Übungsblatt 10: Zufallsstichproben und Parameterschätzung

- 1. Welches sind die zwei zentralen Eigenschaften einer Zufallsstichprobe?
- 2. Für eine Zufallsvariable X gilt in der Grundgesamtheit $E(X) = \mu$ und $Var(X) = \sigma^2$. Aus der Grundgesamtheit wird eine Zufallsstichprobe der Größe n gezogen.
 - 2.1 Zeigen Sie, daß für das arithmetische Mittel der n Stichprobenvariablen $X_1, X_2, ..., X_n$ gilt $E(\bar{X}) = \mu$
 - 2.2 Zeigen Sie, daß $Var(\bar{X}) = \frac{\sigma^2}{n}$.
 - 2.3 Beweisen Sie das schwache Gesetz der großen Zahlen, d.h. daß $\lim_{n\to\infty} P(\left| \overline{X} \mu \right| \le \epsilon) = 1$ für beliebige $\epsilon > 0$

Hinweis:
$$P(|X - \mu| \le \varepsilon) \ge 1 - \frac{\sigma^2}{\varepsilon^2}$$
 mit $E(X) = \mu$ und $Var(X) = \sigma^2$ (Tschebyschev'sche Ungleichung)

- 2.4 Interpretieren Sie diese Resultate und Ihre Implikationen für die Schätzung von $E(X) = \mu$ auf der Basis einer Zufallsstichprobe.
- 3. Was besagt der Zentrale Grenzwertsatz?
- 4. Illustrieren Sie graphisch einen verzerrten und einen unverzerrten Schätzer für einen Grundgesamtheitsparameter θ.
- 5. Illustrieren Sie graphisch einen konsistenten Schätzer für einen Grundgesamtheitsparameter θ.
- 6. Nehmen Sie an, es existieren zwei alternative Schätzer $\hat{\theta}_1$, $\hat{\theta}_2$ für einen Parameter θ . Beide Schätzer sind unverzerrt, aber $\hat{\theta}_1$ ist effizienter als $\hat{\theta}_2$. Illustrieren Sie dies mit einer Graphik.
- 7. Zerlegen Sie den Mittleren Quadratischen Fehler (MQF) einer Schätzfunktion in seine Komponenten Bias und Varianz.
- 8. Erläutern Sie mit einer Graphik den möglichen Trade-Off von Bias und Varianz einer Schätzfunktion (2 Schätzer). Verständnisfrage: Wieso hat eine Schätzfunktion eine Varianz, bzw. warum stellt sie eine Zufallsvariable dar?
- 9. Wir nehmen an, in der Grundgesamtheit folgt die Zufallsvariable X einer Poissonverteilung mit Parameter λ. Schlagen Sie einen Momentenschätzer für den Parameter λ vor. Was benötigen Sie für Ihre Schätzung? Gibt es noch weitere Momentenschätzer?
- 10. Wir nehmen an, in der Grundgesamtheit ist die Zufallsvariable X exponentialverteilt mit Parameter λ . Schlagen Sie einen Momentenschätzer für den Parameter λ vor. Begründen

Sie Ihre Wahl.

- 11. Annahmen wie 9: Leiten sie den Maximum Likelihood Schätzer für den Parameter λ der Poissonverteilung her.
- 12. Annahmen wie 10: Leiten Sie den Maximum Likelihood Schätzer für den Parameter λ der Exponentialverteilung her.