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Motivated TGNG:

Algorithm and Performance Evaluations

Martin V. Butz∗ Kevin Reif†

Abstract

This technical report describes the underlying algorithms of the
Motivated Time Growing Neural Gas architecture and gives a detailed
overview over the parameters used and their effects on the architec-
ture’s performance. An in-depth discussion of Motivated TGNG can
be found in (Butz, Reif, & Shirinov, in revision).

1 Introduction

Based on our Time Growing Neural Gas algorithm (Butz, Reif, & Herbort,
2008), we extended the existing architecture to include a motivational mod-
ule (Shirinov & Butz, 2009; Butz et al., in revision). This module allows an
animat (1) to learn a sensorimotor cognitive map self-motivatedly and (2) to
use it to generate flexible goal-directed behavior based on internal curiosity,
fear, and hunger drives.

In this report we first give a detailed algorithmic description of the ar-
chitecture’s TGNG component as well as the new motivational module. We
further outline the basic parameter setting used in our performance evalua-
tions. Finally, we analyze different parameter dependencies and their effects
on the animat’s goal reaching performance and its choice of path through
different maze environments.

In our experiments we assessed the animat’s performance in five different
mazes ranging in their complexity from very simple (an empty room) to
very demanding (an intricate maze with teleporters). However, if not stated
otherwise, the results for the different mazes were very similar. Therefore,
in this report we only discuss the graphs for the first (complex) maze as a
representative example.

∗butz@psychologie.uni-wuerzburg.de
†kevin.reif@stud-mail.uni-wuerzburg.de
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2 Algorithmic Description of Motivated TGNG

2 Algorithmic Description of Motivated TGNG

In this section, we give a comprehensive overview of the Motivated TGNG
algorithm. The algorithmic description of Motivated TGNG is shown in
Alg. 1 and Alg. 2.

2.1 TGNG Part

Alg. 1 mainly specifies the cognitive map learning aspect of the algorithm.
After initializing the motivational drives and the empty list of nodes for the
hunger drive, the main loop of the Motivated TGNG animat is activated
(steps 1-4).

Each iteration, the current sensation vector ~s and the executed move-
ment ~m′ are perceived. The previous winner is set to W2, and a new current
winner node W1 is determined, which is the node with the sensory vector
~sW closest to the current sensation using the Euclidean distance (step 5-

6). Next, the global error ε is updated based on the Euclidean difference
between ~sW1 and ~s (step 7).

ε← ε(1− δ) + δ

√∑
i

(si − sW1i)2, (1)

If the global error exceeds the vigilance threshold θε, then the movement
is recorded in the previous winner (step 9) and W1 is replaced with a new
node, whose center is set to the current sensation. Moreover, an edge is
created that connects the previous winner W2 with the new W1 and stores
the last executed motor vector (steps 10-11). Moreover, the global error is
rest to zero (step 12).

If the global error threshold was not exceeded in this iteration but a new
winner was determined, then the movement is also recorded in the previous
winner (step 14) and an edge is either created if none existed so far, or
the existing edge is updated setting its age to zero and adjusting its motor
vector (steps 15-19). Updating the motor vector and experience of an edge
is realized as follows:

~mE ←

{
eE · ~mE+~m

eE+1 if eE < 1
βm

~mE+~m·βm

1+βm
otherwise

, (2)

eE ← eE + 1, (3)

Moreover, the center of the new winning node is adjusted towards the
current perception (step 20) and the ages of all edges that depart from
the new winner node are increased by one (step 21). If one of those ages
reaches the maximum age θa, then the edge is deleted. Given a node is
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2.2 Motivational Module

consequently not connected to any other node any longer, also the node is
deleted (step 22).

To inhibit apparently unreliable connections, if the edge that connects
W2 to W1 was actually not the desired transition, then activity flow through
this edge is inhibited for ιE iterations (steps 23-25). Moreover, to prevent
node circling, recently visited nodes are inhibited with a linearly decreasing
strength for the next ιN iterations (step 26).

