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The spreading dynamics of small polydimethylsiloxane (PDMS)
drops was studied on substrates with varying surface energies. For
experimental parameters near the wetting transition, we observed
small PDMS drops of different drop volumes as a function of time
using interference video microscopy. While for large drops the con-
tact angle 9 decreases with the well-established power-law relation
6 ~ t=%3(Tanner’s law), the effect of dispersive van der Waals (VW)
interactions must be taken into account when interpreting the evolu-
tion of small drops. Two signatures of the VW forces are observed.
For a positive Hamaker constant, the disjoining pressure acts as
an additional driving force, leading to an acceleration of droplet
spreading as soon as the drop height becomes comparable to the
range of the VW interactions. In addition, a precursor film forms
ahead of the contact line, leading to an apparent volume loss, par-
ticularly noticeable for very small drops. Contact line pinning may
be a problem and we describe its effect on our experimental results.
We present a theory that discusses the interplay of surface tension
and VW forces in the case of a spreading drop. This model predicts
a new spreading regime for very thin drops, in agreement with our
experimental results.  © 2001 Academic Press

Key Words: spreading; wetting; Van der Waals interaction;
PDMS.

I. INTRODUCTION

pinning that traps the drops in long-lived metastable states.
such cases, the investigation of the wetting dynamics itself re|
resents an alternative to equilibrium measurements and gives
sights into the thermodynamic properties of liquids on surface
Recent work carried out to understand the wetting dynamic
include hydrodynamic theories (1-5) and experimental studie
(2, 5, 6). Continuum theories are justified whenever the thick
ness of the wetting film is greater than a molecular distance.
droplet of a nonvolatile liquid spreading on a smooth, nonre
active substrate represents a good model system. In this ca
the driving forces are (1): gravity, the liquid—air surface ten
siony, and the long-range van der Waals (VW) forces. In at
overdamped continuum approach, these driving forces are c
posed by the viscosity. Depending on the dominant driving
force, different models have been proposed for the wetting d
namics. Tanner’s spreading law (2) is an approximate solutic
of the hydrodynamic equations when the surface tension is tl
only driving force. This model gives the radiaf the liquid—
substrate contact area as a function of the tinmehe complete
wetting regime as « t". Tanner’s law is also obtained by de
Gennes (1, 7) from a balance between the viscous dissipati
and the work done by the surface tension force. He uses a gene
equation that describes the profile of the droplet near the ed
when the long-range forces are negligible. In this more gener
theory, the dependenceabn the droplet volume is obtained

The wetting of a liquid on a solid substrate is an importarﬁ, 7) by

process in the coating technology with relevance to lubrication,

adhesion, spraying, painting, lithographic printing, biological

cell adhesion, and others. Qualitatively, two different situations

are distinguished. Liquids on surfaces either form drops withwith n = 0.1, m = 0.3, andv* a characteristic velocity. It is

well-defined contact angle or spread to a continuous film. Thedefined by

two final states are identified as complete and partial wetting.

Drops on surfaces are, however, often not in their equilibrium vt ==, [2]

conformation. Spreading of viscous liquids is slow and the ther- s

modynamic equilibrium may not be reached in experimentallyopezet al. (3) have analyzed the situation when gravity is the

accessible times (e.g., several months for highly viscous liquidgjain driving force. They have obtained a similar power lav

Furthermore, surface heterogeneities often cause contact |iith n — 0.125 andm = 0.375. These theories are based or
steady state arguments focusing on the edge of the film and t

1 Present address: Instituto de Fisica, UASLP, Alvaro Obregdn 64, 78000 égg a lubrication approximation. Tanner (2) and Lomal' (3)

a o QM(v*t)", [1]
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compared their theories to experiments, finding good agreeme
in both cases. Lelah and Marmur (8) measured the kinetics |
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several simple liquids on glass and Marmur (6) recompiled easimple liquid on a substrate is difficult, often lies outside the
perimental data from the literature, finding valuesnaih the range limited by the melting and the boiling temperatures of th
range 0.1-0.15, with extreme values of 0.033 or 0.31. The diquid, making it inaccessible at atmospheric pressures. In th
ponentm was between 0.3 and 0.36. Their results were in go@dntext, the study of polymer liquids has several advantages (2
agreement with those of the Lopetzal. model (3). Hydrody- Mean-field theories apply even in the vicinity of critical points
namic models, however, do not predict the dependenoeoof (26). In addition, the polymers allow a good control of thermo
a change in temperature, pH, or the hydrophilic nature of alodynamic parameters, such as molecular weight and molecu
hols (8), which alter both the surface tension and the viscosigpmposition, to fine tune the location of the wetting transitiot
The lack of a controlled experimental environment might ther@ the phase space.
fore explain the range of observed valuesrdiandm. Experi- An alternative to polymer melts are experiments using poly
mental results for polymer liquids, nonvolatile, high-moleculamer solutions (27, 28). Drops of a mixture consisting of a solven
weight polydimethylsiloxanes (PDMS) on silicon wafers havethich completely wets a surface, and a partially wetting polyme
confirmed the time and volume dependence predicted by Eq. khibit a spreading (or dewetting) behavior, which is a functio
for the two different driving forces (9, 10). of the polymer concentration. For drops with a small contac
The effects of the VW forces are mainly observed in the prangle, however, polymer—solvent demixing occurs, precludir
cursor film, a microscopic film that precedes the macroscopgperiments in the close vicinity of the wetting transition.
spreading front. For complete wetting, precursor films were pre-This article studies the spreading of polymer drops near tt
dicted by de Gennes (1, 11) and Joanny and de Gennes (#&iting transition. PDMS of low polydispersity was used tc
13). Their theories were qualitatively confirmed by ellipsometmgrevent demixing effects that may alter the spreading dynamic
measurements of PDMS on bare silicon (14). Recent ellipsofdsing videomicroscopy, we investigated the spreading of PDM
etry studies (15) of PDMS on various surfaces have investigatdeps as a function of surface energy and temperature.
the pancake precursor film near the partial to complete wettingThe drops in our experimental data were modeled as sph
transition. For polymeric liquids, molecular precursor films wereal caps. The calculation of the real drop profile is a difficul
observed by ellipsometry (16) and X-ray reflectivity measur@roblem (20, 21) and is not discussed here. The spherical dr
ments (17). All experiments find a diffusive behavior for theymmetry assumed here is schematically represented in Fig

lateral dimension of the precursor filn{16, 18), where the geometrical parameters, radiuteighth, and ra-
dius of curvatureR, are defined. In our experiments contac
12 = Dt, 13] angles are small arfd« a. The three parameters are related b
R = (a? 4+ h?)/2h. Forh « a,
whereD is a diffusion coefficient. This diffusive dynamics was a2
predicted by Joanny and de Gennes (13) for the thinnest por- R= oh (4]

tion of the precursor film. A similar expression was obtained by

Lopezet al. (3) for droplet spreading driven by VW interaction®©ther important parameters are the drop volume and the cont
only. A microscopic theory (19) based on the diffusive transpasthgled. The volumeV is given by

of vacancies from the advancing edge of the film to the drop
reservoir has also predicted Eq. [3].

