model has interesting properties on itsown, none mat
h all the suggested 
ognitive systemsrequirements. The des
ribed hierar
hi
al model ofKawato, Furukawa and Suzuki (1987) 
ontains threedi�erent levels but does not a

ept goals in arbitrarymodalities. Other 
ontrollers (Cruse, Steink"uhler &Burkamp (1998)) a

ept underspe
i�ed goals but donot in
lude hierar
hi
al layers. Many models 
ontainneural networks that learn by 
ognitively implausibleme
hanism like ba
k-propagation. Our model intendsto bridge the respe
tive drawba
ks e�e
tively 
reatinga hierar
hi
al, anti
ipatory 
ognitive model that is suit-able to pro
ess any goal representation �exibly and hi-erar
hi
ally.A Hierar
hi
ally Anti
ipatory Model ofMotor ControlWe devise a new 
omputational model for motor learn-ing and 
ontrol. The 
entral part of the model is the
ontroller that 
an transform any goal, represented inany sensor modalities, into a
tion signals that move thebody to or at least towards a position, in whi
h the de-sired sensory e�e
ts are per
eived. This goal a
tionmapping has to be learned by the 
ontroller by inter-a
ting with the environment.Inverse Models and Sensory RepresentationA stru
ture that transforms goals into a
tions has usu-ally to represent a 
omplex non linear fun
tion. Todo this with a single layer neural network, the learning



spa
e 
an be divided into small parts using Radial BasisFun
tions (RBF). A sensory signal is not represented bya single neuron with an a
tivation that 
orrelates witha variable of the body 
on�guration, but is representedby an array of single neurons that represent a spe
i�
range of the possible values of a variable. For exam-ple, a joint angle is not en
oded by a neuron that hasa growing �ring rate with growing limb extension nutby many di�erent neurons. Ea
h of this neurons is onlya
tivated, if the joint angle is in a spe
i�
 range. Therange of values for whi
h a neuron is a
tivated is 
alledre
eptive �eld. This kind of representation �ts well toele
tro-physiologi
al data obtained from measuring the
orresponden
e of single 
ell a
tivity in the motor 
or-tex and movement patterns.A
tions are represented in the same fashion if ob-served by the 
ontroller. However, this representationis not very likely to exist in the periphery (motoneu-rons, proprio
eptions, et
). Thus, two transformationshave to be done. To en
ode a per
eption like an jointangle into an array of neurons the a
tivation of everyneuron has to be determined. The re
eptive �eld of aneuron is 
hara
terized by the 
enter of the re
eptive�eld. In the model, the a
tivation of a neuron is 
al
u-lated by applying a Gaussian distribution fun
tion tothe distan
e between the 
enter of the re
eptive �eldand the measured value (using half the distan
e to thenext 
enter of an re
eptive �eld as standard deviation).To reverse this transformations, a winner-takes-allme
hanism 
onverts the a
tivity of many neurons intoa single signal. Thereby, the a
tivation of the outputsignal is set to the 
enter of the re
eptive �eld of theneuron with the highest a
tivation.1To learn the neural network, a
tions have to be asso-
iated to their e�e
ts, a

ording to the situation. Thisis done by strengthening the 
onne
tions between neu-rons, that en
ode a situation and the e�e
t of an a
tionand the neurons that en
ode a
tions, if both are a
ti-vated at the same time. After learning, the network 
an
hoose an a
tion that will produ
e the desired sensorye�e
t in a spe
i�
 situation. Thus, an inverse model 
anbe learned in a biologi
ally plausible way by intera
tingwith the environment.GeneralizationThe neural network presented above raises several ques-tions. At a �rst glan
e, the 
ontroller seems in
apable ofgeneralization, that means performing a
tions or rea
h-ing goals that were not presented to it before. Thisshort
oming is partially solved by the representation ofthe information. If the re
eptive �elds of the neuronsare wide, they are even a
tivated, if the sensory signalis not in the 
lose vi
inity of the 
enter of the re
ep-tive �eld. Hen
e, the network will 
ontain information1To enable more �ne grained output signals, the neigh-bors of the winner-neuron are also taken into a

ount, a
-
ording to their a
tivation level. If there a several winner-neurons, one neuron is 
hosen randomly.

