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Abstract The recently introduced neural network SURE_REACH (sensorimotor un-
supervised redundancy resolving control architecture) models motor cortical learn-
ing and control of human reaching movements. The model learns redundant, internal
body models that are highly suitable to flexibly invoke effective motor commands.
The encoded redundancy is used to adapt behavior flexible to situational constraints
without the need for further learning. These adaptations to specific tasks or situa-
tions are realized by a neurally generated movement plan that adheres to various
end-state or trajectory-related constraints. The movement plan can be implemented
by proprioceptive or visual closed-loop control. This chapter briefly reviews the
literature on computational models of motor learning and control and gives a de-
scription of SURE_REACH and its neural network implementation. Furthermore,
we relate the model to human motor learning and performance and discuss its neural
foundations. Finally, we apply the model to the control of a dynamic robot platform.
In sum, SURE_REACH grounds highly flexible task-dependent behavior on a neural
network framework for unsupervised learning. It accounts for the neural processes
that underlie fundamental aspects of human behavior and is well applicable to the
control of robots.
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1 Introduction

Virtually all of the brain’s capabilities, from the simplest automatic mechanisms to
the most complex cognitive operations, are mediated by the human motor system.
Only movements of our bodies can cause consistent manipulation of the environ-
ment. Thus, understanding the human motor system is of paramount importance to
understand human behavioral control and the involved cognitive processes. How-
ever, many open questions remain in our understanding of how the brain translates
our will into actual body movements.

Despite this lack of explicit knowledge, our brains transform goals into move-
ments exceedingly well and with astonishing ease. For example, movements are
generally executed in a fast, accurate, and energy conserving way [23, 71]. Multi-
ple sources of information are integrated when forming goals or during the control
of ongoing movements [18, 47]. If obstacles block the way or our own mobility
is restricted, the motor system adapts to these task-dependent constraints from one
moment to the other and it even aligns the way we carry out current movements to
facilitate future actions [17, 22, 61]. On top of these facts, it needs to be remem-
bered that all these capabilities are acquired by unsupervised motor learning. In the
CNS, cortical motor areas have been associated with the unsupervised acquisition
of motor behavior and new motor skills [19, 25, 32].

The computational principles underlying motor learning and control are not yet
very well understood. A review of existing computational models reveals that most
models fall in either of two groups. Some models scrutinize how the fully developed
motor system might work offering an account for the flexibility of human behavior,
but these models do not account for motor learning (e.g. [14, 63, 64]). Other models
focus mainly on the acquisition of motor control structures but they cannot explain
the flexibility of human behavioral control (e.g. [3, 4, 7, 9, 40, 43, 49]).

The SURE_REACH neural network model of the cortical control of human
reaching aims at integrating these aspects [11, 28, 30, 31]: It offers an account for
unsupervised motor learning; It explains how humans can flexibly adapt to changing
task constraints; And finally, it is based on plausible mechanisms and structures on
the neural as well as functional level.

This is achieved by providing neural learning and control mechanisms that ex-
tracts as much information as possible about the relationship between motor com-
mands and changes in sensory input. The abundance of information enables to flexi-
bly generate novel movement pattern and thus adjust quickly to changing situations
(c.f. [73] in this volume). This approach offers unprecedented flexibility in move-
ment control and offers new perspectives on understanding motor learning, in both
humans and robots (c.f. [60]; [66] in this volume).

In the remainder of this article, we first review related models of motor learn-
ing and control. Next, SURE_REACH is described, including the mathematical for-
mulations of spatial representations, learning mechanisms, and the motor control
networks. After that, several examples show that the model is well able to account
for motor learning and flexible behavior. Additionally, the biological and theoreti-
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cal foundations of the model are discussed. Finally, we review an application of the
underlying framework to the flexible control of robots.

2 Theories of Motor Learning, Movement Preparation, and
Control

To enable goal-directed action, the brain has to convert the representation of a goal
into a sequence of efferent motor commands, which result in muscle activations
and finally in overt body movements. A neural structure that encodes such a map-
ping from a desired goal location into motor commands is termed inverse model
[42].! Inverse models are at the heart of any theory of goal-directed movement and
closely relate to the “memory trace” in Adams’ closed-loop theory [1] or the “recall
schema” in Schmidt’s schema theory [67] (for older accounts see: [6, 27, 52]). Each
body reacts differently to different motor commands and thus, an inverse model
for controlling movements needs to be acquired by body-dependent motor learn-
ing. Even more so, the learning mechanisms need to operate unsupervised from the
beginning and without the help of an internal or external teacher. Finally, each pos-
sible goal might be reached by an abundance of different motor command patterns
(due to motor redundancy). Thus, there is no easy way to directly acquire an inverse
model as each goal may be reached with various, alternative movement patterns and
the involved learning needs to be unsupervised.

