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Abstract— The capabilities of human motor behavior build
on the integration of multiple sensory modalities in goal
representation and feedback processing. Here, we present a
hierarchical neural network model of motor control to simulate
these capabilities, based on the SURE_REACH model. The
model is able to integrate visual and proprioceptive goal
representations, but, by now, relies only on proprioceptive
feedback to control ongoing movements. Here, we extend the
model to a neural network that processes both, proprioceptive
and visual feedback. In simulated reaching experiments we
demonstrate that visual feedback considerably enhances the
accuracy of the original controller. Moreover, the ability to
combine visual and proprioceptive goal representations, or
to adjust behavior to task-specific constraints is not affected.
Finally, we discuss the results, propose further enhancements,
and outline the model’s relevance for other domains of human
cognition.

I. INTRODUCTION

Human sensorimotor control is truely amazing. An asto-
nishing spectrum of sensory modalities can guide motor
behavior and different types of feedback can be processed.
Besides proprioception and vision, various other sensations
can be organized in motor skills, both to guide behavior
and as a goal modality. Furthermore, human behavior is
adaptive and flexible to a degree unrivaled by any artificial
system. Even the clumsiest among us can readily adjust
motor control to novel situations, for example, when moving
with heavy winter clothes or when opening a door while
balancing a stack of folders and holding a cup of coffee.
How these capabilities are achieved by the human brain is
not yet well understood. Here, we propose that a hierarchical
model may account for the integration of proprioception and
vision in goal representations and feedback processing in
task-dependent motor control.

A. Behavioral Flexibility and Hierarchical Control

The ability to behave flexible and to adapt movements to
different tasks and circumstances depends on the redundancy
of the human body. Due to motor redundancy, each possible
behavioral goal can be pursued in an infinite number of
ways. On the kinematic level, it is possible to grasp a pen
while assuming rather different arm postures. Likewise, the
transition from an initial posture to a targeted one can follow
different trajectories. On the dynamic level, each movement
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can be carried out with different speeds and varying degrees
of muscle stiffness. Of course, at one time, only one of
many possible movements can be executed so that an implicit
or explicit selection has to be made. In recent years it
became apparent that this selection is not based on a single
optimality criterion, but that it is highly dependent on the
current task and situational constraints. For example, the
brain takes advantage of postural redundancy to facilitate
upcoming tasks [1].

Furthermore, movement goals can be represented in a
number of sensory modalities. In most reaching movements,
the goal is visually defined. Nevertheless, a goal can also be
formulated in proprioceptive terms, for example, when we
want to reproduce specific postures during physical exercise
or dancing. Moreover, a goal representation might combine
multiple sensory modalities. For example, we might want to
align forearm and hand (i.e. proprioceptive constraint) when
we point at a distant object (visual target). When performing
sequential movements, a target may be represented in a
vision-based coordinate system but additional proprioceptive
information may be integrated in the representation to faci-
litate subsequent movements [2].

Goal directed human motor behavior is often understood
in terms of internal models, which neurally represent how
the body moves or can be moved [3]. Whereas forward
models predict the consequences of motor commands on
body posture or sensory input, inverse models provide the
motor commands necessary to move the body to a desired
state. A drawback of models that build upon a simple inverse
mapping from goals to actions is that they only account
for behavior in very limited contexts, for example, the
transformation from target coordinates to abstract movement
parameters [4] or the transformation of a desired joint tra-
jectory into motor commands [3]. In these cases, behavior is
neither very flexible nor are multiple sources of information
integrated to represent goals and guide movements. Hier-
archically organized motor control networks might enable
these capabilities and, besides, yield other advantages [5],
[6]. Different control problems can be tackled independently
[7], more degrees of freedom may be controlled [8], or
skills of different complexity may be encoded [9]. Here, we
show that a hierarchical controller enables the integration
of different forms of sensory feedback and multiple goal
representation while preserving the flexibility of individual
modules to resolve redundancy task-dependently.
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Fig. 1. The hierarchical control networks integrate visual and propriocep-
tive feedback to pursue a goal representation that is determined by visual
representations and proprioceptive constraints.

