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Optical tweezers are widely used to measure molecular forces in biology. Such measurements are often influenced
by a nearby surface that can perturb both the calibration of the tweezers as well as the hydrodynamic forces acting
on microspheres to which the biomolecules are attached. In this study, we have used a very stable optical tweezers
setup employing a recently developed calibration method (Tolic´-Nørrelykke, S. F.; Scha¨ffer, E.; Howard, J.; Pavone,
F. S.; Jülicher, F.; Flyvbjerg, H.ReV. Sci. Instrum.2006, 77 (10), 103101) to determine how the calibration of the
tweezers and the forces on the microspheres depend on the height above the surface. We show that the displacement
sensitivity of the tweezers is modulated by a standing light wave between the microsphere and the surface. We
measured the dependence of the drag coefficient on height and compared it to exact and closed-form solutions to the
Navier-Stokes equations. Also, we measured the surface force gradients in different salt solutions and for different
surface blocking methods. For a given blocking method, our data suggest that microspheres can experience attractive
and/or repulsive forces close to surfaces. For example, a Teflon layer reduces attractive interactions, and the presence
of casein can lead to long-range repulsive interactions. These measurements are a prerequisite for the accurate measurement
of normal forces with respect to an interface that occur in biological molecules held between surfaces.

1. Introduction

In biophysical experiments employing optical tweezers,
spherical beads are often used as handles to study the mechanical
properties of biomolecules such as motor proteins and DNA.2,3

However, such experiments are in many cases performed near
a plane surface, namely, a glass coverslip, and the static and
dynamic forces between the beads and the surface can profoundly
influence the outcomes of these experiments. For example, close-
range adhesive forces between the beads and the surface can lead
to immobilization of the beads on the surface. This means that
the surfaces usually have to be pacified by other proteins or
surfactants. Another example is the well-known “wall effect”4

that nearby surfaces have on the hydrodynamical properties of
colloids; this leads to problems when estimating the drag forces
on the beads which in turn can lead to problems calibrating the
optical forces. Other problems include long-range repulsive
surface forces that might mask the biological forces, aberrations,
and optical reflections between the bead and the surface that can
lead to uncertainties in calibration.3 Thus accurate measurement
of forces in biological molecules using optical tweezers requires

precise understanding of these surface forces. The goal for the
present work is to measure these forces.

Several techniques have been used to study surface forces.
The surface force apparatus5 and the atomic force microscope6

have been used to test the Derjaguin-Landau-Verwey-
Overbeek (DLVO) theory for the static forces between surfaces.
Because these techniques have limited force resolution, total
internal reflection microscopy7 and optical tweezers8,9have been
used to extend the force sensitivity for micron sized colloids
down to the pN range.

In the present study, we have used an optical tweezers setup
with axial position detection based on back-focal-plane inter-
ferometry10 combined with a novel calibration method.1 This
setup has a significantly better spatial resolution than earlier
tweezers measurements (j1 nm with a 10 kHz bandwidth) and
does not require assumptions about the bead radius or solution
viscosity. We were able to accurately determine the surface
position to within a few nanometers. Our ability to calibrate the
optical tweezers very precisely in the axial direction allowed us
to estimate with very high resolution the magnitude of the surface
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(1) Tolić-Nørrelykke, S. F.; Scha¨ffer, E.; Howard, J.; Pavone, F. S.; Ju¨licher,
F.; Flyvbjerg, H.ReV. Sci. Instrum.2006, 77 (10), 103101.

(2) Howard, J.Motor Proteins and the Cytoskeleton; Sinauer Associates:
Sunderland, MA, 2001.

(3) Neuman, K.; Block, S.ReV. Sci. Instrum.2004, 75 (9), 2787-2809.
(4) Happel, J.; Brenner, H.Low Reynolds Number Hydrodynamics; Martinus

Nijhoff Publishers: The Hague, 1983.

(5) Israelachvili, J. N.Intermolecular and Surface Forces; Academic Press:
London, 1991.

(6) Ducker, W. A.; Senden, T. J.; Pashley, R. M.Langmuir1992, 8 (7), 1831-
1836.

(7) Prieve, D. C.AdV. Colloid Interface Sci. 1999, 82 (1-3), 93-125.
(8) Clapp, A. R.; Dickinson, R. B.Langmuir2001, 17 (7), 2182-2191.
(9) Hansen, P. M.; Dreyer, J. K.; Ferkinghoff-Borg, J.; Oddershede, L.J.

Colloid Interface Sci. 2005, 287 (2), 561-571.
(10) Pralle, A.; Prummer, M.; Florin, E. L.; Stelzer, E. H. K.; Ho¨rber, J. K.

H. Microsc. Res. Tech.1999, 44 (5), 378-386.

3654 Langmuir2007,23, 3654-3665

10.1021/la0622368 CCC: $37.00 © 2007 American Chemical Society
Published on Web 02/28/2007



forces between the cover glass and the bead based on the measured
axial trap stiffness. Using this method, we studied the interaction
of silica and polystyrene microspheres with glass and modified
glass surfaces in solutions of various ionic strengths. For instance,
a thin Teflon film index-matches water and thereby screens the
attractive van der Waals interactions. Of particular biophysical
interest, we determined how the protein casein, which is often
used in assays on motor proteins, can influence the surface
interactions. Because the calibration method employed here1does
not assume that the value of the drag coefficient is known, it can
be used to measure how a nearby surface influences the
hydrodynamic forces on a bead. We tested and found very good
agreement with Faxe´n’s law4 for the lateral drag and closed-
form interpolation formulas that approximate an exact solution
to the Navier-Stokes equations11for the axial drag perpendicular
to the surface.

2. Materials and Methods

2.1. Optical Tweezers Setup.The microsphere is held in an
optical trap (Figure 1a) built around an inverted microscope (Zeiss
Axiovert 135 TV) on an optical table (Figure 1b). The laser is a
diode-pumped neodymium vanadate crystal (Nd:YVO4) with 1.5 W
at λ0 ) 1064 nm and anM2 value of∼1.25 (Smart Laser Systems,
Berlin, Germany). It is linearly polarized normal to the optical table.
In the imaging plane, the polarization is in they direction (Figure
1a). To increase the mechanical stability, the laser beam is kept 50

mm off the optical table. The laser is expanded to a final beam
diameter of∼6 mm. With a half-wave plate placed before the
polarizer, the laser intensity can be varied by rotating the plate with
a toy model servo. The lenses, antireflection coated achromats
(LINOS Photonics, Go¨ttingen, Germany), have the following focal
lengths in millimeters (starting from the laser): 6, 40, 80, 120, 140,
140, 160, and 160. All optics are mounted on four rods (Microbench
system, LINOS Photonics) clamped to the optical table and enclosed
in an anodized aluminum box. The piezo-steering mirrors (S-226.00,
Physik Instrumente (PI), Karlsruhe, Germany) are placed in conjugate
planes of the back aperture of the objective such that the beam pivots
around this point with a constant transmitted laser intensity.12 In this
way, the trap stiffness does not change while steering.

The main difference between our setup and most others is the
control of the laser focus height relative to the imaging plane. To
this end, we move the first lens after the polarizer with a servo. The
position and focal length of the lens are chosen such that no changes
in the intensity occur upon moving the lens.12 In the imaging plane,
the laser focus moves less than 20 nm laterally per 1µm of axial
motion. One advantage of this method is that imaging is not impaired
by the movement of the laser. The lens movement is calibrated by
comparing the change in the laser waist in the back focal plane of
the condenser upon moving either the lens or the imaging objective
by a known distance. A translation of the lens by 1 mm is equivalent
to a 195( 4 nm height change of the imaging objective or alternatively
the axial stage position. The value is in reasonable agreement with
the expected value of 182 nm based on the focal lengths of all lenses
along the optical path.12