Several theories address how such inverse models might be acquired (e.g. [3,
4,9, 40, 41, 43, 49, 58]). These theories differ broadly regarding representations,
controlled parameters, and learning mechanisms. However, they all have one aspect
in common: All these theories assume that an optimal inverse model is acquired,
which stores for each goal a specific movement that optimizes additional criteria.
For example, it might encode those motor commands that would reach a goal lo-
cation with the smoothest possible trajectory [74]. Some of these theories rely on
learning mechanisms that require a one-to-one mapping between goals and motor
commands (e.g. [3, 49, 58]). They fail to account for the acquisition of inverse mod-
els for more complex, redundant bodies the control of which requires the resolution
of a one-to-many mapping. Other theories that are mostly addressing the acquisition
of cerebellar control structures (e.g. [43, 41] but see [40]) require at least a coarse
inverse model that serves as the teacher. Thus, these models fail to account for un-
supervised learning. However, under certain conditions, it is possible to acquire an
inverse model unsupervisedly [7, 9].

The very notion that inverse models directly map goals onto optimal (but fixed)
sequences of motor commands is problematic. Such a model only encodes one pos-
sible way to reach a goal and neglects alternatives—particularly those that yielded
worse performance at the time of motor learning but may actually prove advanta-

! Please note, the term “model” may refer to a scientific theory or the above-mentioned mapping
in this text.
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geous later on. Since the environment, the controlled body, and tasks change all
the time, goals need to be reachable in different ways, depending on the current
circumstances—sometimes we only need to reach a certain point in space, some-
times we also need to fulfill proprioceptive constraints, for example, when aligning
hand and forearm to a pointing gesture. Likewise, we carry out one action in a way
that facilitates the next one [22, 78] or we bypass obstacles with ease [17]. If only
one way was represented to attain a certain goal, it is impossible to model the flex-
ibility with which we adjust our movements to novel situations so rapidly. Thus,
inverse models cannot implement a direct mapping from goals to (optimal) actions,
but have to provide a set of useful action alternatives. A selection amongst those
alternatives is then necessary to generate actual behavior.

Furthermore, from a computational point of view, a direct mapping from goals
to motor commands implies that the process of mapping goals onto actions is rather
simple and somewhat akin to the read-out of a neural look-up table. However, move-
ment preparation in the brain seems to be a rather involved process. This is evident as
the time to prepare a movement depends on many features of the goal, the response,
and the context of the movement [45, 48, 56, 62]. Hence, theories that predicate a
direct mapping from goals to motor commands fail to assign a meaningful role to
the obvious complexity of movement preparation.

On the other hand, theory of task-dependent movement preparation exist. Most
notably, the posture-based motion planning theory [63, 64, 65] details how differ-
ent movement alternatives may be evaluated, selected, and refined according to the
constraints of the situation. The theory accounts for a wide range of behaviors, in-
cluding reaching, grasping, and the avoidance of obstacles. It presumes that neu-
ral mechanisms link sensory (goal) representations and motor commands but it is
mute regarding their neural structure and their acquisition. Besides such abstract
approaches, also neural network models for flexible motor behavior have not yet
offered an explanation for motor learning [14, 15].

SURE_REACH integrates theories of motor learning and theories of task-depen-
dent movement preparation into a biologically plausible neural network framework.
It thereby extents related approaches by accounting for the unsupervised acquisition
of internal sensorimotor models and flexible movement planning (e.g. [55]). The
next section outlines the general approach of the model and details its structure.

3 Description of the model

Before the model is formulated in detail, an overview over the principles underly-
ing the model is given. The discussion of the literature revealed that many concep-
tual problems of recent neural network models arise because the proposed learning
mechanisms strive to only encode optimal motor commands. This causes some net-
work approaches to fail at controlling a redundant body, others require supervised
teaching mechanisms, and again others are left with a highly restrained behavioral
repertoire. In contrast, SURE_REACH encodes all motor commands relevant for
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behavioral control. This can be quite easily achieved by ideomotor learning mecha-
nisms. Such mechanisms encode contingent sensorimotor relationships, that is, they
store which sensory effects result from which motor commands, depending on the
initial state [21, 33, 34, 37]. Together, these sensorimotor contingencies represent
how the body may be controlled and thus constitute a task-independent internal
body model. However, they may not be directly used to generate movements. On
the one side, for certain goals no sensorimotor contingencies may be stored that
provide a single motor command to move from the initial state to the goal. This
problem is solved by the combination of multiple sensorimotor contingencies. On
the other side, many sensorimotor contingencies may provide useful motor com-
mands in the current context, but, of course, only one motor command can be ex-
ecuted at a time. Thus, specific motor commands have to be selected. According
to the model, these processes of combining and task-dependently selecting the en-
coded sensorimotor information is what happens during movement preparation: A
task-independent, general body model is used to tailor a task-specific inverse model
to the unique demands and constraints of the current situation. Thus, the model links
behavioral flexibility, movement preparation processes, and the way humans learn
to control their bodies in a meaningful, interdependent manner.

