
CoPAn User-Guide

Stephan Kottler, Christian Zielke, Paul Seitz, Michael Kaufmann

University of Tübingen, Germany

1 Working with CoPAn

CoPAn is a Java tool to analyse CDCL SAT solvers. It allows the user for an in-
depth analysis of conflicts and the process of creating learnt clauses. Particularly
we focus on isomorphic patterns within the resolution operation for different
conflicts. Common proof logging output of any CDCL solver can be adapted to
configure the analysis of CoPAn in multiple ways.

1.1 The Input

CoPAn requires a special input, containing the following files for a solver run of
one instance:

– A *.clses file containing all clauses of the original formula in addition to all
learnt clauses. This file may also contain information about the (possibly)
deleted learnt clauses. Additional key-value pairs can be used to add user-
defined properties to clauses as shown in Figure 1.

– A *.confl file containing all learnt conflicts with the clauses that cause the
specific reasoning. An example is given in Figure 2.

Both files can be produced by common CDCL solvers with only small changes
in the source code and should be named identically (excluding the file ending).

4: -84 112 116 b 1 l 1

7: -45 108 190 b 1

3: -54 -131 158 l 2 b 7

1: -118 -165 -175 196

GC<7> 4 3

Figure 1. Example for a *.clses input file.

A line within the file (Figure 1) either states a single clause or a run of the
garbage collector that deleted a subset of clauses. If the line represents a clause,
it starts with an integer as identifier, followed by the list of literals defining the
clause. After the last literal of the clause, additional properties of the clause can



be added using a pair of a single character and a numerical value. The single
character is the identifier (key) of the additional value and has to be defined in
the .config file used in CoPAn.
If the line represents a run of the garbage collector it starts with ’GC’, followed
by the ID of the last clause (written in angle brackets) that was learnt before
the call to the garbage collector. The remaining line lists all deleted clauses,
identified by their IDs (separated by space characters).
In this example the clause with identifier ’3’ contains three literals, caused a
backjump by seven levels (b 7) and has an LBD value of 2 (l 2). The last line of
the shown excerpt of a *.clses file denotes that after clause ’7’ has been learnt,
the garbage collector deleted the clauses ’4’ and ’3’ from the data base.

90 553 792 176 858 :859

545 710 :860

145 219 :861

700 295 861 495 403 155 :862

Figure 2. Example for a *.confl input file.

Each line within the file (Figure 2) represents one conflict. It starts with
the list of clause identifiers (as specified in the .clses file). This list contains all
clauses that cause a conflict via a sequence of resolutions. The integer after the
colon states the ID of the clause which is learnt by this conflict.
In this example the clause with ID ’861’ is learnt due to a resolution of clauses
’145’ and ’219’.

If a user chooses to log and analyze additional properties for clauses the
properties have to be defined in a *.config file for CoPAn. An example for such a
file is shown in Figure 3. The purpose of an extra *.config file is to keep log files
as small as possible by simultaneously having understandable property names
for the GUI.

;this is an example for a .config file

b 0 backjump

l 0 LBD

Figure 3. Example for a *.config file.

2



A line within the file (Figure 3) represents a key, that can be added for any
defined clause in the *.clses file, as anticipated in Figure 1. Any line starts with
a single character that identifies the key, followed by the default value and an
understandable name for the property. All three information are separated by
a single space character, therefore the name is prohibited to contain any other
space characters. The default value is used for every clause, that does not specify
a value for this particular key.

1.2 How to install CoPAn

After downloading CoPAn from http://algo.inf.uni-tuebingen.de/?site=

forschung/sat/CoPAn, the package has to be extracted to any directory.

1.3 Preprocessing the input

Before CoPAn can be used to analyse resolution patterns, a preprocessing of the
input files (generated by preceding solver runs) is required to create the external
data structures. The bulk of computation is done at this stage to enable quick
computations when working with the main tool.
The preprocessing of two files (inputfilename.clses and inputfilename.confl)
can be started by using the command

java -jar CoPAn-preprocess.jar inputfilename.confl

It is also possible to process all pairs of *.clses and *.confl files within a
directory inputdir at once by the command:

java -jar CoPAn-preprocess.jar inputdir

By default the resulting files, an inputfilename.db and an inputfilename.lg

will be created in the same directory as the input files.

1.4 Using the GUI tool

With the following command the GUI application of CoPAn can be started:

java -jar CoPAn-GUI.jar

After having started the program a user may open any computed *.db file (File
- Open). All information about one solver run for the chosen instance is kept in
this preprocessed file. The CoPAn GUI only allows for a single *.db file to be
loaded at any time.
Once a *.db file is loaded a user may explore the whole set of conflicts that
occurred during the execution of the SAT solver for this instance (Figure 4).
The left hand side of the main frame shows the Conflict List where all conflicts
matching a particular filter are listed. Right after loading a *.db file no filter
is active. By activating one filter and setting the corresponding ranges to a
minimum and maximum value the query hits can be tailored to one’s needs.
Here is a brief explanation of the filters and their meanings:

3



Figure 4. Main view of the CoPAn GUI. A conflict with 24 clauses is selected.

– Conflict index Conflicts in the *.confl file were indexed according to their
appearance in the file.

– Num. of clauses Number of clauses used for resolution to create the learnt
clause.

