25 Easy Pieces in MATHSTAT

1. Write the expectation of a random variable (r.v.) $Z, E(Z)$, extensively
a) for a discrete random variable
b) for a continuous random variable
2. $\operatorname{Var}(Z)$ can be written as $E(Y)$. What is Y ?
3. Write $\operatorname{Var}(Z)$ extensively
a) for a discrete random variable
b) for a continuous random variable
4. What does the cumulative density function or cumulative distribution function (c.d.f.) tell you?
$F_{X}(x)=$
5. X is a continuous r.v.. How are the c.d.f. $F_{X}(x)$ and the density function (d.f.) $f_{X}(x)$ related?
6. $\operatorname{Cov}(X, Y)$ can be written as $E(Z)$. What is Z ?
7. Write $\operatorname{Cov}(X, Y)$ extensively for X and Y
a) as discrete r.v.s.
b) as continuous r.v.s.
8. Express $E_{X Y}(X Y)$ as a function of $\operatorname{Cov}(X, Y)$
9. Write $E_{X Y}(X Y)$ extensively for X and Y
a) as discrete r.v.s.
b) as continuous r.v.s.
10. $g(X)$ denotes a measurable function of the r.v. X (like e.g. $\left.X^{2}, \ln (X)\right)$. Write extensively $E(g(X))$ for the continuous r.v. X
11. X and Y are cont. r.v.s.. $Z=g(X, Y)$ is a measurable function. Write extensively $E(g(X, Y))$
12. X and Y are cont. r.v.s.. What does the joint c.d.f. $F_{X Y}(x, y)$ tell you? Write the c.d.f. extensively. What does the joint p.d.f. $f_{X Y}(x, y)$ tell you? (discrete case)
13. How are $F_{X Y}(x, y)$ and $f_{X Y}(x, y)$ (joint density) related? (X and Y are cont. r.v.s.)
14. If X and Y are independent:
$F_{X Y}(x, y)=$ $f_{X Y}(x, y)=$
15. If X and Y are independent:
$E_{X Y}(X \cdot Y)=$
$\operatorname{Cov}(X, Y)=$
16. If X and Y are independent:
$E_{X Y}(h(X) * g(Y))=$
17. $E_{X Y}(X+Y)=$
$E_{X Y Z}(X+Y+Z)=$
$\operatorname{Var}(X+Y)=$
18. Write extensively for X and Y as discrete r.v.s. and X and Y as continuous r.v.s.
$f_{X \mid Y}(X \mid Y=y)$
$E_{X \mid Y}(X \mid Y=y)$
$E_{X \mid Y}\left(X^{2} \mid Y=y\right)$
19. $E(a X)=$
$\operatorname{Var}(a X)=$
(a is a nonrandom scalar)
20. For $\underline{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{\prime}$
$E(\underline{X})=\mu, \mu=$?
$\operatorname{Var}(\underline{X})=\Sigma, \Sigma=?$
$A=\left[\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ \vdots & \vdots & & \vdots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right]$
(A is a nonrandom matrix)
$\underline{Z}=A * \underline{X}$
$E(\underline{Z})=$
$\operatorname{Var}(\underline{Z})=$
21. $Y=a+b * X$
$E(Y)=$
$E(Y \mid X=x)=$
22. Given joint density $f_{X Y}(x, y)$. How do you get $f_{X}(x)$ and $f_{Y}(y)$?
a) as discrete r.v.s.
b) as continuous r.v.s.
23. Under which circumstances can you get $f_{X Y}(x, y)$ from $f_{X}(x)$ and $f_{Y}(y)$?
24. X and Y are jointly normally distributed

$$
\binom{X}{Y} \sim B V N\left(\mu_{X}, \mu_{Y}, \sigma_{X}^{2}, \sigma_{Y}^{2}, \rho_{X Y}\right)
$$

What is the relation of parameters and moments?
$X \sim$
$Y \sim$
$X \mid(Y=y)$
$Y \mid(X=x)$
$E(X \mid Y=y)=$
$\operatorname{Var}(X \mid Y=y)=$
25. X, Y and Z are normally distributed. $W=a * X+b * Y+c * Z \sim$
How is W distributed?