about what to do if a spe
i�
 desired sensory state hasnot been rea
hed during learning. This spatial gener-alization 
apability does not interfere with knowledgeover experien
ed movements, be
ause the a
tivationsthat are due to generalization is 
omparatively low.Naturally, it takes some time until an a
tion has a no-ti
eable e�e
t in the environment. To a

ount for this,the neural network relates a
tions to the sensory statethat is per
eived a few moments later. This yields theproblem, that the inverse model 
an only store a
tions,that produ
e a desired e�e
t in a short time interval.Consider the movement of an arm that needs 300ms tomove from a relaxed to a fully extended position. Ifthe neural networks en
odes only the e�e
ts that ana
tion has after 100ms it will not 
ontain informationsabout what to do to extend the relaxed arm be
auseit was never observed how this was done in 100ms.This problem 
an be redu
ed by introdu
ing anotherkind of (temporal) generalization that not only relatesmore distant points in sensory spa
e to 
ertain a
tion,but also sensory e�e
ts that o

ur after a longer timeinterval. Again, to redu
e interferen
e with a
tuallyobserved movements, the 
onne
tions between sensorye�e
ts that are produ
ed later in time are weaker.These two kinds of generalization allow the networkto 
ontrol an arm e�e
tive and stable.Model EvaluationTo test the feasibility of our approa
h, we evaluate theperforman
e of a single IM on a simple 1-dof-armmodel.The arm is dampened and a restoring for
e pulls it toits initial position. To move the arm, a motor signal isproportionally transformed into a torque that is appliedto the joint. Thus, applying a 
onstant torque signalmoves the arm to a 
ertain equilibrium position aftersome os
illations.The IM is 
apable of applying a torque to produ
e aspe
i�
 desired e�e
t that 
omprises the joint angle andits velo
ity. Re
eptive �elds of sensory states (desiredor a
tual) are distant 0:1rad (1rad = 5:7 deg) for jointangle and on average 1 rads with a higher resolution forsmall velo
ities. For the en
oding of the a
tion (torque)re
eptive �elds are distant 10 rads2 . A 
hange of torqueof about 1 moves the arm to a new equilibrium positionabout 0:067rad.The network is trained by applying a new randomtorque between �150 rads2 and 150 rads2 for 50ms, 100ms,150ms or 200ms. This 
auses the arm to move randomlyin the range of �1rad to 1rad. To test the 
ontroller,the arm has to move from 5 di�erent starting angles(�0:66rad;�:33rad; 0:0rad; :33rad; :66rad) to 21 di�er-ent targets(�1:0rad;�0:9rad; : : : ; 1rad). In all 
ases,the desired velo
ity is set to 0. During a rea
hing move-ment, the 
ontroller sets a new torque every 50ms. Amovement is 
onsidered �nished, if the joint angle doesnot move more than 0:02rad within 250ms.To test whether the IM bene�ts from generaliza-tion 
apabilities, both spatial and temporal generaliza-tion were varied in a 2x2-design with 20 independently
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Figure 1: Spatial and temporal generalization yieldsadvantages for a

ura
y (A) and movement speed (B).trained IMs in ea
h of the four groups. Spatial gener-alization was manipulated by altering the width of there
eptive �elds of the neurons. The high spatial gener-alization 
ondition had re
eptive �elds that measured 3times the distan
e to the next 
enter of an re
eptive �eldin diameter. The diameter was redu
ed by a third inthe low spatial generalization 
ondition. Temporal gen-eralization was manipulated by allowing the 
ontrollerto relate a
tions to e�e
ts that o

urred up to 100ms(low) or up to 150ms (high) after the a
tion had beenperformed. In both 
ases, e�e
ts that o

urred laterhad an a
tivation level of about 1% of the initial a
tiva-tion level. Figure 1 shows that both spatial and tempo-ral generalization 
apabilities allow in
reased a

ura
y(A) and faster movements (B). Split-plot ANOVAs re-vealed signi�
ant main e�e
ts between the groups formovement time and a

ura
y (both p > :01). The in-tera
tion between the groups did not rea
h signi�
an
e.A feature of the RBF-like representation is, that notonly pre
ise goal 
oordinate 
an be desired, but alsoranges of a

eptable goal positions . To test if it isadvantageous to give a wider goal (see dis
ussion) ifabsolute pre
ision is not ne
essary, rea
hing to an exa
tposition was 
ompared to rea
hing to position anywherewithin a range of 0:8rad. Ea
h group 
onsists of 20 IMsthat learned independently. Figure 2 A and B show,that movements to exa
t positions (bla
k squares) areslower (A) and less exa
t (B) than movements to widegoal ranges (white squares). Note, that the error inthe goal-range-
ondition is 
al
ulated as the distan
eto the nearest joint angle within the range. Split-plotANOVAs 
on�rmed both results (p > :01). This alsoholds, when the movement to a goal range is 
omparedto a movement to the exa
t point within the range thatis 
losest to the initial position. In average, movementsto any points in the goal range are faster (C) and moreyield fewer errors (D) than movements to the nearestpoint in the goal range. ANCOVAS that 
ontrolled forthe distan
e to the nearest possible goal 
on�rmed both(p > :01).
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Figure 2: A range of a