3.1 Neural Network Implementation

In the following, a more detailed account for the specific computational stages and
processes is given. First, the simulated controlled body is briefly described. The neu-
ral networks have to control a planar kinematic arm with three joints. Each joint is
attached to two “muscles” which rotate the joint proportional to the excitation level
of the innervating motor neuron. Each muscle is activated by motor commands rang-
ing between 0.0 < mc; < 1.0. To compute the final movement of a joint ¢;, activa-
tions of antagonistic motor commands are subtracted and the result is multiplied by
a gain factor g which scales movement velocity (see appendix for parameter values):

0i(t +1) = ¢i(t) + g(meai—1 —mea;),i = 1,2,3

This body is surely rather simple but it incorporates two important features. First,
in most cases a sequence of motor commands is necessary to reach a goal. Second,
the arm is redundant on the kinematic (multiple postures may realize a hand posi-
tion) and sensorimotor (multiple trajectories may realize transitions between pos-
tures) level.

Figure 1 shows the staged structure of the model, which reflects the common
notion that goals, such as specific hand locations, are transformed stepwise into a
sequence of motor commands [12, 26, 35, 39]. By including multiple layers of rep-
resentations and different nested transformation processes, it is possible to account
for the flexible incorporation of constraints of different modalities during movement
preparation.
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Fig. 1 The cartoon of the model reflects multiple stages of processing from the goal to motor com-
mands. Intermediate representation and transformation processes may be adjusted to incorporate
task-demands into the movement preparation process.

In the current implementation, SURE_REACH transforms a desired hand loca-
tion into a sequence of motor commands, given certain constraints.? The individual
transformations are realized by interacting, adaptive neural network modules. First,
the posture memory module encodes a mapping from visual hand space to pro-
prioceptive posture space. Second, the sensorimotor module encodes sensorimotor
contingencies in posture space. Based on the sensorimotor model, movements are
prepared and controlled in posture space.

3.1.1 Body Spaces Representation, Internal models, and Motor Learning

Before movements can be executed, the neural networks have to be learned. The
posture memory has to encode the relationship between visually encoded hand po-
sitions and proprioceptively encoded arm postures. It stores the kinematic relation-
ship between the two sensory modalities. The sensorimotor model has to encode the
relationship between issued motor commands and state transitions in proprioceptive

2 The origin of these goals or constraints is not part of the model.
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posture space. It stores the relationship between action and perception. To simulate
early infant movements, random motor commands are executed and related to the
consequent sensory input.> Throughout the model, goals, sensory input, and motor
output are represented by populations of neurons (population codes), in which each
neuron represents a certain stimulus, such as a hand position or joint configuration
[8, 13, 24, 69]. Hand coordinates are encoded by a population of neurons H. Each
neuron h; of H fires, if the hand coordinates (x,y) are close enough to the neuron’s
preferred hand location (/} hly )

X Y
h; = max (1.0 — M;O) -max(1.0 — M;O),
hand dhand
where dj,q 1s the distance between the preferred values of neurons with adjacent
receptive fields. The preferred hand locations are arranged in a grid and cover the
arm’s workspace. Arm postures are coded in a population of neurons P, where each
neuron p; is activated according to the equation

3 Y
pi =] Jmax(1.0—- M;O)7
=1

posture, j

where p?’ are the preferred joint angles of each neuron p; and dposture,j 18 the dis-
tance in the j-th dimension of joint space between the preferred values of neurons
with adjacent receptive fields. During the initial learning movements, hand positions
and postures are represented by different populations of neurons that constitute neu-
ral hand space and posture space. An associative learning rule strengthens the con-
nections between simultaneously activated neurons in hand and posture space, thus
creating a mapping between both representations. This mapping is termed posture
memory. In each time step of the simulation the current hand (H) and arm state (P)
are associated by Hebbian learning:

WPM([) = WPM(I— 1) +8PHT,

where € is the learning rate and Wpy, is the weight matrix that constitutes the posture
memory.