B. General Approach

In this paper, we extend the SURE_REACH model of
motor control [10], [11] by a mechanism for visual feedback
processing. SURE_REACH is a physiologically and psycho-
logically plausible neural network model of unsupervised
human motor learning and control. It accounts for the task-
dependent resolution of motor redundancy to enable flexible
behavior in reaching movements to visually encoded targets.
Movements may be constrained by additional proprioceptive
goals, for example, to reduce the motion of impaired joints,
facilitate upcoming movements, or assume a specific angle
in a selected joint. However, even if the target is visually
encoded and this information is processed during movement
preparation, so far movement execution itself was only based
on proprioceptive feedback and a proprioceptively encoded
movement plan. Thus, it is currently impossible to update
motor commands based on a visually perceived discrepancy
between hand position and target. However, human goal-
directed movements rely heavily on visual feedback [12],
[13]. Hence, we extent the proprioceptive SURE_REACH
controller to account for visually guided movements.

To preserve the current flexibility of the SURE_REACH
model but also enable the integration of visual feedback, we
propose a hierarchical modular system that consists of two
nested control loops (Fig. 1). The lower level loop, formed by
the original SURE_REACH model, proprioceptively controls
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arm movements. This loop is enclosed by a visual feedback
neural network, which minimizes the distance between the
exteroceptively perceived hand and target location. This
neural network adjusts the lower level goal representation
dependent on a visual error signal to acquire the target
more accurately but also to preserve the flexibility of the
proprioceptive loop.

The next section briefly describes the simulated body, the
proprioceptive SURE_REACH controller, the visual feedback
mechanism, and the simulated reaching tasks. The results
section then shows the enhanced capabilities of the hierarchi-
cal system. A discussion of the model, possible extensions,
and an outlook on higher cognition concludes the paper.

II. DESCRIPTION OF THE MODEL

In the following section, the original SURE_REACH ar-
chitecture is briefly outlined. Due to limited space, a full
account can only be given elsewhere [10], [11]. Next, the
simulated arm and the neural networks for visual feedback
processing are described.

A. SURE_REACH

SURE_REACH is a modular hierarchical architecture that
solves the inverse problem of generating a sequence of motor
commands that move the hand of a redundant arm to a
desired location. It is divided into two modules, which are
trained with unsupervised associative learning rules.

The posture memory (Fig. 1) transforms a population
encoded hand location into a likewise encoded set of all those
arm postures that realize the respective hand location. It thus
transforms the goal from a visual into a posture-based, pro-
prioceptive frame of reference. Based on this representation,
the motor controller generates motor commands that move
the arm toward the closest goal posture. This is realized in
two steps. First, the motor controller prepares a sensory-to-
motor mapping based on learned sensorimotor body models.
This mapping provides suitable motor commands to move the
simulated arm from each possible posture toward the desired
hand location. It can be considered an online generated
inverse model. Next, the sensory-to-motor mapping is used as
a proprioceptive closed-loop feedback controller that moves
the hand to the target.

The emphasis of the adaptive movement preparation is
also one of the key differences to previous neural network
models. Whereas other models encode a single or only few
inverse models during motor learning, which are used for all
reaching movements later on, SURE_REACH generates an
individual inverse model for each newly presented target.
This enables the flexible incorporation of task-dependent
constraints and optimality criteria by adjusting the sensory-
to-motor mapping to the current task demands. In this paper,
we used the same configuration as in [11] to setup the
components of the SURE_REACH controller.

B. Arm Model and Hand Space Representation

We simulate reaching experiments with a kinematic model
of a three joint planar arm moving in the transverse pla-
ne. The lengths of the upper arm, forearm, and hand are



32c¢m, 25¢m and 18cm, respectively. The shoulder, elbow
and wrist joints are restricted to move within [—60°, 120°],
[-160°,0°], and [—80°,60°], respectively (see gray angles
in Fig. 1). The proprioceptive controller moves the arm
by activating a pair of antagonistic muscles for each joint.
As this paper mainly addresses the direction of corrective
movements and not their dynamics, muscle activations are
normalized, resulting in a constant arm velocity of 0.57° in
each time step.

In the SURE_REACH controller, hand targets are repre-
sented by a population code of neurons h. A neuron h' of h
fires, if the target coordinates (x,y) are close enough to the
neuron’s preferred location (hY,h!):

x— hi ly — hy|
e = hal, —30) (D
3.0cm 3.0cm
The preferred hand locations are arranged in a h = 51 x26 =
1326 grid with 3cm distance, covering a 150cm X 7hecm
rectangle, which surrounds the frontal part of the arm’s work
space.

h' = max(1.0 — 0) - max(1.0

C. Visual Feedback Controller

In the original SURE_REACH model, the hand target re-
presentation h would be directly computed from the location
of a visually presented target. To enable visually guided
movements, this representation is now detached from the
physical target stimulus. It is mediated by an internal repre-
sentation of the target (the internal target, as in contrast to the
external target, which finally should be touched by the hand).
Thus, small but systematic errors, which might arise due to
the inaccuracy of necessary coordinate transformations or
novel visual distortions, can be corrected by altering the goal
representation of the proprioceptive loop.