After the adaptions due to the motivation module and the activity prop-
agations through the network (step 28—see details below), the best action
is chosen to execute given W1 (step 29). Here, either a directional action is
executed that has been executed less than θc times in this node before given
the node’s histogram of already executed actions, or the action in that edge
is chosen that connects W1 with the neighboring node that shows strongest
activity.

2.2 Motivational Module

The functionality of the motivational module is shown in Alg. 2. The module
first updates the hunger motivation. Given the presence of a food item, the
food is consumed and the hunger reservoir filled (step 2). If the memory list
of hunger-related nodes already contains the currently active node, then the
inhibition level of the node is reset to zero, otherwise the node is added to the
list with a zero inhibition level (steps 3-7). Given no food was encountered,
the hunger reservoir is decreased according to

σh ← max(σh − vh; 0), (4)

(step 9) where vh is the amount of decrease (set to vh = 0.002 in our sim-
ulations) and the memory list of the hunger motivation is checked for a
corresponding node, which is inhibited if present (steps 10-12). Indepen-
dent of if food was encountered, the inhibition values of all entries in the
memory list are slightly relieved (step 14).

Next, the security drive is updated given the current sensation ~s accord-
ing to

ξ = max(1− distmin · dξ; 0), (5)

(step 15) where dξ (set to dξ = 0.0045) is a dimensioning parameter, which
scales the sum of five distances to an appropriate range. The activations
of the motivational drives are induced onto the TGNG network and are
propagated for one iteration throughout the network (steps 16-17). Finally,
the propagated activity values are combined

vi =
wh · hi + wf · fi + wc · ci

wh + wf + wc
, (6)
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2.2 Motivational Module

Algorithm 1 Motivated TGNG
1: Initialize motivational drives and create an empty activation list for the

hunger drive.
2: Start with one node N , setting its center to the system’s initial sensa-

tions ~s.
3: Set both winner nodes (W1 and W2) to N .
4: while not externally terminated do
5: Perceive current sensation ~s and perceived movement ~m′.
6: Set previous winner to W2 and determine the new winner node W1

given ~s.
7: Update the global error ε (Eq. 1) based on ~s and the center ~sW1 .
8: if global error ε exceeds threshold θε then
9: Add executed movement ~m to histogram of node W2

10: Create a new node setting it to W1 with its center at the current
sensation ~s.

11: Create a new edge E from W2 to W1 with motor vector ~mE = ~m′.
12: Reset the global error ε to 0.
13: else if W1 6= W2 then
14: Add executed movement ~m to histogram of node W2

15: if Edge E exists from W2 to W1 then
16: Update edge E by setting its age aE = 0, increasing its experience

eE , and updating its motor vector ~mE given ~m′ (Eq. 2).
17: else
18: Create a new edge E from W2 to W1 with motor vector ~mE = ~m′.
19: end if
20: Move the center ~sW1 towards the input signal ~s by fraction εw.
21: Increment the ages aE of all edges E emanating W1.
22: Delete all edges older than maximum age θa and delete nodes with-

out any emanating edges.
23: if Edge E from W2 to W1 was not the desired transition then
24: Inhibit activity transitions through E for ιE iterations.
25: end if
26: Inhibit activity propagation in W1 linearly decreasing over the next

ιN iterations.
27: end if
28: UPDATE Motivation Module given W1.
29: Choose and execute the best movement direction ~m given current

winner W1.
30: end while
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3 Environment

(step 18) where wh, wf , and wc reflect the respective strengths of the hunger,
fear, and curiosity drives. State value vi denotes the resulting internal ac-
tivity of a node, which is used for the determination of goal-directed be-
havior, as specified above. As a result, the external motivation-dependent
activations are iteratively kept up-to-date while the propagated activations
continuously change over time given the up-to-date external activations.

