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Abstract— We present a developmental neural network model
of motor learning and control, called RL_.SURE_REACH.
In a childhood phase, a motor controller for goal directed
reaching movements with a redundant arm develops unsu-
pervisedly. In subsequent task-specific learning phaseshe
neural network acquires goal-modulation skills. These shis
enable RLSURE REACH to master a task that was used
in a psychological experiment by Trommerskauser, Maloney,
and Landy (2003). This task required participants to select
aimpoints within targets that maximize the likelihood of hitting
a rewarded target and minimizes the likelihood of accidentdy
hitting an adjacent penalty area. The neural network acquires
the necessary skills by means of a reinforcement learning lsad
modulation of the mapping from visual representations to tre
target representation of the motor controller. This mecharism
enables the model to closely replicate the data from the origal
experiment. In conclusion, the effectiveness of learned @ons
can be significantly enhanced by fine-tuning action selectio
based on the combination of information about the statistial
properties of the motor system with different environmentd
payoff scenarios.

Index Terms— Motor Learning, Motor Control, Noise, Re-
dundancy, Optimal Control

|I. INTRODUCTION

abundance of different arm trajectories, of which the motor
system can only realize one possibility at a time. Thus, é ha
decide between seemingly equivalent alternatives. Rézgard
of which type of redundancy applies, a fundamental challeng
for a motor control system is to choose those means that
accomplish a task most reliably and efficiently. In the motor
control literatureoptimal controldescribes ways to cope with
redundancies [3]. If redundant possibilities are at hand to
accomplish a task, additional criteria may be considered to
choose the currently optimal actions. Recently, optimalit
criteria have been proposed that lead the motor system to
maximize movement accuracy by reducing the impact of
motor noise [4], [5]. Most of the available models focus
on the resolution of motor redundancy. However, also the
resolution of location redundancy is important to optimize
action outcomes. Recent psychological experiments resleal
that humans consider motor noise and different penalty
situations when choosing movement aimpoints within target
areas (cf. [6]). In these experiments, a target area wahéalic
at locations shifted away from an adjacent area if hittirag th
area was both likely and strongly penalized.

Here, we present a developmental computational model

Our world confronts us with an abundance of potentialof unsupervised motor learning and the acquisition of task-
targets that we can reach or interact with in some wayspecific reaching skills in an experimental context. The

Much research has been conducted to understand the neudgvelopment of the motor control system is modeled by the
mechanisms that enable the selection of single objects arsensorimotor Unsupervised Redundancy Resolving Arehitec
suitable actions to manipulate them [1]. This research Iypain ture (SUREREACH)[7]. This neural network architecture
focuses on the selecting a discrete target among few wWsualis capable of solving the inverse problem of generating a
distinguishable ones and on the precision of the execufion Gequence of motor commands to move a redundant arm
the consequent action (cf. [2]). to goal locations encoded in an extrinsic coordinate frame.
The issues investigated here stem from the fact that afttSUREREACH is enhanced by a neural population-code
a target has been selected, there are multiple redundast waeinforcement-learning model that generates optimaletarg
to implement the related reaching action in that the systemepresentations for maintaining a high level of perforneanc
has still to establish (1) where exactly and (2) how exactlydespite system-inherent neural and motor noise [8]. We
to approach the target. The former problem may be termerkfer to the enhanced architecture as_ RUREREACH.
a location redundancy problemalmost all targets can be RL_.SUREREACH was used to replicate the behavioral data
reached assuming different final hand-contact points. Farelated to the redundant reaching task mentioned above [6].
example, movements to grasp a pen can terminate at diffeAs shown in detail below, the architecture successfullyaep
ent locations without substantially different outcomebu3, duces the tendency of humans to adjust movement endpoints
objects usually can be manipulated at different actualetarg dependent on the distance and severity of a penalty area. In
locations. The latter problem is often referred to asrtiwtor  the remainder, Section Il and Il describe the computationa
redundancy problemlt arises, for example, because eachmodel, the original experiments and its simulation, Sectio
hand position in extrinsic space can be realized by differenlV presents the simulation results, and Section V draws
arm postures and one can move to each arm posture with @onclusions.



