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Abstract— Many neural network models of (human) motor to pursue a given goal, and this action cannot be carried out
learning J_O?]US Onltth_e aCtﬂUiS_iti]f;n 'cl)ofl difectt gOﬁ'-:O-?Ction map- any more, due to, for example, injuries or obstacles, thé goa
pings, which results in rather inflexible motor control programs. ; ;

We propose a neural network architecture (SUREREACH) cannot be at all reached, not even in a .Suboptlm'al Way..
that acquires complete body models through unsupervised S_everal models have Showr_1 the beneﬂt_s of Stor_lng multiple
learning. It encodes redundancy on the kinematic and on actions. The MOSAIC model is able to quickly adjust to new
the motor command level in order to exert highly flexible, dynamical contexts, because an array of different coetr®ll
task-dependent optimal control. This paper shows that our s trained [3]. The controllers that are most suitable in
approach accounts for two forms of effective human behavior the current context can be activated on the fly. However,

based on exploiting kinematic redundancy. First, depending dundant acti ithi inal text ded
on the starting posture, hand targets are pursued in different no redundant actions within a singie context areé encoded.

ways optimizing movement efficiency. Second, the arm posture A more radical approach has been taken by posture
at the end of a movement can be aligned anticipatorily to based motion planing theory [4]. It does not rely on trained

facilitate a subsequent movement. A discussion of computational goal-to-action mappings, but uses a complete body model

;mg!lcatlons aln(é relart]lons to behavioral and neurophysiological which provides all possible actions and their propertieg. (e

ndings concludes the paper. distance to the goal, movement cost). Hence, an action can
I. INTRODUCTION be selected that is optimal for the current task. The model

) ) accounts in detail for a wide range of human behavior,
Any behaving system needs to be able to control its OWg,ch as grasping or obstacle avoidance. However, the model

body goal-directedly. This is especially true for animatsla is highly abstract and the body model underlying action
humans, since motor behavior is the only option to interageneration is not learned, but rather prewired. In conctysi
with the world. A seemingly very simple form of goal di- these and other approaches [5] show that representing more
rected behavior is moving ones hand to a particular positiogy 5 just the optimal action for each goal enables much
such as reaching for an object or pointing. Still, reachingigher robustness and flexibility.
requires that a goal representation, for example the @sire gesiges this behavioral inflexibility, the storage of gatue
hand position in visual space, is transformgd into a serigsformation into one goal-to-action mapping assumes that
of motor commands that move the hand swiftly to the goaby| potential goals are already known during motor learning
The neural representations of these goal-to-action m@ppinin most models, it is assumed that the potential goals are
are termed internalnverse models [1]. In recent decades, the gifferent sensory states the organism can perceive. The
motor cortical and cerebellar neural network models havgaring mechanisms then strives to find for each sensory
been proposed for the acquisition of such inverse modefs, Egtate the action that optimally moves the body so that the
[2], [3]. They differ in many aspects but have one thing inespective sensory state is actually perceived. Thus, only
common: They gather information during motor learning anghose potential goals are represented that are anticipated
aggregate the information by encoding a single, preferably,ring motor learning. Later on, the controller would ha-
optimal action for each potential goal (and each body stat)e gjfficulties of processing novel, maybe less constrained
While this aggregation allows for a compact representatiogog| representations—a capability that would also enhance
it also yields several severe limitations. _ behavioral robustness and flexibility. On the one hand, the
First, storing only the best action for pursuing each gogossibility to set an underconstrained goal enables thezaion
requires an environment in which th_e optimal action alwgygf only those aspects of a movement that are relevant for
stays the same. However, in most circumstances the optiniie task, resulting in behavior that is more efficient and les
lity criteria, which determine the optimal action, changei prone to noise [6]. On the other hand, controllers like the
time. For example, sometimes a movement has to be carrigdic model [5] have shown that relying on a prewired
out as quickly as possible, whereas at other times it reguirgomplete kinematic body model instead of a goal-to-action
great accuracy. If the action that was optimal during motdhapping enables the processing of underconstrained goals.
learning was the only one represented in an internal modehis capability is especially important for human motor
then movements cannot be adjusted flexibly to changingntrol because most goals are underconstrained due to
optimality criteria. Even worse, if only one action is stbre yotor redundancy. To summarize, if a complete body model

