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Optical tweezers are widely used to measure molecular forces in biology. Such measurements are often influenced
by a nearby surface that can perturb both the calibration of the tweezers as well as the hydrodynamic forces acting
on microspheres to which the biomolecules are attached. In this study, we have used a very stable optical tweezers
setup employing a recently developed calibration method (dgcrelykke, S. F.; ScHeer, E.; Howard, J.; Pavone,

F. S.; Jlicher, F.; Flyvbjerg, HRev. Sci. Instrum2006 77 (10), 103101) to determine how the calibration of the
tweezers and the forces on the microspheres depend on the height above the surface. We show that the displacement
sensitivity of the tweezers is modulated by a standing light wave between the microsphere and the surface. We
measured the dependence of the drag coefficient on height and compared it to exact and closed-form solutions to the
Navier—Stokes equations. Also, we measured the surface force gradients in different salt solutions and for different
surface blocking methods. For a given blocking method, our data suggest that microspheres can experience attractive
and/or repulsive forces close to surfaces. For example, a Teflon layer reduces attractive interactions, and the presence
of casein can lead to long-range repulsive interactions. These measurements are a prerequisite for the accurate measurement
of normal forces with respect to an interface that occur in biological molecules held between surfaces.

1. Introduction precise understanding of these surface forces. The goal for the
present work is to measure these forces.

In biophysical experiments employing optical tweezers, Several techniques have been used to study surface forces.

spherical beads are often used as handles to study the mechanicei.lhe surface force apparafuand the atomic force microscdpe
properties of biomolecules such as motor proteins and BRIA. have been used t%p test the Deriaguimndau-\Verwe
However, such experiments are in many cases performed near, Jagts Y

- . verbeek (DLVO) theory for the static forces between surfaces.
a plane surface, namely, a glass coverslip, and the static an

dynamic forces between the beads and the surface can profoundly’c o2 o> these techniques have limited force resolution, total
dy . P Ynternal reflection microscopyand optical tweezef€have been
influence the outcomes of these experiments. For example, close-

range adhesive forces between the beads and the surface can led] ed to extend the force sensitivity for micron sized colloids
own to the pN range.

to immobilization of the beads on the surface. This means that In th t stud h d tical t {
the surfaces usually have to be pacified by other proteins or . n the present study, we have used an optical weezers setup
surfactants. Another example is the well-known “wall efféct” with axial 0posmqn dete(;tlon based on baqk-focal-plane_lnter-
that nearby surfaces have on the hydrodynamical properties Offerometry‘ cor_nbl_n_ed with a novel ca_lllbranon r_nethé)d?hls .
colloids; this leads to problems when estimating the drag forces setup has a significantly better_spatlal resolution Fhan earlier
on the beads which in turn can lead to problems calibrating the tweezers meaguremenis]( nm with a 10 kHz bandwldth) and .
does not require assumptions about the bead radius or solution

optical forces. Other problems include long-range repulsive ~. it W ble t telv determine th f

surfaceforcesthatmightmaskthebiologicalforces,aberrations,V'Sc_(t)_SI yt' ih\_/veref able to aci:ura gy eb_ei_;mtme I't? sturtﬁce
and optical reflections between the bead and the surface that carposttion to within a few nanometers. Lur abrity to caljorate the
lead to uncertainties in calibratidhus accurate measurement optical tweezers very precisely in the axial direction allowed us

of forces in biological molecules using optical tweezers requires © estimate with very high resolution the magnitude of the surface

- - (5) Israelachvili, J. NIntermolecular and Surface ForceAcademic Press:
* Corresponding author. Current address: Center of Biotechnology, London, 1991.

Technical University Dresden, Tatzberg491, 01307 Dresden, Germany. (6) Ducker, W. A.; Senden, T. J.; Pashley, R.Mngmuir1992 8(7), 1831
(1) Tolie-Ngrrelykke, S. F.; Scliter, E.; Howard, J.; Pavone, F. Sijlidgher, 1836.
F.; Flyvbjerg, H.Rev. Sci. Instrum2006 77 (10), 103101. (7) Prieve, D. CAdv. Colloid Interface Sci1999 82 (1—-3), 93-125.
(2) Howard, J.Motor Proteins and the CytoskeletoBinauer Associates: (8) Clapp, A. R.; Dickinson, R. BLangmuir2001, 17 (7), 2182-2191.
Sunderland, MA, 2001. (9) Hansen, P. M.; Dreyer, J. K.; Ferkinghoff-Borg, J.; Oddershedel. L.
(3) Neuman, K.; Block, SRev. Sci. Instrum2004 75 (9), 27872809. Colloid Interface Sci2005 287 (2), 561-571.
(4) Happel, J.; Brenner, H.ow Reynolds Number Hydrodynamib&artinus (10) Pralle, A.; Prummer, M.; Florin, E. L.; Stelzer, E. H. K.;'Her, J. K.
Nijhoff Publishers: The Hague, 1983. H. Microsc. Res. Techl999 44 (5), 378-386.

10.1021/1a0622368 CCC: $37.00 © 2007 American Chemical Society
Published on Web 02/28/2007



Surface Forces Measured with Optical Tweezers

(a)

optical
gradient
microsphere
z
b
(b) heat sink video

nini

| arc |
lamp  LED =
A

. NP
ophcal'\../ \ z
fiber ) 5

, .| trapping laser
\ Nd:YVO4
nez Sevo T PO

Langmuir, Vol. 23, No. 7, ZBb5

mm off the optical table. The laser is expanded to a final beam
diameter of~6 mm. With a half-wave plate placed before the
polarizer, the laser intensity can be varied by rotating the plate with
a toy model servo. The lenses, antireflection coated achromats
(LINOS Photonics, Gtingen, Germany), have the following focal
lengths in millimeters (starting from the laser): 6, 40, 80, 120, 140,
140, 160, and 160. All optics are mounted on four rods (Microbench
system, LINOS Photonics) clamped to the optical table and enclosed
in an anodized aluminum box. The piezo-steering mirrors (S-226.00,
Physik Instrumente (PI), Karlsruhe, Germany) are placed in conjugate
planes of the back aperture of the objective such that the beam pivots
around this point with a constant transmitted laser interiitythis

way, the trap stiffness does not change while steering.

The main difference between our setup and most others is the
control of the laser focus height relative to the imaging plane. To
this end, we move the first lens after the polarizer with a servo. The
position and focal length of the lens are chosen such that no changes
in the intensity occur upon moving the lel¥dn the imaging plane,
the laser focus moves less than 20 nm laterally pemlof axial
motion. One advantage of this method is thatimaging is notimpaired
by the movement of the laser. The lens movement is calibrated by
comparing the change in the laser waist in the back focal plane of
the condenser upon moving either the lens or the imaging objective
by a known distance. A translation of the lens by 1 mm is equivalent
to a 195+ 4 nm height change of the imaging objective or alternatively
the axial stage position. The value is in reasonable agreement with
the expected value of 182 nm based on the focal lengths of all lenses
along the optical patk

The remaining apparatus is composed of a three-axis piezoelectric
translation stagexyz P-733.3DD, PI) that has been embedded in
a solid block of aluminum mounted directly on the table and the

Figure 1. (a) Setup geometry: A microsphere (bead) with radius microscope. The objective is clamped to this block to prevent drift
Ris trapped in a tightly focused laser beam near a surface. The beadcand mechanical vibrations. We used a Zeiss Plan-Neofluak 100

center-surface separation is denoted byand the axial direction
(along the axis of the laser) is referred toas he origin of the

1.3 NA, oil-immersion objective with a back aperture of 6 mm. The
samples are mounted on a smatly translation stage (07 TMC 511,

coordinate systemis the projection of the trap center onto the surface.\jg|les Griot) with 6 mm travel distance which is fixed on the piezo

It is displaced for clarity. (b) Schematic drawing of the optical
tweezers apparatus. D, dichroic mirror; F, filté2, half-wave plate;
LED, light emitting diode; NP, Nomarski prism; (Q)PD, (quadrant)

photodiode; P, polarizer.