II. THE MODEL . .................. y — / \retina
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Fig. 1 shows the four main components of the model. (1) reinforcement learner (RL) | - .
A model of the human motor apparatus and the experimental
setup receives arm motor commands and provides proprio- ------------------- » |I H,H, e AN hand
ception of current joint angles, visual information abdug t | ig 5| input 7 Space
hand position and target locations in extrinsic space, and :
overall reward values to the neural controller. (2)n#otor
controller (MC) generates step-by-step motor commands to

| postume y(PM) |

‘ [ ] m posture

move the arm toward target postur@.,.;). MC is trained : ~—__ = space
by unsupervised associative learning in an initial “chddtl” motor controller (MC)

learning phase, during which random motor commands are
executed and their effect on joint postures are encodedr Lat ¢ */AT‘ ¢ Zg I A6

on, this information is used, in an inverse fashion, to map
from (desired) arm postures to motor commands. (3) As H
the task requires movements to targets represented in an A
extrinsic coordinate frame,@sture memory (PMjonverts a I
hand targetf,.4.:), €ncoded in extrinsic coordinates, into a
representation of the redundant arm postures that comespo
to it. The output of PM is used as the target representation : ,Lreward area
for .MC. Like MC, PM deve_lops in an unsupgrvised fashion postur'é"("ﬁ') _______ ,)/l _|"Tpenalty area
during the childhood learning phase. (4) Finally, an actor-

critic reinforcement learning (RLnechanism [9] modulates
the retinal input {) before it is used as target representation
for MC. During task specific learning phases in the simutatio
of the experiment, RL explores the consequences of the-seleftd: 1. The simulated experimental task requires fast arvements from a
. f ina t t tati Th by it “cligts” start location to a rewarded target on the screen while mgidn adjacent
tion o V?ry'ng arget representa I.OI’IS. erg y It Clg penalty area. The retinal representation of the visual gardtion of the
on a retinal-to-target representations mapping that,ngifie  stimuli () is used by a reinforcement-learning component (RL) tocsede

configuration of the reward/penalty areas as well as neur&pnd target Ktarget) that is then passed to a posture memory (PM). PM
d t . L th I ff expands the hand target representation to a representitibie redundant
and motor noise, maximizes the overall payoir. associated arm posture®;(rqet), Which is used by the motor controller

(MC) to generate motor commands. PM and MC are acquired engispdly
in a childhood phase, whereas RL learns to fine-tunes motdratan task-
specific experimental learning phases.

v v v
closed-loop controller: motor commands

—touch
screen

~reward (R)

A. Arm Model

The model of a three joint planar arm roughly approxi-
mates the kinematic features of a human arm that is restrict
to move on the horizontal plane. The lengths of the uppe
arm, forearm, and hand adg¢ = 30cm, I, = 25¢cm, and
I3 = 20cm, respectively. The shoulder, elbow, and wrist
joints are allowed to move within-45° < ¢; < 135°,
—140° < ¢o < 0°, and —70° < ¢3 < 70°, respectively.
Each limb is actuated by two antagonistic “muscles” eac
of which is activated by motor commands ranging between M;O) - max(1.0 — M;O) @)
0.0 < me; < 1.0. The final movement of a joint; is 3.0 3.0
determined by subtracting antagonistic motor commands arhe preferred hand locations covered a task rele¥@at, x
scaling the result by a gain factgr= €2.25°, wheree is a  15¢m rectangle (top left a25em, —7.5¢m relative to shoul-
Gaussian distributed random value & 1, SD = 0.05): der, Fig. 1) forming a0 x 20 = 400 grid. Likewise, arm

. postures are encoded in a population of neurBnavhere
¢i(t+1) =¢i(t) +g(meziy —mez), i=123 (1) o0 neurom; is activated according to:

3 k
In the architecture, extrinsic visual space (2D), extdnsi pi = Hmax(l'o - %?O)’ ®3)
hand location space (2D), and intrinsic arm posture space =1
(3D) are represented. Visual stimuli are realized by calore wherep” are the preferred joint angles of each neuron, which
dots (red, green or blue). The dots are used to respectiveover the entire posture space witl & 7 x 7 = 441 grid.