– Res. clause size Number of literals in the learnt clause.

– Possible Subsumptions Number of possible subsumptions of all clauses
(learnt and original ones) done by the learnt clause.

– Subsumption a. Deletion Number of possible subsumptions that could
have been done by the learnt clause after it was deleted by the garbage
collector. Therefore only learnt clauses that were added to the formula after
the deletion time are candidates for a subsumption.

– Possible Self-Subsumption Number of possible self-subsumptions of all
clauses (learnt and original ones) done by the learnt clause.

– Self-Subsumptions a. Deletion Analogous to Subsumption a. Dele-
tion

– Life Time The life time of a learnt clause C is defined by the amount of
learnt clauses that were learnt in between creation and destruction of C.

– Could be learnt earlier If a learnt clause Ci subsumes a clause Cj that
was learnt earlier, this filter checks whether or not the conflict of Ci contains
clauses that were learnt in between the creation of of Ci and Cj . If the
conflict of Ci uses no new information, the solver executed a bad behavior,
since it could have learnt a better clause than Cj (because Ci subsumes Cj)
at the same time. Values are 0 or 1.

4



– Intersection 1000 Counts the number of learnt clauses Ci that occur 1000
conflicts before and behind the current one Cx iff both learnt clauses Ci and
Cx have at least 0.8 ∗ size of Ci literals in common.

– Clashing Graph Shows all conflicts with an isomorphic clashing graph.
The clashing graph identifier is set by the isomorphism algorithm.

– Res. subsumes Confl. Checks whether the learnt clause subsumes the
conflicting clause which caused the conflict in the solver run (1 or 0).

– Backjump / LBD User-defined filters as configured in the *.db file.

The Conflict List can be used to focus the analysis on a subset of clauses. It
also provides the possibility to copy the filtered conflicts (or a subset of selected
conflicts) to the so-called Custom List. Conflicts in the Custom List can
further be limited by sequences of filter applications that can be invoked via a
pop-up menu that appears after a right click within the Custom List.
Activating one conflict from the Custom List or Conflict List causes the
visualization of the corresponding clashing graph, implication graph or both,
depending on the settings in View - Layout.
Three more panels in the main frame show statistical information about the
selected conflict, its learnt clause, and the currently marked clause in the clashing
graph. The values should be self-explanatory.

1.5 Working without a GUI

The batch version of CoPAn (’CoPAn-analyser’) may be more convenient if
the same analysis has to me made for several files or if queries are permanently
adapted within a longer in-depth analysis. Any sequence of filters on a particular
set of precomputed *.db files can be processed by the analyser tool. Since the
bulk of computation is done during preprocessing queries are handled quickly.
The analyser tool handles the following parameters at invocation:

java -jar CoPAn-analyser.jar <path> <regex> <howmany> <attribute

constraints...>

The parameters have the following meaning:

– <path> Directory with preprocessed solver runs (contains *.db files).
– <regex> Java regular expression to restrict the analysis to those files in the

directory that match the expression. The wildcard ’.*’ selects all files.
– <howmany> Upper bound for the number of matches to be written out.
– <attribute> Attribute to be written out after the analysis. The complete

list is given in Figure 5.
– <constraints> List of constraints to filter the conflicts. If more than one

constraint is specified only those conflicts are considered that fulfill the in-
tersection of all constraints.

The following line would analyse and print the clashing graph pattern of all
conflicts that contain more than 4 clauses for all instances in ’yourDir’. Only the
top most 500 patterns will be printed:

5



java -jar CoPAn-analyser.jar "yourDir" ".*" "500" "ClashingGraph

NumberOfClauses>4"

The list of possible attributes is shown in Figure 5. It is analogous to the list of
filters that can be used in the GUI version.

ClashingGraph Pattern of clashing graph

NumberOfClauses Number of clauses in the conflict

ResolutionClauseSize Number of literals in learnt clause

ResSubsumesConflict The learnt clause subsumes the conflict clause

PossibleSubsumptions Number of possible subsumptions by the learnt clause

SubsumptionDeletion Number of possible subsumptions after the

deletion of the learnt clause

PossibleSelf-Subsumption Analogous to PossibleSubsumption

Self-SubsumtionDeletion Analogous to SubsumptionDeletion

LifeTime Number of conflicts between creation

and deletion of a clause

CouldBeLearnedEarlier Consideres a learnt clause Ci that subsumes

an older clause Cj. Checks whether the creation

of Ci uses clauses that were learnt in between the

creation of Cj and Ci (analogous to the GUI filter).

If not the clause could have been learnt earlier.

Figure 5. List of possible attributes to be used in constraints.

1.6 Final Remarks

The downloadable package contains the binaries of CoPAn. The source is not
available for public download due to licence restrictions of the obfuscated graph
drawing library1. For first examinations the package also contains the solver out-
put of our solver SApperloT2 for two small SAT instances. Moreover, an addi-
tional package that contains the solver output of twenty more instances can also
be downloaded from http://algo.inf.uni-tuebingen.de/?site=forschung/

sat/CoPAn.

1 http://docs.yworks.com/yfiles/doc/api/index.html
2 http://algo.inf.uni-tuebingen.de/?site=forschung/sat/SApperloT

6