forces between the cover glass and the bead based on the measur:

stage. The custom-built condenser, which uses a Zeiss Plan-Neofluar
40x, 1.3 NA, oil-immersion objective, sits on three fine-adjustment
screws on top of the same block and uses a light emitting diode
(LED)—a green Luxeon V star emitter (LXHL-LM5C, Lumileds
Lighting, San Jose, USA) wit5 W powert® A dichroic mirror

ide the condenser reflects the laser light onto a photodiode for

axial trap stiffness. Using this method, we studied the interaction back-focal-plane detection in three dimensi#hi$Position detection

of silica and polystyrene microspheres with glass and modified is obtained with either a quadrant photodiode, QP50-6SD, or a
glass surfaces in solutions of various ionic strengths. For instance position sensing photodiode, DL100-7PCBA (both Pacific Silicon
a thin Teflon film index-matches water and thereby screens the Sensors Inc., USA). The diodes are mounted on a smajl
attractive van der Waals interactions. Of particular biophysical translation stage. Thesignal is based on variations of the total laser

interest, we determined how the protein casein, which is often
used in assays on motor proteins, can influence the surface
interactions. Because the calibration method employed Hees

not assume that the value of the drag coefficient is known, it can

intensity measured in the back focal plane of the condéefigenr
small displacements, the laser intensity is a monotonic function of
axial particle position, linear within 5% for abo##250 nm relative

to the laser focus. The modulation corresponding to the axial signal
is typically only a few percent of the total laser intensity signal. The

be used to measure how a nearby surface influences theaser intensity was stable enough that normalization oktiyeand
hydrodynamic forces on a bead. We tested and found very goodz signals by the intensity measured in the back focal plane or the

agreement with Faxes law* for the lateral drag and closed-
form interpolation formulas that approximate an exact solution
to the Navier-Stokes equatioffor the axial drag perpendicular

to the surface.

2. Materials and Methods

2.1. Optical Tweezers SetupThe microsphere is held in an

epifluorescence port was not necessary.

Using the LED produced much less heat than a conventional light
source and therefore reduced thermal drift. The LED condenser
permits video-enhanced differential interference contrast with a
standard video camera (LCL-902HS, Watec, Japan) and can resolve
single microtubules and surface features<df nm in thicknes4?

The video-enhanced differential interference contrast microscopy
was used to monitor the cleanness and flatness of the substrates

optical trap (Figure 1a) built around an inverted microscope (Zeiss while the measurements were performed. Fluorescence imaging is
Axiovert 135 TV) on an optical table (Figure 1b). The laser is a possible as well. Three temperature sensors are mounted on the
diode-pumped neodymium vanadate crystal (Nd:,A@ith 1.5 W setup: one attached to each objective and one to the aluminum
atlo = 1064 nm and aM? value of~1.25 (Smart Laser Systems,  pjock in which the piezo stage is embedded. The temperature is
Bel’lln, Germany). Itis ||near|y polarlzed normal to the Optlca| table. recorded every second with a resolution eD.1 °C (type-T

In the imaging plane, the polarization is in thelirection (Figure

1a). To increase the mechanical stability, the laser beam is kept 50

(12) Fdlman, E.; Axner, O Appl. Opt.1997 36 (10), 21072113.
(13) Bormuth, V.; Howard, J.; S¢Far, E. J. Microsc 2007, 225 1-5.
(14) Gittes, F.; Schmidt, C. Biophys. J.1998 74 (2), A183-A183.

(11) Brenner, HChem. Eng. Scil961 16, 242-251.
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thermocouples, IT-23 Physitemp, Clifton, USA). Thewholesetup (a) § -+~ 1+ . + . 1+ . . L
is controlled via custom-written software using LabView (National
Instruments, USA).

One important requirement to obtain high-resolution data is the
stability of the trapping laser with regard to intensity and pointing
angle. We modified the laser such that the pumping laser is passively
cooled and mounted on the optical table. This improved the pointing
stability considerably (data not shown). Furthermore, the intensity
is stabilized by a feedback: the laser intensity is measured by a
photodiode at the epifluorescence port of the microscope, and this
signal is used to modulate the pumping laser current to keep the laser
intensity constant. With the feedback on, the laser intensity has a
0.01% coefficient of variation (standard deviation divided by the
mean) measured over a period of 200 s. The laser angle has a standard
deviation of 0.2«rad in thexdirection and 0.0grad in they direction. 0 .

With a conversion factor of 0.23 nm perad, the pointing stability 3 4 5 6 7 8 9 10
relsults in less than 0.3 nm peak-to-peak movement in the image Time t(s)
plane.

The overall system noise of the tweezers setup was measured (b) I
using a probe tightly coupled to the surface. Data sampled over 1 i
s with a bandwidth of 50 kHz show a standard deviation of the
position signals 0f0.5 nm in all three directions. Figure 2a shows
the capabilities of the instrument: 5 A steps were easily resolved ]
when the laser was scanned past an immobilized bead in a stepwise ;-2 |
manner using the piezo mirrors while recording the signal by the = 3
detection system. Here, a 528 nm diameter PS bead was passively £
adsorbed onto a cleaned glass coverslip in a 0.1 M KCI solution. 5 1
The peak-to-peak noise is less than 1 nm with a bandwidth of 10 £ 443
kHz (gray line). Adjacent averaging of 1000 data points (orange Q- ]
line) clearly demonstrates sub-nanometer resolution.

2.2. Microspheres and Flow Cell PreparationPolystyrene (PS)

-y
1
T

Lateral position x (nm)

| p—r——
4 ||—— ) yfit)

microspheres from Polysciences (Warrington, USA) were 528 nm 1075 — ) z(fit E
in diameter with a 2% coefficient of variation. Transmission electron """ —+++++1
microscopy that we performed indicated a 1.2% coefficient of 10 100 1000 10000
variation for these microspheres. Silica beads from Bangs Labo- Frequency f(Hz)

ratories (Fishers, USA) were 0.@@n in diameter with a coefficient . . . .
of variation of 10%. The nonfunctionalized beads were washed in Figure 2. (a)_Térr/}\e trace of thef_trag%ggblasgr f‘ganned V\gtzhsthe
demineralized and purified water (grade 1 with a conductivity of PI€Z0 mirrorsi 5 A steps past a fixe ead of diameter 528 nm

: : : .~ in thex direction. The gray line shows the raw data sampled with
0.0F5|5/¢S/c|r|n), pﬁntrguged, _gnd sonlcallted fqr redsu?pens:)snmtwme. 10 kHz. Adjacent averaging of 200 (1000) data points, blue (orange)
cove?gigeNz V‘g 5"? CoaniT;\V;I LeJ g A;igr:]etocsr;?'gtg 5 ?ﬁgtr)]\?erslip M line, demonstrates subnanometer resolution with a standard deviation

h X ! of ~0.06 nm ovel s (astep plateau). (b) Calibrated power spectral
Before use, the coverslips were washed and sonicated in separat@ensity for all directions witha, Ky, k7) = (0.203+ 0.002, 0.147

baths of detergent, ethanol, and purified water. Blocked surfaces + 0.001, 0.0322: 0.0003) pN/nm of a 600 nm diameter silica bead
were prepared by two methods. Coverslips were rendered hydro-with a bead-surface separation of 2040 nm. Differences between
phobic by either using dichlorodimethylsilane (DDMS) following  the lateral directionsqandy) arise from the polarization of the laser
standard procedur€r by spin-coating at 2000 rpm in a nitrogen  in they direction. The calibration spike in thedirection atfsiage=
atmosphere a thin polymer layer 100 nm thick) using a 0.5% 32 Hz corresponds to a bead motion of 1.67 nm amplitude. The stage
solution of Teflon AF 1600 (DuPont) dissolved in the perfluoro was driven withA = 250 nm. The power spectra are the average
compound FC-75 (Acros Organics). The resulting Teflon film has of 100 independent power spectra each. The sampling frequency
a refractive index of 1.31 and thus almost index-matches water. was 65 536 Hz, the measurement time for each spectruntwas
Therefore, the attractive van der Waals interaction between a bead= 0.125 s, and the temperature was 28% The noise peaks &t
and a Teflon-coated surface is reduéduithe flow cell, the coverslips > 5 kHz are excluded from the fits.
were separated by a layer of Parafilm. The Parafilm was melted by
placing the sample on a 10C hot plate. Cooling then glued the  hydrophobic DDMS or Teflon layer. The outer PEO parts form a
coverslips together. After assembly of the flow cell, a 1% aqueous polymer brush (PEO is also known as PEG) that has been shown
solution of Pluronic F127 (referred to as F127 below) (Sigma) was to be very effective in blocking protein adsorption in single molecule
flowed in, incubated for 15 min, and the flow cell rinsed thoroughly ~ experiments®Surfaces treated in this manner are also very effective
afterward. Finally, the solution of interest containing the microspheres in preventing microspheres from adsorbing to the surface. With the
was flowed in, and the ends of the chamber were sealed with vacuumbrush densit} of p = 0.23 (PEO chains)/nfrand a monomer size
grease to avoid sample evaporation. We did not use double stickinga = 0.35 nm, the brush thicknesslis= aN(a%0)/* ~ 10 nm, where
tape and nail polish for sealing because these materials were observedll is the number of monomers in the PEO bloéks.
to contaminate the solutions. This contamination showed up as a 2.3. Data Acquisition and Fitting. Signals were recorded with
decrease in the measured screening length (see eq 2 and sectioa 24-bit data acquisition card (NI 4472, National Instruments) which
3.2.2). has a 45 kHz alias-free bandwidth. Data were read out with a rate
F127is atriblock copolymer consisting of two outer poly(ethylene of 65536 samples per second unless otherwise noted. For the
oxide) (PEO) and an inner poly(propylene oxide) (PPO) block with calculation of one power spectrum, we used 8192 data points. One
100 and 65 monomers, respectively. The molecular weight is 12.6 hundred consecutive power spectra were averaged and automatically
kDa. The PPO block is hydrophobic and strongly adsorbs onto the fitted with a custom-written least-squares fitting routine implementing