The sensorimotor model consists of several neural representations of the posture
space, each of which is associated to a specific motor neuron. If the motor neuron
associated to an individual neural network is active, connections between the neuron
representing the current posture and the neurons representing just visited postures
are formed in the respective network. Together, these connections encode sensori-
motor contingencies: They represent which transitions in posture space may occur,
if the associated motor neuron is activated.

3 This does not imply that infant movements are merely random, as is clearly not the case [76].
However, the neural networks are learned sufficiently well based on simple random movements.
Learning speed and accuracy might be further improved if more structured exploratory movements
were employed.
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As the simulated arm is controlled by six different motor commands (two for
each joint), there are six recurrent neural networks A; each of which consists of a
layer of mutually interconnected neurons. The neural layers A; have the same size
as the posture representation P and their interconnections are encoded by weight
matrices W;. During learning, the neural layers A; have the following dynamics.

Ai(t) = pAi(t — 1) +mc;(t —1)P(t — 1),

where P is a representation of the current arm posture, p is a decay coefficient
that enables the learning of temporally extended posture transitions by maintaining
a trace of past posture representations, and mc; is the activation of the i-th motor
command during learning. Neural network weights are updated according to the
following associative learning rule:

wl (1) = wl(e = 1)+ 8al (1) p" (1) (0 —w! (= 1)),

where w{ k, a{ , and pk are single values of the weight matrices, neuron layers, and

the representation of the current posture, respectively, 0 is the learning rate, and
6 = 0.1 is a ceiling value that prevent weights from increasing indefinitely.

3.1.2 Movement Preparation

The previous paragraphs revealed the model’s space representations, internal mod-
els, and learning mechanisms. The following paragraphs answer how the acquired
internal models may be used to plan movements. SURE_REACH accounts for
movements to desired hand locations. The input to the model is thus a population
encoded hand position. The desired hand position (Hyg) is transformed by the pos-
ture memory into a likewise encoded representation of all those arm postures that
realize the respective hand location (Py,./; proprioceptively encoded hand target in
Figure 1). It thus transforms the goal from a visual, hand-based into a propriocep-
tive, posture-based frame of reference. This is modeled by the equation

Pgoal = Wpy X Hgoal~

The redundant representations of postures may be further constrained, for ex-
ample, by inhibiting neurons which represent undesired final joint angles (see pro-
prioceptive constraint in Fig 1). Movement planning is based on this redundant
representation. The neural representation of acceptable end-postures is fed into the
different neural networks of the motor controller whose connections constitute the
sensorimotor model. The activity is propagated through these connections, the dy-
namics of which are modeled by the following equation:
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Fig. 2 A) The maps display the activation pattern of neurons of the sensorimotor model networks,
which are associated to different motor neurons (rows), at various time points (columns, cw =
clockwise, ccw = counterclockwise). White areas are not activated at all, dark areas are highly
activated. The activation pattern constitute the neural basis of the movement plan or sensory-to-
motor mapping. Please note, for illustration purposes, only those parts of the networks that are
necessary to control shoulder and elbow are shown. The networks for control of a three joint arm
are more complex. B) Motor commands may be derived from weighting the activations of neurons
representing the same arm posture but in different networks (associated to different motor neurons).
The arrows show the effects that the motor commands generated by the motor controller would
have, depending on the actual arm posture. C) The chart shows the resulting arm movement, which
starts from the left (light grey) and terminates at the rightmost posture (black). D) The trajectory
in posture space leads quickly from the start posture to the target.

. YA,
A — max{B ('y’;j

Al<—A;k+VVZ XA;(,

+ (1 - Y)Ai)apgoal}

where n is the number of neural networks, max returns the entry-wise maximum of
two vectors, B reduces neural activity, ¥ specifies the intensity of crosstalk between
networks, and Py, is the representation of suitable goal postures normalized so that
single values add up to 1.0.