. iy o is available, not only those goals that were anticipateihdur
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flexibility. programming approach is also one of the key differences
Most neural network models of motor learning and contralo previous models. Whereas other models encode a single
aggregate the gathered information compactly in a many-tewverse model during motor learning, which is used for all
one goal-to-action mapping. This enables a compact goaaching movements later on, SUREACH generates an
representation but makes motor control inflexible and sulindividual inverse model for each newly presented target.
optimal in an environment that requires the quick adaptatioThis enables incorporating task dependent constraints and
to novel task demands, often from one movement to anotheptimality criteria by adjusting the model used by dynamic
However, approaches that rely on a representation of a coprogramming to the current task's demands. For example,
plete body model are restricted in their learning capaedit as we have demonstrated elsewhere, SUFACH avoids
(e.g. [4]). In this paper, we propose a new neural networiibstacles in hand space, regards novel cost functions, or
model of motor learning and control, called SUREEACH!, controls an arm despite a disabled joint—all without having
which grounds task-dependent optimal control on a bodyeen in either of these situations and without the necessity
model, which is acquired through learning experience [7]. to relearn [7]. In the following, the applied arm model,
In the following, we briefly describe the neural networkbody space representations, and neural network structures
model. Then, two behavioral findings in the domain ofare briefly presented. Figure 1 shows the basic architecture
reaching are replicated. First, we show that the final arA detailed evaluation and discussion of SUREACH can
state of a movement toward a specific desired hand locatitwe found in [7].
depends on the initial arm position, thgs_ minimizing MOA  Arm Model
vement costs. Second, we simulate anticipatory behavior in

the sense that the end posture of one movement depend . .
of a three joint planar arm that roughly approximates the

on the requirements of a subsequent task, if this task ic f tah hat i icted h
incorporated into the goal representation. This finding cafinematic features of a human arm that is restricted to the

hardly be accounted for by other neural network models (gansverse plane. The lengths of the upper arm, forearm, and
motor learning because it requires an explicit represiemtat and Werely = 32cm, Iy = 25cm andls = 18cm, respec-

of the redundant solutions of the inverse kinematics. THVE!Y- The shoulder, elbow and wrist joints were allowed to
our knowledge, this task has not been simulated before.

rRove within —60° < ¢; < 120°, —160° < ¢ < 0°, and
final discussion about the implications of the proposed work S0° < @3 < 60°, respectively. Two antagonistic “muscles”
concludes the paper.

0 simulate reaching experiments we implemented a mo-

were attached to each limb. Each muscle was activated by
motor commands ranging betwe@ < mc; < 1.0. To
. SURE.REACH compute the final movement of a joint;, activation of

SUREREACH is a modular hierarchical architecture tha{intagonistic motor commands was subtracted and the result
solves the inverse problem of generating a sequence yps multiplied by a gain factog = 2.25°:

motor commands that moves the hand to a desired hand ¢;(t + 1) = ¢;(t) + g(mcai—1 —mee;),i=1,2,3

location. It is divided into two modules that are trainedhwit Albeit this arm model is very simple, it has the critical

un;_upter\g;sed, ;ssomatlve Ieag}\Tg rgl;:s. the i property that most hand locations of the arm can be realized
irst, the postiure memory (PM) addresses the inverse by an infinite number of arm postures.

kinematics problem. It transforms a hand location into a
set of arm postures that realize the respective hand lacatid. Space Representation