(15) Helenius, J.; Brouhard, G.; Kalaidzidis, Y.; Diez, S.; Howardyakture (16) Li, J. T.; Caldwell, K. D.Langmuir1991, 7 (10), 2034-2039.
2006 441(7089), 115-119. (17) Halperin, A.Langmuir1999 15 (7), 2525-2533.
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a Levenberg-Marquardt algorithm. Each datum was weighted by to the optical trapisiage= A Sin(27fsagd)y, wherey is the unit vector

its theoretical error bak® Data points which deviated more than five  in they direction. The first term on the left-hand side of eq 3 is the

standard deviations from the fit were automatically excluded. This dragforce proportional to the bead velocity relative to the stage. The

applied to the calibration peak and electronic noise. second term describes the surface and trapping force. Itis the gradient
To fit the power spectra, we used either a Lorentzian (see sectionof the potential energy

2.4 and TolieNgrrelykke et al) or eq 32 from Berg-Sgrensen et

al.l® Because silicon photodiodes act as low-pass filters at a

wavelength of 1064 nri¥-2°we used eq 35 from Berg-Sgrensen et

al'8 to account for this parasitic filtering. Equation 32 from Berg-

Sgrensen et af.accounts for the frequency-dependent hydrodynam- wherex; denotes the trap stiffness in thdirection withi = x, y,

ics far away from surfaces (in bulk). Close to a surface, using either zandhy is the axial center position of the optical trapping potential.

eq 32 from Berg-Sgrensen etbr a Lorentzian, is an approximation ~ The right-hand side of eq 3 is a random thermal force driving the

that worked well in combination with the parasitic filter within the  Brownian motiont The diagonal elements of the drag coefficient

accuracy considered in this study. Qualitatively, the deviation from matrix arel'i = {yx Yy V22, and the off-diagonal elements are

aLorentzian due to the frequency dependence of the drag is reducedero. We denote the lateral drag coefficientyass yx = yyy and

upon approaching a surface. The overall shape of the power spectrunthe axial one ag = v, Both depend on the distance of the bead

to a first-order approximation resembles a low-pass filtered Lorent- center to the surfacé, The height dependence is approximated by

zian. Thus, the frequency dependence can largely be absorbed intd~axan’s law?

the parameters that describe the parasitic filter. Equdtitmet

£ = 2008+ 1 + Kz~ 1)) + 900 @

approximate the frequency dependence near a wall to within 1% are Yo

only valid down to distances df/R = 1.5. The distances in this Vi R KB a7 R (5)
study reach smaller values than this. Thus, there is no accurate 1——4+ — =

theoretical description for all of our data at present. We therefore 16n  gn® 2560 160

used the phenomenological approximation of eq 32 from Berg-
Sgrensen et &P or a Lorentzian in combination with a low-pass

for the lateral directions and by Brenner’s infinite sum formtla

filter. The error that arises due to neglecting the frequency dependencdor the axial direction. Because the latter formula is inconvenient

of the drag is<1% for our beads and experimental conditions (for
a detailed discussion, see Toltmrrelykke et al). Inertial effects
are even smallérBecause these errors are smaller than the relative
error, for example, of the calibration-@%) at a single height or of
the Debye length{15% mainly caused by thermal drift), we neglect
their effect.

2.4. Theoretical Background.2.4.1. Surface Force$Jsing the

DLVO theory, the interaction energy between a sphere and a flat

surface with a separation df — R can be approximated b§*

=y o

The first term on the right-hand side models the electrostatic
interactions characterized by the Debye screening length

L= [cwskeT _ 0304
&S n& VIKC]

with the permittivity of water and vacuuma,, ande, respectively,
the Boltzmann constakg, the temperatur€, the elementary charge
e, and the density of thiéh ion p; and corresponding valenéy. The
electrolyte concentration [KCI] is in moles per liter. The amplitude
IS ¢o = 47reweowSR wherey is the effective surface potential. The

R
+R

_, R _H_R
o) = e SR

nm

)

and converges slowly for small separations, we developed interpola-
tion formulas that deviate less than 1% from the exact formula over
the complete range of possible separations. We give the equations
and their derivations in Appendix A. Here, we use a 12th-order
interpolation formula with six coefficients for the axial drag

Yo
SRR, TRY . R®
10h* sh°  200h'*  25h'?

= 6
8h  op3

which deviates less than 0.1% from Brenner’'s exact formula for
h/R = 1.1 and less than 0.3% over the whole rangehofThe
interpolation is exact in both limits df going toR and . For h

— oo, in the zero-frequency limit considered hepg= yo = yo =
677R, which is the bulk drag coefficient corresponding to Stokes
drag with viscosity.

2.4.3. Calibration.The calibration is based on a power spectral
analysis. Solving eq 3 in Fourier space results in a power spectral
density (PSD) which is a Lorentzian for all spatial directions with
a delta function spike dtgein the direction in which the stage is
driven! The Lorentzian is characteristic for the Brownian motion
of a trapped object in a parabolic potential. Examples of power
spectra are shown in Figure 2b. Note that the spike consists of a
single datum since the driving frequency is an integer multiple of

second term in eq 1 describes the van der Waals interactions, thethe power spectrum’s frequency resolutidnappears wide because

magnitude of which are characterized by the Hamaker conbtant
which depends on the dielectric properties of the media.
2.4.2. Trapped Sphere near a Surface: Equation of Motion

of the chosen frequency resolution (8 Hz in Figure 2b). Every axis
has a characteristic corner frequerfgy= «/(2ry) and a plateau
valueproportionalto the diffusion coefficienD = kgT/y. Because

Ignoring frequency dependence and inertial effects (as justified abovethe drag coefficieny depends oi, bothf. andD depend on the

and in TolicNgrrelykke et al), the equation of motion at tintefor
amicrosphere with positian= (X, y, 2) trapped in an optical potential
close to a surface (Figure 1a) is given by

d
rd_t[r - rstagJ +VE= FT(t) )
with the drag coefficient matrik. Here, the sample stage drives the
flow cell sinusoidally with amplitudé\ and frequencysgerelative

(18) Berg-Sgrensen, K.; Flyvbjerg, Rev. Sci. Instrum2004 75 (3), 594
612

(19) Berg-Sgrensen, K.; Oddershede, L.; Florin, E. L.; Flyvbjergl.tAppl.
Phys 2003 93 (6), 3167-3176.

(20) Berg-Sgrensen, K.; Peterman, E. J. G.; Weber, T.; Schmidt, C. F.; Flyvbjerg,
H. Rev. Sci. Instrum 2006 77 (6), 063106.

(21) Hamaker, H. CPhysical937, 4, 1058-1072.

distance to the surface.