eptable end positions (whitesquares) 
an be rea
hed faster (A) and with less error(B) than an exa
tly spe
i�ed goal angle (squares). Thisalso holds, if movement time (C) and a

urary (D) ofmovements to goal ranges are 
ompared to movementthat try to rea
h the nearest point of a given goal range.Towards an Hierar
hi
al ControllerThe data presented above shows, that it is possibleto train a single layer neural network in a biologi
allyplausible manner to 
ontrol a simple arm model. Asoutlined above, some generalization me
hanisms 
an beused to make the IM rea
h targets that have not beenrea
hed before or would be out of s
ope be
ause the dis-tan
e between the initial sensory state and the desiredsensory state is to large.We 
laimed, that a 
ontroller should be able to pro-
ess many di�erent modalities. A single IM that relatesall kinds of sensory inputs (from proprio
eptions to dis-tal e�e
ts) would require a huge neural network stru
-ture and 
hallenge its temporal generalization 
apabil-ities, be
ause it would have to relate 
omplex mus
lea
tivation patterns with events that happen not veryoften and that 
an be produ
ed in many di�erent ways.Additionally, the network would have to learn any a
-tions by rote learning. Consider the swit
hing on alamp. To 
hange the sensory input that en
odes bright-ness by pushing the swit
h, a long sequen
e of mus
lea
tivations has to be 
arried out. To learn this sequen
eby random movements may take a very long time. Theproblem would be easier to solve, if many di�erent IMswere involved. An IM that relates brightness to handposition might well learn, that the light goes on if thehand rea
hes the position where the swit
h is. A se
-ond IM that stores whi
h mus
le a
tivation patterns are
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Figure 3: The left side of the drawing shows how thedesired e�e
ts are transformed into motor signals usinga hierar
hy of inverse models (IM). The motor signals
ause 
hanges in the arm. The 
hanges are fed ba
kto the 
ontroller (right side). Per
eptions 
an be useddire
tly or after pro
essing.needed to rea
h a spe
i�
 hand position 
ould then beused to move the hand there. Additionally, other tasksthat need the hand to rea
h a spe
i�
 position 
an beeasily learned. Thus, a 
omplex goal like swit
hing onthe light 
an be transformed into a more 
on
rete de-sired e�e
t like a hand position that 
an be more easilytransformed into a
tual mus
le a
tivations.The s
heme of su
h a stru
ture is outlined in �gure 3.More 
omplex or abstra
t goals like produ
ing a tonewith a piano or swit
hing on a lamp are 
onverted byIMs into subgoals of a di�erent modality. The subgoalsare then 
onsidered as desired e�e
t by IMs on a lowerlayer of the hierar
hy and are thus transformed to sub-subgoals and so on. The IMs lowest layer then 
al
u-late signals that are send to lower motor 
enters or thespinal 
ord, where they are transformed into mus
le a
-tivations after some pro
essing. The mus
le a
tivationmay 
ause the body to move and thus evoke new pro-prio
eptions or extero
eptions that are available to the
ontroller dire
tly (like mus
le tension measured by theGolgi tendon organs) or after 
omputing some abstra
trepresentations like the hand 
oordinate from visual in-formation.Thus, some IMs 
an be used to represent what willhappen shortly after a 
ommand signal is 
hanged whileothers store longer term dependen
ies. IMs that bridgelonger term intervals 
an produ
e 
ontrol signals for

subsequent shorter term IMs.Model Capabilities, Potentials, andChallengesThe data showed, that the single IMs 
an learn to 
on-trol a single arm by mere asso
iative learning. Thereby,the 
ontroller uses e�
ient a
tivation sequen
es torea
h a target.A major point of 
ritique on the 
urrent model maybe the method used for learning the IM. Sin
e themethod is not goal-dire
ted, the mapping is nowhereguaranteed to 
onverge to the optimum (Jordan &Rumelhart 1992) However, we believe that it is notne
essary to obtain an optimally a