Second, thenotor controller (MC) generates motor comman- In the architecture, extrinsic hand location space and
ds that move the arm toward the goal posture set, providéstrinsic arm posture space are represented. Hand cooedina
by PM. Thereby MC is able to generate movements towanslere encoded by a population of neuraHs Each neuron
redundant, underconstrained goal specifications. Evere mdy; of H fired if the hand coordinates;, y) are close enough
so, the postures encoded in the goal representation cantbehe neuron’s preferred hand locatiof (hY):
weighted if not all end postures are equally useful outcomes ly — Y|
of the movement. MC consists of several motor-command- h; = max(1.0 — 370‘;0) -max(1.0 — 3701;

dependent body models, which encode the movements '?fe preferred hand locations were arranged Bl & 26
the arm in posture space, given a certain motor command g . . . . -
P P g 1326 grid with 3cm distance, covering d50cm x 75¢m

executed. . ,

Before a movement can be performed, MC prepares rgctangle, which covered the upper half of the arm’s work
state-to-action mapping by meansd;fnamic,programming space. The shoulder joint was centered on the lower line of
based on the learned body models. This mapping provid(ghsiS rectangle (dashed rectangle in figure 1). Arm postures

yere encoded in a similar population of neurafAswhere

suitable motor commands to move a simulated arm from ea ch neuron: was activated according to the followin
possible posture toward the desired hand location and can %%uation' pi v N9 wing

considered an online generated inverse model. The dynan%

|z — hil

0)

3 &
[¢j —p;”|
1SUREREACH is an acronym for sensorimotor unsupervised redurydanc pi = H InaX(l.O — ]20700‘ 0)7
resolving architecture. j=1 :



Wherepf’f are the preferred joint angles of each neuggn during learning, a desired hand locatiéh,,,; was fed into
which were arranged in &0 x 9 x 8 = 720 grid covering the network:

the entire posture space. The distance between two adjacent Pyoai = Wpar X Hyoar-

neurons wag0°. Hence, in both representations only a feWF.

neurons were active at the same time, indicating the curre Pe output aCt'Vat'onPgO“? then represents the redyndant
location of the hand or the current arm posture. arm postures that are suitable to move to the desired hand

location. This set of postures is further processed by the
motor controller.

______ / e H,., hand space
7 z D. Motor Controller

The motor controller (MC) extracts complete body models
from movements made in a motor babbling phase, during
which random motor commands were executed. This infor-
/ \posture space mation was encoded motor-command-dependently: ir-

| ﬁg%, 6 recurrent interconnected neural networks. Each network

motor controller ~ Was associated to a certain motor command and stored the

v

W W W, W, W, W, transitions in posture space that ogcgrred if t.he respectiv

% % % % % % motor command was executed. This information was then

NV >, NV N - used to generate posture-to-action mappings dynamidally i

vA, YA, vA, YA, YA, vA, a new target is presented.

closed loop controller 1) Motor Learning: Each of the six neural networks
uuu consisted of a single layer of interconnected neurdns

motor commands The neuron layersA; had the same size as the posture

representationP and thus consisted of 720 neurons each.
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other neurons of the same layer by720 x 720 synaptic
weight matrix¥;. During learning, neural layerd; had the
following dynamics:

Ai(t) = pAi(t = 1) + mei(t = 1) P(t = 1),

where P is a representation of the arm postuge,is a
decay coefficient that enabled the learning of temporally fa
reaching posture transitions by maintaining a trace of past
posture representations, and:; is the activation of the i-

_ L _ _ th motor command during learning. Neural network weights
Fig. 1. If an external target appears, it is transformed intdeaired dated di i the followi iati |
hand locationH ;. The posture memory converts it into a redundantVEre updated accorading to a the following associative lear-

goal representation in posture spaég,,;. Starting fromPg,,; the motor ning rule:
controller propagates neural activation through the nelagers A; based . e ) -

on the recurrent neural connectiobi; and lateral interconnections. The  w?"(¢t) = w]" (¢t — 1) + da; (t)p* () (0 — wl®(t—1)),
differences in the neuron layer activitiels are then used to generate motor ) )
commands based on the current postéteresulting in effective closed where wj.k a’

| (ls based on e o postiieresiling In effecte ¢ 1% al, and p* are single values of the weight
oop control of the three joint arm. The dashed rectangle s area o . .
external hand space that can be encoded. The dotted arrowstish effect matrices, neuron Iayers and the representation of therurre

of the motor commands and the slices at each joint show the felegoint ~ POSture, respectively, is the learning rate that exponentially

angles. decreased frory = 0.1 t0 61,000,000 = 0.01 during learning,
andf# = 0.1 is a ceiling value that prevented weights from
increasing infinitely. The motor babbling phase in which