Three parameters need to be determined by the calibration: the
displacement sensitivity, the drag coefficient, and the trap stiffness.
An experimental power spectrum obtained with a photodiode is
measured in (voltd)x (seconds) with the scale set by the volt-to-
meter displacement sensitiviy The integrated power in the spike,
Wey, is therefore measured in (voRsOn the other hand, since it
is the response of a driven harmonic oscillator, the power is known
a priori in (meters) and thus serves as a “scale bar”. Hence, the
displacement sensitivity for the driven axis is givert by

Win
W,

ex

ﬁ:

= A(zpspikeAf 1+ (fc/fstaggz])_llz (7
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with units (meters)/(volt). Her&k, andW,y denote the theoretically
expected and experimentally determined power in the spike,
respectively, an®sicis the PSD at the stage frequentthe height

of the spike-with the Brownian motion subtracted measured in
(voltsy x (seconds). The frequency resolution of the power spectra
is given byAf = 1/tnsrWheretnsris the measurement time. The drag
coefficient for the driven axis is

ks T
y=— (8)
/8 Dvolts
and the trap stiffness is
k= 2nfy 9)

where the corner frequencly, and the diffusion coefficienDyofts,
with units (volts§/(seconds) are obtained from a fit to the power

spectrum (see section 2.3). All the other parameters in the above

equations are known. Thus, within the approximation of a frequency-
independentdrag, the system can be calibrated in the driven directi
without any assumptions. We elaborate below (see section 3.1) ho
driving one axis can be sufficient for the calibration of all spatial
dimensions.

2.4.4. Surface Force Probinghe surface forces influence the
trapping conditions. However, only the axial direction is affected
by the surface potential. The surface force produces two effects.
First, the mean axial trapping position is shifted so that the optical
forces balance the surface force, and second, the axial trap stiffnes
is changed. A Taylor expansion of the surface interaction engrgy
around the mean positidnof the center of the bead together with
eq 3 yield§

#'(h)

z

h=h,—

=hy + Ah (10)

eff _
S =

K (11)

1, ¢"(h)

where a prime denotes a derivative with respea endAh is the

axial distance that the bead is displaced from the trap center. For
example, for a repulsive surface interaction, the bead is pushed
away from the surface( < 0 andAh > 0, eq 10), and the effective
axial trap stil‘fnessk;Eff is increasedd’’ > 0, eq 11). An attractive
interaction has the opposite effect.

The equations above motivate how surface forces can be measure
Equation 10 indicates that the surface fore/) can be obtained
by measuringc,Ah. This effect of the surface force on the mean
bead position has been utilized in earlier studiggEquation 11
shows that the surface force gradiegitis given by the deviation
of the axial trap stiffness from its value far away from the surface
k2 In this work, we take advantage of our calibration procedure in
order to measure the effective axial trap stiffne?sand in this way
determine the surface force gradients.

2.5. Focal Shift. Aberrations caused by the refractive index
mismatch of glass and water influence the trapping position relative
to the surface. We controlled the relative distance of the bead to the
surface by either changing the position of the movable lens or by
displacing the piezo stage. Both methods yielded equivalent results.
We denote the relative positiertontrolled either by the lens or the
stage (see section 2:1py hsage The bead centersurface distance
without surface effectsg(= 0) is then given by

hy = h‘qﬁ:O = (hstage_ hgur)0 (12)
whered denotes the focal shift artd,is the surface position. For
h = hy, the mean trapping position co-moves with the laser focus
and by a relative amount with the stage. The focal shift,isc 1
for a water immersion objective with properly adjusted correction
collar andd,; =~ 0.81 for an oil immersion objective with spherical

OV?,AI each of~50 positions, 100 power spectra were acquired, averaged,

Schdfer et al.

aberrations when used to image in an aqueous metifékve used
an oil-immersion objective and kept the value of the focal shift fixed
at 0.81. This is the average value that we have independently
confirmed by three methods: first, by measuring the intensity
variation as a function of distanéésecond, by using as a fit
parameter in eqs 5 and 6, and third, by looking at the periodic
modulation of the displacement sensitivity (see below). We observed
that the value ob varied by a few percent for individual beads.
2.6. Lateral Calibration. In order to perform quantitative axial
measurements, we first calibrated one lateral direction as a function
of distance from the surface to determine the surface poshign,
and the Stokes’ bulk drag coefficient,. A trapped bead was
calibrated at several distances from the surface by driving the stage
in one lateral dimension ontywe chose they-axis because the
pointing stability of the laser was best in this direction (Figure 3).
The power spectra for the other dimensions were recorded
simultaneously (see Figure 2b). For the data in this section, we
chose a high ionic strength and a blocked surface to minimize surface
interactions, thus we se¢t= 0 in the data analysis. We used a 528
nm diameter PS bead in a 0.1 M KCI solution with a F127-blocked
surface. The stage was driven wAh= 150 nm andsiage= 32 Hz.

and analyzed automatically as described in section 2.3. The laser
height was controlled with the movable lens. The equivalent stage
movement is quoted on the bottom axis. The upper axis shows the
corresponding bead center positigaccording to eq 12. The vertical
gray line indicates the sphere’s radiRsAt this position, the bead
touches the surface. Figure-3ashows the displacement sensitivity

$8, the drag coefficieny, and the trap stiffnesg for each height

resulting from eqs 79, respectively.

The displacement sensitivif§y is not a constant as sometimes
assumed.As a function of stage height, there is a small overall
increase with increasirtgexpected from aberratioddFurthermore,

p shows a clear sinusoidal modulation with a periodicity of 488

14 nm and an amplitude 6f2.2% relative to the mean value (Figure
3a). The modulation is caused by light scattered back from the
microsphere. This light, upon reflecting from the surface, interferes
with the incoming laser light and forms a standing light wave. The
periodicity of this interference pattern is expected talg&2n,,) =

400 nm wheren, = 1.33 is the refractive index of water. Thus, the
ratio of the observed to the expected periodicity can be used to
determine the focal shift which resulted dr= 0.82+ 0.02. This
value is expecteéd??and constitutes a self-consistency check for the
system. If§ is assumed to be constant in a power spectral analysis,
for example, based on a fixed-bead calibrafishe modulation in

dB is falsely reflected in a modulation of the values of the drag

coefficient?*

The dependence on height of the drag coefficjgrior our data
is consistent with the hydrodynamic theory. In Figure 3b, the
measured drag coefficients are plotted as a functidm @hey are
normalized by the value of the expected Stokes gt far from
the surface based on the specifications of the bead radius and a
temperature measurement. The measured vglean differ from
yorecif, for instance, the bead radius deviates from the specifica-
tions; yo is obtained from a fit of Fax®@s law (eq 5) using eq 12
(solid line in Figure 3b). For thehosenbead yielding the results
in Figure 3, there is excellent agreement with the expected value:
yolyg®¢ = 1.004 £ 0.004 (see also Appendix B and Tolic
Narrelykke et al). The other fit parameter ibs,t = —0.347 +
0.002um. The surface position is thus determined within 2 nm.
Upon approaching the surface, the lateral drag coefficient increases
by more than a factor of 2 compared to the Stokes drag.rFaxe
law, however, is only a good approximation ugtéy, < 1.72°We

(22) Neuman, K. C.; Abbondanzieri, E. A.; Block, S. @pt. Lett 2005 30
(11), 1318-1320.

(23) Vermeulen, K. C.; van Mameren, J.; Stienen, G. J. M.; Peterman, E. J.
G.; Wuite, G. J. L.; Schmidt, C. RRev. Sci. Instrum 2006 77 (1), 013704.

(24) Pralle, A.; Florin, E. L.; Stelzer, E. H. K.; Hber, J. K. H.Appl. Phys.
A: Mater. Sci. Processl998 66, S71-S73.

(25) Goldman, A. J.; Cox, R. G.; Brenner, Bhem. Eng. Scil967, 22 (4),
637-651.
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(a) Bead center-surface distance hy (nm) + 1)%um of bead-surface separation. The decrease is expected
0 ) 500 . 1000 ) 1500 because of spherical aberration and is consistent with previously
published value¥>?7Figure 3 reveals that, if a calibration is performed
1.9 - far away from the coverslip assuming= y;** aberrations can

significantly reduce the measured stiffness. Thus, if this stiffness
value is subsequently used close to the surface, errors in force
measurements can be large.

The lateral calibration is precise and accurate. The average relative
errors ong, y, andx obtained from data taken at a single distance
to the surface were 1.5, 2.4, and 2.4%, respectively. Begalsel
hsurs result from a fit to~50 data points, the relative error on these

parameters is reduced about 7-f0+d\(5_0), resulting in a precision

of ~0.3%. The accuracy and overall error, however, is limited to
~1% due to neglect of the frequency dependence of the drag (see
section 2.3). With such a high precision, small differences in bead
radius from the manufacturers specification, for instance, can be
resolved (see Appendix B).