Due to the learning scheme, activity is propagated to neurons that represent pos-
tures from which the goal can be reached by executing the motor command associ-
ated with the neuron’s network. In each network, activity is propagated somewhat
differently due to differing synaptic connectivity after learning. Thus, different pat-
terns of activity emerge in the different networks. When the activities of neurons
representing identical postures between the individual networks are compared, neu-
rons of those networks are activated strongest whose associated motor neuron is
most suitable to reach the goal. Thus, the relationship between the activities of neu-
rons in the different networks defines the movement plan.
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Figure 2A illustrates the movement preparation process. The network in the first
row is associated to the motor neuron that causes counterclockwise shoulder rota-
tions, the network in the second row is associated to the antagonistic motor neu-
ron. In the first row, activity, which originates from the goal posture, is propagated
stronger to the right, that is, to neurons that represent postures from which the goal
can be reached by a counterclockwise shoulder rotation. In the second row, activ-
ity is propagated mostly to the left and hence to neurons that represent postures
from which the goal can be reached by a clockwise shoulder rotation. Thus, af-
ter movement preparation, the neural activity pattern of the networks constitute the
sensorimotor model for the neural representation of the movement plan (or sensory-
to-motor mapping) because they encode which motor neurons should be activated
to reach the goal given any possible posture. Note that both movement plan and sen-
sorimotor model are represented in the same networks: the current movement plan
is encoded in the activity of the neurons whereas the sensorimotor model is encoded
in the neural connections.

The movement plan can be considered as an inverse model that is generated on-
line for the forthcoming target. Furthermore, the movement preparation process can
be adapted to different situational constraints. For example, neurons representing
postures that would collide with an obstacle can be inhibited, resulting in different
activation pattern and consequently a movement that bypasses the obstacle. Like-
wise, the contribution of connections that are associated with motor commands that
cause undesirable movements can be limited and thus, for example, decrease or even
prevent movements of certain joints.

3.1.3 Movement Execution

To execute the movement, the movement plan is read out in a closed-loop fashion.
This is realized by generating motor neuron activations dependent on the relative ac-
tivations of those neurons in the different sensorimotor model networks (that is, the
movement plan) that represent the current arm posture. The read-out of the move-
ment plan is modeled by the equation

mc; = PTA;
* * .
max(me} — mcanm(i>,0)
me; = )
Yi—1..cmax(me; — mc;ma(i) ;0)

where P is the current posture, and mc,(;) is the antagonistic motor command to
mc;. The equation computes a normalized (1-norm) set of motor commands that
moves the arm towards the goal. Figure 2B shows the movements in joint space
that would result from reading out the movement plan at different postures and
at different time points during movement preparation. Figure 2C and D show an
exemplar movement which implements the prepared movement plan. The exemplar
movement starts in an area of posture space (light Grey dots in Figure 2D), where
the activation of the network that is associated with the clockwise shoulder rotation
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is higher than the activations in other networks. Thus, a movement that is mostly
based on a clockwise shoulder rotation is generated (Figure 2D). However, also
the somewhat higher activation of networks associated to a counterclockwise elbow
rotation contribute to the movement.

4 Simulation of Reaching Movements

The previous section describes the basic components and connectivity of the model.
In this section, we review how the model accounts for highly flexible behavior. How-
ever, before any goal directed movements can be performed, the neural networks
need to learn the relationships between hand positions and arm postures and the re-
lationship between arm movements and motor commands. Figure 3A—G shows how
the neural network controller performs when trying to execute goal directed move-
ments after an increasing number of unsupervised learning iterations. Initially, the
controller is not yet able to reach the target (Fig 3A-B). However, as more and more
experience with the simulated arm is gathered, movements get increasingly accurate
and efficient (Fig 3C-I). Finally, the arm can be moved accurately to all goals within
the arm’s reach (Fig 3H,J).

The evaluation of the model’s learning performance shows not only that move-
ment accuracy increases but also that movement preparation time (time needed un-
til the movement plan is sufficiently prepared to generate movements) decreases.
This reproduces a salient aspect of the interaction between movement preparation
and motor learning [51, 53]. A detailed analysis of the general performance of the
model during learning can be found elsewhere [11]. To summarize, the proposed
neural networks and learning mechanisms are well able to learn to control a redun-
dant arm.