For the partial wetting regime, de Gennetsal. (20) have
studied the liquid profile in different regions of the drop where
continuum mechanics can be applied. Marmur (21) establish&ih the characteristic volume,

a general equation to determine the shape of the drop for partial )

and complete wetting. To our knowledge, there is no experi- Q=ah. (6]
mental confirmation of these models. Brochard and de Gennes
(22) propose a hydrodynamic model for partial wetting. Their
model applies for small contact angles and low velocities where
hydrodynamic losses dominate the spreading of drops.

The dynamics of wetting depends on the final equilibrium
state and it may be used to investigate the transition from partial
to complete wetting. Associated with the wetting transition is
the critical temperaturé,,. Theories assuming short- and long-
range interactions coupling the liquid and the surface have beehlG. 1. Schematic representation of the spreading drop. Our theoretic
proposed for simple liquids (23). The interpretation of the thél0d9| approximates the drop as a spherical €4js: the radius of curvature,

. . . . . the radius of the drop—substrate contact areahasdhe height of the drop
oretical results is tricky because of the singularity at the bu‘ h respect to the surface. The vectopointing to a volume element of the

critical point close tf) which the Wet.ting tranSiti_on is pre_quteqrop and the distanag from the center of the sphere to the surface along th
to occur (24). Experimentally, studying the wetting transition aiymmetry axis are used in the Appendix.

1 h? 1 1
V=§7Th<a2+§>%§ﬂ'haz=§7[9 [5]

Air

Substrate
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The contact angle is given by tdn= 2ha/(a®? — h?). Forh «  a distance of 3 cm changing the surface energy of the SAM

a, it takes the form covered surface. Exposure times ranged from 1 to 32 min. W
measured the static (advancing) water contact &g a qual-
0= @ 7] itative measure of the surface energy. Valuegpfvere in the
T a’ range of 110for the initial SAM surface down to 5560 after

an UV exposure for 32 min. The surfaces employedinthe sprea
The experimental parameters in Egs. [4—7] are defined in teriig experiments haé < 92°. Critical surface tensions were
ofaandh, the onlyindependentvariables. Tanner'slawRman  determined using an alkane series (32) at room temperatu
be obtained from a relationship betweeeandR. Equations [4] yielding 21.8, 23.0, and more than 23.0 mN/m figr = 105,
and [6] yieldR = a*/2Q. Together with Eq. [1] this gives 90, and 75, respectively. Since the surface tension of PDMS
is ~21.3 mN/m, all our experiments were carried out in the
Roc Q4™ (v )™, [8] complete wetting regime. At higher temperatures, the comple
wetting of PDMS on these surfaces is expected to persist.
Similarly, Tanner’'s law can be written in terms 6f using  The quality of the surfaces was verified by measuring the su
Egs. [7] and [6]: face topography using a home-built atomic force microscop
(AFM) in the tapping mode. The surface of unexposed SAN
0 oc Q1 3M(p¥t) 73N, [9] substrates at the center of the plates exhibited small topograp
structures with lateral domain sizes of several micrometers at
This paper is structured as follows. After the materials and meth+oot mean square roughness below 0.4 nm over an area
ods and the experimental results in Sections Il and 111, we pres@®x 20 .m?. For drop sizes much above the lateral domain size
a theoretical continuum approach to describe the wetting djre effect of this surface roughness on droplet spreading is ne
namics of a spreading drop in Section IV. In contrast to préigible, but for small enough drops these surface heterogeneiti
vious models, we shall not focus our analysis on the edge rofy lead to contact line pinning. We have also investigated tt
the drop. Instead, the spreading dynamics of a spherical @ffect of the UV radiation on the SAM surface structure, using
of constant volume is considered. While existing theories aglefects in the SAM layer near the edge of the sample as refe
based on Young’s equation (29) using a lubrication approximence points. The UV irradiation did not significantly alter the
tion, spreading in our model is driven by the Young—Lapladateral morphology of the SAM-covered surface. The defect
pressure (30) without invoking the lubrication approximatioralso allowed us to monitor the thickness change of the SAl
Our theory, while consistent with the theories mentioned abolayer upon UV radiation. It decreased from an initial value of Z
for the case of large drop-thicknesspredicts a new spreadingto 1 nm corresponding to a final surface with = 55°. In our
regime for smalh when VW forces become dominant. Aparstudies, defect-free substrates from the center of the plates wi
from pinning effects, which are discussed in Section V, our exsed and the surface quality was verified using the AFM.
perimental results are well described by this theory. Our findingsThe drops were prepared by spin-coating (Headway Resear
are highlighted in the conclusions (Section V1) followed by Apinc). A drop of polymer solution was put onto the substrate
pendices | and Il showing the derivation of the hydrodynamighich was rotated at 1000 rpm for 1-2 min. This created a fe!

equations and the effective VW pressure. drops (1-6) on the surface. There is a strong correlation betwe
the drop size, the rotation frequency, and the concentration of t
Il. MATERIALS AND METHODS solution. Drops with volumes in the range frain= 1 x 10~°

to 1 x 10°® cm® were made this way.

The liquid we used was PDMS, purchased from Polymer Stan-For measurements of droplet spreading as a function of ter
dards Service with a molecular weight of 52,100 and a polperature, the samples were placed onto an electrical hot ple
dispersity of 1.17. The viscosity and the surface tension werea nitrogen atmosphere. Temperatures were kept belodC100
approximately 19.1 Pa s and 21.3 mN/m, resulting in a predictezlavoid degradation of the polymer and the SAM layer. To ex
value forv* of ~0.11 cm/s. PDMS is a nonvolatile, chemicallyclude a change in the PDMS spreading behavior due to chang
inert, and thermally stable liquid. The drops were prepared framthe SAM morphology we monitored the sample surfaces du
a solution of PDMS in analytic grade toluene. The concentratiamg heating. The substrate was heatesituby a small electrical
was between 1 and 3% by weight. heating stage mounted onto the AFM scanner. No appreciak

As substrates we used highly polished silicon wafers (Si) dohanges in the SAM structure were observed as a function
nated to us by Wacker-Chemie GmbH. Plates ef4cn? were heating conditions similar to the ones employed in our exper
coated with a self-assembled monolayer (SAM) of octadecyhents.
trichlorosilane (OTS), reducing the high surface energy of theThe spreading of PDMS drops was observed by videom
bare silicon wafer. This surface modification procedure is deroscopy. A Mitutoyo WF microscope was used in reflectior
scribed elsewhere (31). Small pieces of about 1. cn? were mode. Monochromatic sample illumination was provided by
then exposed to the UV radiation of a 400-W mercury lamp ptacing an optical filter witth = 578+ 13 nm (Melles Griot)
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into the epi-illumination path of the microscope. The magnificg- sinc(@g(x) sinz(%)) is a coherence function with constant
tion of the objective was 10X with a numerical aperture (N.Admplitudel,. sincis defined by singf) = sin(y)/y. The illumi-
of 0.28. Video images were recorded using a CCD camera (Pgkting cone angle can be approximated by = sin™* (N.A).
nix TMC-9700) and a digital videorecorder (Sony DHR-1000}he coherent functiof indicates that the points close to the
connected to a computer. The images were analyzed using dfiftace, namely, the edges of the drop, have the best contr:
Image-Pro Plus program. Since the droplets were spreading|Qiandr, are given by the Fresnel equations (33), but we eva
the timescale from several minutes to days, data acquisition Wag§ed them by fitting Eq. [M3] to a profile that was previously
not limited by the recording speed. analyzed by Method 2. With known geometrical parameRers
The interference pattern of the reflected light yields quantitgngn, |, andr, are obtained. For knowhy, andTg, h andR

tively the geometrical parameters of the drops: the radio§ 5e optained by fitting Eq. [M3] to the intensity data.
the liquid—substrate contact area and the height of the drop