ctivate the system'’s three “color retinas”, each formed by
]20><20 neurons, similarly to the encoding of hand coordinates
lllustrated below (the activation of the three retinas isated
by a vector! with 20 x 20 x 3 elements). Hand coordinates
are encoded in a population of neurols Each neurom;
of H fires, if the hand coordinatex, y) are close enough
o the neuron’s preferred hand locatiof (hY):

h; = max(1.0 —

B. Space Representation



C. Motor Controller inverse model is then used to direct the arm to the goal
The motor controller (MC) develops six internal motor- by closed Io_op. control. This dynamic_: process enhances the

command-specific arm models during the childhood learningnodel’s flexibility and enables it to incorporate novel task

phase. Later on, the MC can use these models to issif@nstraints without relearning [7]. The dynamic programeni

commands to the arm to reach desired postures, on the ba8iocess is based on the connectivity between the different

of a neurally-implemented dynamic programming process. Néurons of each neural networW(_“) and also on constant
1) Motor Learning: In the initial motor learning phase interconnections as;umeq to exist between neurons with

MC and PM are trained for 1,000,000 time steps. Initially, a|dent|cal receptive .f|elds in dlffere.nt. neural networks. In

random set of motor commands is generated by setting ea(_E}@r'ucular, at each time step the activity levé of neurons

motor commanditc’® in Eqn. 9) to1.0 with a probability IS updated as follows:

of p = 0.3 and t00.0 otherwise. This procedure is repeated I#k gl

until at least one motor command is sefitd. A new random A’ « max |3 (717 +(1 - 'y)Ak> s Prarget

set of motor commands is generated in random intervals of 1 n-1

to 8 time steps, resulting in random arm movements. During A* — A* + W x A’k 7)

this training, the touch screen used in the experimentapset . .

is not present and no reward is furnished to the system. wheremagz]..| returns the entry-wise maximum of two vec-
The postural transitions caused by each motor commang@'s p= 0.17.regul<’.;1tes overall neural activityy = 0.43

are encoded in recurrent interconnected neural networlé?gu"”‘t(,as the intensity qf crosstalk between networks, gnd

resulting inn = 6 motor command specific internal models. _Pt‘"-‘let is the representation of suitable target postures, which

Each of the six neural networks consists of a single Iaye|5 _normallzed_ so that _smgle values add up to 1.0. The
of 441 interconnected neurons whose activation is denote{ t|onale_0f this formula is that once a pqstu_re _target (@as
by the vectorA¥, isomorphic to the neural population code t ereof) is presented to MC, an activation is injected in all

of the posture P). Each neuron in a layer is connected to the_ six_ neural network; that corre;pond_s to the target. This
itself and all other neurons of the same layer bysa x 441 activation spree_lds out into the ne|ghp0r|ng neurons thUQ
synaptic weight matrixiV’*. During learning, the neurons’ lateral connectionsi’*). Weights vehiculate activations in

activation vectord* has the following dynamics: the opposite direction with respect to _the temporal_ adtivat
of neurons that formed during the childhood learning phase.

AR (t) = pA¥(t — 1) + mc*(t —1)P(t — 1),  (4)  This activation diffusion results in different activity gperns
where p is a decay coefficient that enables the Iearning'[n different networks, in particular, it propagates prefer .
. i . tially to those neurons that represent postures from which

of temporally far reaching posture transitions in that it .

ST . the target postures can be reached given the motor command
maintains a trace of past posture representations nasiti ) : ) I

associated with each neural network is executed. Actimatio

f each network also partially diffuses to correspondirg lo

(6)

is the activation of the k-th motor command. Neural network

weights are updated on the basis of a Hebbian learning rufd . .
. . . of other networks through inter-network connections assim

that associates the current postiitéo the preceding, action o have constant weights equal4g(n — 1)

dependently encoded postures A, thus linking to each 9 qualtg(n i

potential target posture those postures from which thestarg Given these netwo_rk act|vat|(_)ns_, motor commands are
can be reached if the k-th motor command is executed: generated by comparing the activation levels of the neurons

in the different networks that encode the current posture:
whi (t) = wi;(t —1) + daj(t)pi(t)(0 — wji(t — 1)), (5)

mc’* = PT A* (8)
Wherew;“i are single values of the weight matix”, a? and . max[me* — meanta(k). o]
p; are single values of the neuron vectet and P, ¢ is the met = . — ©)