The remaining apparatus is composed of a three-axis piezoelectric
translation stage (xyz: P-733.3DD, PI) that has been embedded in
a solid block of aluminum mounted directly on the table and the
microscope. The objective is clamped to this block to prevent drift
and mechanical vibrations. We used a Zeiss Plan-Neofluar 100×,
1.3 NA, oil-immersion objective with a back aperture of 6 mm. The
samples are mounted on a smallx-y translation stage (07 TMC 511,
Melles Griot) with 6 mm travel distance which is fixed on the piezo
stage. The custom-built condenser, which uses a Zeiss Plan-Neofluar
40×, 1.3 NA, oil-immersion objective, sits on three fine-adjustment
screws on top of the same block and uses a light emitting diode
(LED)sa green Luxeon V star emitter (LXHL-LM5C, Lumileds
Lighting, San Jose, USA) with 5 W power.13 A dichroic mirror
inside the condenser reflects the laser light onto a photodiode for
back-focal-plane detection in three dimensions.10,14Position detection
is obtained with either a quadrant photodiode, QP50-6SD, or a
position sensing photodiode, DL100-7PCBA (both Pacific Silicon
Sensors Inc., USA). The diodes are mounted on a smallx-y
translation stage. Thezsignal is based on variations of the total laser
intensity measured in the back focal plane of the condenser.10 For
small displacements, the laser intensity is a monotonic function of
axial particle position, linear within 5% for about(250 nm relative
to the laser focus. The modulation corresponding to the axial signal
is typically only a few percent of the total laser intensity signal. The
laser intensity was stable enough that normalization of thex, y, and
z signals by the intensity measured in the back focal plane or the
epifluorescence port was not necessary.3

Using the LED produced much less heat than a conventional light
source and therefore reduced thermal drift. The LED condenser
permits video-enhanced differential interference contrast with a
standard video camera (LCL-902HS, Watec, Japan) and can resolve
single microtubules and surface features ofj1 nm in thickness.13

The video-enhanced differential interference contrast microscopy
was used to monitor the cleanness and flatness of the substrates
while the measurements were performed. Fluorescence imaging is
possible as well. Three temperature sensors are mounted on the
setup: one attached to each objective and one to the aluminum
block in which the piezo stage is embedded. The temperature is
recorded every second with a resolution of<0.1 °C (type-T
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Figure 1. (a) Setup geometry: A microsphere (bead) with radius
R is trapped in a tightly focused laser beam near a surface. The bead
center-surface separation is denoted byh and the axial direction
(along the axis of the laser) is referred to asz. The origin of the
coordinate system is the projection of the trap center onto the surface.
It is displaced for clarity. (b) Schematic drawing of the optical
tweezers apparatus. D, dichroic mirror; F, filter;λ/2, half-wave plate;
LED, light emitting diode; NP, Nomarski prism; (Q)PD, (quadrant)
photodiode; P, polarizer.
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thermocouples, IT-23 Physitemp, Clifton, USA). The whole setup
is controlled via custom-written software using LabView (National
Instruments, USA).

One important requirement to obtain high-resolution data is the
stability of the trapping laser with regard to intensity and pointing
angle. We modified the laser such that the pumping laser is passively
cooled and mounted on the optical table. This improved the pointing
stability considerably (data not shown). Furthermore, the intensity
is stabilized by a feedback: the laser intensity is measured by a
photodiode at the epifluorescence port of the microscope, and this
signal is used to modulate the pumping laser current to keep the laser
intensity constant. With the feedback on, the laser intensity has a
0.01% coefficient of variation (standard deviation divided by the
mean) measured over a period of 200 s. The laser angle has a standard
deviation of 0.2µrad in thexdirection and 0.06µrad in theydirection.
With a conversion factor of 0.23 nm perµrad, the pointing stability
results in less than 0.3 nm peak-to-peak movement in the image
plane.

The overall system noise of the tweezers setup was measured
using a probe tightly coupled to the surface. Data sampled over 1
s with a bandwidth of 50 kHz show a standard deviation of the
position signals of<0.5 nm in all three directions. Figure 2a shows
the capabilities of the instrument: 5 Å steps were easily resolved
when the laser was scanned past an immobilized bead in a stepwise
manner using the piezo mirrors while recording the signal by the
detection system. Here, a 528 nm diameter PS bead was passively
adsorbed onto a cleaned glass coverslip in a 0.1 M KCl solution.
The peak-to-peak noise is less than 1 nm with a bandwidth of 10
kHz (gray line). Adjacent averaging of 1000 data points (orange
line) clearly demonstrates sub-nanometer resolution.

2.2. Microspheres and Flow Cell Preparation.Polystyrene (PS)
microspheres from Polysciences (Warrington, USA) were 528 nm
in diameter with a 2% coefficient of variation. Transmission electron
microscopy that we performed indicated a 1.2% coefficient of
variation for these microspheres. Silica beads from Bangs Labo-
ratories (Fishers, USA) were 0.60µm in diameter with a coefficient
of variation of 10%. The nonfunctionalized beads were washed in
demineralized and purified water (grade 1 with a conductivity of
0.055µS/cm), centrifuged, and sonicated for resuspension twice.

Flow cells with a 3 mmwide channel consisted of one 18 mm2

coverslip No. 1.5 (Corning, USA) on top of a 22 mm2 coverslip.
Before use, the coverslips were washed and sonicated in separate
baths of detergent, ethanol, and purified water. Blocked surfaces
were prepared by two methods. Coverslips were rendered hydro-
phobic by either using dichlorodimethylsilane (DDMS) following
standard procedures15 or by spin-coating at 2000 rpm in a nitrogen
atmosphere a thin polymer layer (<100 nm thick) using a 0.5%
solution of Teflon AF 1600 (DuPont) dissolved in the perfluoro
compound FC-75 (Acros Organics). The resulting Teflon film has
a refractive index of 1.31 and thus almost index-matches water.
Therefore, the attractive van der Waals interaction between a bead
and a Teflon-coated surface is reduced.5 In the flow cell, the coverslips
were separated by a layer of Parafilm. The Parafilm was melted by
placing the sample on a 100°C hot plate. Cooling then glued the
coverslips together. After assembly of the flow cell, a 1% aqueous
solution of Pluronic F127 (referred to as F127 below) (Sigma) was
flowed in, incubated for 15 min, and the flow cell rinsed thoroughly
afterward. Finally, the solution of interest containing the microspheres
was flowed in, and the ends of the chamber were sealed with vacuum
grease to avoid sample evaporation. We did not use double sticking
tape and nail polish for sealing because these materials were observed
to contaminate the solutions. This contamination showed up as a
decrease in the measured screening length (see eq 2 and section
3.2.2).

F127 is a triblock copolymer consisting of two outer poly(ethylene
oxide) (PEO) and an inner poly(propylene oxide) (PPO) block with
100 and 65 monomers, respectively. The molecular weight is 12.6
kDa. The PPO block is hydrophobic and strongly adsorbs onto the

hydrophobic DDMS or Teflon layer. The outer PEO parts form a
polymer brush (PEO is also known as PEG) that has been shown
to be very effective in blocking protein adsorption in single molecule
experiments.15Surfaces treated in this manner are also very effective
in preventing microspheres from adsorbing to the surface. With the
brush density16 of F ) 0.23 (PEO chains)/nm2 and a monomer size
a ) 0.35 nm, the brush thickness isL ) aN(a2F)1/3 ≈ 10 nm, where
N is the number of monomers in the PEO blocks.17

2.3. Data Acquisition and Fitting. Signals were recorded with
a 24-bit data acquisition card (NI 4472, National Instruments) which
has a 45 kHz alias-free bandwidth. Data were read out with a rate
of 65 536 samples per second unless otherwise noted. For the
calculation of one power spectrum, we used 8192 data points. One
hundred consecutive power spectra were averaged and automatically
fitted with a custom-written least-squares fitting routine implementing

(15) Helenius, J.; Brouhard, G.; Kalaidzidis, Y.; Diez, S.; Howard, J.Nature
2006, 441 (7089), 115-119.

(16) Li, J. T.; Caldwell, K. D.Langmuir1991, 7 (10), 2034-2039.
(17) Halperin, A.Langmuir1999, 15 (7), 2525-2533.

Figure 2. (a) Time trace of the trapping laser scanned with the
piezo mirrors in 5 Å steps past a fixed PS bead of diameter 528 nm
in thex direction. The gray line shows the raw data sampled with
10 kHz. Adjacent averaging of 200 (1000) data points, blue (orange)
line, demonstrates subnanometer resolution with a standard deviation
of ∼0.06 nm over 1 s (astep plateau). (b) Calibrated power spectral
density for all directions with (κx, κy, κz) ) (0.203( 0.002, 0.147
( 0.001, 0.0322( 0.0003) pN/nm of a 600 nm diameter silica bead
with a bead-surface separation of 2040 nm. Differences between
the lateral directions (xandy) arise from the polarization of the laser
in they direction. The calibration spike in they direction atfstage)
32 Hz corresponds to a bead motion of 1.67 nm amplitude. The stage
was driven withA ) 250 nm. The power spectra are the average
of 100 independent power spectra each. The sampling frequency
was 65 536 Hz, the measurement time for each spectrum wastmsr
) 0.125 s, and the temperature was 26.6°C. The noise peaks atf
> 5 kHz are excluded from the fits.
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a Levenberg-Marquardt algorithm. Each datum was weighted by
its theoretical error bar.18Data points which deviated more than five
standard deviations from the fit were automatically excluded. This
applied to the calibration peak and electronic noise.