(Fig. 1). Depending on the number of constructive (or destruc-

. . ; . . I11. RESULTS
tive) interference rings three different methods of analysis were

used: A series of experiments was carried out in which the sprea
Method 1. For fringe numbers greater than &,is given ing of small PDMS drops was monitored as a function of time
by the largest interference ring, whitewas determined by the Experimentally, we varied the substrate surface (qualitative
number of constructive or destructive rings from the base tharacterized by the water contact angleletermined at room
the top of the dropi. Depending on whether the center of théemperature), the temperature, and the volume of the drop. E
drop is bright (constructive interference) or dark (destructiyserimental details are listed in Table 1. Microscopy images «

interference)h is given by samples S5, S8, and S9 taken as a function of time are sho
L in Fig. 2. Depending on the drop size, data analysis metho

h— (i + —)(A/an) (constructive interference) [M1], [_M2], or [M3] were applied to egtract the radius and

2 (1] the heighth of the spherical cap (see Fig. 1). Frenandh, the

drop contact anglé was computed (Eq. [7]) and plotted as a
function of time. In addition, the drop volun (Eq. [6]) was
monitored throughout the experiment, to verify the absence |

wheren, = 1.403 is refractive index of PDMS. ) 5

Method 2. For fringe numbers between 3 and 8. the int rdegradanon of the PDMS. The correspondé{t) vs t anda

ethod =. o ge numbers between s and o, the INteg 1/h plots are shown in Fig. 3. A linear dependence®bn
ference rings are measured as a function of the distaniéh

- 1/h indicates volume conservation.
respect to the center of the drop, giving between 10 and 30 da(q.o quantitatively analyze the data in Fig. 3, power-law fit

points. We calculate the height of each ring using the formul : g |
from [M1]. The points of the drop profile are then fitted to %ﬁcordmg to Eq. [9] were performed. The power-law exponen

h=ii/2n, (destructive interference),

TABLE 1

((X)=—-R+h+VR2—x2 (M2] Characteristics of the Samples
to obtainR andh. Tempe- Q 2a9
stem rature Oy  (x10°8cm®) (um) v*(cm/s) )

Method 3. Forfringe numbers lessthan 4, the number ofda?
points obtained using Method 2 is too small for a reliable fit. In- s1 RT® 75 39.14+2.00 534 0.10t0.010 0.30+ 0.009
stead, we analyzed the intensity profile of the reflected light. Thiss2 ~ R.T. 90 295160 456 0.12-0.013 0.30+ 0.007
method is known as reflection interference contrast microscopysf1 ggg ;g: i;-ii 1-38 ‘3‘32 8&% 8-8% g-gi g-ggg
(33) _and _has begn widely used to investigate (_:eII adh_e3|on an 00C 75 571+013 266 02450015 0.28: 0008
colloidal interactions near surfaces (34). In this technique, thegg  g5c 9 2994023 238 0.28: 0023 0.27- 0.005
incident beam is partially reflected at the liquid—air interfaceands7  46c 9 1.194009 152 0.18-0.010 0.25t 0.006
partially by the substrate. The interference pattern formed bythes8  40C 60°  1.37+£0.07 156 0.16:0.025 —
superposition of the two reflected beams is recorded by the CC[$9 ~ 90C 90" 0.125£0.009 93 — -
camera. The interference patterns are analogous to Newton ringy® 40C 92 0.133+000F 84 — —
of spherical objects. Due to the small N.A. of the objective useciNote.ExperimentaI details of the samples used in this study. The water co

in our experiments, a simple expression can be derived (33):tact angledy and the initial diameter of the drom@were the experimentally
determined parameters. The drop volumas calculated from the drop height
1(x)

A7 A hand the radius of the spherical caprhe characteristic velocity* was deter-
|— =Llp— F()L’ o, X) co n—f(x) . [M3] mined from the results in Fig. 3n3s the power-law exponent from the fits in
b p Fig. 3.

. . . . . . . @ Room temperature.

I (x)/Ipisthelightintensity normalized by the intensity reflected b nitial volume.

from the substratelf), Ly is the baseline, an@f'(A, o, X) = ¢ Average of the linear part in Fig. 3;.
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FIG. 2. Interference microscopy images of three spreading PDMS drops at two different times (left column, initial time; right column, later stage). The i
in (a), (b), and (c) illustrate the three different data analysis techniques to extract the geometrical parameters from the micrographs. For large eadagh d
the radius of the biggest fringe. The number of interference fringes are counted to deteangwding to Eq. [M1]. The images in (a) correspond to the sampls
S5 at timet = 0 andt = 16 min. For smaller drops, the position and height of the interference fringes are plotted and a fit to a spherical profire amelds
h (Eq. [M2]). The micrographs in (b) show sample S8 at times0 andt = 5 h. Spherical fits are shown for increasing times) 80 s, {+) 320 s, (x) 1200 s,

() 2400 s, ) 3900 s, (©) 10800 s, {7) 18,000 s. The smallest drops were analyzed by fitting Eq. [M3] to the normalized reflected intensity. In (c), result
drop S9 are shown fdr= 0 andt = 40 min.
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Spreading of the PDMS drops listed in Table 1 as a function of time. The left column shows the variation of the contadoamgbeeasing times.
In the right column, a linear variation of the drop contact ar@aersus the inverse drop heighindicates the conservation of the drop volume. Samples S1 (@

and S2 (O) in (a) and S¥) and S4 (O) in (c) exhibit Tanner-like spreading. The exponents of power-law fits of Eq. [9] to the data yield exparssiistdd in

Table 1. The exponent 3of samples S5 (@), S6 (O), and S7 (x) in (e) fall below the Tanner exponent. For the smallest drops, VW interactions modify di

spreading, leading to accelerated spreading in (g) (S8) or to an apparent loss in volume due to the formation of a precursor film (j) (S9 and S10).
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are listed in Table 1. As a function of drop volume, three distinct IV. THEORY

spreading regimes can be identified.
We regard a nonvolatile liquid drop on a nonreactive smoot

Tanner's regime. Fordroplets above a critical volume (~1 surface. Inertial or viscoelastic effects are neglected. Furthe
10~ cn?) the time dependence of the contact angle is wethore, our drops are small enough so that gravity is negligibl
described by a power-law exponent 3n0.304 0.07 (Figs. 3a This justifies the spherical drop profile that is assumed throug|
and 3c). The variation af? versus the inverse of the drop heighout the analysis. Our theory predicts the time evolution of th
h confirms the volume conservation during the spreading of thadius of curvature for such a spherical cap. Two size scales &
drops (Figs. 3b and 3d). considered: macroscopic drops where VW forces are notimpc

tant and microscopic drops where VW forces are dominant.