C. Posture Memory MC and PM were trained lasted for 1,000,000 time steps.

The posture memory (PM) was implemented by a fu"yThereby, in random intervals of 1 to 8 time steps, a new set

connected single layer neural network which maps frorﬂlc motor commands was generated by setting each motor

extrinsic hand space to intrinsic posture space by means tmma_md t%..o with adprobabnlty ofp t:do.?) ?lndttcl)o.ot
a 1326 x 720 weight matrixWp,,. During motor learning, otherwise. This procedure was repeated until at least one

in each time step of the simulation the current haAg é&nd moztorDcomrr_lanPd was se_t tk?OWh MC i d i
arm state P) were associated by Hebbian learning: ) Dynamic Programming: en IS used for con-

trol, a posture-to-action mapping is prepared by dynamic
Wpar(t) = Wpar(t —1) + ePHT, programming that associates a set of motor commands to

each possible arm state. Once this mapping is built it is used

wheree = 0.001 is the learning rate. To obtaial the arm to direct the arm by means of closed loop control to the
postures that were associated with a single hand locatigoal. The dynamic programming is based on the connectivity




between the different neurons of a neural netwoVk;)(
and interconnections between the neurons in differentateur
networks associated to the same posture. In each time ste
the activity levelsA; of the neurons were updated by the
following equations:

4

A;k — max{ﬁ(wﬁ + (1 - '7)147,); Pgoal}

A — A+ W, x AZ, Fig. 2. A, B) Movements starting from different locations; (S;) to the
same target (T) result in different end postures. C-F) The posdures of

where n is the number of neural networksax returns movements from identical start postures (S) to identicaletargvia) can be
the entry-wise maximum of two vectorg, = 0.17 reduces ?fi“fgdafg ;Z‘?;L?:gg starting positions for movements taesulgst targets
neural activity,y = 0.43 specifies the intensity of crosstalk '

between networks, anbl,,; is the representation of suitable

goal postures normalized so that single values add up grsued starting from two randomly selected arm postures.
1.0. The activation of the goal representation is constanti movement was allowed to take maximally 100 time steps.
injected into the neural networksnz operator). Activities |n sum, 500 movements to 250 different hand goals were
in the neural networks spread out from this goal activatiorperformed. Of the 500 movementg}.8% reached a position
resulting in a stable state which yields different activityithin a 3cm radius around the target with33.8(SD =
patterns in different networks. Due to the acquired body9_5) time steps on average. The remaining% movements
model encoded in the synaptic weights, activation is prapaghad an average error @f.65¢cm(SD = 3.77c¢m) in hand

ted preferably to those neurons that represent postures frgpace.

which the goal can be easily reached, if the motor command To determine if the end posture of a movement depends on
associated to the respective neural network is executets, Ththe starting posture, the difference between the final pestu

it is pOSSible to determine which motor command is Suite%ﬁer 100 time steps) were Computed (dz_norm) for each pair
best to pursue the current goal from the current arm state BY movements. On average, postures differedbhg°(SD =
comparing the activation levels in neurons that encode thg 5°). Figure 2A,B shows an example. To assure that this
current posture and approach the goal by means of closggtimizes control, because end postures are close tolinitia
loop control. This was computed by the following equationspostures, the following efficiency measure was computed for

mc; = PTA;, each pair:
j;nm(i); 0) E=A® 0+ APy1 —AD; — ADy o,

max(mc; — me

mc; = s
> iz1..¢ max(mc; *mciima(i);O) where theA®; ; are the posture differences between the
where P is the current posture, andc,,a(;) is the antago- |n|t|aI. posture of the movement W|th_ the mdex’) (and
nistic motor command tanc;. This resulted in a normalized the final posture of the movement with the indeg).(If
set of motor commands that moved the arm #025° in Movement end postures are not particularly close to initial

posture space (d1-norm). postures, the posture differences in actually made movimen
(A®, 1, A®, 1) should not differ systematically from posture
[1l. TwoO BEHAVIORAL FINDINGS differences between the start posture of one movement and