To fit the power spectra, we used either a Lorentzian (see section
2.4 and Tolić-Nørrelykke et al.1) or eq 32 from Berg-Sørensen et
al.18 Because silicon photodiodes act as low-pass filters at a
wavelength of 1064 nm,18-20 we used eq 35 from Berg-Sørensen et
al.18 to account for this parasitic filtering. Equation 32 from Berg-
Sørensen et al.18 accounts for the frequency-dependent hydrodynam-
ics far away from surfaces (in bulk). Close to a surface, using either
eq 32 from Berg-Sørensen et al.18or a Lorentzian, is an approximation
that worked well in combination with the parasitic filter within the
accuracy considered in this study. Qualitatively, the deviation from
a Lorentzian due to the frequency dependence of the drag is reduced
upon approaching a surface. The overall shape of the power spectrum
to a first-order approximation resembles a low-pass filtered Lorent-
zian. Thus, the frequency dependence can largely be absorbed into
the parameters that describe the parasitic filter. Equations1 that
approximate the frequency dependence near a wall to within 1% are
only valid down to distances ofh/R ) 1.5. The distances in this
study reach smaller values than this. Thus, there is no accurate
theoretical description for all of our data at present. We therefore
used the phenomenological approximation of eq 32 from Berg-
Sørensen et al.18 or a Lorentzian in combination with a low-pass
filter. The error that arises due to neglecting the frequency dependence
of the drag isj1% for our beads and experimental conditions (for
a detailed discussion, see Tolic´-Nørrelykke et al.1). Inertial effects
are even smaller.1 Because these errors are smaller than the relative
error, for example, of the calibration (∼2%) at a single height or of
the Debye length (∼15% mainly caused by thermal drift), we neglect
their effect.

2.4. Theoretical Background.2.4.1. Surface Forces. Using the
DLVO theory, the interaction energy between a sphere and a flat
surface with a separation ofh - R can be approximated by5,21

The first term on the right-hand side models the electrostatic
interactions characterized by the Debye screening length

with the permittivity of water and vacuum,εw andε0, respectively,
the Boltzmann constantkB, the temperatureT, the elementary charge
e, and the density of theith ionFi and corresponding valencyúi. The
electrolyte concentration [KCl] is in moles per liter. The amplitude
is φ0 ) 4πεwε0ψ0

2R whereψ0 is the effective surface potential. The
second term in eq 1 describes the van der Waals interactions, the
magnitude of which are characterized by the Hamaker constantH
which depends on the dielectric properties of the media.

2.4.2. Trapped Sphere near a Surface: Equation of Motion.
Ignoring frequency dependence and inertial effects (as justified above
and in Tolić-Nørrelykke et al.1), the equation of motion at timet for
a microsphere with positionr ) (x,y,z) trapped in an optical potential
close to a surface (Figure 1a) is given by

with the drag coefficient matrixΓ. Here, the sample stage drives the
flow cell sinusoidally with amplitudeA and frequencyfstagerelative

to the optical trap,rstage) A sin(2πfstaget)ŷ, whereŷ is the unit vector
in they direction. The first term on the left-hand side of eq 3 is the
drag force proportional to the bead velocity relative to the stage. The
second term describes the surface and trapping force. It is the gradient
of the potential energy

whereκi denotes the trap stiffness in thei direction with i ) x, y,
zandh0 is the axial center position of the optical trapping potential.
The right-hand side of eq 3 is a random thermal force driving the
Brownian motion.1 The diagonal elements of the drag coefficient
matrix areΓii ) {γxx, γyy, γzz}, and the off-diagonal elements are
zero. We denote the lateral drag coefficient asγ| ≡ γxx ) γyy and
the axial one asγ⊥ ≡ γzz. Both depend on the distance of the bead
center to the surface,h. The height dependence is approximated by
Faxén’s law4

for the lateral directions and by Brenner’s infinite sum formula11

for the axial direction. Because the latter formula is inconvenient
and converges slowly for small separations, we developed interpola-
tion formulas that deviate less than 1% from the exact formula over
the complete range of possible separations. We give the equations
and their derivations in Appendix A. Here, we use a 12th-order
interpolation formula with six coefficients for the axial drag

which deviates less than 0.1% from Brenner’s exact formula for
h/R J 1.1 and less than 0.3% over the whole range ofh. The
interpolation is exact in both limits ofh going toR and∞. For h
f ∞, in the zero-frequency limit considered here,γ| ) γ⊥ ) γ0 ≡
6πηR, which is the bulk drag coefficient corresponding to Stokes
drag with viscosityη.

2.4.3. Calibration.The calibration is based on a power spectral
analysis. Solving eq 3 in Fourier space results in a power spectral
density (PSD) which is a Lorentzian for all spatial directions with
a delta function spike atfstagein the direction in which the stage is
driven.1 The Lorentzian is characteristic for the Brownian motion
of a trapped object in a parabolic potential. Examples of power
spectra are shown in Figure 2b. Note that the spike consists of a
single datum since the driving frequency is an integer multiple of
the power spectrum’s frequency resolution.1 It appears wide because
of the chosen frequency resolution (8 Hz in Figure 2b). Every axis
has a characteristic corner frequencyfc ) κ/(2πγ) and a plateau
valueproportionalto the diffusion coefficientD ) kBT/γ. Because
the drag coefficientγ depends onh, both fc andD depend on the
distance to the surface.

Three parameters need to be determined by the calibration: the
displacement sensitivity, the drag coefficient, and the trap stiffness.
An experimental power spectrum obtained with a photodiode is
measured in (volts)2 × (seconds) with the scale set by the volt-to-
meter displacement sensitivityâ. The integrated power in the spike,
Wex, is therefore measured in (volts)2. On the other hand, since it
is the response of a driven harmonic oscillator, the power is known
a priori in (meters)2 and thus serves as a “scale bar”. Hence, the
displacement sensitivity for the driven axis is given by1

(18) Berg-Sørensen, K.; Flyvbjerg, H.ReV. Sci. Instrum. 2004, 75 (3), 594-
612.

(19) Berg-Sørensen, K.; Oddershede, L.; Florin, E. L.; Flyvbjerg, H.J. Appl.
Phys. 2003, 93 (6), 3167-3176.

(20) Berg-Sørensen, K.; Peterman, E. J. G.; Weber, T.; Schmidt, C. F.; Flyvbjerg,
H. ReV. Sci. Instrum. 2006, 77 (6), 063106.

(21) Hamaker, H. C.Physica1937, 4, 1058-1072.

φ(h) ) φ0e
-(h-R)/L - H

6[ R
h - R

+ R
h + R

+ ln(h - R
h + R)] (1)

L ) x εwε0kBT

e2∑iFiúi
2

= 0.304

x[KCl]
nm (2)

Γ d
dt

[r - rstage] + ∇E ) FT(t) (3)

E ) 1
2
(κxx

2 + κyy
2 + κz(z - h0)

2) + φ(z) (4)

γ| )
γ0

1 - 9R
16h

+ R3

8h3
- 45R4

256h4
- R5

16h5

(5)

γ⊥ )
γ0

1 - 9R
8h

+ R3

2h3
- 57R4

100h4
+ R5

5h5
+ 7R11

200h11
- R12

25h12
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â ) xWth

Wex

) A(2Pspike∆f [1 + (fc/fstage)
2])-1/2 (7)
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with units (meters)/(volt). Here,Wth andWexdenote the theoretically
expected and experimentally determined power in the spike,
respectively, andPspikeis the PSD at the stage frequencysthe height
of the spikeswith the Brownian motion subtracted measured in
(volts)2 × (seconds). The frequency resolution of the power spectra
is given by∆f ) 1/tmsrwheretmsr is the measurement time. The drag
coefficient for the driven axis is

and the trap stiffness is

where the corner frequency,fc, and the diffusion coefficient,Dvolts,
with units (volts)2/(seconds) are obtained from a fit to the power
spectrum (see section 2.3). All the other parameters in the above
equations are known. Thus, within the approximation of a frequency-
independent drag, the system can be calibrated in the driven direction
without any assumptions. We elaborate below (see section 3.1) how
driving one axis can be sufficient for the calibration of all spatial
dimensions.