The modulation seen in the displacement sensitivity due to the
standing light wave is also reflected in the measured trap stiffness.
Because the displacement sensitiyitis inversely proportional to
the laser intensity, we expect that the modulation seen in the
displacement sensitivity reflects a modulation in laser intensity and
should therefore also be present in the trap stiffness which depends
linearly on the laser intensity. This modulation is indeed seen when
fcis plotted as a function of height (data not shown). However, since
the modulation is only 5% peak-to-peak in Figure 3a for then5
diameter PS bead, itis comparable to the errerifnich consequently
masks the effect in Figure 3c. The amplitude of the modulation of
the displacement sensitivity depends on the refractive index, the
size of the trapped bead, and the axis. For example, silica beads have
a smaller refractive index and therefore scatter less light. On the
other hand, for a &m diameter PS bead, the amplitude of the lateral
displacement sensitivity modulationi$% and the axial one almost
3 ~25% (data not shown). For larger beads, the effect was even more
. pronounced, and we observed the modulation in both the lateral and
0.04 L axial trap stiffness (data not shown). In the following, in particular,
regarding the surface force measurements, we preferred to use small
silica beads.

1.8

1.7+

1.6

1.5+

< Displacement sensitivity B, (nm/mV)

—

3.0

spec

(i}

2,57
2.0

1.5

Lateral drag coefficient y /7

0.05

3. Results and Discussion

0.02 -
The axial direction is calibrated by using the measured bulk
0.014 oad - drag coefficientyo and surface positiohss obtained from the
1adius - lateral calibration together with the analysis of the power spectra
0.00 . . , : of the z direction. Once calibrated, the expected dynamic axial
0.0 0.5 1.0 1.5 forces arising from the hydrodynamic interaction with the surface

Stage height Astage (1m) can be deduced and confirmed in a self-consistent manner. In

Figure 3. Displacement sensitivity (a), lateral drag coefficient (b), addition, static surface forces and surface force gradients can be
and trap stiffness (c) as a function of distance from a surface for a measured.

528 nm diameter PS bead in 0.1 M KCI. The stage height has an - 3 1 pynamic Axial Forces.As was the case for the lateral
arbitrary offset. The upper scale shows the bead cestarface . : : .
separafion corrected for the offset and focal shift. The vertical gray diréction, three parameters have to be determined by the axial
line indicates where the bead touches the surfaces,(ahows a calibration: the axial drag coefficiept, displacement sensitivity
modulation caused by the interference of light reflected between the 3, and stiffnesg,. With the known surface positidm, eq 12
bead and the surface. It is fitted by a damped sinusoid added ontoexactly defines the heighiof the bead above the surface. Together
a third-degree polynomial. The periodicity is 48814 nm with an with the measured bulk drag coefficigns, eq 6 yields the axial

amplitu,de’ 0f~2.2.%,.resulting i.n a chal Sh“;tpg’f - 0'8_2i 9'02' drag coefficient(yo, h). Onceynis known, eq 8 solved for the
(b) FaxXen's law is fitted toy, in units of y™; resulting in an axial displacement sensitivity results in

extrapolated bulk value of the drag coefficienty”*°= 1.004+
0.004 and an offset dfs, = —0.347+ 0.002um. (c) The red line

is a fit to the stiffness data (circles) showing a linear decrease due ke T
to aberrations of-(12 + 1)%jum of bead-surface separation. B,= 2 (13)
7oDlots

consequently restricted the fitting range to this limit. We looked for

systematic deviations fori/yo > 1.72° but did not see any within  and the axial stiffness is readily obtained by

the error bars. Faxes law was a good description of the data up

to yilyo ~ 2.4 with normally distributed residuals af4%. - _ : -
The measured trap stiffness showed the expected weakening away,. (fﬂg)t;'ors'rc"i Ep'r'(‘)'é ezgg%%ggg%% H. K. Hoer, J. K. H.Appl. Phys.

from the surface. In Figure 3c, the lateral stiffnesis plotted. It (27) Vermeulen, K. C.; Wuite, G. J. L.; Stienen, G. J. M.: Schmidt, @pgl.
shows a maximal value at the surface with a linear decreas¢€léf Opt 2006 45 (8), 1812-1819.
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K, =271ty (14) (a) Bead center-surface distance h/R
3 . & 7T . %
where D, and f{ are the fitted values for the axial power 8 - o axial v, |I
spectrum (see Figure 2b). Thus, driving in one lateral direction . 14 lateral y |[

is sufficient to calibrate the axial direction as well. The other
lateral direction can be analyzed in an analogous manner.
The height dependence of the measured axial parameters
confirmed the expected behavior. We used a 600 nm diameter
silica bead in a 0.1 M KCI solution. At this concentration, the
Debye screening length is1 nm such that the surface forces
are practically zero for beatsurface separations50 nm.
Cleaned glass coverslips were used with no further blocking.
The axial trap stiffness, determined by eq 14 is shown in Figure
4b as a function of stage height (bottom scale). The distance to
the surface was varied by moving the piezo stage. The axial trap
stiffness shows a maximum at the surface with a linear decrease (p)
of —(9.0+ 0.3)%km of bead-surface separation (green line). 0.05 : ! : : ' ' ' '
The decrease is expected because of aberrétidrend has a B
similar magnitude as in the case of the lateral signals

Drag coefficient v /v,

. £0.04+ L
(Figure 3c). S

Instead of assuming the height profile of the axial drag 2
coefficient in order to calculate the trap stiffness, we can ‘;.:0-03— -
alternatively assume alinearly decreasing trap stiffness to calculate 9
the axial drag coefficient. In principle, one can measure this @

- £0.021 -

decrease far away from the surface where hydrodynamic £
corrections are subdominant. We used the fitted line in Figure i;
4b as the actual axial trap stiffne,sfri‘.(h). Then, eq 14 can be 5 0.01 -
inverted to calculate the axial drag coefficient= th(h)/(Zn
f2). The results are plotted in Figure 4a in units of the bulk drag 0.00

coefficientyo (green circles). For comparison, the lateral drag 05 00 05 10 15 20
coefficient (orange diamonds) with the corresponding fit to
Faxen's law (red line) is shown. The axial drag increases
dramatically on approaching the surface, yet s still well-described Figure 4. Axial drag (a) and axial stiffness (b) as a function of stage
by our interpolation formula eq 6 (green line, not a fit). Residuals position for a 600 nm diameter silica bead in a 0.1 M KCI solution

s . S (¢' = 0 for /R 2 1.15). The stage height has an arbitrary offset.
are normally distributed with deviations of less than 5%. Note The upper scale shows the bead centarface separation in units

that the data in Figure 4a are essentially the same as those iny the head radius. (a) The axial drag coefficient (green circles) in
Figure 4b. They are shown in this representation to illustrate the ynits ofyq increases by more than a factor of 8 upon approaching
stronger height dependence of the axial drag compared to thethe surface. In comparison, the lateral drag coefficient (orange
lateral one. In addition, it confirms in a self-consistent manner diamonds) only doubles. The solid red line is a fit to Razdaw,

the assumptions. Hence, it is strictly speaking not a direct @hdthe green line corresponds to a higher order interpolation formula

: - : (see text for details). (b) The axial stiffnesggreen circles) shows
measurement of the axial drag coefficient. A direct measurementa linear decrease due to aberrations with a S04 0.3)%fm

can, in principle, be done by exciting the stage in the axial othead-surface separation. This decrease is comparable to the lateral
direction, but this approach has other limitations. For the bead  one (see Figure 3).

surface distances and solutions used in this study, we do not
expect any deviations from the height profile of the drag 1900 nm. The deviations from these lines indicated the presence
coefficient. of surface interactions. This makes the use of eq 12 invalid.
3.2. Surface Force Gradients3.2.1. ProcedureWith the Instead, eq 10 that accounts for the surface interactions is
precise axial calibration, static surface forces can be measurechecessary. The displacemehh of the bead from the center
based on excess deviations in the trapping position and stiffnessposition of the optical potential caused by the surface forces
In Figure 5, we illustrate how the gradient of the surface forces was measured by an extra change in the laser intensity on the
(¢" in eq 11) is obtained. The example given is for a31M detector as a function of heighhh = ,Al, whereAl is the
KCI solution. For this low ionic strength, we expect a large extra deviation of the laser intensity. This deviation is the
screening length. (eq 2) and therefore a pronounced, long- difference between the solid blue circles (the laser intensity) and
range interaction of the bead with the surface. We first analyzed the dashed line in Figure 5a. Because the gray circles were based
the axial displacement sensitivity and stiffness as outlined in the on the height defined in eq 12, the axial drag was overestimated.
previous section, that is, ignoring surface forces. This resulted The correctly processed data are plotted with the correctbead
in the data points marked as gray circles in Figure 5a,b. For the surface separation as red circles. For the data point closest to the
gray circles, the bottom axis corresponds to the beanface surface,Ah ~ 60 nm (not all gray circles are shown for the
separatiorng — Rwherehy was based only on the relative stage  stiffness data). For this data point, the use of eq 10 compared
position (eq 12). to eq 12 changed the effective axial stiffness by more than a
The surface influence becomes evident for small separations.factor of 2. Note that, since both the axial displacement sensitivity
For positionss200 nm, the displacement sensitivity and stiffness and the trap stiffness calculations are based on the same drag
do not follow a linear behavior. The black lines are fits to the profile and only the trap stiffness shows an effect upon
data far away from the surface in the range of 306 — R < approaching the surface (a deviation from linear behavior), this