4.1 Posture and Trajectory Redundancy

Next, we review how SURE_REACH can account for highly adaptive, flexible be-
havior. First the representation of redundant goal postures allows SURE_REACH
to terminate a movement to a single hand target with different arm postures. Fig-
ure 4A-B show that that the final posture partially depends on the starting posture.
A systematic analysis of such movements reveals that SURE_REACH exploits arm
posture redundancy, as do humans [71], to reduce the overall trajectory length. Sec-
ond, by simply inhibiting certain areas of the posture-based goal representations,
movements to hand goals may be constrained to finally acquire a specific angle in
a certain joint, for example, when aligning wrist and forearm to make a pointing
movement (Fig 4C). Thus, it is possible to integrate visual (hand target) and propri-
oceptive constraints in the goal representation (Figure 1 exemplifies this process).
Third, representing postural redundancy not only enables to adhere to constraints
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Fig. 3 A-G) The charts show the hand trajectory, initial and final arm posture of movements to
an exemplar target (dotted circle) after different durations of motor learning. Movement accuracy
and efficiency increases during learning. H) The chart shows the hand trajectories of movements
to a number of targets after motor learning. I) The chart shows the distance between hand and
target over the duration of the movements that are charted in C, D, F, G. With increasing durations
of motor learning, movements get more efficient (faster) and more accurate. J) After learning,
movements to reachable targets are quite accurate. Dots display targets, lines point to the actually
reached hand position. If lines are not visible, the final hand position is within the respective dot.
For the shown target, the average distance between hand and target is 1.80 cm (SD 1.31cm).

posed by the past (as the starting posture of a movement) or by the present (as con-
straints on a final joint configuration as in pointing) but also to constraints posed by
future actions. This is especially important as movements are usually embedded in
a larger sequence of actions and most movements can be carried out in ways that
facilitate subsequent movements. Indeed, several experimental studies reveal how
future goals of humans influence their present movements [46, 22, 38, 57, 70, 78].
In SURE_REACH, the representation of the redundant postures can be overlaid with
a movement plan to a future goal to select those postures among the possible ones
for an immediate movement that are also good starting postures for the subsequently
planned movement, minimizing subsequent movement paths (Fig 5, see [28] for de-
tails). The resulting movements are then aligned to the overarching goals of a move-
ment sequence. Recently, supporting evidence for this mode of movement planning
has been provided [29]. Thus, representing redundant postures enables the antic-
ipatory adjustment of movements to the demands of future goals (see [22] for a
comparable account).
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Fig. 4 The top charts show hand trajectories, initial and final arm postures. The dotted circles show
the target of the hand. The bottom charts show the trajectory of the angle of shoulder, elbow, and
wrist during those movements. A-B) Movements to identical hand targets may end in different arm
postures, depending on the starting position. C) Targets can be reached while adhering to postural
constraints, e.g. aligning forearm and wrist to make a pointing gesture. D-E) Movement planning
may be adjusted to avoid moving specific joints, e.g. if these are in a cast or althralgic. The bottom
charts show how such constraints influence the trajectories of individual joints.

time.

shoulder =weeeee elbow —— wrist ‘

Fig. 5 The hand had to move sequentially from a start position (S) to a first target (Via) and then
to one of two possible second targets (T| or T,). The movements in A and B start from identical
start postures and proceed to identical first targets (Via) but the second target differs (T} in A and
T, in B). SURE_REACH can anticipate requirements of upcoming goals and thus choose different
postures at the first target (compare black posture in A and B), dependent on the subsequent targets.
The assumed posture at the first target facilitated the movement to the second target. Charts C and
D show another example.

To summarize, the representation of posture redundancies enables the model to
account for behavior in which the final state of the arm is not only defined by a
desired hand location and a fixed optimality criterion, but also by other implicitly or
explicitly defined constraints.

Behavior may get more adaptive by not only making use of the end-posture
redundancy but also by adjusting the movement trajectory. As mentioned above,
during movement preparation, small pieces of sensorimotor information are put to-
gether. Until now, no motor or trajectory constraints were imposed and the shortest
movement from start to goal was prepared. This is not always desirable and thus it
is possible to adjust the movement preparation process in different ways. To bypass
an obstacle, for example, it is sufficient to simply inhibit neurons in the movement
plan that represent postures that collide with an obstacle. Another example is re-
duced joint mobility. In some situations we might want to reduce the motion of an
arthralgic joint or a joint that is immobilized by a cast. Movement preparation may
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be adapted to such inconveniences by trying to prepare a movement plan that relies
mainly on executable motor commands and thus minimizes the motion of impaired
joints (Figure 4D-E).

4.2 Multimodal Feedback Control

The described neural networks are able to use a visual goal representation to plan a
movement, but so far visual feedback of the relationship between a goal and and the
hand is not used during movement execution. However, human movement accuracy
depends considerably on visual feedback [20, 44, 54, 79]. Due to the hierarchical
structure of SURE_REACH, visual feedback can be integrated into the model with-
out compromising its ability to account for flexible behavior [30]. In this case, visual
feedback networks (Fig 1) decouple the hand-based goal representation from direct
visual input and adjust an internal hand target according to a visual error signal
(Fig 6A). For example, if the hand is currently slightly left of the target, the internal
hand target may be shifted to the right. The hand-based internal target is then trans-
formed into a posture-based representation that can be combined with kinematic
constraints as described above. This enables a higher final goal reaching accuracy
while keeping behavior flexible. Moreover, on the behavioral side this model of vi-
sual feedback generates human-like corrective movements. Figure 6 shows that the
model reproduces movements with a fast initial approach component and slow final
corrective movements, mimicking human reaching movements even closer [20, 79].
On the neurophysiological side, the model reflects the notion that movements are
controlled by a cascade of nested control loops [12, 35].