2.4.4. Surface Force Probing.The surface forces influence the
trapping conditions. However, only the axial direction is affected
by the surface potential. The surface force produces two effects.
First, the mean axial trapping position is shifted so that the optical
forces balance the surface force, and second, the axial trap stiffness
is changed. A Taylor expansion of the surface interaction energyφ
around the mean positionh of the center of the bead together with
eq 3 yields8

where a prime denotes a derivative with respect toz, and∆h is the
axial distance that the bead is displaced from the trap center. For
example, for a repulsive surface interaction, the bead is pushed
away from the surface (φ′ < 0 and∆h > 0, eq 10), and the effective
axial trap stiffnessκz

eff is increased (φ′′ > 0, eq 11). An attractive
interaction has the opposite effect.

The equations above motivate how surface forces can be measured.
Equation 10 indicates that the surface force (-φ′) can be obtained
by measuringκz∆h. This effect of the surface force on the mean
bead position has been utilized in earlier studies.8,9 Equation 11
shows that the surface force gradient (φ′′) is given by the deviation
of the axial trap stiffness from its value far away from the surface
κz. In this work, we take advantage of our calibration procedure in
order to measure the effective axial trap stiffnessκz

eff and in this way
determine the surface force gradients.

2.5. Focal Shift. Aberrations caused by the refractive index
mismatch of glass and water influence the trapping position relative
to the surface. We controlled the relative distance of the bead to the
surface by either changing the position of the movable lens or by
displacing the piezo stage. Both methods yielded equivalent results.
We denote the relative positionscontrolled either by the lens or the
stage (see section 2.1)sby hstage. The bead center-surface distance
without surface effects (φ ) 0) is then given by

whereδ denotes the focal shift andhsurf is the surface position. For
h ) h0, the mean trapping position co-moves with the laser focus
and by a relative amount with the stage. The focal shift isδw ≈ 1
for a water immersion objective with properly adjusted correction
collar andδoil ≈ 0.81 for an oil immersion objective with spherical

aberrations when used to image in an aqueous medium.3,22We used
an oil-immersion objective and kept the value of the focal shift fixed
at 0.81. This is the average value that we have independently
confirmed by three methods: first, by measuring the intensity
variation as a function of distance,22 second, by usingδ as a fit
parameter in eqs 5 and 6, and third, by looking at the periodic
modulation of the displacement sensitivity (see below). We observed
that the value ofδ varied by a few percent for individual beads.

2.6. Lateral Calibration. In order to perform quantitative axial
measurements, we first calibrated one lateral direction as a function
of distance from the surface to determine the surface position,hsurf,
and the Stokes’ bulk drag coefficient,γ0. A trapped bead was
calibrated at several distances from the surface by driving the stage
in one lateral dimension onlyswe chose they-axis because the
pointing stability of the laser was best in this direction (Figure 3).
The power spectra for the other dimensions were recorded
simultaneously (see Figure 2b). For the data in this section, we
chose a high ionic strength and a blocked surface to minimize surface
interactions, thus we setφ ) 0 in the data analysis. We used a 528
nm diameter PS bead in a 0.1 M KCl solution with a F127-blocked
surface. The stage was driven withA ) 150 nm andfstage) 32 Hz.
At each of∼50 positions, 100 power spectra were acquired, averaged,
and analyzed automatically as described in section 2.3. The laser
height was controlled with the movable lens. The equivalent stage
movement is quoted on the bottom axis. The upper axis shows the
corresponding bead center positionh0according to eq 12. The vertical
gray line indicates the sphere’s radiusR. At this position, the bead
touches the surface. Figure 3a-c shows the displacement sensitivity
â, the drag coefficientγ, and the trap stiffnessκ for each height
resulting from eqs 7-9, respectively.

The displacement sensitivityâ is not a constant as sometimes
assumed.9 As a function of stage height, there is a small overall
increase with increasinghexpected from aberrations.23Furthermore,
â shows a clear sinusoidal modulation with a periodicity of 488(
14 nm and an amplitude of∼2.2% relative to the mean value (Figure
3a). The modulation is caused by light scattered back from the
microsphere. This light, upon reflecting from the surface, interferes
with the incoming laser light and forms a standing light wave. The
periodicity of this interference pattern is expected to beλ0/(2nw) )
400 nm wherenw ) 1.33 is the refractive index of water. Thus, the
ratio of the observed to the expected periodicity can be used to
determine the focal shift which resulted inδ ) 0.82( 0.02. This
value is expected3,22and constitutes a self-consistency check for the
system. Ifâ is assumed to be constant in a power spectral analysis,
for example, based on a fixed-bead calibration,3 the modulation in
â is falsely reflected in a modulation of the values of the drag
coefficient.24

The dependence on height of the drag coefficientγ| for our data
is consistent with the hydrodynamic theory. In Figure 3b, the
measured drag coefficients are plotted as a function ofh. They are
normalized by the value of the expected Stokes dragγ0

specfar from
the surface based on the specifications of the bead radius and a
temperature measurement. The measured valueγ0 can differ from
γ0

spec if, for instance, the bead radius deviates from the specifica-
tions; γ0 is obtained from a fit of Faxe´n’s law (eq 5) using eq 12
(solid line in Figure 3b). For thechosenbead yielding the results
in Figure 3, there is excellent agreement with the expected value:
γ0/γ0

spec ) 1.004 ( 0.004 (see also Appendix B and Tolic´-
Nørrelykke et al.1). The other fit parameter ishsurf ) -0.347(
0.002µm. The surface position is thus determined within 2 nm.
Upon approaching the surface, the lateral drag coefficient increases
by more than a factor of 2 compared to the Stokes drag. Faxe´n’s
law, however, is only a good approximation up toγ|/γ0 j 1.7.25 We

(22) Neuman, K. C.; Abbondanzieri, E. A.; Block, S. M.Opt. Lett. 2005, 30
(11), 1318-1320.

(23) Vermeulen, K. C.; van Mameren, J.; Stienen, G. J. M.; Peterman, E. J.
G.; Wuite, G. J. L.; Schmidt, C. F.ReV. Sci. Instrum. 2006, 77 (1), 013704.

(24) Pralle, A.; Florin, E. L.; Stelzer, E. H. K.; Ho¨rber, J. K. H.Appl. Phys.
A: Mater. Sci. Process. 1998, 66, S71-S73.

(25) Goldman, A. J.; Cox, R. G.; Brenner, H.Chem. Eng. Sci. 1967, 22 (4),
637-651.

γ )
kBT

â2Dvolts

(8)

κ ) 2πfcγ (9)

h ) h0 -
φ′(h)
κz

) h0 + ∆h (10)

κz
eff ) κz + φ′′(h) (11)

h0 ≡ h|φ)0 ) (hstage- hsurf)δ (12)
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consequently restricted the fitting range to this limit. We looked for
systematic deviations forγ|/γ0 > 1.7,25 but did not see any within
the error bars. Faxe´n’s law was a good description of the data up
to γ|/γ0 ≈ 2.4 with normally distributed residuals ofj4%.

The measured trap stiffness showed the expected weakening away
from the surface. In Figure 3c, the lateral stiffnessκ is plotted. It
shows a maximal value at the surface with a linear decrease of-(12

( 1)%/µm of bead-surface separation. The decrease is expected
because of spherical aberration and is consistent with previously
published values.26,27Figure 3 reveals that, if a calibration is performed
far away from the coverslip assumingγ ) γ0

spec, aberrations can
significantly reduce the measured stiffness. Thus, if this stiffness
value is subsequently used close to the surface, errors in force
measurements can be large.

The lateral calibration is precise and accurate. The average relative
errors onâ, γ, andκ obtained from data taken at a single distance
to the surface were 1.5, 2.4, and 2.4%, respectively. Becauseγ0 and
hsurf result from a fit to∼50 data points, the relative error on these
parameters is reduced about 7-fold (∼x50), resulting in a precision
of ∼0.3%. The accuracy and overall error, however, is limited to
∼1% due to neglect of the frequency dependence of the drag (see
section 2.3). With such a high precision, small differences in bead
radius from the manufacturers specification, for instance, can be
resolved1 (see Appendix B).