In this section, we report simulated behavioral data frorthe end posture of anotheA(; 5, A®, ;). £ should thus
psychological experiments with SUREEACH. First, by be close t00.0. However, E is positive if the transitions of
default, stored kinematic redundancy is exploited to mave @actually made movements are shorter than the transitions of
a goal as quickly as possible. We show that, depending d¢he ‘virtual’ movements. The average E for each controller
the start position, movements to the same hand location emas computed and compared 00 with a t-test, which
with different postures. Second, by interaction between M@evealed a significant positive valugl = 27.1°,SD =
and PM, the model is able to acquire a goal with a postur®60°,t(9) = 8.91,p > 0.001). The results show that,
that facilitates the execution of a subsequent movement. as in humans, end postures of movements to the same

hand location depend on the starting posture in a way that
A. Start Posture Dependency optimizes movement efficiency.

If humans are instructed to move the hand to a specific o )
location the final arm posture of the movement depend® Anticipatory Posture Selection
on the initial arm posture. This posture dependency enablesMost movements in every day life are part of a larger
humans to exploit the kinematic redundancy of their armsequence. For example, grasping a cup is often followed
to exert more efficient movements [8], [9]. To evaluate iby moving the cup to the mouth. Hence, in movement
SUREREACH can account for this finding, 10 controllerssequences, motor redundancy should be exploited in a way so
were independently trained. After learning, each cor#roll that the outcome of one movement is a good starting point for
had to move to 25 random goal locations. Each goal wake subsequent one. Indeed, this has been shown in numerous
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o

experiments. For example, data from humans that had tL\om_&51 woo21se 217t 2 oss 307 543 816 6030 145 270 405
sequentially reach different hand targets clearly revetiat 5 =+
the arm posture at an intermediate target location depen@s"’“
on the subsequent target [8]. 327
Computational models of motor learning and control that;ﬁ
do not encode redundant solutions for the inverse kinesatic ,, |
problem are unlikely to account for this finding. In SU- g 5
RE_REACH, the redundant postures that are represented for o -
each hand target can be weighted, dependent on their utility 3 + 5 ¢ 3 4 5 8 3 4 5 6
to reach the next goal. This was simulated by a two step et of aniepaiedaroet (1
process involving both PM and MC. First, activation Map$iy 3. A goal representation in SUREEACH can be adjusted to
for moving to the second of two targets were generated facilitate an anticipated subsequent movement. A) The moregtiz of
25 time steps without actually moving the arm. Second, this subsequent movement is incorporated {nto a goal representation,
activation was combined with a goal representation for thy -56?3{%?;2‘:fd‘gsfgu:r?t(jt;gsetgefhgfd?;‘g::ﬂi”f&t&es "’r‘gﬁgﬁm
first target (,,;) to generate a target representati@gogl) transition in posture space, and C), the duration betweerements that

for the first movement, that incorporates demands for tH@d?Pe”d%”_“y Lo"owe? another m9vemfen; and m%\{emems that been

anticipated in the goal representation of the preceding mew, increase
second movement. with increasinga. Error bars show standard deviations of the average
performances of ten individually trained controllers.

20
15 o

decrease of remaining transition
decrease of movement duration
(time steps)

pzjoal = p?]oal X (107& + max(az,ogign)) (1)
v:}here Pgoar AT€ th; comp%nen_ts ngoql hand Pgoar 8T€ To assess if this effect was accompanied by an increase in
the cO(I)mpon_ents ?1 goal, ANA QY 'Ss_ \r’]\’e'ﬁ] ting paran(;eter efficiency we further analyzed two performance measures for
that eterm_lnes_ t_e amount to which the compound targgl, e ments (2) and (4): the joint angle transitions (d2-nNorm
representation is mflut_anced by the subsequent target. The 4. during the movement and its duratiowe compared
Iarger:a, the higher thef ||;]fluenge O.f the seconhq tsr_gzp dhe o performance of movements in the anticipatory condition
ahret Ie componefntsé]o the agtwagon mapsw 'Ch n |cste to those in the control condition by subtracting the former
the closeness of the associated posture to the subseq the latter. Positive values indicate lower joint angle

target, assuming th_at Fhe -th motor command IS activateg qitions and faster movement times compared to control
ThL_’S’ the largest; |nd|ca_tes c_Ioseness, assuming that thg, e ments. Figures 3B, C show that the efficiency of move-
optimal mgtp r command IS gctwated. ments (2) and (4) increase if the goals of these movements