The intermediate regime.For mesoscopic drops below this  The equations for this problem are very similar to the flatten
critical volume, the droplet spreading exhibits a power-law déng of a latex film surface (36) and we have employed a simila
pendence of the contact angle, featuring an exporetitei lies  methodology to solve the spreading equations. Details of th
between 0.24 and 0.30 (Fig. 3e). In this regime, the drop volurggiculation are shown in Appendix I. The radius of curvatBre

is also conserved (Fig. 3f). as a function of time is given by Eq. [A15]
The Van der Waals regimeFor drop volumes around dR h/2y T(h)
108 cm? and below, the time dependence of the contact an- at -~ ;(E - T) [10]

gle is no longer described by a power law. For the samples S8

(Fig. 39), S9, and S10 (Fig. 3i), an initial regime of slow spreagghereT1(h) is the effective disjoining pressure (37) between :
ing is followed by a regime that is characterized by a Tanner @pherical cap and a flat surface (see Appendix I1).
ponent (3n= 0.3). In the case of sample S8, the Tanner regime The theory presented here is restricted to the case of a const
is followed by a regime in which the decrease in contact andiop volume. This condition is well satisfied for drops whose
is significantly accelerated (Fig. 3g). While for sample S8, th@imensions are large compared to the precursor film thickne
drop volume is conserved (Fig. 3h), this is no longer the case @&termined by the VW forces and the liquid—air surface tensio
samples S9 and S10 (Fig. 3)). (1). If the drop is small, however, the volume of the precurso
Before moving on to a quantitative discussion, several Cofjim could become comparable to the drop volume. In this cas
ments are in order. While we do not observe the complete wettifig drop is drained into the precursor film and its volume is nc
of any of the drops (which cannot unambiguously be done Uggnserved. The assumption of volume conservation simplifie

ing optical microscopy), PDMS is expected to completely wefyr calculation because the drop geometry as a function of tin
all the substrates used in our experiments (see Materials agetermined by a single variable.

Methods). While, the surface tension of PDMS decreases with

increasing temperature (by20% for PDMS at 90C), a much A The Macroscopic Drop

smaller variation of the critical surface tension of the SAM sur-

face is possible (35). These conditions favor complete wetting!n the macroscopic case dispersive forces are negligible:(

for all surfaces and temperatures studied, confirmed by our &S_and Eq. [10] reduces to

servation that no equilibration processes were observed down to

contact angles of 022 d_R = ZLh = ZU*E. [11]
We are able to account for the entire drop volume throughout dt 1R R

the experiment in the microscopy measurements. The volume

conservation for samples S1-S8 eliminates artifacts due to Eﬁ)ecompafreho%r resulgs_ with Sr(;wous theories, Wﬁ write Eq. [11
evaporation of low-molecular-weight contaminants and therm 3 ierms ofthe drop radiusand the contact angé the common

degradation of the PDMS. If these effects are also negligible\(ﬁIriables in many wetting models. Equations [4] and [7] expres

the case of S9 and S10, the decrease of drop volume must betgﬁedmp radiusk as a function 06 anda:

to the flow of PDMS into a thin layer that cannot be detected by a

optical microscopy. R=2. [12]
While experimental artifacts, such as contact line pinning,

surface roughness, etc., generally lead to a slowdown of drppe time derivative oR is

spreading, the acceleration in the time dependence of the con-

tact angle in the case of sample S8 indicates the presence of dR 04 —ag

additional driving forces. Since this effect is observed for the dat — ez [13]

smallest drops only, it is possible that the disjoining pressure

will account for this effect. Before attempting a quantitative digNear the wetting transitioR > a, whichimplies thatl R/dt >

cussion of our experimental results (Section V), a theoretigh#/dt. From Eq. [13] follows§32(1 —¢) > a% and since

framework is developed in the next section. 0 < 1,09 > a%’. Therefore, Eq. [13] can be approximated
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as with the initial cap radius of curvaturg . We have used the fact
drR  1da thatRy <« Re and defined as
— = [14]
dt o dt 5
. ) @ = =V2Q. [23]
To replaceh/Rin Eq. [11], Egs. [7] and [12] yield 2
h 62 Equation [22] is an implicit equation iR. The expansion of the
R™ 2 [15] logarithm in Eq. [22] 2 In(32) = x + £ + X 4+ X' ... |eads
) ) to a more compact expression,
Inserting Egs. [14] and [15] into Eq. [11] leads to
5/2 _ p5/2
d RY% = Ry"™ + ou(t)t, [24]
98 _ 63, [16]
dt
with
This equation is a universal spreading equation, known as
Tanner’s law (1, 2), which confirms the validity of our approach. R,
To establish a dynamical equation for spreading drops in the Ro = f2/5(R/Re) [25]

case of partial wetting, we start from the partial wetting dynamics
as proposed by Brochard and de Gennes (22),

and
da_ v*0(6% — 62) [17] v*
dt — e () = ———, 26
RGN 2
where6, is the equilibrium contact angle. Fég = 0 we re-
cover Eq. [16]. The equivalent equation faris obtained using where
Egs. [14] and [15] as follows,
f(R
dR Lf2h  2he +(1 he/h (R/Re)
— =V —=—-—— ) =2"h| = — . [18] 5/R 5/R\2 5/R\® 5/R\*
dt R Re R Re =1+ (— )+ (=) + (=) +=(=) +---|.
7\ Re I\ Re 11\ Re 13\ R
wherehe and R, are the height and the radius of curvature in [27]
equilibrium. We approximate the last equation as
dR wa! 1 Equation [24] represents our main result of this section. Th
at - 2v h<§ - @) [19] gifference between partial and complete wetting is given b

the velocity v(t) defined by Eq. [26]. For complete wetting
This is justified for drops that are close to their equilibriunRe = oo, R/Re — 0, and f(R/Re — 0) — 1. In this case,
shape. In this case, the main geometric variation comes frohe velocity v(t) is constant and equal to*. The same ap-
the radius of curvature arig/ h is of order unity. Equation [19] plies for the case of partial wetting when the drop is far fron
simply means that droplet spreading is driven by the deviatitine equilibrium R « R. andR/R. — 0). OnceR approaches
of the radius of curvatur® from the equilibrium surface. Using Re, R/Re is of order unity, f (R/Re) diverges, and — 0 . Fi-
Egs. [4] and [6]h can be expressed as a functiortbandR,  nally, forv = v*, Tanner’s law is regained from Eq. [24]. Since

R%2 o pv*t o« QY2v*t,

h? = Q/2R, [20]
. _ R o QY5(v*t)?/5, [28]
transforming Eq. [19] into
dR 200* R which compared to Eq. [8] gives= 0.1 andm = 0.3 as estab-
9t = W( — E) [21] lished by Tanner.