The modulation seen in the displacement sensitivity due to the
standing light wave is also reflected in the measured trap stiffness.
Because the displacement sensitivityâ is inversely proportional to
the laser intensity, we expect that the modulation seen in the
displacement sensitivity reflects a modulation in laser intensity and
should therefore also be present in the trap stiffness which depends
linearly on the laser intensity. This modulation is indeed seen when
fc is plotted as a function of height (data not shown). However, since
the modulation is only 5% peak-to-peak in Figure 3a for the 0.5µm
diameter PS bead, it is comparable to the error inκwhich consequently
masks the effect in Figure 3c. The amplitude of the modulation of
the displacement sensitivity depends on the refractive index, the
size of the trapped bead, and the axis. For example, silica beads have
a smaller refractive index and therefore scatter less light. On the
other hand, for a 1µm diameter PS bead, the amplitude of the lateral
displacement sensitivity modulation is∼5% and the axial one almost
∼25% (data not shown). For larger beads, the effect was even more
pronounced, and we observed the modulation in both the lateral and
axial trap stiffness (data not shown). In the following, in particular,
regarding the surface force measurements, we preferred to use small
silica beads.

3. Results and Discussion

The axial direction is calibrated by using the measured bulk
drag coefficientγ0 and surface positionhsurf obtained from the
lateral calibration together with the analysis of the power spectra
of thez direction. Once calibrated, the expected dynamic axial
forces arising from the hydrodynamic interaction with the surface
can be deduced and confirmed in a self-consistent manner. In
addition, static surface forces and surface force gradients can be
measured.

3.1. Dynamic Axial Forces.As was the case for the lateral
direction, three parameters have to be determined by the axial
calibration: the axial drag coefficientγ⊥, displacement sensitivity
âz, and stiffnessκz. With the known surface positionhsurf, eq 12
exactly defines the heighthof the bead above the surface. Together
with the measured bulk drag coefficientγ0, eq 6 yields the axial
drag coefficientγ⊥(γ0, h). Onceγ⊥ is known, eq 8 solved for the
axial displacement sensitivity results in

and the axial stiffness is readily obtained by

(26) Florin, E. L.; Pralle, A.; Stelzer, E. H. K.; Ho¨rber, J. K. H.Appl. Phys.
A: Mater. Sci. Process. 1998, 66, S75-S78.

(27) Vermeulen, K. C.; Wuite, G. J. L.; Stienen, G. J. M.; Schmidt, C. F.Appl.
Opt. 2006, 45 (8), 1812-1819.

Figure 3. Displacement sensitivity (a), lateral drag coefficient (b),
and trap stiffness (c) as a function of distance from a surface for a
528 nm diameter PS bead in 0.1 M KCl. The stage height has an
arbitrary offset. The upper scale shows the bead center-surface
separation corrected for the offset and focal shift. The vertical gray
line indicates where the bead touches the surface. (a)ây shows a
modulation caused by the interference of light reflected between the
bead and the surface. It is fitted by a damped sinusoid added onto
a third-degree polynomial. The periodicity is 488( 14 nm with an
amplitude of∼2.2%, resulting in a focal shift ofδ ) 0.82( 0.02.
(b) Faxén’s law is fitted to γ| in units of γ0

spec, resulting in an
extrapolated bulk value of the drag coefficientγ0/γ0

spec) 1.004(
0.004 and an offset ofhsurf ) -0.347( 0.002µm. (c) The red line
is a fit to the stiffness data (circles) showing a linear decrease due
to aberrations of-(12 ( 1)%/µm of bead-surface separation. âz ) x kBT

γ⊥Dvolts
z

(13)
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whereDvolts
z and f c

z are the fitted values for the axial power
spectrum (see Figure 2b). Thus, driving in one lateral direction
is sufficient to calibrate the axial direction as well. The other
lateral direction can be analyzed in an analogous manner.

The height dependence of the measured axial parameters
confirmed the expected behavior. We used a 600 nm diameter
silica bead in a 0.1 M KCl solution. At this concentration, the
Debye screening length is<1 nm such that the surface forces
are practically zero for bead-surface separationsJ50 nm.
Cleaned glass coverslips were used with no further blocking.
The axial trap stiffnessκzdetermined by eq 14 is shown in Figure
4b as a function of stage height (bottom scale). The distance to
the surface was varied by moving the piezo stage. The axial trap
stiffness shows a maximum at the surface with a linear decrease
of -(9.0( 0.3)%/µm of bead-surface separation (green line).
The decrease is expected because of aberrations26,27 and has a
similar magnitude as in the case of the lateral signals
(Figure 3c).

Instead of assuming the height profile of the axial drag
coefficient in order to calculate the trap stiffness, we can
alternativelyassumea linearlydecreasing trapstiffness tocalculate
the axial drag coefficient. In principle, one can measure this
decrease far away from the surface where hydrodynamic
corrections are subdominant. We used the fitted line in Figure
4b as the actual axial trap stiffnessκz

fit(h). Then, eq 14 can be
inverted to calculate the axial drag coefficientγ⊥ ) κz

fit(h)/(2π
f c

z). The results are plotted in Figure 4a in units of the bulk drag
coefficientγ0 (green circles). For comparison, the lateral drag
coefficient (orange diamonds) with the corresponding fit to
Faxén’s law (red line) is shown. The axial drag increases
dramatically on approaching the surface, yet is still well-described
by our interpolation formula eq 6 (green line, not a fit). Residuals
are normally distributed with deviations of less than 5%. Note
that the data in Figure 4a are essentially the same as those in
Figure 4b. They are shown in this representation to illustrate the
stronger height dependence of the axial drag compared to the
lateral one. In addition, it confirms in a self-consistent manner
the assumptions. Hence, it is strictly speaking not a direct
measurement of the axial drag coefficient. A direct measurement
can, in principle, be done by exciting the stage in the axial
direction, but this approach has other limitations. For the bead-
surface distances and solutions used in this study, we do not
expect any deviations from the height profile of the drag
coefficient.

3.2. Surface Force Gradients.3.2.1. Procedure.With the
precise axial calibration, static surface forces can be measured
based on excess deviations in the trapping position and stiffness.
In Figure 5, we illustrate how the gradient of the surface forces
(φ′′ in eq 11) is obtained. The example given is for a 10-5 M
KCl solution. For this low ionic strength, we expect a large
screening lengthL (eq 2) and therefore a pronounced, long-
range interaction of the bead with the surface. We first analyzed
the axial displacement sensitivity and stiffness as outlined in the
previous section, that is, ignoring surface forces. This resulted
in the data points marked as gray circles in Figure 5a,b. For the
gray circles, the bottom axis corresponds to the bead-surface
separationh0 - Rwhereh0 was based only on the relative stage
position (eq 12).

The surface influence becomes evident for small separations.
For positionsj200 nm, the displacement sensitivity and stiffness
do not follow a linear behavior. The black lines are fits to the
data far away from the surface in the range of 300j h - R j

1900 nm. The deviations from these lines indicated the presence
of surface interactions. This makes the use of eq 12 invalid.
Instead, eq 10 that accounts for the surface interactions is
necessary. The displacement∆h of the bead from the center
position of the optical potential caused by the surface forces
was measured by an extra change in the laser intensity on the
detector as a function of height,∆h ) âz∆I, where∆I is the
extra deviation of the laser intensity. This deviation is the
difference between the solid blue circles (the laser intensity) and
the dashed line in Figure 5a. Because the gray circles were based
on the height defined in eq 12, the axial drag was overestimated.
The correctly processed data are plotted with the correct bead-
surface separation as red circles. For the data point closest to the
surface,∆h ≈ 60 nm (not all gray circles are shown for the
stiffness data). For this data point, the use of eq 10 compared
to eq 12 changed the effective axial stiffness by more than a
factor of 2. Note that, since both the axial displacement sensitivity
and the trap stiffness calculations are based on the same drag
profile and only the trap stiffness shows an effect upon
approaching the surface (a deviation from linear behavior), this

κz ) 2πf c
z γ⊥ (14)

Figure 4. Axial drag (a) and axial stiffness (b) as a function of stage
position for a 600 nm diameter silica bead in a 0.1 M KCl solution
(φ′ ≈ 0 for h/R J 1.15). The stage height has an arbitrary offset.
The upper scale shows the bead center-surface separation in units
of the bead radius. (a) The axial drag coefficient (green circles) in
units ofγ0 increases by more than a factor of 8 upon approaching
the surface. In comparison, the lateral drag coefficient (orange
diamonds) only doubles. The solid red line is a fit to Faxe´n’s law,
and the green line corresponds to a higher order interpolation formula
(see text for details). (b) The axial stiffnessκz (green circles) shows
a linear decrease due to aberrations with a slope-(9.0( 0.3)%/µm
of bead-surface separation. This decrease is comparable to the lateral
one (see Figure 3).
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effect can be attributed solely to the static surface potential and
not to a falsely assumed drag profile. If the profile would be
wrong, the displacement sensitivity would also show a deviation
from the expected linear behavior.