Stage height Aggage (UM)
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difference is the surface force gradient, plotted in Figure 5¢ on
a semilogarithmic scale. It shows an exponential dependence on
the beae-surface separation over more than 2 orders of
magnitude. The solid line is a fit of the second derivative with
respect tch, ¢'', of the DLVO surface interaction potential (eq
1). The secondary potential minimum due to the attractive part
of the van der Waals potenttak too small to be resolved for
this bead. As fixed parameters entering eq 1 we uggd= 80
andH = 8 x 10721 J. The Hamaker constant is calculated using
the Lifshitz theory (glasssgiass= 2.25 andngass= 1.5; silica,

esiox = 3.8 andnsiox = 1.45)> The exact value ofl, however,

was not so important since the surface interactions are dominated
by the electrostatic term giving rise to the exponential behavior
of the surface force gradient in Figure 5c; that is, the van der
Waals interactions are negligible. Only the screening lehgth
and the surface potentigly were used as fit parameters. Here,

L =34.34+ 0.3 nm andpo = 29.3+ 0.1 mV. We discuss these
values in the next section. Note that the surface position is fixed
from the fit to the lateral drag coefficient. The integrated surface
force gradient (inset, Figure 5c) shows that the surface forces are
in the pN range. The direct surface force measurement based on
the first derivative of the interaction energyin eq 10 yields

a comparable result (data not shown). However, the mean error
on the directly measured force-isl0-fold higher compared to

the integrated values. The latter have an error of 10 fN based on
the standard deviation of the residuals derived from the fit of the
DLVO theory. This is the reason why we used the second
derivativeg' to measure the surface forces. From a mathematical
point of view, there is no difference whether one measures the
firstor second derivative gfbased oneq 10 oreq 11, respectively.
The advantage of measuring the second derivative can be
motivated in the following manner (see also section 3.2.3): One
can think of it as a “lock-in amplifier technique” which senses
the gradientinstead of the force itself. In contrast to a conventional
lock-in amplifier, we use a broad range of frequencies generated
by the Brownian motion. Lock-in techniques act as bandpass
filters and are thus less susceptible to especially low frequency
noise.

3.2.2. Variation of the Screening Length.order to test the
above procedure, we used KCI solutions of different concentra-
tions and compared the results to the DLVO theory. The
experimental conditions and data analysis were the same as in
the example of the previous section. The results are summarized
in Figure 6. In Figure 6a, the surface force gradient as a function

sensitivity (a) and stiffness (b) corrected for the height dependence Of bead-surface separation is plotted for KCI concentrations of
of the axial drag based on the height of eq 12 (no surface effects) 107°to 10" M, and purified water (ddbD). The lines through

resulted in the gray circles. For positiog200 nm, the surface
forces shifted the mean axial position of the bead in the trafstby
(eq 10) which is indicated by the deviation of the laser intensity from
a straight line (blue solid circles and dashed line in (a), right-hand
scale). Ifyqis calculated taking surface effect into account (eq 10),
the red circles resulted. Finally, a linear fit to the stiffness data far
away from the surface was subtracted (black line). The resulting
force gradient is shown in (c) on a semilogarithmic plot. The solid

the data are fits to the DLVO theory. With increasing salt
concentrations, the repulsive electrostatic interactions are in-
creasingly screened and the bead consequently comes closer to
the surface. For a concentration of 0.1 M, the van der Waals
interactions dominate over the repulsive electrostatic interactions,
resulting in an overall attractive potentigthe bead is adsorbed

to the surface after the last data poinhat R~ 50 nm (cyan

not used as a fit parameter. The inset shows the integrated surfac

force gradient.

Figure 4.

The measured surface interactions agreed with the DLVO

effect can be attributed solely to the static surface potential andtheory for intermediate salt concentrations. The fit parameters
not to a falsely assumed drag profile. If the profile would be fromthe linesin Figure 6aare displayed in Figure 6b as a function
wrong, the displacement sensitivity would also show a deviation of KCI concentration. On the left-hand axis the screening length
from the expected linear behavior. L (colored, closed symbols) and on the right-hand side the
Finally, in order to determine the surface force gradight corresponding effective surface potentjal is plotted (black,
the contribution from the optical potential needs to be subtracted open hexagons). The solid line is the Debye length based on eq
according to eq 11. This is done by subtracting the value of the 2. The average relative error on the screening length was 15%.
black line from that of the red circles in Figure 5b. The resulting The main source was thermal drift (see below); the average fitting
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Figure 7. Surface force gradient for F127-treated, silanized (blue
squares), and Teflon-coated surfaces (inset) in the presence (green
diamonds) and absence of casein (red circles). Electrostatic effects
are largely screened for all samples. The buffer BRB80 has about
the same ionic strength as a 0.16 M KCI solution. Solid lines are
fits of a DLVO-type expression to the data to guide the eye. For a
bare glass (gray dotted) and Teflon (brown dashed) surface without
F127 and 0.1 M KCI concentration, the purely attractive DLVO
theory predictions are shown. We udee 1 nm andy, = 10 mV,
yielding Hglass= 1.4 x 1072°J andHiefion = 1.3 x 10721 J (note that
H is larger for PS than for silica beads, compare with section 3.2.1;
] PS: eps= 2.5 andnps = 1.59; Teflon: €tefion = 1.93 andniefion =
—_Debyelength 10 1.31).
107 107° 107 107 1072 requirements are best met by a stiff trap. We used 0.015-

KCI concentration (M) 0.075 pN/nm. We did not detect any systematic deviations

Figure 6. (a) Surface force gradients for various concentrations of from & Lorentzian for the data presented. Furthermore, we
KClI solutions for 600 nm diameter silica beads. The solid lines are excluded data points for which the beaglirface distance was

fits of the DLVO theory using only the screening length and the smaller than 2.5 standard deviations of the Brownian motion in
surface potential as fit parameters. For the highest salt concentrationthe z direction. This roughly corresponds to the distance where
(dark-cyan hexagons), the bead jumped into contact at a surfaceyhe power spectrum is affected because of the bead’s motion

separation o~50 nm and was thus immobilized afterward. (b) : : : 2
Screening length (solid symbols, left-hand axis) and surface potential becoming restricted by the surface. For smaller distanceg’the

(open hexagons, right-hand axis) as a function of ionic concentration Value of the fit to the power spectrum increased significantly.
obtained from the fits to the surface force gradients. The solid line The standing light wave did not limit the measuremériince
shows the calculated Debye screening length. we measured the modulation due to the interference effect of the
displacement sensitivity and the laser intensity, we could account
error for an individual data set was only 3%. The relative error for the effect.
onyowas 2%. The data show an exponential dependence onthe The value of the surface position is the most critical parameter
bead-surface separation for all concentrations. However, in determining the surface force gradient especially for small
guantitative agreement with the DLVO theory is only observed bead-surface separations. Forimproved accuracy in determining
for intermediate salt concentrations. For low amounts of added hs,, the height dependence of the corner frequencies can be
salt, the screening length is too small compared to the Debyefitted in addition to the lateral drag. For the data in Figure 7, we
length, and for high concentrations, it is too large. For low used the surface position as a global fit parameter for the height
concentrations and the purified water, deviations are likely causeddependence of the three axes’ corner frequencies plus that of the
by multivalent ionic contaminations and the slightly acidic pH. lateral drag coefficient. As an internal control for the correction,
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The water had a pH of 5.9, probably due to the,G@m the we confirmed that the axial displacement sensitivity did not
atmosphere. Our measurédvalues for these conditions are deviate from the expected behavior (see Figure 5).
comparable to the ones measured by Hansen @i the high Figure 5a shows why it is important to have a stable laser
concentration, we do not know the cause of the discrepancy. Theintensity. In the case of back-focal-plane detectionzih@sition
effective surface potentialo shows a scaling of [KCHY2. Its is proportional to modulations in laser intensity caused by the

magnitude is in the lower range of previously published vafues. axial movement ofthe bead. Since a large offsetin laser intensity
The low values are indicative of an acidic pH and that some of needs to be subtracted (here&/ V) a small, low-frequency
the surface charges are exchange fohghe effective surface  intensity fluctuation of the laser itself cannot be distinguished

potentialyo was error-prone in previous tweezers stutifekie from atrue movement. For instance, a 0.5% variation corresponds
to the larger uncertainty in the surface position and was thereforeto Ah~ 18 nm (3,~ 0.5 nm/mV) and an error in force of almost
either not specified or taken as constant. 1 pN. This is why the direct surface force measurement based