For constant drop volume, the formal solution of Eq. [21]is B- Microscopic Drop
In this situation VW forces are dominant. Making use o
5R5/2 1I <1+ «/R/Re> R 1( R )3/2 Eq. [A22] (Appendix II), Eq. [10] reduces to
— n [ — J— _ = —_
Re 2 \1- /R/Re Re Re
dR _ h Mo

3
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This results in a simple spreading equation for VW driveRqg. [31] is rewritten as

spreading . , ,
_ LR (e [y, 3 (am\ "
R() = Ro + ut 130] ”“)_4(29) <ac) v [1+16<ac) R

1 /any 4r0e\?
with v, = Tp/2ua¥ - Ty is an effective Hamaker constant with + 1_28(§> (%) 4 ] [34]
Mo = A/127 andk = 2 for nonretarded VW forces arldy =
B/9 andk = 3 for the retarded case, wheheandB are positive Equations [31] and [34] show an algebraic divergence of th
constantsa, is a cutoff length for small values &f For a qual- characteristic spreading velocity. In the description of Eq. [24]
itative estimate of, it is useful to recall the limitations of our we are now able to identify three different spreading regime:
model. We explicitly assume a self-similar, spherical profile ghitially the spreading of large enough drops is driven by th
the drop. While this is justified for the case of the macroscopi@place pressure. The characteristic velocity does not va
drop, where droplet spreading is driven by the Laplace pragith time. At a later stage, either the macroscopic contac
sure, this is only an approximation for VW driven spreading. langle approaches its equilibrium value and spreading slov
particular near the contact line, it is known that VW pressurgpwn (u(t) < v*) or the drop thickness becomes thin enougt
deform the drop. Following the arguments in (1), the sphericgd that VW forces become dominant and spreading speeds
symmetry of the drop is no longer valid for valueshothat are  (v(t) > v*). To identify the three regimes, the spreading dynam
smaller than the radius of gyration of the polymer. Thereforgs were written for all three cases in terms of Eq. [24].
a; is not a molecular length scale, but should have a value of
around 10 nm in our case. The physical meaning of our choi€e The Crossover Regime
of a. is a follows. By excluding small values bffrom our anal-

ysis, we essentially take the formation of the prewetting lay g velocity for Laplace- and V\W-driven spreading, it is in-

into account, which forms ahead of the contact line. Since t fFuctive to compare Equations [11] and [29]. Both equation
formation of the prewetting layer is more rapid than the Sprea&éfince the radial spreading velocity Using Eq. [20]d R/dt

ing of the macroscopic or mesoscopic drop, our model regar SEq. [11] scales ak®. For VW spreading, on the other hand
it essentially as a lubrication layer, on top of which the droaE

X . ) . [29]),d R/dt is constant. With increasing spreading time,
(characterized by a spherical cap profile) spreads. The Valu%ogecreases and the VW contribution to spreading (Eq. [29
a; can be determined from our data in Fig. 3 (see Section V).becomes increasingly important |

In this manuscript, we study deviations from Tanner spread—-l-he crossover between the two cases occurs when these t
ing. Our data sets are best compared when expressing the spraﬁgl—ng forces are equally important:
ing velocity in terms of(t) (see Eqg. [24]), rather than in terms
of v (t). For the case of the microscopic drop, the veloeift) dR h/2y T
is defined as = (F H)

To gain a qualitative understanding of the difference in sprea

- = 35
at [35]
v 2 31 The two terms inside the parentheses have the same sign ¢
2R, te [31]  therefore both contribute to the spreading of the drop. The
have the same order of magnitude when

5 1 vy
t)=— 2 3—t
v(t) 2 vr[ Ro+35-t+

Equation [31] predicts speedupf droplet spreading in the case hy Mo

when VW forces are dominant. For the nonretarded aas@n v — = K

b . Ry 2,bLaC
e written as

(36]

In the case of partial wetting a general equation is obtained fro

1 2 Egs. [35] and [21]:
vrzzv*(%> 3z o> 3oland [21)
& dR h(2y 2 n0> -
— == -t )
with dt = #\ R R, 2ha
In this case, the Laplace pressure drives the spreading with |
a2 = i [33] spectto an equilibrium surface. The 2R, term has the opposite
6y sign compared to the surface tension and VW forces. This ter
is canceled by the VW force, when
anm has the dimension of a length and is of the order of a molec-
ular distance (1). Equation [32] shows that the spreading veloc- 2 *E _ T [38]

ity sensitively depends on the cutoff length Using Eq. [32], Re  2ual’
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Therefore, the partial wetting condition imposed by the Youngresses, the crossover line is reached and the spreading of
equation (29) turns into a situation of complete wetting driven ljrop is accelerated, as discussed in the previous section. Eq
the VW force if Eq. [38] is satisfied. This implies that the addition [40] and Fig. 4 predict that, given an attractive VW force
tional VW spreading force shifts the wetting transition compargtie spreading of any drop will be accelerated during the la
to a situation in which the Laplace pressure is the only drivirgjages of spreading. Since the contact angle is also given b
force for spreading. linear relation betweea andh (Eq. [7]), the crossover occurs

To quantify the crossover regime from Egs. [36] and [38] wat a critical contact angle,
make use of Eq. [4]. Equation [36] yields

I
6= |2 41
hy= [0 4 [39] ' 2yak o

8ya

For the nonretarded case Eq. [39] is written as For nonre_tarded VW interactions, the crossover contact anc
can be written as

h) = ——ay, [40]

= 1
4 a; = 8m

01 = 5a [42]
wherea, is defined by Eq. [33] and is proportional to the strength
of VW forces. A line separates tlee-h space into two regimes In the case of partial wetting two different cases must be distil
in which the Laplace and disjoining pressures are dominant, glished. For large contact angles, drops reach their equilibriu
spectively. In Fig. 4, the line from Eq. [40]is shown together witghape before entering the VW regime. A large contact angle
two different lines that represent two different drop volumes. is indicated by a dashed line in Fig. 4. In this case, the VV
In the case of complete wetting, the spreading drop followiggime is never reached and the drops stop spreadinggiise
the linesQ; (small volume) and?; (large volume) from right reached, as indicated by the circles in Fig. 4. On the other har
to left (i.e., from higher to smaller values bj. As time pro- ifthe equilibrium contactangle is smaller thénthe drops enter
the VW regime and continue to spread, driven by the VW terr

in Eq. [37]. This is indicated by the dashed lifg in Fig. 4.
For nonretarded VW forces, the critical contact angle depen
on the ratioan/ac. an is a molecular length~1 A), but a is
Van der Waals 702 comparable to the size of a polymer coil or the thickness of tt
Regime precursor film €10 nm). Thereforeg,/ac. ~ 1072. This corre-
sponds to a critical contact angle@af~ 0.3°. Since in our study
contact angles down to 0.2vere experimentally observed, the
Laplace predicted crossover line in Fig. 4 was well within the paramete
Regime range of our experiments.
Before we move on to the discussion of the experiment:
_____ results, we summarize our theoretical predictions by repeatil
__________ the equation

Drop Radius a

RYZ = Ry +pu(tt, [43]

which we choose as representation for the spreading of mac
Drop Height h scopic and microscopic drops. The time dependent velogi}y

. . .. has adifferent functional form for the following three regimes:
FIG.4. Crossover from Laplace to VW-driven spreading. The line given by

!Eq. [39] divides thén—a space in_to two re_gions. For large drop volumes, s‘pread_- (i) Forlarge drops, itis constant and equaltdor complete
ing driven by the surface tension dominates over effects caused by dlsperwgtting or partial Wetting during the ear|y stages of spreadin(

interactions, which are dominant only if the drop heigh$ comparable to the . . . ,
range of the VW forces. Also drawn are two lines corresponding to a small drHB this case, Eq. [43] Is yet another way to write Tanner’s law.