Finally, in order to determine the surface force gradientφ′′,
the contribution from the optical potential needs to be subtracted
according to eq 11. This is done by subtracting the value of the
black line from that of the red circles in Figure 5b. The resulting

difference is the surface force gradient, plotted in Figure 5c on
a semilogarithmic scale. It shows an exponential dependence on
the bead-surface separation over more than 2 orders of
magnitude. The solid line is a fit of the second derivative with
respect toh, φ′′, of the DLVO surface interaction potential (eq
1). The secondary potential minimum due to the attractive part
of the van der Waals potential5 is too small to be resolved for
this bead.9 As fixed parameters entering eq 1 we usedεw ) 80
andH ) 8 × 10-21 J. The Hamaker constant is calculated using
the Lifshitz theory (glass,εglass) 2.25 andnglass) 1.5; silica,
εSiOx ) 3.8 andnSiOx ) 1.45).5 The exact value ofH, however,
was not so important since the surface interactions are dominated
by the electrostatic term giving rise to the exponential behavior
of the surface force gradient in Figure 5c; that is, the van der
Waals interactions are negligible. Only the screening lengthL
and the surface potentialψ0 were used as fit parameters. Here,
L ) 34.3( 0.3 nm andψ0 ) 29.3( 0.1 mV. We discuss these
values in the next section. Note that the surface position is fixed
from the fit to the lateral drag coefficient. The integrated surface
force gradient (inset, Figure 5c) shows that the surface forces are
in the pN range. The direct surface force measurement based on
the first derivative of the interaction energyφ′ in eq 10 yields
a comparable result (data not shown). However, the mean error
on the directly measured force is∼10-fold higher compared to
the integrated values. The latter have an error of 10 fN based on
the standard deviation of the residuals derived from the fit of the
DLVO theory. This is the reason why we used the second
derivativeφ′′ to measure the surface forces. From a mathematical
point of view, there is no difference whether one measures the
first or second derivative ofφbased on eq 10 or eq 11, respectively.
The advantage of measuring the second derivative can be
motivated in the following manner (see also section 3.2.3): One
can think of it as a “lock-in amplifier technique” which senses
the gradient instead of the force itself. In contrast to a conventional
lock-in amplifier, we use a broad range of frequencies generated
by the Brownian motion. Lock-in techniques act as bandpass
filters and are thus less susceptible to especially low frequency
noise.

3.2.2. Variation of the Screening Length.In order to test the
above procedure, we used KCl solutions of different concentra-
tions and compared the results to the DLVO theory. The
experimental conditions and data analysis were the same as in
the example of the previous section. The results are summarized
in Figure 6. In Figure 6a, the surface force gradient as a function
of bead-surface separation is plotted for KCl concentrations of
10-5 to 10-1 M, and purified water (ddH2O). The lines through
the data are fits to the DLVO theory. With increasing salt
concentrations, the repulsive electrostatic interactions are in-
creasingly screened and the bead consequently comes closer to
the surface. For a concentration of 0.1 M, the van der Waals
interactions dominate over the repulsive electrostatic interactions,
resulting in an overall attractive potentialsthe bead is adsorbed
to the surface after the last data point ath - R ≈ 50 nm (cyan
hexagons). This latter data set was used as an example in
Figure 4.

The measured surface interactions agreed with the DLVO
theory for intermediate salt concentrations. The fit parameters
from the lines in Figure 6a are displayed in Figure 6b as a function
of KCl concentration. On the left-hand axis the screening length
L (colored, closed symbols) and on the right-hand side the
corresponding effective surface potentialψ0 is plotted (black,
open hexagons). The solid line is the Debye length based on eq
2. The average relative error on the screening length was 15%.
The main source was thermal drift (see below); the average fitting

Figure 5. Illustration of how the surface force gradient is calculated
for a 600 nm diameter silica bead interacting with a bare glass
surface in a 10-5 M KCl solution (a,b). The axial displacement
sensitivity (a) and stiffness (b) corrected for the height dependence
of the axial drag based on the height of eq 12 (no surface effects)
resulted in the gray circles. For positionsj200 nm, the surface
forces shifted the mean axial position of the bead in the trap by∆h
(eq 10) which is indicated by the deviation of the laser intensity from
a straight line (blue solid circles and dashed line in (a), right-hand
scale). Ifγ⊥ is calculated taking surface effect into account (eq 10),
the red circles resulted. Finally, a linear fit to the stiffness data far
away from the surface was subtracted (black line). The resulting
force gradient is shown in (c) on a semilogarithmic plot. The solid
line is a fit of the DLVO theory. Note that the surface position was
not used as a fit parameter. The inset shows the integrated surface
force gradient.
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error for an individual data set was only 3%. The relative error
onψ0 was 2%. The data show an exponential dependence on the
bead-surface separation for all concentrations. However,
quantitative agreement with the DLVO theory is only observed
for intermediate salt concentrations. For low amounts of added
salt, the screening length is too small compared to the Debye
length, and for high concentrations, it is too large. For low
concentrations and the purified water, deviations are likely caused
by multivalent ionic contaminations and the slightly acidic pH.
The water had a pH of 5.9, probably due to the CO2 from the
atmosphere. Our measuredL values for these conditions are
comparable to the ones measured by Hansen et al.9 For the high
concentration, we do not know the cause of the discrepancy. The
effective surface potentialψ0 shows a scaling of [KCl]-1/2. Its
magnitude is in the lower range of previously published values.6

The low values are indicative of an acidic pH and that some of
the surface charges are exchange ions.5,6 The effective surface
potentialψ0 was error-prone in previous tweezers studies8,9 due
to the larger uncertainty in the surface position and was therefore
either not specified or taken as constant.

3.2.3. Restrictions.There are certain limits to the described
method. Close to the surface, the trapping potential is skewed,
and the drag depends onh. It was shown8 that using a Lorentzian
fit for the power spectra is a valid approach if the potential is
only slightly skewed and the drag coefficient can be locally
approximated by a linear dependence on the distance. These

requirements are best met by a stiff trap. We usedκz ≈ 0.015-
0.075 pN/nm. We did not detect any systematic deviations
from a Lorentzian for the data presented. Furthermore, we
excluded data points for which the bead-surface distance was
smaller than 2.5 standard deviations of the Brownian motion in
thez direction. This roughly corresponds to the distance where
the power spectrum is affected because of the bead’s motion
becoming restricted by the surface. For smaller distances, theø2

value of the fit to the power spectrum increased significantly.
The standing light wave did not limit the measurements.8 Since
we measured the modulation due to the interference effect of the
displacement sensitivity and the laser intensity, we could account
for the effect.

The value of the surface position is the most critical parameter
in determining the surface force gradient especially for small
bead-surface separations. For improved accuracy in determining
hsurf, the height dependence of the corner frequencies can be
fitted in addition to the lateral drag. For the data in Figure 7, we
used the surface position as a global fit parameter for the height
dependence of the three axes’ corner frequencies plus that of the
lateral drag coefficient. As an internal control for the correction,
we confirmed that the axial displacement sensitivity did not
deviate from the expected behavior (see Figure 5).

Figure 5a shows why it is important to have a stable laser
intensity. In the case of back-focal-plane detection, thezposition
is proportional to modulations in laser intensity caused by the
axial movement of the bead. Since a large offset in laser intensity
needs to be subtracted (here∼7 V) a small, low-frequency
intensity fluctuation of the laser itself cannot be distinguished
from a true movement. For instance, a 0.5% variation corresponds
to ∆h≈ 18 nm (âz≈ 0.5 nm/mV) and an error in force of almost
1 pN. This is why the direct surface force measurement based
on φ′ has a larger error than the surface force calculated by
integrating the measuredφ′′; φ′′ does not directly depend on∆h
and hence is insensitive to errors on this parameter (see also
section 3.2.1).