3.2.3. RestrictionsThere are certain limits to the described on ¢' has a larger error than the surface force calculated by
method. Close to the surface, the trapping potential is skewed,integrating the measuref!’; ¢"" does not directly depend axh
and the drag depends bnlt was showfthat using a Lorentzian ~ and hence is insensitive to errors on this parameter (see also
fit for the power spectra is a valid approach if the potential is section 3.2.1).
only slightly skewed and the drag coefficient can be locally = We checked for effects of thermal drift during the calibration
approximated by a linear dependence on the distance. Thesgrocess because this directly affects the screening length. If we
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' > 3 4 86 8 10 Figure 9. Bead individuality. Once the distance to the surface is
Bead center-surface distance h/R known, the height dependence of the drag coefficient can be removed

using Faxe’s law. In this way, an estimate for the bulk drag
coefficient is obtained at every height. Data are shown for two
different beads (blue circles and red squares). The small data points
infinite series (eq 17) as a function of distance from the surface in @€ the raw data, and the large data points are four neighboring small
points binned with corresponding standard deviations shown as error

units of the bead radius on a double logarithmic plot. Negative . ! : - LIt
residuals are plotted with dashed Iines.gThe paraF:neters ?or thebar% Onthe right-hand side, a histogram of the drag with a bin width
equations are given in Table 1. The 12th-order equation (eq 6) deviates? 2% IS plotted. A Gaussian fit returned 1.0240.003 N = 49)
less than<0.3% for all distances. and 0.992+ 0.003 (N = 45) (meant standard error of the mean).

Since the standard error is much smaller than the difference between
repeat the calibration for the same bead and determine thethe means, differences in the bulk drag coefficient are attributed to
surface positios, again, the difference to the previous value different bead sizes.
gives a measure for the drift. We kept the temperature as constant
as possible during the measurements and worked in a thermallyHamaker constant more than 10-fold compared to a bare glass
well equilibrated room. The acquisition of the data and the Surface. The reason for this reduction is that the Teflon index-
automatic fitting of the power spectra with either 4096 or 8196 Matches watet.The inset in Figure 7 shows schematically the
data points at a single height position toek? or ~15 s, Teflon surface treatment.
respectively. With typically~80 positions, the complete calibra- The measured surface force gradients confirm the expected
tion as a function of distance took about 10 or 20 min. During screening behavior of the Teflon surface (Figure 7). The DDMS-
this time, there was a drift of1—2 nm/min depending on the  coated surface (silanized) shows a clear attractive region close
sample. This drift is included in the error bars in Figure 6b and to the surface due to the attractive van der Waals interactions
thus cannot account for the deviations from the DLVO theory. (blue squares). The solid line through the data is a fit of a DLVO-
With temperature monitoring and the capability of exactly type expression to guide the eye. In contrast, the Teflon-coated
measuring the surface position, we can, in principle, correct for surface shows a purely repulsive surface force gradient (red
all effects that are due to thermal drift. This is an advantage of circles) converging for small separations with the DDMS data.
the method presented here. Due to the much smaller Hamaker constant, no attractive potential

3.2.4. Blocked Surfaces and Casalve applied our method  is visible within the given resolution. The strength of the attractive
to measure the surface interaction of microspheres with surfacespart for the DDMS data lies in between what is expected for the
that are coated in such a way as to prevent the beads fromDLVO behavior for an uncoated, bare glass surface (dotted gray
sticking to them. Under physiological relevant conditions, the line) and a Teflon-coated surface without F127 (brown dashed
repulsive electrostatic interactions are largely screened, and thdine). The reason for this is likely because both the DDMS and
attractive van der Waals forces dominate the interaction of colloids more so the F127 layer lower the effective van der Waals
near surfaces unless they are treated further. The data for thesénteractions. Uncertainties ihs,+ and the laser intensity may
blocked surfaces are shown in Figure 7. For these measurementslso contribute. On the basis of the integrated force gradient, the
we used the 528 nm diameter PS beads in either a 0.1 M KCI maximal attractive force acting on the bead is abeQt2 pN
solution or a 0.2 mg/mL casein solution in BRB80 (80 mM and the potential has a depth ofikgT.

PIPES/KOH, pH 6.9, 1 mM MgG] 1 mM EGTA). For both With the Teflon-coated surface blocked with F127 and casein
solutions, the Debye length is1 nm. For individual power in solution, we observed a long-ranged repulsive potential (green
spectra, only 4096 data points were used to shorten the datadiamonds). With casein on a bare glass surface, we expect in
acquisition time. addition to the repulsive part a short-ranged attractive region

We used the blocking agent F127 to pacify the surfaces. The analogous to the DDMS case. Beads coated with casein and the
hydrophobic middle block of the F127 (section 2.2) requires a molecular motor kinesin walking on a microtubule that is
hydrophobic surface for stable adsorptidnwWe used two immobilized via antibodies on a surf&age often used to probe
different methods to render surfaces hydrophobic. We coatedthe mechanics of the motor. Our casein data suggest that bead
glass surfaces with either a self-assembled monolayer of motility assays might be affected by surface forces. Depending
dichlorodimethylsilane (DDMS) or a Teflon layer (see section on the surface treatment in these assays, the bead might either
2.2). The difference between the two methods is the thicknessbe pushed up by the surface forces and exert an axial force on
and refractive index of the coated film. While the thiaZ nm) the motor protein or could be pulled down next to the microtubule
DDMS layer only slightly affects the Hamaker constant and thus leading to an asymmetry in the gate of the motor. In Figure 7,
the van der Waals interactions between the bead and the sBrfacefor the casein data at a distance~d50 nm, the force is repulsive
the comparatively thick£100 nm) Teflon layer reduces the and~0.1 pN based on the integrated surface force gradient. It

Figure 8. Goodness of interpolation formulas compared to Brenner's
exact result (see also Table 1). Normalized deviations ofrite
order interpolation equations from thevalues based on Brenner’s
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Table 1. Interpolation Coefficients of Equation 19 for mth Order Using N Coefficients

m N G Cs Ca Cs Cs Cio C11 Ci2 h—R h—o? accuracy comment
1 X 10%,h/R < 1.07 Taylor®eq 18
1 1 -9/8 X 1%,hRz 4 Lorent2®
3 2 -9/8 1/2 X 1%,h/Rz 3 Wakiya® eq 16
4 3 -9/8 38 -1/4 X X 1%
10 5 -—-98 1/2 -37/80 1/5 —9/80 X X 0.4%
12 6 -—98 1/2 -57/100 1/5 7/200 —1/25 X X 0.3% eq6

aWhether the corresponding behavior of the limitshafoing toR and e is satisfied exactly is indicated by ac”.

is more than 6-fold the lateral drag force that the bead experiences For h/R>> 1, LorentZ° derived an equation up to first order
if it were pulled by a kinesin with a speed of 800 nm/s. This in R/h. On the basis of the method of reflections, WakRfya
means that the bead is not trailing behind the kinesin motor but calculated a correction up to third order

is rather centered above it. In addition to these geometric effects, 1

the mechanochemistry might be affected. 28 = 5 TR
152l

In the limit of a creeping flow approximation, BrenAétsolved
' the problem exactly

(16)

4. Conclusion

We have described two new methods in this paper. First
the calibration method in Tdlitlgrrelykke et al has been

extended to calibrate optical tweezers in all spatial dimensions © n(n + 1)

as a function of distance from a surface. With this technique, 1 = —sinhaa} —MMM8M x

no assumptions have to be made about the system and all 3 =1 (2n — 1)(2n + 3)

parameters affecting the trapping conditions are measured. 1 5 .