The anticipatory capabilities of the controller were tdste ;.o more strongly incorporated in the goal representations

with the ten independent controllers mentioned in the press e preceding movements. One-way ANOVAs revealed a

vious section. Each controller had to perform 50 sets Qfignificant impact ofr on the remaining joint angle transition
movements. A set consisted of four movements to randofiis 56y — 108 < 0.001) and on movement duration

locationsVia, Ty, andTs: (1) a movement from a starting (F(3,36) = 127, p < 0.001).
posture S to a via targéfia anticipating a subsequent target The simulated experiments show that SUREACH ex-

T, (2)-a sub_s_equ_ent movementp, (3) a movement from loits kinematic redundancy to incorporate demands of the
S to Via anticipatingTs, and (4) the subsequent movemengubsequent task in its goal representation. By doing so,

to 7. Thereb??/ the go;l represe dnLatlon for movements tgct:l}ﬁe subsequent movement can be carried out faster because
V'r? target (1, I) were determine yEeqL;1at|for;]1. Figure 2C4 otarts from an advantageous posture. The suitability of
shows example movements ¢ 6.0). Each of the movement ;e to serve as starting posture for a movement to

sets was si(rjnulated Wlith fqur d_iffererzpthsettings @f(o = h a particular hand target is provided by the sensorimotor
334’5’6) and a cont_ro sett|_ng, in which movements 1o t rounded distance measures in the motor controller. Simila
via target were carrlgd out independently of the subs'equ havior in humans has been found in reaching tasks [8] but
goal. The han%lzcaﬂoln at Szand t?e targﬁlt,;Tz,handea also in other domains like bimanual object manipulatior] [10
were separated by at least 20cm from each other. or speech production [11]. Additionally, the more complex

For each controller and each of the four settings:pthe  ,vement preparation process is in line with experimental
average difference between end postures of movements to mﬂjings, which show an increase in preparation time for

same via location but with different anticipated subsequefye ipjtiation of the first movement of a sequence of aiming
targets (1,3) was computed (d2-norm) to determine BOW pqvements [12]. In conclusion, the availability of reduntia

affects the dependency of a movement's end posture Onnggy res provides the flexibility to align movements to the
subsequent task. In the control setting the postures atighe Yjomands of future tasks.

location did not depend on a subsequent target. Figure 3A

shows that increasing impact of the anticipated goal irs@®a  2The movement duration was considered the time between the ainaet

the posture difference at the via location as well. A ondarget and the number of time steps required to move to an arban\gitm
ANOVA led ianifi t effect of (F(3.36) — of the target. Movement sets were excluded from the computaticthe

way revealed a signimcant efrec ( ( ) ) —  movement duration if at least one movement didn't reach the Séwerier

70.2,p < 0.001). (6.0%) to obtain valid results.



IV. DISCUSSION networks could replace the now fully connected neural

We outlined an unsupervised learning architecture for go8ftworks. By including these enhancements we are confident
directed behavior that grounds behavioral flexibility oarte that SUREREACH will be able to control more complex and
ned body models. Unlike many accounts for motor learninfynamic bodies.
that lack behavioral flexibility due to highly aggregated I conclusion, learning mechanisms that encode only a
goal-to-action mappings, SURREACH strives to develop single goal-to-action mapping are too restricted to actoun
complete kinematic and sensorimotor models. It extend8r the high flexibility in human motor behavior. Although
previous models that account for the readily incorporatioft is not yet sufficiently well understood how the brain
of task-specific constraints and optimality criteria byrtéag adjusts motor control from one moment to the next matching
the necessary body models from sensorimotor interaction.different task requirements, the presented neural network

In the introduction, we criticized the goal-to-action map-2rchitecture suggests one possible solution by encodihg re
ping approach due to its incapability to encode redundadfidancy and resolving redundancy task-constrained on the
actions and cope with novel goal representations. The simiiy-
lations reveal that SURREACH can use both to enhance Acknowledgments
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