Initially, the internal target may be identical to the external
target representation but it changes as soon as a discrepancy
between the external target and the hand position is per-
ceived. Thus, it is not necessarily identical to the external
target but helps the underlying control structures to acquire
the external target more accurately. The internal target is
continuously forwarded to SURE_REACH’s posture memory
and results in an adjustment of its control behavior. If an
error is perceived, the internal target is shifted in the direction
opposite to that of the error, as proposed in [8]. For example,
if the hand is to the left of the external target, the internal
target is shifted slowly to the right, resulting in a rightward
hand movement.

The internal target representation has to meet three requi-
rements. First, the internal target representation has to be de-
tached from the external target representation to enable arbi-
trary adjustments. Second, despite this detachment, a neural
activity distribution that accurately encodes the internal target
has to be maintained throughout the movement. Third, the
neural activity has to be controllable in order to induce
corrective movements. A lateral inhibition neural field with
gated lateral connections fulfills these requirements [14]. Due
to excitatory lateral connections between spatially associated
neurons and inhibitory connections between distant neurons,
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Fig. 2. A population of neurons (h*) represents the hand target. The lateral
inhibition type connectivity below the nodes keeps the representation stable
(black: excitatory, dotted: inhibitory). Drawn above the nodes, biased lateral
connections (black arrows), which are gated by the error signals c* (dashed
lines), enable controlled shifts of neural activity between neurons.

neural activity can be preserved over a longer period of time
without external input. Furthermore, multiple layers of gated
lateral connections may induce shifts in the neural activity
distribution if they are activated by an external control signal.

In the following, the neural network model of the vi-
sual feedback controller is formulated (Fig. 2 depicts a
simplified and one-dimensional version). The internal target
representation is implemented by a vector Rins encoded
like the hand space representation h. If a visual target is
presented, the hand target representation h is not directly
forwarded to the posture memory as in previous versions
of the model but defines the initial state of the internal
target representation. The activity distribution of the internal
target representation is then continuously forwarded to the
proprioceptive SURE_REACH controller. The internal target
representation is updated each time step according to the
equation:

Ahi A = ST
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where Ah! , is the change in the i-th component of Rint,
0 is a scaling factor, « reduces the activity of the neuron
proportional to its activity, J weighs a general inhibitory
term that scales down overall network activity, v weighs the
influence of the lateral inhibitory and excitatory connections,
§ weighs the influence of the gated connections, and c* is
the k-th component of the visual error signal, which gates
the layers of lateral connections. Table I lists the values of
the parameters. The activity of a single neuron is restricted
to the range from 0.0 to 2.0. The steep nonlinear sigmoidal
function f(t) bounds the propagated neural network activity:

1
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The weight of lateral connections is determined by the
function d(4, j):

™
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TABLE I

PARAMETERS
parameter  value  description
« 0.2 activity leak
16} 0.01  weight of general inhibitory term
0 0.1  weight of lateral connections
§ 1.0  weight of adaptive connections
[% 0.01  scaling coefficient
dinh 11.25  distance of zero lateral inhibition / excitation

where d;,; is the distances for which neuron neither excite
nor inhibit each other and hZ, b, h),, and h are the preferred
values of the i-th and j-th neuron, respectively.

Finally, shifts of the internal target may be induced by
the four different layers of gated lateral connections. If
a layer is activated, it propagates neural activation in a
specific preferred direction. The preferred directions of the
four layers (I%,1),i=0...3 are (1,0), (0,1), (—1,0), and
(0, —1). The gated lateral connections excite or inhibit other
neurons according to the equation:

_ (h3 — hi)lF + (h; — h;)l’;
VUL = B2 + (b = )

During an ongoing movement, the visual error signal ¢ is

computed from the directional error ¢, between the location

of the hand and the external target:

B 1

- 14+ 62(l,’; cos e +1F sin de) *

g(i, 4, k)

(6)

c! (7
The closer the direction from hand to target matches the
preferred direction of the k-th layer of gated connections, the
higher is the excitation of the k-th component of the error
signal, normalized by a sigmoidal term. Potential learning
mechanisms and advanced error representations are discussed
in Section IV.