urate mapping be-tween a
tion and e�e
ts in the general sense. A
tionexe
ution is usually noisy and easily perturbed so thatsensory feedba
k 
ontrol is expe
ted to be generally ne
-essary to rea
h a pre
ise goal. The IMs presented inhere
an also be used for 
losed loop 
ontrol (Herbort, Butz,& Ho�mann 2005).Another 
on
ern is that the 
hosen RBF en
oding isnot very suitable for generalization. Using di�erent lay-ers of RBFs with a 
ombination of larger and smallerre
eptive �elds may solve this problem. However, theen
oding also has advantages. The representation fa
il-itates dealing with un
ertainty (Knill & Pouget 2004)and allows very �exible goal representations. A goaldoes not need to be exa
tly spe
i�ed but a range of a
-
eptable goal states or goal features 
an be presentedto the network. This feature in
reases �exibility, whi
his advantageous for 
ontrol (Todorov & Jordan 2002).Additionally, the representation allows the en
oding ofmany-to-many relationships. A �nal RBF-related 
on-
ern may be the 
urse of dimensionality and the 
onse-quently exploding number of RBF neurons. However,te
hniques exist that 
an redu
e the number of neuronsby adapting RBF sizes to the demands of the a
tion-e�e
t fun
tion (see Butz (in press) for one potentialme
hanism ). Additionally, separating 
omparativelyindependent parts of the sensory spa
e in di�erent net-works 
an redu
e the amount of required neurons (Ur-ban, Bruessler, & Gresser 1998).A big 
hallenge arises 
onsidering the need to learnand exe
ute motor programs. Currently the systemstate only 
hanges, if the desired e�e
ts or sensory in-puts 
hange. Thus, very fast or 
omplex movementsare not possible. Two ways exist to integrate motorprograms. First, it has been shown that neural 
ir
uitsexist in the spinal 
ord of animals that generate spe-
i�
 motor signals to 
oordinate simple rhythmi
 behav-ior, like walking or swimming (Dietz 2003). Thus, themodel of the spinal 
ord 
ould be extended to in
ludesu
h rhythmi
 pattern generators. Additional represen-tations would be ne
essary to 
ode the behavior 
ausedby the pattern generators, su
h as representations ofwalking or moving forward, to be able to address thebehavior with anti
ipations. A se
ond way to in
ludemotor programs would be to delegate this task to higher



stru
tures that send 
ontinuously 
hanging desired ef-fe
ts to the 
ontroller. The 
ombination of both fea-tures may be able to learn rhythmi
 behavior 
ombinedwith 
onse
utive behavioral pattern 
hanges, as appro-priate.In this paper we only presented results for one sin-gle 
ontroller. Experiments are in progress 
ombiningmultiple 
ontrollers as outlined above. Two approa
hesneed to be distinguished: parallel, modular 
ombina-tions and hierar
hi
al, abstra
ting 
ombinations. Shad-mer and Brasher-Krug (1997) showed that human sub-je
ts are able to store many di�erent 
ontrollers for dif-ferent situations. For example, one 
ontroller 
ould betrained for moving light obje
ts and another for heavyobje
ts. The weighted 
ombination of both 
ontrollersthen enables fast adaptation to spe
i�
 situations. Thisfeature 
an be added by using an array of 
ontrollersthat are experts for a spe
i�
 situation and are weighteda

ordingly (Haruno, Wolpert, & Kawato 2001). Hi-erar
hi
ally 
onne
ted IMs might prove advantageouswhen di�erent obje
ts need to be moved. Although dif-ferent weighting of lower level IMs is ne
essary to 
al-
ulate des
ending 
ommands from the desired joint an-gles, the relationship between external 
oordinates andjoint angles stay 
onstant. Thus, only parts need to beadapted to the 
urrent situation. Additionally, longertime delays in higher layers may be 
ompensated forby lower level 
ontrol stru
tures. On the other hand,the di�erent times integrated by di�erent models maybe used to fa
ilitate more 
omplex, longer term move-ments.Besides the 
ombination and extension of IMs,strongly noisy signals will require more elaborate pro-
esses. Forward models 
an be in
luded in the pro
ess-ing of the sensory inputs to bridge temporary misper-
eptions, sensory failure, or noisy sensory inputs akinto Kalman �ltering.Summary and Con
lusionThis paper has reviewed indi
ations and bene�ts of an-ti
ipatory me
hanisms and hierar
hi
al stru
tures in
ontrol pro
esses. Both me
hanisms are involved in hu-man motor learning and 
ontrol. While anti
ipatoryme
hanisms lead to dire
t a
tion sele
tions in inversemodels and e�e
tive �ltering me
hanisms in forwardmodels, the modular and hierar
hi
al 
ombination ofsu
h models promises to yield a more e�e
tive environ-mental representation in
reasing behavioral �exibility,adaptivity, and de
ision making.The gathered potentials of 
ombining both me
ha-nisms into arti�
ial 
ognitive systems promise fruitfulfuture resear
h. The proposed model provides a novel,integrative approa
h for studying su
h 
ombinations.The generality of the proposed asso
iative stru
turesenables dire
t modular and hierar
hi
al 
ombinations.Future resear
h will investigate the suitability and ex-tendibility of our approa
h for the simulation of e�-
ient 
ognitive learning systems in simulated and realroboti
 environments. Moreover, future resear
h will

further study the bene�ts of hierar
hi
al, anti
ipatorybehavior 
ontrol, learning, behavior, and 
ognition ingeneral using and extending the proposed model.A
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