Algorithm 2 UPDATE Motivation Module
1: if food is located within a certain range from the current position then
2: Reset hunger reservoir to 1.
3: if the hunger memory list already contains an entry x for node W1

then
4: Reset inhibition level ιRx of list entry x to zero.
5: else
6: Create a new entry x in the activation list linking it to node W1.
7: end if
8: else
9: Decrease the hunger reservoir value.

10: if node W1 is linked in a memory list entry x then
11: Set the inhibition level ιRx = 0.
12: end if
13: end if
14: Decrease the inhibition level ιRx of each hunger activation list entry x

by multiplying it with the relief rate ρι.
15: Update the internal security drive given current sensation ~s.
16: Apply external activation patterns to the neural network.
17: Perform a step of activity propagations for each node in the neural net

for all three motivation-dependent activities.
18: Combine the propagated activity values into one overall activity in each

node.

3 Environment

The environment used in our experiments is a two-dimensional continuous
maze environment that consists of squared sub-areas. These subareas can be
either empty, solid, or teleporter areas. The agent moves within and between
empty areas. Solid areas prevent passage, leading the agent along the wall
of the blocked area. Teleporter areas come in pairs. Once the animat enters
a teleporter area, it is immediately transferred to the corresponding position
at the open side of the paired teleporter area. Food sources are placed in
the environment where the hunger reservoir is filled once entering the food
area, which is four units in radius. After food consumption, which is simply
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realized by entering the food area, the food is removed. It reappears at the
same location after 1000 time-steps.

The size of the mazes was set such that each empty or filled squared
subarea has a side length of 10 (continuous) units. Fig. 1 shows the different
mazes used in our evaluations. The teleporters are introduced to show that
TGNG is neither dependent on a sufficient sensory proximity given motor
proximity for successful learning nor is the system restricted to learn in
Euclidean (e.g. metrical 2D or 3D) spaces.

(a) Maze 1 (b) Maze 2

(c) Maze 3 (d) Maze 4 (e) Maze 5

Figure 1: The five maze environments used in our goal-reaching evaluations. Tele-
porter pairs are marked with numbers. Light brown circles indicate food sources,
where applicable.

4 Parameter Settings

For the TGNG learning algorithm, we use the following parameter settings:

δ = 0.5, θε = 5, βm = 0.1,

εw = 0.05, εn = 0, θa = 100, p = 0.2

For the motivation module and the activity propagations, the parameter
settings were as follows (unless stated otherwise):

γ = 0.99, βa = 10, βc = 0.5, dξ = 0.0045, θξ = 0.5, ρι = 0.99995,

ph = 1, pf = 0.5, pc = 0.1, vh = 0.002, vf = 0.01, vc = 0.001, Nc = 8, θc = 1.

Note that the hunger priority is double the size of the fear priority. This
assures that the robot will always search for food first, provided that the
hunger level is high enough and at least one food location is known.
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5 Performance Study of Motivated TGNG

5 Performance Study of Motivated TGNG

In this section we study and highlight the major parameter dependencies
that Motivated TGNG depends on. First, however, we study the noise
robustness of the system. In all graphs, we report average performance and
normalized standard deviation values over ten independent runs, which were
initialized with different random seeds. We focus on evaluations in Maze 1.
However, similar results were achieved within the other mazes, if not stated
differently.

5.1 Noise Robustness

As shown in Fig. 2 the architecture is very robust with regard to noise added
to the executed motor vectors. Even noise levels of 2.5 units in standard
deviation (std), which is 2.5 times higher than the actual step made, only
have a slight impact on the animat’s goal reaching performance. However,
as expected, the animat deviates more and more from the ideal path with
higher noise values.
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Figure 2: Increasing action noise makes the paths to the goals more noisy but
does only marginally affect goal reaching performance.