D. Simulated Reaching Task

To evaluate the performance of the model, we demonstrate
that the additional visual feedback enhances the accuracy of
simulated movements, without impairing SURE_REACH’s
original capability to adhere to task-dependent constraints.
Hence, the performance of the model was tested in three
different tasks. First, as a baseline, the neural network had
to move the hand to visually presented targets without the
possibility to correct errors with visual feedback (“proprio-
ception only”). To simulate this task, the target position was
determined according to (1) and directly forwarded to SU-
RE_REACH’s posture memory. Second, the same movements
were repeated with the help of the visual feedback networks
as described above (“visual feedback”). Third, again the
same hand targets had to be approached, but this time also
a specific shoulder, elbow, or wrist angle had to be assumed
(“visual feedback (... constrained)”). For example, the task
could be to move the hand to a specific point and also
flex the elbow to 30°. The proprioceptive controller is well
able to fulfill such constraints [10]. The joint angle cons-
traint is imposed on the network by inhibiting all neurons
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Fig. 3. The charts show the trajectories of the x- and y-coordinate of

the hand (squares) of two exemplar movements. The target is indicated by
circles. A) If the controller is only guided by proprioception, a small error
remains. B) The error can be compensated by shifting the internal target
(triangles) if visual feedback is used.

in SURE_REACH’s redundant goal posture representation
that do not match the specified constraint (Fig. 1). In the
constraint task, each movement had to be performed under
three conditions, in which either the shoulder, elbow, or wrist
joint was required to assume a randomly selected angle'.

Before these tests were performed, 10 individual con-
trollers were independently trained as in [11]. Then, each
controller had to make 20 movements from randomly chosen
goal postures to randomly chosen hand targets in each task.
A single movement lasted for 600 time steps.

III. RESULTS

A quick glance at the exerted movements reveals that
the controller benefits considerably from visual feedback.
Fig. 3 displays the trajectories of an “proprioception only”
movement and a movement in the “visual feedback™ task. In
the former, the hand approaches the target but the controller
is unable to detect the remaining difference between hand
position and target. Initially, the latter movement resembles
the former. However, the controller detects the discrepancy
between hand position and target and adjusts the internal tar-
get accordingly. The internal target is shifted in the direction
opposite to the error between target and hand, thus reducing
the hand position error.

To evaluate the accuracy of the controller and the different
tasks systematically, we computed the average hand position
and arm posture of the last 10 time steps of a movement.
The averaged hand position was then compared to the target
location to compute the final hand position error. Table II
reports average error values for the different tasks. In the
visual feedback tasks, the movement accuracies surpass that
of the proprioceptive controller by far, even if additional
constraints are imposed. The histograms in Fig. 4 show, that
exclusively proprioceptively controlled movements usually
terminate at least 0.5cm away from the target (95.0% of

It was assured, that the hand target and proprioceptive constraint were
not exclusive.
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movements). In contrast, if visual feedback is used the
hand position error only seldom exceeds 0.5¢m (14.5% of
movements). T-tests of the mean hand position errors of the
ten controllers reveal that movements in all visual feedback
tasks are more accurate than in the proprioceptive task (table
I). However, there is no significant difference between the
various conditions with visual feedback.

Finally, we verified if the SURE_REACH controller is still
able to adhere to the proprioceptively defined joint angle
constraint. Therefore, we computed the absolute difference
between the to be acquired joint angle and the actual resul-
ting joint angle for the constrained joint at the end of each
movement. The histograms in Fig. 5 reveal that the constraint
is met with high accuracy, deviating only a few degrees from
the targeted angle (m = 2.50°, sd = 2.44°).

The results confirm two important claims. First, the
hierarchical network model is able to integrate vision and
proprioception in feedback processing. The SURE_REACH

TABLE 11
MEAN HAND POSITION ERROR AND STANDARD DEVIATIONS

task m (cm) sd (cm)  ¢(18) p
proprioceptive only 2.55 0.554

visual feedback 0.617 0.343 939 <0.01
visual feedback and ...

.. wrist constrained 0.291 0.165 124 < 0.01
... elbow constrained 0.513 0.231 10.7 < 0.01
... shoulder constrained 0.469 0.280 10.6 < 0.01
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Fig. 5. The chart shows the distribution of the deviation of the final angle
of the constrained joint from the intended angle.
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controller uses proprioceptive feedback of the current joint
posture to quickly move the hand to the target. Additionally,
visual feedback is used to reach the target location with
high accuracy. Second, the integration of visual feedback
does not impair the flexibility of the original proprioceptive
controller, but it is possible to combine a visually presented
target and visually perceived deviations from the target with
proprioceptively encoded constraints. Thus, the presented
neural network model accounts for flexible, task-dependent
behavior and for the integration of multiple sensory modali-
ties

IV. DISCUSSION

We presented a hierarchical neural network model of mo-
tor control. This model combines high behavioral flexibility
with the capability to integrate multiple sensory modalities
in goal representation and to adjust behavior with feedback
from different information sources. We simulated reaching
experiments in which the visual feedback considerably en-
hanced the movement accuracy. Visual feedback did not
interfere with the proprioceptive controller’s capability of
integrating task-specific visual and postural constraints.