(1) and a bigger drop (§). With timet, both drops spread, corresponding to (i) It goes to Z€ro for pgrtial wetting as a large drop ap:
an increase im and a decrease in, as indicated by the arrows. If the liquid proaches its equilibrium radius.
completely wets the substrate, both drops eventually enter the VW regime. For(iii) It increases in the wetting regime in which VW forces

partial wetting,the drops attain an equilibrium contact i_ar@g eeg)_, indi(_:ated are dominant. In the case of complete wetting this occurs f
by the dashed lines. For the larger contact amiglethe intersection with the ?

Q1 and2; curve lies in the Laplace regime. The drop stops spreading. Dro {0pS of any size at small enough contact angles. On surfac

with fez, on the other hand, enter the VW regime and spreading is acceleral batare p_a_rti?-”y wetted by the ”qUid: this regime is only entere
by the additional dispersive forces. if the equilibrium contact angle is small enough.



188 PEREZ, SCHAFFER, AND STEINER

V. DISCUSSION to power-law exponents below 0.3. This is not surprising, sinc

pinning effects are known to cause deviations from Tanner’s lay

The theoretical predictions from the previous section allowhile care was taken in our experiments to minimize the effec
us to identify the various spreading regimes in our experiment dust particles and impurities, they can never be complete
data. To this end, we reanalyze our experimental data from Figefgminated. Pinning of the moving interfaces becomes more in
in terms of Eq. [43]. In particular, the time-dependent velocityortant as the drop size is reduced. This effect can be understc
in Eq. [43] quantifies deviations from Tanner’s law. This is ilin the following way. The spreading coefficient defines a forc

lustrated in Figs. 5a and 5b: for samples S1 showing the Tanpef length of the contact line. It is defined in terms of the liquic
exponent in Figs. 3a and 3c, the velocity is constant. The expsiirface tension and the contact angle:

imental values ob* are listed in Table 1. At room temperature

we find a good agreement of our experimental data with the S=y(1— cosh). [44]
value ofv* = 0.11 cm/s as calculated from the surface tension
and viscosity (Eq. [2]). S does not depend on the drop size. When the contact line €

As the drop size is decreased, a deviation from Tanner's lang@Unters a pinning center, it is first retarded (pinning) and the

observed (Fig. 3e): the spreading of the droplet is slowed do@fcelerated (depinning). Assuming arandom distribution of sin
ilar pinning centers on the surface, approximately the same nur

ber of pinning and depinning events take place at any given tirr

05 a and the forces associated with pinning and depinning ever
0.4 L cancel on the average. The stochastic nature of the pinning ce
ter distribution, however, gives rise to a noise term, leading t
g 03F a threshold pinning forcé&; that is proportional to the square
S root of the number of defects encountered by the contact lir
> 02 (38). Since the number of pinning centers is proportional to th
01fo g 068 . ,)o:o? i length of the contact lines2a, F. « /a. The overall spreading
| force, on the other hand, varies linearly withAs the drop size
0.0 0 0 T 08 is decreased;. becomes increasingly important. This leads tc
) an effective slowdown of the spreading velocity.
time [sec] S .
05 Beyond the qualitative observation of a slowed down spreax
b ing dynamics for drops with volumes belowl x 107 cm?
04Ff (Fig. 3e), we note that even in the presence of pinning the col
_ tact angle exhibits a power-law variation over several decades
g 03+ time. This is in good agreement with previous experimental ar
2 ook theoretical work (38). Pinning and depinning is often describe
09000 %9pe. %o o ° by a stick-slip behavior similar to avalanches in a granular flov
0.1 0908 ® C de et ° * or the movement of fluid interfaces in porous media. In thes
cases, the motion of a contact line has been proposed as an
0.0 bsts 0 0 108 ample of dynamical critical phenomena.
time [sec] ‘ To compare our results from Fig. 3e with previous experi
05 ments and theories, it is useful to define the dimensionless v
c locity of the contact line, the capillary number
04Ff
Ca= v, /v, [45]
g 03¢} o ° o
S R _o_o_’o_._ “oe®® 005 - with the velocity of the contact line; = da/dt. The dynam-
> 02¢ ics of fluid interfaces in the presence of quenched disorder
01k believed to be governed by a universal critical exporfent
— B
B T —T va o (F = Fe)’, 146}
time [sec] whereF is the driving force acting at the contact line afghe

. . _critical value for which the contact line is pinned. In terms of
FIG. 5. Data from Figs. 3a, 3c, and 3e replotted in terms of the spreadin,

velocity v versus time for samples S1®) and S2 O) in (a) and S3@) and S4 the caplllary number this is written as

(O) in (b). As expected from Tanner’'s model, the spreading velocity is constant ,

(v = v*). Even for drops that exhibit an exponent Below 0.3, the relation F — Fc = y(cos(®) — cos(f)) « Ca’, [47]
v = v* = const. is still a good approximation, namely, for samples@pand

S6 (O)in (c). with 8 = 1/8". For small values ob andf, <« 6, Eq. [47] is
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While sample S7 represents the most severe case of pinni
when comparing the data sets from Fig. 3, samples S5 and
should feature exponenps between 1.5 and 2.5. Due to the
scatterin the data when taking the derivative to obtain the conte

g line velocity, we do not attempt this type of analysis. Assumin

E a Tanner exponent in Fig. 3e (dashed line) and plottihgs a

@ function of time (Fig. 5c), we see that within the experimenta
1 scatter, these two samples are well represented by Tanner’s |

In Fig. 7a, we perform a similar analysis for sample S7 a
in Fig. 5. When plotted in terms of Eq. [43}(t) is no longer
constant. After a spreading time of approximately 1 sJows
down to less than/R of its value at small times. This behavior is
reminiscent of the time dependence of Egs. [25] and [26], whic
predict the slowdown of droplet spreading in the case of parti
wetting when the contact angle approaches its equilibriul
value. This interpretation of the spreading behavior of samp
S7 is, however, not consistent when compared to the resu