Even though adding noise to the sensory inputs (as opposed to the motor
vectors) of the animat has a smaller impact on path optimality (c.f. Fig. 3),
higher noise levels delay learning, thus delaying and partially preventing the
system from reaching all goals reliably. In addition, the size of the network
(the number of edges) increases dramatically for noise levels higher than 1
unit in std resulting in an unacceptable high run time (c.f. Fig. 4, no stan-
dard deviations here since sensory noise with std=1.5 is an exemplary run).
This is due to the fact that due to the high noise multiple nodes are needed to
cover the same location in the maze, since the θε threshold will trigger node
creations solely due to the high perceptual noise. Consequently, the number
of edges between neighboring locations in the maze grows quadratically with
the number of nodes needed to cover one location.

As shown in Fig. 5 also the simultaneous increase of both noise levels still
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Figure 3: Increasing sensory noise delays learning but still yields robust goal
reaching performances with good reasonable path qualities up to a certain degree.
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Figure 4: The number of nodes and particularly edges increases significantly once
the sensory noise is often higher than the error threshold θε.
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Figure 5: Sensory and action noised appear to have rather independent influences
on the performance of Motivated TGNG.
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Figure 6: Only very strong node adjustments yield unstable system behavior.

yields very good results for values below 1 unit std. As the path optimality
mainly depends on the noise level added to the motor vectors, it decreases in
much the same way as without the additional noise in the animat’s sensory
input (c.f. Fig. 2).

5.2 Parameter Dependencies

5.2.1 Error Threshold θε

The error threshold θε is mainly responsible for the network’s granularity.
Large values yield a very coarse distribution of nodes resulting in a faster
learning of the environment’s topology with the drawback of less efficient
paths and possible aliasing errors for values too large considering the eval-
uated environment. Small values on the other hand lead to a high number
of nodes and thus a finely grained network. This results in a delayed learn-
ing and a quickly increasing computational run time, however, it assures a
very high success rate. (c.f. Butz et al. (in revision) for a more detailed
evaluation of θε).

5.2.2 Adaptation of Node Centers

With regard to the adjustment rate εw of the current winner node towards
the current input signal ~s, Motivated TGNG performs very well for all val-
ues up to .2 considering both goal-reaching performance and path optimality
(c.f. Fig. 6). Moving the current winner towards the input signal is essential
to develop a balanced distribution of nodes. However, too strong adjust-
ments result in a network that is never fully stable.

As for the winner’s neighboring nodes, even slight adjustments with
εn > 0 towards the current input signal ~s lead to drastic decreases in per-
formance and path optimality as shown in Fig. 7. This also holds true for
other complex maze configurations. Moving neighboring nodes towards the
current input signal destabilizes the network since (1) only the nodes but
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Figure 7: Adjustments of the centers of neighboring nodes have a strong negative
effect on performance.
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Figure 8: In the empty Maze 5, neighbor node adjustments do not have an equally
negative effect as observed in Maze 1. However, also in Maze 5 updates of neigh-
boring nodes do not yield any performance benefits.

not the stored motor vectors in the edges are adjusted and (2) a winner’s
neighboring nodes are not necessarily comparable with regard to the stored
sensations as we create nodes based on proximity in time not space. Ex-
periments with the empty maze (Maze 5), however, showed that for small
adjustment values (up to εn = 0.001) performance and path optimality re-
main constant at an excellent level. This is due to the fact that in this
empty maze there are no teleporters and no concave edges, so that there are
no nodes whose immediate neighbors differ greatly in their stored sensations
(cf. Fig. 8).

5.2.3 Edge Deletion

The results for different maximum ages of the network’s edges suggest that
values around 100 yield the best performance. However, the differences in
performance and path optimality are rather small as can be seen in Fig. 9.
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Figure 9: The maximum age θa for edge deletions has only a minor performance
impact.
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Figure 10: The movement vector update rate βm affects performance only
marginally.