A. Hierarchical Motor Control

Motor control is generally understood as a hierarchy or
cascade of nested control processes [3], [5], [15]. In such
a hierarchy, a rather abstract goal — such as wanting to
have the hand at a certain location — is decoded into
more concrete representations, for example, in proprioceptive
terms, until motor commands are finally generated. Thereby,
intermediate representations are not only the byproduct of
a stepwise transformation process but are actively controlled
to enhance movement accuracy and stability. SURE_REACH
and the presented visual feedback neural network fit well into
this framework. They form two nested control loops. The
proprioceptive, lower level loop controls the arm posture,
striving to match actual and desired posture. This loop is
enclosed by the visual feedback loop, which minimizes
the distance between the exteroceptively perceived hand
and target location. The model differs from approaches
that map rather higher level goals, for example, visually
encoded errors, directly to motor commands or movement
based representations [16]. These models lack intermediate
representations and thus, on their own, can hardly integrate
goal representations of multiple sensory modalities. In order
to account for the flexibility and complexity of human
sensory control, it seems necessary to integrate multiple
control modules, which process different sensory modalities,
in a hierarchy or cascade of feedback loops.

B. Learning and Error Representation

In the current implementation, the representation of the
error signal is yet very simple and the neural networks for
visual guidance are not shaped by sensorimotor learning.
Hence, in the future we want to extend the model in different
ways. First, by now the representation of the error only
encodes the directional discrepancy between hand and target.



However, for a more realistic account of human reaching
movements, the amplitude of the error should be encoded
as well. A retina-like representation, centered on the target,
may be able to encode both. Additionally, this would enable
the encoding of subtle differences in the target region while
allowing a sparse coverage of more remote areas. Second,
the connectivity between the error representation and the
activation of the gated connections should be learned. A
reinforcement learning architecture should be readily able to
acquire such a mapping [17]. The distance between hand and
target might serve as a psychologically plausible and easily
available reward signal. Here, a retina-like error representa-
tion may enable the adjustment of the rate of the internal
target shift to the amplitude of the error. Also, currently the
internal target is initially set to the location of the external
target. A related learning mechanism might learn to place
the internal target between the hand and external target to
avoid overshoots. Such a bias toward undershoots is also
found in human movements [18]. In future work, the error
signal might not depend on the actual hand location but on a
prediction of the final hand location to avoid adjusting motor
commands based on a not yet finished movement [19]. Third,
the gated lateral connections could develop in initial learning
phases [14]. Information to distinguish between different
movement directions could be extracted from proprioceptive
or motor codes of saccades following the hand during early
sensorimotor development.

C. Outlook on Higher Cognition

Recently, it has been suggested that the complex represen-
tations necessary to control the human body with its many
redundant degrees of freedom may lay the foundation for
higher cognitive functions [20]. Furthermore, modular inter-
nal models appear to be involved in the formation of abstract
representations and even language [21]. SURE_REACH may
provide a suitable framework for the generation of higher
level cognition, possibly combining and integrating multiple
representations. Moreover, higher-level cognitive functions
are deeply interwoven with anticipatory, goal-directed beha-
vior [22], as modeled within the SURE_REACH framework.

Besides the possibility to develop higher-level cognitive
representations based on likewise hierarchical models, it
seems also easy to integrate the internal generation of goals
based on motivational modules. Recently, adaptive motiva-
tional systems have been successfully integrated into robot
platforms [23]. Due to the high modularity and flexibility
of the SURE_REACH model, goal activations that originate
from the motivational system may flexibly invoke the goals
and constraints necessary to solve self-induced tasks optimal-
ly, given current environmental circumstances and internal
motivations. Future research awaits the creation of such high-
ly flexible, motivational, cognitive control architectures. To
conclude, hierarchically structured architectures, as presented
herein, seem the key to understand the interplay of the many
different feedback sources and goal modalities that ground
the unmatched sophistication of human behavior and maybe
even human cognition.
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