We checked for effects of thermal drift during the calibration
process because this directly affects the screening length. If we

Figure 6. (a) Surface force gradients for various concentrations of
KCl solutions for 600 nm diameter silica beads. The solid lines are
fits of the DLVO theory using only the screening length and the
surface potential as fit parameters. For the highest salt concentration
(dark-cyan hexagons), the bead jumped into contact at a surface
separation of∼50 nm and was thus immobilized afterward. (b)
Screening length (solid symbols, left-hand axis) and surface potential
(open hexagons, right-hand axis) as a function of ionic concentration
obtained from the fits to the surface force gradients. The solid line
shows the calculated Debye screening length.

Figure 7. Surface force gradient for F127-treated, silanized (blue
squares), and Teflon-coated surfaces (inset) in the presence (green
diamonds) and absence of casein (red circles). Electrostatic effects
are largely screened for all samples. The buffer BRB80 has about
the same ionic strength as a 0.16 M KCl solution. Solid lines are
fits of a DLVO-type expression to the data to guide the eye. For a
bare glass (gray dotted) and Teflon (brown dashed) surface without
F127 and 0.1 M KCl concentration, the purely attractive DLVO
theory predictions are shown. We usedL ) 1 nm andψ0 ) 10 mV,
yieldingHglass) 1.4× 10-20 J andHteflon ) 1.3× 10-21 J (note that
H is larger for PS than for silica beads, compare with section 3.2.1;
PS: εPS ) 2.5 andnPS ) 1.59; Teflon: εteflon ) 1.93 andnteflon )
1.31).

3662 Langmuir, Vol. 23, No. 7, 2007 Schäffer et al.



repeat the calibration for the same bead and determine the
surface positionhsurf again, the difference to the previous value
gives a measure for the drift. We kept the temperature as constant
as possible during the measurements and worked in a thermally
well equilibrated room. The acquisition of the data and the
automatic fitting of the power spectra with either 4096 or 8196
data points at a single height position took∼7 or ∼15 s,
respectively. With typically∼80 positions, the complete calibra-
tion as a function of distance took about 10 or 20 min. During
this time, there was a drift of∼1-2 nm/min depending on the
sample. This drift is included in the error bars in Figure 6b and
thus cannot account for the deviations from the DLVO theory.
With temperature monitoring and the capability of exactly
measuring the surface position, we can, in principle, correct for
all effects that are due to thermal drift. This is an advantage of
the method presented here.

3.2.4. Blocked Surfaces and Casein.We applied our method
to measure the surface interaction of microspheres with surfaces
that are coated in such a way as to prevent the beads from
sticking to them. Under physiological relevant conditions, the
repulsive electrostatic interactions are largely screened, and the
attractive van der Waals forces dominate the interaction of colloids
near surfaces unless they are treated further. The data for these
blocked surfaces are shown in Figure 7. For these measurements,
we used the 528 nm diameter PS beads in either a 0.1 M KCl
solution or a 0.2 mg/mL casein solution in BRB80 (80 mM
PIPES/KOH, pH 6.9, 1 mM MgCl2, 1 mM EGTA). For both
solutions, the Debye length isj1 nm. For individual power
spectra, only 4096 data points were used to shorten the data
acquisition time.

We used the blocking agent F127 to pacify the surfaces. The
hydrophobic middle block of the F127 (section 2.2) requires a
hydrophobic surface for stable adsorption.17 We used two
different methods to render surfaces hydrophobic. We coated
glass surfaces with either a self-assembled monolayer of
dichlorodimethylsilane (DDMS) or a Teflon layer (see section
2.2). The difference between the two methods is the thickness
and refractive index of the coated film. While the thin (j2 nm)
DDMS layer only slightly affects the Hamaker constant and thus
the van der Waals interactions between the bead and the surface,5

the comparatively thick (j100 nm) Teflon layer reduces the

Hamaker constant more than 10-fold compared to a bare glass
surface. The reason for this reduction is that the Teflon index-
matches water.5 The inset in Figure 7 shows schematically the
Teflon surface treatment.

The measured surface force gradients confirm the expected
screening behavior of the Teflon surface (Figure 7). The DDMS-
coated surface (silanized) shows a clear attractive region close
to the surface due to the attractive van der Waals interactions
(blue squares). The solid line through the data is a fit of a DLVO-
type expression to guide the eye. In contrast, the Teflon-coated
surface shows a purely repulsive surface force gradient (red
circles) converging for small separations with the DDMS data.
Due to the much smaller Hamaker constant, no attractive potential
is visible within the given resolution. The strength of the attractive
part for the DDMS data lies in between what is expected for the
DLVO behavior for an uncoated, bare glass surface (dotted gray
line) and a Teflon-coated surface without F127 (brown dashed
line). The reason for this is likely because both the DDMS and
more so the F127 layer lower the effective van der Waals
interactions. Uncertainties inhsurf and the laser intensity may
also contribute. On the basis of the integrated force gradient, the
maximal attractive force acting on the bead is about-0.2 pN
and the potential has a depth of∼1kBT.

With the Teflon-coated surface blocked with F127 and casein
in solution, we observed a long-ranged repulsive potential (green
diamonds). With casein on a bare glass surface, we expect in
addition to the repulsive part a short-ranged attractive region
analogous to the DDMS case. Beads coated with casein and the
molecular motor kinesin walking on a microtubule that is
immobilized via antibodies on a surface2 are often used to probe
the mechanics of the motor. Our casein data suggest that bead
motility assays might be affected by surface forces. Depending
on the surface treatment in these assays, the bead might either
be pushed up by the surface forces and exert an axial force on
the motor protein or could be pulled down next to the microtubule
leading to an asymmetry in the gate of the motor. In Figure 7,
for the casein data at a distance of∼50 nm, the force is repulsive
and∼0.1 pN based on the integrated surface force gradient. It

Figure 8. Goodness of interpolation formulas compared to Brenner’s
exact result (see also Table 1). Normalized deviations of themth-
order interpolation equations from theλ values based on Brenner’s
infinite series (eq 17) as a function of distance from the surface in
units of the bead radius on a double logarithmic plot. Negative
residuals are plotted with dashed lines. The parameters for the
equations are given in Table 1. The 12th-order equation (eq 6) deviates
less thanj0.3% for all distances.

Figure 9. Bead individuality. Once the distance to the surface is
known, the height dependence of the drag coefficient can be removed
using Faxe´n’s law. In this way, an estimate for the bulk drag
coefficient is obtained at every height. Data are shown for two
different beads (blue circles and red squares). The small data points
are the raw data, and the large data points are four neighboring small
points binned with corresponding standard deviations shown as error
bars. On the right-hand side, a histogram of the drag with a bin width
of 2% is plotted. A Gaussian fit returned 1.024( 0.003 (N ) 49)
and 0.992( 0.003 (N ) 45) (mean( standard error of the mean).
Since the standard error is much smaller than the difference between
the means, differences in the bulk drag coefficient are attributed to
different bead sizes.
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is more than 6-fold the lateral drag force that the bead experiences
if it were pulled by a kinesin with a speed of 800 nm/s. This
means that the bead is not trailing behind the kinesin motor but
is rather centered above it. In addition to these geometric effects,
the mechanochemistry might be affected.2

4. Conclusion

We have described two new methods in this paper. First,
the calibration method in Tolic´-Nørrelykke et al.1 has been
extended to calibrate optical tweezers in all spatial dimensions
as a function of distance from a surface. With this technique,
no assumptions have to be made about the system and all
parameters affecting the trapping conditions are measured.
Importantly, interference effects that modulate the laser
intensity away from the surface are accounted for in this way.
Furthermore, aberrations arising from oil-immersion
objectives or improperly adjusted water immersion objectives
can be evaluated. Thus, it is not necessary to work with
expensive water immersion objectives only for the reason of
avoiding aberrations. Second, we applied the calibration
technique to measure surface interaction potentials with micro-
spheres of a diameter of<1 µm. These are smaller than
microspheres utilized in earlier studies7-9 and of a size often
used in biophysical single-molecule experiments. It is feasible
to measure surface interactions for even smaller beads. The
technique is sensitive enough to detect surface force gradients
of ∼1 fN/nm. We tested the method against the DLVO theory
and found quantitative agreement for 10-5 M j [KCl] j 10-2

M. Furthermore, the method was applied in more complex systems
relevant to biological experiments.

Appendix A. Closed-Form Interpolation Formulas for
the Axial (Wall) Drag

The height dependence of the drag coefficient is stronger upon
approaching a wall for the axial drag compared to the lateral one.
While the increase of the lateral drag is well described by Faxe´n’s
law, an analogous closed-form equation is lacking for the axial
dimension. In this appendix, we use the exact creeping flow
solution from Brenner,11 an infinite series, to derive simple
equations that approximate the distance dependence of the axial
drag coefficient to within 1% or less. We restrict the discussion
to the zero-frequency limit of the drag coefficient.

