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Abstract

In this paper we briefly describe the approaches realised in the two versions of SApperloT.
The first version SApperloT-base primarily implements the state-of-the-art techniques
of conflict-driven Sat-solvers with some extensions. SApperloT-hrp enhances the base
version to a new hybrid three-phase approach that uses reference points for decision
making.

1 The main issues of SApperloT

This chapter sketches the main ideas that are implemented in SApperloT-base and are also
contained in SApperloT-hrp for the most parts. Both versions are complete Sat-solvers written
in C++ using the functionality offered by the standard template library.

Solver basics SApperloT-base is a conflict-driven solver that implements state-of-the-art
techniques like clause learning, non chronological backtracking and the two watched literal
scheme that were originally introduced by GRASP [10] and CHAFF [11]. For the first version
of SApperloT-base Minisat 2.0 [14, 4] was used as a guideline for efficient implementation.
Most decisions are made according to the previous assignment as in RSAT [12]. Moreover, we
implemented the extension to the watched literal data-structure as described in [3]. Hence,
instead of pointing directly from literals to clauses an indirection object is used. Binary and
ternary clauses (both original and learnt clauses) are stored within this object. This has
an impact (among other things) on the garbage collection of inactive learnt clauses since
binary and ternary learnt clauses cannot be deleted using an activity value (which is applied
for clauses with size > 3). To avoid the deletion of valuable long learnt clauses the garbage
collection reduces the size of the learnts database by only one quarter and is therefore invoked
more frequently. During the garbage collection the learnts database is split in two pieces by
applying a variant of the linear median algorithm1 not to waste time with sorting the learnts
database at each call.

Activity values Many decisions in SApperloT are based on activity values like the VSIDS
heuristic [11] and the garbage collection of learnt clauses. Also during the minimisation of
learnt clauses [1, 14, 13] literals are ordered regarding their activity values. SApperloT-hrp
uses the activity of clauses and variables even more extensive. To get the same results on
different machines and with different optimization levels of the compiler we implemented a
representation of activity values, as it is also done in PicoSAT [2].
Activity values are implemented as (restricted) fractions where the denominator is always a
power of some predefined constant. Let v = n/d be any activity value with d = ck. The main
operations done with activity related values are addition and multiplication. Since the results

1It is implemented in the function nth element of the standard template library
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of both operations will have a denominator ck′
with some value k′ the constant c can be

omitted and just kept implicitly. For the above value v our data structure will just store the
values n and k. This allows for storing very small numbers within a few bits. Since activity
values are only used for relative comparison with each other small values are completely
sufficient.
We use 16 bits for the nominator and 16 bits for the denominator for the activity values of
variables and clauses. c is set to 128. Choosing, for instance, the reciprocal of the decaying
factor as r := 135/128 and an initial activity addend as a := 1/12865530 guarantees more than
6 million decay and add operations (s+=a; a*=r;) without having to perform an expensive
decay of all activity values (worst case). Using the double size for activity values reduces
expensive decay operations practically completely.

Preprocessing SApperloT does not perform any preprocessing on the input formula. In-
stead the solver has two features to simplify an instance during the solving process. At the
first decision level always both polarities of a decision variable d are propagated. If there is
a variable u that is assigned by unit propagation in both cases then either a unit clause is
learnt (if u was assigned the same value twice) or two binary clauses can be learnt if they are
not already contained in the formula [9, 8].
Moreover, after each period of 15 restarts asymmetric branching is applied for all clauses
below average length. This helps to further shrink short clauses in order to prune the search
space.

2 SApperloT-hrp – a hybrid version with reference points

Our motivation behind SApperloT-hrp is to develop a solver that utilises more information
during the solving process and we intend to extend the solver by incorporating more structural
information. The three-phase approach realised by the submitted version of SApperloT-hrp
can be sketched as follows:

|base| Within this phase usual conflict-driven Sat-solving is applied. The solver gathers infor-
mation about which clauses occur most frequently in conflicting assignments. Thus, we
hold activity values for all clauses. If the solver cannot find a solution within a certain
number of conflicts a subset P ⊆ C of clauses is initialised holding the most active
clauses.

|pcl| If P is a proper subset of C the solver aims to compute a model that satisfies all clauses
in P . If a model is found the solver continues with the third phase. If P contains all
clauses of C or if no model can be found within a certain number of conflicts the solver
restarts (after simplification of the formula) with the first phase again. Obviously, if
the clauses in P are unsatisfiable we conclude unsatisfiability of the entire formula.

|rp| If the solver enters this phase a model M is known that satisfies all clauses in P . This
model is taken as a reference point for a variant of the DMRP approach [6, 7]. Thus,
the solver tries to modify M so that all clauses in C are satisfied. If there are still some
unsatisfied clauses U ⊂ C after a certain number of conflicts a new set P is initialised:
The new set P contains all clauses of U and the most active clauses of C. Also the size
of P is remarkably increased and the solver continues with the second phase.
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As already shown in [5] hybrid approaches can improve the performance of Sat-solvers. In
SApperloT-hrp it seems that alternating the two phases |pcl| and |rp| gives the solver a quite
good direction to find a solution for satisfiable instances or to resolve an empty clause if a for-
mula is unsatisfiable. We first implemented an approximation of the break-count of variables
as a basis for decisions in the DMRP approach. However, experiments showed that a fast
and lazy implementation of the make-count of variables clearly outperforms the break-count
approximation. We also achieved good speed-ups by optimising the data-structures to realise
delta as defined in [7].
The current version of SApperloT-hrp already performs quite well on many families of in-
stances. However, there are many parameters and magic constants that still have to be figured
out by experiments.
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