. . , > max[mc’t — me/enta(d); O
learning rate, which decreases exponentially frigm= 0.1
t0 01,000,000 = 0.01 during learning, and = 0.1 is a ceiling  wheremc*"t*(%) js the antagonistic motor commandria:*.
value that prevents weights from increasing infinitely. This results in a normalized set of motor commands that
2) Dynamic ProgrammingUnlike many other motor con- moves the arm for.25° in posture space (d1-norm). By

trol models (e.g. [10]), SURIREACH does not acquire a iteratively determining motor commands and executing them

specific inverse sensorimotor model that maps the perceivafle current posture gradually changes and the goal is pdirsue
and desired arm postures to motor commands but generatésioothly.

such a mapping on the fly for each goal-directed move-

ment. As soon as a hand target representation is provideR; Posture Memory

a dynamic programming process builds a mapping from The PM is modeled by a fully connected single layer neural
postures to motor commands that are well-suited to reachetwork which maps from extrinsic location hand space to
the target from the respective posture. This target-specifiintrinsic arm posture space by 40 x 441 weight matrix




WEM At each time step during childhood motor learningwhere D[V] is the diagonal matrix withY/ as non-null

the current hand position (vectd?) and arm state (vector elements, and[V](1 — V') the vector of derivatives of the
P) are associated with a Hebbian learning rule: sigmoidal vote neurons’ activations. This formula implies
that, in correspondence to active neurahsthe votesV

PM _ PM T ’

WHE() =WoH(t —1) +ePH, (10) are increased or decreased when the surprise is respgctivel

wheree = 0.001 is a learning rate. This procedure results inPOsitive or negative (see [8] for details). To give RL a bias
a neural network that connects each reachable hand locatié Select hand targets on visible objects, the weights of
to all the redundant arm postures that correspond to it. Aonnections between topologically corresponding neuafns
representation of redundant arm posturés,,(,.;) from a the three color retinas and the vote neurons were initiaty s
given hand targetH;q,4.;) is retrieved by feedingdyq, 4t to 1 whereas all other weights were set(to

into the network: I1l. EXPERIMENTAL SETUP

Piorget = whM Hiarget (12) In the following, the original experiment by Julia Trom-

. . : . mershauser and her colleagues [6] and its simulation with
The multiple-posture representatidf,, 4. SO obtained is RL_SUREREACH is briefly outlined

then sent as input to MC where it is used to generate motor
commands, as described above. A. Original Experiment

In the original experiment, participants had to touch a
green circular target ared.gcm in diameter) on a touch
The RL component s a neural implementation of the actorscreen monitor quickly. A hit of the target was rewarded with
critic model [9], modified to take into account the populatio 1gg points. A red circular penalty area§cm in diameter)
code of actions (see [8] for details). The actor is a twoHlayey a5 displayed adjacent to or partially overlapping with the
feed-forward neural network that takes as input the re‘tinas{arget_ Hitting the red area was penalized by a loss of aierta
activations and has an output layer formed2by 20 sigmoid  amount of points. Two crucial parameters in the experinienta
“vote” neuronsV. These neurons have topological one-to-onesetup were varied. First, the distance between the centers o
connections with a layer df0 x 20 leaky neurond. having  the target and the penalty could Bel.8cm, £1.35¢m, or
lateral excitatatory connections with neighboring nesrand () 9¢1,, Second, the penalty for hitting the red area was
inhibitory connections with distant ones. This connet§ivi gijther nonexistent (0 points), low (-100 points), or higho®
and the fact that these neurons have a decay (leak), imgly thﬁoints). Rewards and penalties where summed up in case of
they engage in a many-winner-take-all competition, based opjts on overlapping areas.
the votesV’, that leads to the emergence of a unique “hill"  pyring the tests, the coordinates of the hits on the touch
of active elements withiil.. When any leaky neuron reaches screen were recorded to evaluate if the participants asjust
an activation threshold of 2.0, the activation of the wholeiheir movement strategy to the different pay-off scenarios
map L is passed to PM as input (details on the dynamicSrne results clearly show that average final movement posi-
and parameters of the leaky neurons can be found in [8]}ons were only close to the center of the target area if the
The critic network has the same input as the actor and genalty area was either distant or had no effect (0 points).
linear output unit. This unit assigns scalar evaluatifif§) to  Otherwise, the average final movement position was shifted
perceived statek, and uses couples of successive evaluationsa\,\,ay from the penalty area, especially if both areas were
together with the overall rewari(t), to compute theurprise  pighly overlapping and if the loss associated with the pgnal
(ct. [9]; w is a discount factor set 10.3): area was high (-500 points). The authors concluded that the
S(t) = (R(t) + wE(t)) — E(t — 1). (12) participants_ took_ into a_cc_ount knowledge of motor variapil
to select aimpoints within the target area that reduced the
The surprise is used to train both the actor and evaluatgsrobability of accidentally hitting the penalty area, evén
each time the system accomplishes a reaching movemeriiis somewhat reduced the probability of receiving a reward
The evaluator's weights matrik/ ¥ is trained on the basis In doing so, the participants were able to maximize their
of the temporal difference learning rule [9} (s a learning overall reward.
rate set to 0.6):