= of other samples. In particular samples S2, S4, and S6 featt
g substrates with the same surface energy. No sign of part
g wetting was observed for these samples. The unambiguc
observation of droplet slowdown in the case of partial wettin
. is difficult. For® — 6, , the driving force approaches zero and
pinning effects become dominant. To distinguish a slowdow
of the velocity according to Egs. [25] and [26] from interfacial
pinning seems a difficult task.
- . : 0.3
FIG.6. Variation of the contact angteas a function of the capillary number a
Ca (Eqg. [45]) in a log—log representation. Sample S1 in (a) is well described by
a power-law fit (Eq. [48]) with an exponeft/2 = 0.34+ 0.02, corresponding
to B = 1.5+ 0.1, the Tanner exponept= 3/2. The smaller drop of sample - 0.2 Y S 3 §§§§§ __________
S7 (b) exhibits a crossover from Tanner spreadfhg=(1.5+ 0.1) to a slowed e e *
down regime with (8= 2.4+ 0.1). The slowed down spreading is reminiscent % 3®
of pinning effects, leading tg values larger than 3/2 (38). 0.1t s
R
approximated as 0.0 ‘ ‘ L
100 102 10° 100 105 10°
6 oc Cef'/2. [48] time [sec]
In Fig. 6, the contact angle is plotted as a function of capillary 06 b
number for the samples S1 (Fig. 6a) and S7 (Fig. 6b) on alog—log 051
scale. Despite the larger scatter due to the numerical derivative 0.4L
of our data, we see a clear difference in the power-law fits. For g
sample S1, a single power-law fit corresponding to an exponent S 038r
with 8//2 = 0.34+ 0.02 describes well the entire data set. The > 02l
corresponding critical exponemt= 1.5+ 0.1 is close to the 01l
value predicted for spreading drops in the absence of pinning,
B = 3/2 (Tanner’s law). _ 0-0101 Py Y R
In the case of sample S7, a crossover between two spreading time [sec]

regimes is observed. The Tanner spreading of the drop at high

capillary numbersf = 1.54 0.1) slows down at lower capil- FIG.7. Forsmall drop_s strong deviations frpm Tanner’s Ifaw are opserve(
lary numbers and afityields a critical exponengof 2.4+ 0.1. Irlt.he case of sample S7 in (g), the slowdown in the spreading ve!c_)cny'belo
This hiaher exponent is in aood aareement with several theOI’U is presumably due to pinning effects (see Fig. 6b), but an equilibration c
. 9 . p . _g ) g . {?lre drop cannot be excluded. In the absence of pinning, the drop of sample
ical studies that include pinning effects, as well as with severg| is accelerated to values of> v*, caused by the additional VW driving

experimental studies (38). force. The line is a guide to the eye.
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Before we move on to discuss the spreading behavior of samx 10720 J andy = 20 mN/m we obtaira. ~ 8.5 nm. Assum-
ple S8, it is important to note that all effects discussed abokg) retarded VW interactions (Eq. [41]) withB 1 x 10728 Jm,
lead to a slowdown of droplet spreading. In the case of sampleutoff length of. ~ 14.5 nm is calculated. Both values are in
S8, we observe the contrary: a clear increase in spreading velge- order of the size of a PDMS coil & = 10.8 nm).
ity compared to Tanner spreading (dashed line in Fig. 3g). ThisA second indication for the role of VW forces in the spreading
effect is better visualized when plotting the data according & drops is seen in the results from samples S9 and S10. Wh
Eq. [43]. The initial Tanner regime with(t) = v* is followed only little information is obtained from the spreading velocity
by a marked increase in spreading velocity (Fig. 7). Qualitgan acceleration of spreading is also observed here, but pinni
tively, an additional driving force must accelerate the spreadieffects may explain why the overall spreading rate lies beloy
velocity. As shown in the previous section (Egs. [31] and [34])he Tanner limit (dashed line)), a systematic decrease in appar
the effect of VW interactions lead to such an increase in vgelume is revealed in Fig. 3j. Excluding thermal degradation, w
locity. While our data are not sufficiently accurate to distinguisétribute this “loss” of material to the formation of a precursor
between the effect of nonretarded and retarded VW interactiofign. In addition to the acceleration of droplet spreading, the
we are able to estimate the onset of accelerated spreading. VW forces promote the creation of the thin precursor film tha

From Fig. 3g, we determine a crossover angle for accelerajg@pagates across the surface ahead of the drop (Fig. 8a). FigL
spreading of % 4 0.5 mrad. Using Egs. [42] and [33] with A 8b and 8c show the variation of the drop volume as a function ¢
time for samples S9 and S10. The volume of the precursor fill
is given byQ; o« wel?. The linear decrease of the drop volume
a corresponds to an increase of the precursor fipw reDt.
Assuming values for the precursor film thicknes$~20 A)
and a diffusion coefficiend (~10-8 cnm?/s) from the literature
(18), we find reasonable agreement with the slopes in Figs. |
and 8b (2.8x 10~ 13cmP/s and 3.4x 1014 cm?/s, respectively).
Interestingly, the draining of the drop into the precursor filrr
seems to be hardly influenced by pinning effects as a comparis
of Figs. 3i and 3j shows.

VI. CONCLUSION

We have investigated the spreading of PDMS drops with
lateral dimension ranging from 500m to less than 10@m
on silicon surfaces covered by alkane self-assembled monole
ers near the wetting transition. Depending on the drop volum
we observe three spreading regimes. For the largest drops,
observe Tanner spreading where the contact angle versus ti

> 3x10° exhibits power-law dependence with an exponent of 0.3. F
time [sec] drops smaller than 25Qm, the power-law exponent falls be-
4x107 c low 0.3 and contact line pinning becomes dominant. Within th
times of our experiments+(1 week), the smallest drops spread
so that the height of the spherical cap is comparable to the ran
of VW interactions.

To analyze our data, we have presented a simple model, whi
describes the spreading dynamics of a spherical cap. This thec
considers the spreading dynamics in the complete and part
wetting regime and the effects of the VW forces on the spreadir
- ' ' i behavior.

4 8 - I:ec] 18 2010 Two signatures of the role of long-range interactions are re
flected in our experimental results. First, in the absence of co

FIG.8. Formation of a precursor layer with lendtand thickness (a). For  tact line pinning, we observe the acceleration of spreading f
the smallest drops, the draining of PDMS into the precursor film is measurabignal| drops. This acceleration must come from an addition:
For samples S9 (b) and S;.O (c),the_results from Fig. 3j are r_eplot_ted in term%mving force and the only likely candidate is the VW interac-
the dr‘op volum@ versus time. The linear volume dgcreasg is a signature of'ﬁon. Second, for the smallest drops, we observe a systema
diffusive behavior for the films length(Eq. [3]). The linear fits yield diffusion L ! o
constants oD = 4.5 x 10~7 cm?/s andD = 5.4 x 10-8 cn/s, respectively, decrease in the apparent drop volume, which is caused by t
in qualitative agreement with values reported in the literature (18). draining of the drop into the precursor film.