5.2.4 Movement Vector Adaptation Rate

Different values for the movement vector association rate βm hardly yield
any impact on the animat’s performance and path optimality. Fig. 10 shows
that a value of βm = .1 yields the best performance among generally good
results.

5.2.5 Curiosity Definition

Fig. 11 shows that it is crucial for the animat’s performance to execute at
least θc = 1 movement in each direction from any given node before switching
to normal activity-based action selection. Otherwise it is impossible to learn
the layout of the maze and thus any goal positions reliably.

Increasing the directional partitions Nc and thus the directions to be
explored from every given node, results in a small delay in learning without
improving the animat’s path optimality as shown in Fig. 12. Since the
system still reaches all 72 goals in both cases, an increase of Nc is not
necessary but only delays learning progress.

As with increasing the directional partitions, a higher time delay pro-

11



5.2 Parameter Dependencies

 0

 10

 20

 30

 40

 50

 60

 70

 0  100  200  300  400  500

# 
of

 g
oa

ls
 r

ea
ch

ed

steps (in thousands)

Minimum Movements In One Direction Maze 1

minMovements = 0
minMovements = 1
minMovements = 2

 0

 1

 2

 3

 4

 5

 6

 0  100  200  300  400  500

pr
op

or
tio

na
l d

ev
ia

tio
n 

fr
om

 o
pt

im
al

 p
at

h

steps (in thousands)

Path Optimality Maze 1 (Minimum Movements In One Direction)

minMovements = 0
minMovements = 1
minMovements = 2

Figure 11: The initial curiosity based on unknown movement effects is highly
important to ensure initial effective maze exploration.
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Figure 12: A larger directional partition of the movement histogram delays learn-
ing progress. Path optimality is only slightly improved.

portion βc in the animat’s curiosity drive leads to a small learning delay but
to no improvements with regard to path optimality. Again, performance
converges to reaching all 72 goals reliably with a good path efficiency, as
shown in Fig. 13.

5.2.6 Temporary Node and Edge Depression

As shown in Fig. 14, setting depression times for the network’s nodes and
edges to values > 0 increases the overall performance significantly, especially
when both values are set to ιN > 0 and ιE > 0. Thus, both node and edge
depressions are important to balance exploration and to prevent ineffective
circling behavior. However, there is no best ratio, since all combinations of
values ιN >= 10 and ιE >= 100 yield excellent results. The same holds
true for the path optimality results.
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Figure 13: When increasing the influence of the time delay effect on curiosity
(parameter βc) learning speed decreases but still a similar performance level is
reached ultimately. No time delay influence, on the other hand, slightly decreases
path optimality later on.
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Figure 14: As long as both inhibition methods are activated (ιN >= 10 and
ιE >= 100) Motivated TGNG does hardly ever get stuck in circles so that the
cognitive map is learned well and consequently all goals are reached on an effective
path.
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6 Conclusion

As the experimental evaluations show, the architecture’s performance re-
mains largely constant for a rather wide range of different parameter values.
In light of this robustness, it is relatively easy to find a parameter setting
that yields optimal results when evaluating a new environment. Moreover,
it shows that the underlying algorithms do not only allow the animat to
develop goal directed behavior based on its inherent motivational drives,
but to do so flexibly and largely independent of outer circumstances such as
noise or different environmental layouts. We believe therefore that this ar-
chitecture constitutes an excellent basis for future studies on self-motivated
cognitive map learning and goal-directed behavioral control.

Finally, it should be emphasized that Motivated TGNG is not restricted
to maze learning tasks. It can be expected to yield interesting behavioral
patterns and effective goal directed behavioral performances in other envi-
ronments in which different movements and sensations are possible as long
as the sensations yield a Markov environment. For example, arm control
tasks are imaginable in which the system perceives arm postures and con-
nects these postures given appropriate arm motor commands. In our future
research we intend to apply Motivated TGNG to such tasks.
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