E. Reinforcement Learner

B. Simulated Experiment

WE(t) = WE(t — 1) +0S(t)1(t). (13) These experiments were simulated with the setup de-
picted in the lower part of Fig. 1. The simulated touch
screen is placed5cm in front of the simulated participant’s
shoulder. The red and green areas are displayed slightly
WAL = WAt —=1)+n((V+LS)=V)D[D[V](1-V)IT  behind the screen2(5¢m) in order to ensure that most
(14) movements actually hit the screen. Both targets are rehlize

The actor updates its weight® 4 with the following super-
vised learning rule:



as 1.8cm long rows of five equidistant red or green dots. 10 —
The distances between targets were equal to those of the
original experiments. The red dots were activateds#t

of the intensity of the green dots (activated with 1) to 5 0.5 7
incorporate in RL the initial participants’ knowledge that £
only green targets had to be hit. The rewards and penaltiesgz 0,0 -
equal to {100,0,—100,—500} points were normalized to 5] :
{0.2,0.0,—0.2, —1.0} before being sent to the system. $ o5 4 penalty:

A trial began with the presentation of a white dot at the g ' —— 00

starting position, located aB(cm,0cm) to the right of the —@— -0.2
shoulder joint, making RISUREREACH move the hand 10 7 + 10
there. As soon as a movement ended withimn of the ,
starting location, the target area and the penalty areadigre ! ' brad ' !
played. RLSUREREACH processed the visual information -1,80 -1,35 -0,90 09 135 1,80
and executed a movement toward the screen. If the movement distance between target and penalty area centers (cm)
ended on the screen the overall reward was calculated and ) ) )
provided to RL_ If the moverent failed 1o reach the screensi, %, Aerage relaive endpons o te fal 50 mosemertane
a penalty of—1 incurred. After reinforcement the next trial penalty. Error bars show standard deviations.
began with the display of the starting location. A movement
was considered completed if the hand touched the screen
or did not move out of acm x 3cm area for 50 time  relative endpoints for movements with distances-af8cm,
steps. Nine independent runs with different target locatio _1 35¢/m, or —0.9¢m. For the relative endpoint of the last
(y-coordinate:—0.88c¢m, —0.66¢m, ...,0.88cm relative to the  plock of 50 movements, an analysis of variance revealed main
shoulder joint) were simulated for the three penalty times s effects for absolute distance, penalty, as well as a sigmific
distance conditions, summing up to 162 total runs. Each rufhteraction between them: absolute distanfg2, 148) =
contained 500 movements to the screen. 57.0, p < 0.001; penalty, F(2,148) = 64.6, p < 0.001;
interaction, F'(4,148) = 30.0, p < 0.001. Post-hoc t-tests
(Table 1) confirm that the relative endpoint is only shiftéd i
To compare the simulation data with the original results hitting the red area is both likely and associated to an &ctua
the distance of the hand positions relative to the centepenalty. To verify that the observed behavioral adjustment
of the target (relative endpoint) was measured. In partictésults in an increase of reward, the development of the
ular, each simulated run was split into 10 blocks of 50average reward and the relative endpoint during the terkbloc
movements and the relative endpoint was averaged for eaéff movements was analyzed (Fig. 3). This analysis shows
block. Movements that did not touch the screen were nothat if hitting the red area is either unlikely (distance =
included in the analysis1(3%). In 5 of the 162 runs the 1.8cm) or not penalized, and hence a near optimal reward
reinforcement learner was unable to modulate the visudp ensured from the beginning of the simulated experiment,
target representation in a way that ensured an averagé/posit
reward in the final 50 movements (4 runs with a penalty of
—1 and a distance of-0.9cm and one run for a penalty
of —1 and a distance ob.9¢m). These runs were also