-

12F
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While we have characterized our drops in terms of their vabe neglected. Furthermore, since the drops are very small, bc
ume, we would like to point out that all the effects that relate timrces can be omitted as well. Thus,
the VW forces should be observable also for the larger drops at
sufficiently long times. uViu = VP [A1]
An additional remark concerns the spherical profile assumed
in the theory. Three parameters characterize the drops on g for an incompressible liquid
substrateR, h, anda, where only two are independent. In our
case, we assuni@ > a > h. In this approximation, the spher- V.u=0 [A2]
ical symmetry is not a precondition. We can also assume other

profiles featuring, for example, parabolic or elliptic cross seg;iih the velocityu and the pressur inside the drop. Making

tions and the results derived above would change only litygq of Eq. [A2], the divergence of Eq. [A1] yields
since the analysis focuses on the center of the drop. A Gaussian

profile, which is often used to analyze ellipsometry or X-ray V2P — 0 [A3]
experiments (16), may serve as an example, ’

g Ouranalysis is restricted to the central region of the drop, close
¢ =he 27, [49] the symmetry axis. This is sufficient for determining the chang
of the radius of curvature with time. We assume that only radi
whereo is the standard Gaussian deviation that characterizagssure and velocity components are relevBng P(r) and
the width of the profile. Ih « o, the radius of curvature at theu, = u, (r), with no angular dependence. Then, the solution c

top of the profile can be approximated %/: % | =35> Eq. [A3]is (36)
1_h p=S.1p A4
@ =~ [50] ; 0> [A4]

o . . . WherePy is a constant external pressuteis a constant that has
which is similar to the relation found for a spherical proﬂk?O be determined by the boundary conditions

Eq. [4], witha = +/20. . . . . We now proceed by calculating the velocity field The
As an outlook, several interesting questions remain. The the- . 7 : i o

. A . avier—Stokes equation in spherical coordinates is given by (3

ory we developed predicts an intriguing behavior for drops that

wet the substrate only partially. Sufficiently far from the wetting

2
transition, the drops spread until they assume their equilibrium M(ﬂ gaﬂ _ 2&) — E [A5]
shape with a well-defined, relatively large contact angle. Close arz oo r2 ar
to the wetting transition, where the equilibrium contact angle | . )
is below a critical value, VW interactions cause the complet8Serting Ed. [Ad] into Eq. [AS] gives
spreading of the drops. This behavior is not easy to study exper- )
imentally as the Laplace force that drives the spreading of the r2d Ur +or du _ U, = _S [A6]
drops approaches zero as the drop equilibrates. Pinning effects dr2 dr
of even the smallest substrate perturbation could overpower the ] ) ] ] )
acceleration of spreading by VW forces. This is an Euler differential equation with the solution
In our discussion of experimental results and in the theoretical
calculations, we limited ourselves to single drops on surfaces. In Up = Gqr + C_z + g [A7]
the experiments, however, there were always a finite number of r 2

drops of different sizes present on the surface. These drops may | ) i
interact via their precursor films. In our case, individual drop5T€ integration constangs andc, have also to be determined by

on the samples were too far apart for their precursor films tfie boundary conditions. At the impermeable substrate surfa

overlap. Future experiments should focus on correlation effeld” = o) = 0, which results in
of several drops spreading simultaneously.

r r§> C (rg )
u=cf——2)-=(2-1). [A8]
APPENDIX | ' 1(r0 r2 2u\r?

To derive the basic differential equation for the radius of cuAtthe liquid—air interface, the Young—Laplace equation impose
vature (Eq. [10]), we start with the Navier—Stokes equation férsecond boundary condition,
a viscous incompressible liquid. Since the liquids we use are
very viscous the spreading dynamics is extremely slow and the a 2y [A9]
inertial and convective terms in the Navier-Stokes equation can R’
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whereo? — ¢! is the total stress. The indices a and | refer to theherea, is a lower cutoff length. UsinR = ©/2h? + h/3 the
air and liquid phases, respectively. The stresses are given by (B8gral is evaluated,

o= —P A10 —p3 _8nd
0 [A10] Wih) = _%[mZhh - GQaChZSh
and %
3Q — 7h® + 6hlog(as/ h)
. AL7
ol = —p_gu | [AL1] + h3 } [AL7]
o | _r

The total disjoining pressure is the derivativeWth) divided

whereP is given by Eq. [A4]. Using Egs. [A4] and [A9]-[A11] by the surface area of the dr& = 27R(h — a,):

to eliminatec; in Eq. [A8] yields the radial velocity at the drop

surface { = R). u,(R) is then (up to orde©(h/R)) given by 1 aW(h) AT 1 3
H(h)=——=—[7——2] [Al8]
h S oh 127 azh  ach
u(R) = ——(2y —C). [A12] o _ _ _
2R In the limit ac < h only the first term in Eq. [A18] is relevant:
In a quasi-steady state approximation (i.e., if the spreading ve- A
locity is slow compared to the response of the velocity profile M(h) = 127a2h’ [A19]

in the drop to a sudden change in drop shape), the vald® of

at the drop surface is given B(R) = P, — 2 + I1(h). Since The same calculation is repeated for retarded VdW forces,
Egs. [A4]-[A12] are only valid close to the symmetry axis of the

drop, we include the dispersive interactions as a negative effec- h

tive disjoining pressuré&l(h), which is derived in Appendix II. W(h) = 7B / (h- z)(ZIj— h+2) dz, [A20]
In this approximationC is notr dependent and can be obtained 3 % z

from Eq. [A4] since

leading to a disjoining pressure

2 C
P(R) = - 4 TI(h) + P, = = + Py, [A13]
R R B[ 1 2 2
nh)=—=| == - 55— —= | [A21]
giving olah ah ach?
C = RM(h) — 2y [A14] Fora: « h, Egs. [A18] and [A21] can be summarized as
IT
Finally, since the liquid—air interface velocity(R) is the change I1(h) = _T(r)\’ [A22]
of the drop radius with timej R/dt, Eqgs. [A12] and [A14] yield &
with T1p = A/12x andk = 2 for the nonretarded potential and
%—? = E(% — @) [A15] o = B/9 andk = 3 for the retarded case.
o

Our derivation of the effective disjoining pressure assumes
spherical shape ofthe drop. Ingeneral, the role oftfre— ro) is
APPENDIX 11 more complex since it may cause a deformation of the drop fro

. v th | . f th . . its spherical symmetry. This effect becomes important near tt
Since only the central region of the drop is considered, Ontact line where the drop is deformed and where molecul:

have to derive an effective disjoining pressure that takes the VAl yation processes are dominant. Therefore, the conatant
der Waals interaction of the entire drop into account. We foIon%ust be set to a large enough value to exclude this region
the procedure outlined in Israleachvili’ s book (40) and calcu- '

late the interaction energy of a spherical cap and a flat surface.
For the integration of the VW energy, we choose a coordinate
system withz = 0 at the substrate surface. The volume of a Cir- we thank J. Miynek for his support and J. F. Joanny for useful discussion
cular section of the drop with the area? at a distance from  The silicon wafers were donated by W. Zulehner, Wacker Chemie GmbH. Th
the surface istx2dz = 7(h —2)(2R—-h+ 2)dz For non- work was funded by the Deutsche Forschungs Gemeinschaft DFG through t
retarded VW interactions, the net interaction energy is Obtain“‘éﬁghwerpunktprogram: Benetzung und Selbstorganisation an Grenzflache
by integration over the drop volume (40), |
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