A sphere moving toward or away from a solid surface
experiences a resistance orwall drag

with the velocity in the axial directionVz, the Stokes drag
coefficientγ0, and the axial drag coefficientγ⊥; λ ) λ(R/h) is
a correction to Stokes’ law.

For h/R . 1, Lorentz29 derived an equation up to first order
in R/h. On the basis of the method of reflections, Wakiya30

calculated a correction up to third order

In the limit of a creeping flow approximation, Brenner4,11solved
the problem exactly

with R ) cosh-1(h/R). Forh f ∞, λ ) 1, which makes the axial
drag coefficient correspond to the Stokes’ bulk drag coefficient.
In the other limit ofh f R, λ in eq 17 diverges (λ f ∞). The
limit of small separations,h ≈ R, is attributed to G. I. Taylor28

Sedimentation experiments31in silicone oil with nylon spheres
with a radius of around 2 mm confirmed eq 17 and eq 18 down
to a sphere-surface separation of∼0.11R. At this distance, the
axial drag coefficient is more than 10 times the Stokes drag.

While eq 17 is exact, it cannot be used for fitting data as it
stands because of its infinitely many terms. One can either truncate
the sum atn ) nmaxor use rational polynomial functions in order
to approximate eq 17. In case of the truncation and large distances,
the sum converges rapidly, andnmax) 2 is sufficient for aj1%
deviation from eq 17 forh/R > 1.8. For small separations, the
convergence is rather slow since every term has a singularity at
h ) R. For a 1% accuracy down toh/R ) 1.1, n should be at
least 4. Achieving this accuracy down to 1% of the radius (h/R
) 1.01) requiresnmax g 6. For a 0.1% accuracy,nmax g 15.

In the spirit of Pade´ approximants, the dependence of the axial
drag onh/Rcan be approximated by amth-order equation of the
form

We can determine the coefficientscmnumerically for a certain
range ofhby fitting this equation to numerical values of the axial

(28) Hardy, W.; Bircumshaw, I.Proc. R. Soc. London, Ser. A1925, 108(745),
1-27.

(29) Lorentz, H.Abhandl. Theoret. Phys. 1906, 1, 23.
(30) Wakiya, S.Res. Rep. Fac. Eng. Niigata UniV. (Japan)1960, 9, 31.
(31) MacKay, G.; Suzuki, M.; Mason, S.J. Colloid Sci. 1963, 18, 103-104.

Table 1. Interpolation Coefficients of Equation 19 for mth Order Using N Coefficients

m N c1 c3 c4 c5 c8 c10 c11 c12 h f Ra h f ∞a accuracy comment

1 × 10%,h/R j 1.07 Taylor,28 eq 18
1 1 -9/8 × 1%,h/R J 4 Lorentz29

3 2 -9/8 1/2 × 1%,h/R J 3 Wakiya,30 eq 16
4 3 -9/8 3/8 -1/4 × × 1%

10 5 -9/8 1/2 -37/80 1/5 -9/80 × × 0.4%
12 6 -9/8 1/2 -57/100 1/5 7/200 -1/25 × × 0.3% eq 6

a Whether the corresponding behavior of the limits ofh going toR and∞ is satisfied exactly is indicated by a “×”.

Fz ) γ0λVz ) γ⊥Vz (15)

λ(3) ) 1

1 - 9
8 (Rh) + 1

2 (Rh)3
(16)

λ )
4

3
sinhR∑

n)1

∞ n(n + 1)

(2n - 1)(2n + 3)
×

[4 cosh2(n +
1

2)R + (2n + 1)2 sinh2 R

2 sinh(2n + 1)R - (2n + 1) sinh 2R
- 1] (17)

λ(hfR) ) R
h - R

(18)

λ(m) ) 1

1 + c1 (Rh) + c2 (Rh)2
+ ... + cm (Rh)m

(19)
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drag coefficient calculated from Brenner’s infinite series (eq
17). Analytically, the limiting case of eq 18 puts two constraints
on the parameterscm if eq 19 is supposed to hold forh f R

One can either use the constraints in the fitting procedure such
that both limits are fulfilled or relax the constraints to achieve
a better fit in a certain region of interest.

There are many sets of parameters that fulfill the above
requirements. The simplest is derived in the following manner.
The limit for h f ∞ implies thatc1 ) -9/8. Together with the
two constraints from eq 20, at least a third-order equation is
required. Usingc2 ) 0 from eq 16 results in a 4th-order equation
with c3 ) 3/8 andc4 ) -1/4. This equation deviates less than
∼1% over the whole range ofh. If one does not requirec2 )
0, a third-order equation can be derived. This equation, however,
deviates up to 4% with the same number of coefficients.

In order to develop a better approximation, we used a numerical
procedure. With the program Mathematica (Wolfram Research,
Inc.), we evaluated eq 17 numerically. Subsequently, we fitted
eq 19 to the calculatedλ values. We calculated 900 values for
λ in the range of 1.01e h/Re 10 with 0.01 increments forh/R.
The upper limit in the sum of eq 17 wasn ) 100. Increasingn
to 1000 only changed the 13th significant digit of the value
calculated ath/R ) 1.01.

We fitted the data by a Levenberg-Marquart algorithm, either
constraining the coefficients of eq 19 to satisfy eq 20 or not (all
parameters free). As weights we used the values of eq 17. On
constraining the parameters, it turned out that it was necessary
to use high order coefficients to obtain a good approximation for
h/R≈ 1. A 10th-order equation with five coefficients (the others
set to zero) deviates less than 0.4% over the whole range. The
maximum deviation occurs ath/R≈ 1.14. Increasing the number
of coefficients and going to higher order improves the ap-
proximation only slightly. A 12th-order equation with six
coefficients deviates less than 0.3% over the whole range (eq 6).
Here, the maximum deviation occurs ath/R ≈ 1.02. This
approximation is better than 0.1% forh/R J 1.1. Going either
to even higher order or increasing the number of coefficients
further did not improve the approximation significantly.

Figure 8 and Table 1 summarize the results. The residuals, the
normalized deviation from Brenner’s sum (eq 17), are illustrated

in Figure 8, and the corresponding coefficients for the equations
are given in Table 1. The first-order equation for large separations
(Lorentz) agrees to within 1% with eq 17 only forh/R J 4. In
the other limit, eq 18 deviates by 10% forh/Rj 1.07. Using the
first three terms of eq 17 (nmax ) 3) plus a correction 43R2/
[1323h(h- R)] to compensate the lacking terms at the singularity
h ) Ronly achieves an approximation comparable to the fourth-
order equation which uses only three coefficients. In a Pade´
approximation, the numerator often is a higher order polynomial
as well. When using such a polynomial, more constraints
analogous to eq 20 are invoked which require in total at least
six coefficients. The simplest version with a third-order
polynomial in both the numerator and denominator only achieves
an accuracy of 0.8% over the whole range ofh. Along those
lines, Bevan et al.32 developed a similar formula which deviates
by 0.7% using five coefficients which, however, does not follow
the first-order scaling of Lorentz (c1 * -9/8).

Appendix B. Bead Individuality
The calibration method described in section 2.6 and Tolic´-

Nørrelykke et al.1 is able to resolve small differences in bead
radius. Two beads (3 and 17 from Tolic´-Nørrelykke et al.1) were
analyzed in the same manner as the one in Figure 3b (bead 12
in Tolić-Nørrelykke et al.1). After fitting the data to Faxe´n’s law
(eq 5), the height dependence was removed by dividing the
measured drag coefficient withγ|(h)/γ0. The data is then plotted
in units ofγ0

spec(Figure 9). The mean value of the measured bulk
drag coefficientγ0 for the two beads differs by more than 3%
with a standard error of the mean of only 0.3% for each bead.
Since the beads were in the same flow cell and temperature
variations were excluded,1 the difference can only be explained
by different bead radii (compare with Tolic´-Nørrelykke et al.1

where we analyzed a total of 24 beads but showed only the mean
value forγ0 for each bead). The deviations lie within the estimated
uncertainty inγ0

specof 2.3% which is based on the polydispersity
in radiusspecifiedby themanufacturerand theerror in temperature
determination. If experiments are performed with beads having
a large polydispersity, the calibration error can be large ifγ0 is
not measured directly8,9 but assumed to beγ0

spec.
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