IV. RESULTS

TABLE |
POSTHOC FTESTS FOR RELATIVE ENDPOINT

excluded from the analysis. Fig. 2 shows a summary of the penalty: 0 vs. -0.2 penalty: -0.2 vs. -1
average relative endpoints in the different conditionse Th abs. distance  T(34) p T(34) p
results clearly replicate those of Trommershauser e6allr 0.90 5.860 <0.001 6.07C" < 0.001
particular, they show that if the distance between the pgnal 1.35 2.000 0.053  6.000 < 0.001
area and the target area is small, the average end position is_1.80 -0.404 >0.500  0.049 > 0.500

shifted away from the penalty area. This effect is stronger

for the high penalty condition and absent if no penalty is abs. dist: 090 vs.135 abs. dist.: 1.35 vs. 1.80

delivered. penalty T(34) p T(34) p
0.0 0.241 > 0.300 -0.663 > 0.500
-0.2 4.480 <0.001 1.630 0.102
-1.0 4.880 <0.001 7.26C° < 0.001

For the statistical analysis, we combined the data of
runs with the same absolute distance between the targett-test withT(12.7) due ton = 31 and inhomogenity of variance
and penalty area by inverting the signs of distances and bt-test with 7°(12.5) due ton = 31 and inhomogenity of variance



abs. dist.: 0.9cm 1.35cm 1.80cm

a rewarded area on a touch screen while avoiding to touch

1S 4

g:z“ %] penalty areas, facing various cost and position configumati
55047 In these tests, similarly to humans, the model exhibited a
Lg-o,s— remarkable capability of shifting movement endpointtin
. 0,21 the target areataking into account the possibility of hitting
g5 0 0: the penalty areas due to motor and neural noise.
% § T Most neural-network models of motor learning and control

0.2 proposed so far focus on the extraction of compact repre-

sentations of sensory-to-motor mappings. In this respleet,
experiments presented here show that adding reinforcement
Fig. 3. Relative endpoints and rewards of movements, depeereh dis-  learning components to such models can enables a sen-
tance between reward and penalty area, penalty, and bléck@ements).  sorimotor control loop to take into account the statistical
properties of the motor system. This can be very important to
. ) effectively solve the location-redundancy problem andsthu
the mmal movement s_trategy remains unchanged. In theroth increase behavioral performance. Neural population caes
conditions, the endpoint shlfts_ away from theT penalty area. ‘used in RLSURE REACH. seem to be well suited to encode
parallel, the average reward Increases o hlghgr valugs (F'knowledge about the statistical properties of tasks and our
3). To quantify the impact of the various conditions on theggnsqimotor systems [11], [12]. The results reported here

target selection, the average reward per movement in the ﬁr§how that this knowledge is necessary to achieve ones goals
50 movements was compared with the average reward of tht?ptimally despite sensorimotor uncertainty.

final 50 movements. Pairwise t-tests revealed significant im
provements for the conditions with small absolute distance ACKNOWLEDGMENT
and non-zero penalty (Table 1l). The conditions with an This research was supported by the EU ProjeCiEA,
contract no. FP6-1ST-027819-IP, amdindRACES contract
TABLE Il no. FP6-511931-STREP.

PAIRWISE TF-TESTS FOR RELENDPOINT AND REWARD CHANGE
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