5 Theoretical, Biological and Psychological Implications

The various simulation experiments have demonstrated three important claims.
First, SURE_REACH is able to learn and control a redundant body with an unsuper-
vised learning scheme. Its functionality thus exceeds other neural network models
of unsupervised motor learning. Second, the encoded motor redundancy enables to
account for behavioral flexibility to a high degree. Third, the simulation of specific
features of human movement preparation and execution show that the implemented
system has strong correlations with actual psychological processes.

More specifically, SURE_REACH contributes to the debate of the computational
bases of movement control in several ways (for an overview see [10]). Neural net-
work theories of motor learning typically assume that an inverse model that encodes
one single “best” way to reach a goal is acquired during motor learning and in-
variably used later on. In contrast, SURE_REACH learns a task-independent body
model, which encodes very general properties of the relationships between motor
commands and body movements. These general properties may be easily acquired
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Fig. 6 A) The left chart shows the x- (top three lines) and y-coordinates (lower three lines) of the
actual target (dashed), the internal target (black), and the hand location (dotted) of an exemplar
movement. B) The right chart displays the hand trajectory, the actual target (circle), and the final
position of the internal target (cross). The internal target shifts considerably to compensate for the
initial overshoot. The charted location of the internal target is the mean of the preferred values of
the dynamic target representation weighted by their activations.

unsupervised and may encode redundant motor control patterns. However, to make
use of the body model, movement preparation processes are needed that extract
a task-specific inverse model from the task-independent body model. Thus, while
movement preparation is necessary to be able to use representations that can be
learned unsupervised, the same movement preparation also enables the adjustment
of motor plans to the demands and constraints of the current situation. Considering
abstract theories of movement preparation, SURE_REACH offers a way to link such
models to neural representations and sensorimotor learning mechanisms. In fact, as
discussed elsewhere [11], many aspects of the posture-based motion planning theory
[64] are realized with the proposed neural network architecture.

The model does not only offer an interesting computational account but it is also
supported by neurophysiological and psychological findings. In SURE_REACH,
sensory information or goals are represented by populations of many neurons in
population codes. This property lays the foundation for unsupervised learning and
the representation of motor redundancy but also reflects properties of cortical repre-
sentations. Single-cell recording studies revealed that sensory, motor, and sensori-
motor representations are shaped likewise in the motor cortex and parietal cortex of
monkeys [13, 24, 69] and encoded in different coordinate systems, including posture
based ones [2, 68].

SURE_REACH also fits in macroscopic theories of the brain, which consider the
cerebral motor cortex — which is the site the model relates to — an area in which
learning is unsupervised (as opposed to, e.g. the basal ganglia or the cerebellum, see
e.g. [19, 36]). One of the key aspects of the model is its ability to account for the
representation of redundant goal representations (that is, more than a single possi-
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ble goal state). While corresponding representations have been recorded from motor
areas during movement preparation [5, 13], behavioral studies and theoretical argu-
ments suggest redundant goal representations during movement control [16, 50, 72].
Finally, as in humans or monkeys, movement preparation and movement control is
more or less decoupled [5, 75], which enables the adjustment of ongoing movements
or the preplanning but withholding of an upcoming movement. In conclusion, the
model offers a comprehensive account of how humans learn to control their bodies
and how their motor control mechanisms adapt flexibly to ever-changing situational
requirements and constraints.

6 Application to Robots

While the previous sections have focused on SURE_REACH as a model for human
behavior, this section addresses how the derived principles may be used to make
robots more flexible. To this aim, the general idea of SURE_REACH needs to be
extended. To control a dynamic robot arm dynamic control components need to be
added and need to efficiently interact with the SURE_REACH-based control com-
ponents.