Importantly, interference effects that modulate the laser 4 cost{n "‘5 o+ (2n+ 17 sinif o

intensity away from the surface are accounted for in this way. —1| @7)
Furthermore, aberrations arising from oil-immersion 2 sinh( + 1)a — (2n + 1) sinh 2x

objectives or improperly adjusted water immersion objectives

can be evaluated. Thus, it is not necessary to work with With o= coshir(h/R). Forh— o0, 2 = 1, which makes the axial
expensive water immersion objectives only for the reason of drag coefficient correspond to the Stokes’ bulk drag coefficient.
avoiding aberrations. Second, we applied the calibration !N the other limit ofh =R, 4in eq 17 divergesi(— ). The
technique to measure surface interaction potentials with micro- limit of small separationsh ~ R, is attributed to G. I. Taylg?
spheres of a diameter of1 um. These are smaller than R

microspheres utilized in earlier studie$ and of a size often AR = R (18)
used in biophysical single-molecule experiments. It is feasible N

to measure surface interactions for even smaller beads. The gedimentation experimestsn silicone oil with nylon spheres
technique is sensitive enough to detect surface force gradientsyith a radius of around 2 mm confirmed eq 17 and eq 18 down
of ~1 fN/nm. We tested the method against the DLVO theory tg a sphere surface separation of0.11R. At this distance, the

and found quantitative agreement for 2 < [KCI] < 1072 axial drag coefficient is more than 10 times the Stokes drag.
M. Furthermore, the method was applied in more complex systems  \while eq 17 is exact, it cannot be used for fitting data as it
relevant to biological experiments. stands because of its infinitely many terms. One can either truncate
the sum ah = npax0r use rational polynomial functions in order
Appendix A. Closed-Form Interpolation Formulas for toapproximate eq 17. In case of the truncation and large distances,
the Axial (Wall) Drag the sum converges rapidly, angax= 2 is sufficient for a<s1%

deviation from eq 17 foh/R > 1.8. For small separations, the

The height dependence of the drag coefficient is stronger uponconvergence is rather slow since every term has a singularity at
approaching a wall for the axial drag compared to the lateral one.h = R. For a 1% accuracy down tR = 1.1, n should be at
While the increase of the lateral drag is well described by fraxe  least 4. Achieving this accuracy down to 1% of the radhi&(
law, an analogous closed-form equation is lacking for the axial = 1.01) requiresina = 6. For a 0.1% accuracyimax = 15.
dimension. In this appendix, we use the exact creeping flow Inthe spiritof Padepproximants, the dependence of the axial
solution from Brennet! an infinite series, to derive simple drag onh/Rcan be approximated byreth-order equation of the
equations that approximate the distance dependence of the axialo™m
drag coefficient to within 1% or less. We restrict the discussion
to the zero-frequency limit of the drag coefficient. AN =

1
2 m
A sphere moving toward or away from a solid surface 1+C1(§) +c (lﬁ?) o tcy (E)
experiences a resistancewall drag

(19)

We can determine the coefficierggnumerically for a certain
F,= Yo, =y, (15) range oh by fitting this equation to numerical values of the axial

(28) Hardy, W.; Bircumshaw, Proc. R. Soc. London, Ser1825 108(745),

with the velocity in the axial direction,, the Stokes drag l—(227§)L 2. HAbhandl. Theoret. Phyd906 1. 23
.. . .. i _ . orentz, H. andl. eoret. W% s .
coefficientyo, and the axial drag coefficient;; 4 = A(R/h) is (30) Wakiya, SRes. Rep. Fac. Eng. Niigata Uni(Japan)196Q 9, 31.

a correction to Stokes’ law. (31) MacKay, G.; Suzuki, M.; Mason, S. Colloid Sci 1963 18, 103-104.
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drag coefficient calculated from Brenner's infinite series (eq in Figure 8, and the corresponding coefficients for the equations
17). Analytically, the limiting case of eq 18 puts two constraints are givenin Table 1. The first-order equation for large separations
on the parameters, if eq 19 is supposed to hold fdr — R (Lorentz) agrees to within 1% with eq 17 only folR = 4. In

the other limit, eq 18 deviates by 10% foR < 1.07. Using the

m m first three terms of eq 17nfax = 3) plus a correction 4%/
ch =—land qu( =-1 (20) [1323n(h — R)] to compensate the lacking terms at the singularity
k= k= h= Ronly achieves an approximation comparable to the fourth-

order equation which uses only three coefficients. In a’Pade
One can either use the constraints in the fitting procedure suchapproximation, the numerator often is a higher order polynomial
that both limits are fulfilled or relax the constraints to achieve as well. When using such a polynomial, more constraints
a better fit in a certain region of interest. analogous to eq 20 are invoked which require in total at least
There are many sets of parameters that fulfill the above six coefficients. The simplest version with a third-order
requirements. The simplest is derived in the following manner. polynomialin both the numerator and denominator only achieves
The limit for h — o implies thatc; = —9/8. Together with the an accuracy of 0.8% over the whole rangehofAlong those
two constraints from eq 20, at least a third-order equation is lines, Bevan et al?developed a similar formula which deviates
required. Using, = 0 from eq 16 results in a 4th-order equation by 0.7% using five coefficients which, however, does not follow
with ¢z = 3/8 andcs = —1/4. This equation deviates less than the first-order scaling of Lorentz{ = —9/8).
~1% over the whole range d¢f. If one does not require, =
0, athird-order equation can be derived. This equation, however,
deviates up to 4% with the same number of coefficients.

Appendix B. Bead Individuality
The calibration method described in section 2.6 and Tolic

In order to develop a better approximation, we used a numerical \N2rTelykke et al is able to resolve small differenceils in bead
procedure. With the program Mathematica (Wolfram Research, radius. TWO beads (3 and 17 from 'I'emnrrellykk(.a etal) were
Inc.), we evaluated eq 17 numerically. Subsequently, we fitted .analy'z,ed in the same manner a}s.the one in Flgur(’a 3b (bead 12
eq 19 to the calculatedi values. We calculated 900 values for 1N Tolié-Narrelykke et af). After fitting the data to Faxes law
Zinthe range of 1.0k h/R < 10 with 0.01 increments fdvR. (eg 5), the height dependence was removed by dividing the
The upper limit in the sum of eq 17 was= 100. Increasing measured grig coefficient wigh(h)/y, The data is then plotted
to 1000 only changed the 13th significant digit of the value N units ofyg>**(Figure 9). The mean value of the measured bulk
calculated at/R = 1.01. drag coefficienty, for the two beads differs by more than 3%

We fitted the data by a Levenberd/larquart algorithm, either ~ With @ standard error of the mean of only 0.3% for each bead.
constraining the coefficients of eq 19 to satisfy eq 20 or not (all Since the beads were in the same flow cell and temperature
parameters free). As weights we used the values of eq 17. Onvariations were excludetthe difference can only be explained
constraining the parameters, it turned out that it was necessanyPy different bead radii (compare with TolNarrelykke et af.
to use high order coefficients to obtain a good approximation for Where we analyzed a total of 24 beads but showed only the mean
h/R= 1. A 10th-order equation with five coefficients (the others value foryofor each bead). The deviations lie within the estimated
set to zero) deviates less than 0.4% over the whole range. Theuncertainty inyg”*of 2.3% which is based on the polydispersity
maximum deviation occurs btR~ 1.14. Increasing the number ~ inradius specified by the manufacturer and the error intemperature
of coefficients and going to higher order improves the ap- determinatior_l. Ifex_periments_are performed with beads _having
proximation only slightly. A 12th-order equation with six & large polydispersity, the calibration error can be large i

coefficients deviates less than 0.3% over the whole range (eq 6).not measured directly but assumed to bgj™*

Here, the maximum deviation occurs BfR ~ 1.02. This Acknowledgment. We thank H. Flyvbjerg, S. Grill, V.

approximation is better than 0.1% foiR = 1.1. Going either  gormuyth, and C. Dinu for critical reading of the manuscript, and
to even higher order or increasing the number of coefficients {_wolf was valuable in the machine shop.

further did not improve the approximation significantly.
Figure 8 and Table 1 summarize the results. The residuals, the-A0622368
normalized deviation from Brenner's sum (eq 17), are illustrated  (32) Bevan, M. A.; Prieve, D. Cl. Chem. Phy200Q 113(3), 1228-1236.