A simulation of the KUKA KR16 arm was controlled by SURE_REACH en-
hanced with adaptive PD-control mechanisms [59]. Several modifications were nec-
essary to make the application to the actual physical robot arm possible in the fu-
ture. First, the learning mechanisms of SURE_REACH were replaced by hard-coded
connections. This is possible due to the exact knowledge of the kinematics of the
KUKA KR16 arm. Thus, while SURE_REACH shows that unsupervised learning of
the neural network structures is possible, the KUKA KR16 arm application shows
that it is not necessary given perfect prior knowledge of the targeted arm. Second,
the muscle-based sensorimotor models were collapsed into one joint-motor-based
sensorimotor model. This allows a more compact representation and thus a speed-
up of the activity propagation in posture space—an important step to make real-time
control possible. Third, an adaptive PD controller was added to translate the move-
ment commands from SURE_REACH into actual motor control commands. Adding
adaptivity to the controller helped to counteract increasing momentum in the KUKA
KR16 arm. Fourth, the activity propagation signal was used to estimate the distance
to the goal in order to provide the PD controller with movement direction and dis-
tance estimates. In effect, the resulting system was able to control the KUKA KR16
arm in simulation, which was realized with the commercially available simulation
platform Webots [77].

Figure 7 shows two typical control sequences of the KUKA KR16 arm. In the
upper panel, the arm has to move from a fully right-extended posture to a fully
left-extended posture. Since the easiest way to achieve this is to only rotate the
base joint, the main movements are observable in this joint. In the lower panel, the
presence of a “ceiling” obstacle was suggested to the system. Thus, in order to reach
the goal posture form the same starting posture, the arm flexes its upper two joints



SURE_REACH 17

much more to avoid the obstacle and finally re-extends those joints to reach the goal
posture.

To conclude, while the adapted SURE_REACH takes care of the kinematics en-
abling flexible movement planning and behavioral adjustments, the adaptive PD
controller invokes suitable motor commands to maintain dynamic system stability
while executing the suggested movement plan. Further evaluations of the system
confirm the general robustness of the approach within other dynamic arm and with
other added constraints and start-goal location or posture combinations [59].

A reaching a goal posture without simulated obstacle

B reaching a goal posture with simulated “ceiling” obstacle

Fig. 7 The figures show the simulated KUKA KR 16 arm that is controlled by a dynamic
SURE_REACH system with adaptive PD controller. A shows the straight transition from a start
posture to a goal posture in an unconstrained environment, B shows that a more complex move-
ment is exerted if the presence of a "ceiling” obstacle is suggested to the controller.
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7 Conclusion

To conclude, the described model offers an interesting perspective on the inter-
play between movement planning, unsupervised motor learning, and flexible task-
dependent motor control in humans. Furthermore, the model’s underlying principles
are well-suited to control robots in a dynamic environment. In turn, the application
of the model (and computational models in general) to real-world robots may hint
at critical aspects that have yet to be considered in the models and contribute to a
deeper understanding of neural processes. Thus, the application of biological the-
ories to robotics may result in more flexible, robust, and adaptive machines. On
the other hand, these applications can be expected to also enhance our knowledge
about the intricate neural mechanisms that enable animals and humans to move their
bodies seemingly effortlessly and with unmatched sophistication.

8 Appendix

The parameter settings for the simulations depicted in Figures 2 can be found in
[11]. The parameter settings for the simulations depicted in Figures 5 can be found
in [28]. The simulation results depicted in Figures 3, 4, and 6 are as follows. The
lengths of the upper arm, forearm, and hand are /| = 32cm, [, = 25cm and I3 = 18cm,
respectively; The shoulder, elbow and wrist joints can assume any angle within
—60° < ¢ < 115°, —160° < ¢ < 0°, and —75° < ¢3 < 50°, respectively; The
gain factor was set to g = 0.9°; The preferred hand locations are distributed in a
fixed 31 x 25 grid with dpg,q = Scm distance. The grid covers a 150cm x 120cm
rectangle, which covers the the arm’s work space. Posture neurons are arranged in
a 8 x 7 x 6 grid covering the entire posture space. The distance between two adja-
cent neurons is approximately dposture,1 = dposture,3 = 25° and dpogiure 2 = 26.7°. The
neural networks are trained by moving the arm randomly for 1.000.000 time steps.
During learning, new sets of motor command are randomly generated and executed
for a random duration between 1 to 8 time steps. Sets of motor commands are gen-
erated by setting each individual motor neuron to 1.0 with a probability of p = 0.3
and to zero otherwise. The learning rate of the posture memory is set to € = 0.001.
The learning rate for the motor controller decays exponentially from &y = 0.1 to
01,000,000 = 0.01 during learning. The upper weight threshold is set to @ = 0.1. The
parameters of the equations modeling movement preparation are set to 8 = 0.17 and
Y = 0.43. In the charts, the duration unit included 50 time steps. That is, each joint
can move 45° in each duration unit.
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