
Getting Started with Serial and Parallel MATLAB on bwGRiD

CONFIGURATION

 Download either bwgrid.remote.r2014b.zip (Windows) or

bwgrid.remote.r2014b.tar (Linux/Mac)

 For Windows users, unzip the download and place the contents into %matlab%\toolbox\local. If

you don’t have permissions, then place the contents in the folder returned by userpath (for

example My Documents\MATLAB or Documents\MATLAB).

 For Linux users, untar the download and place the contents into $matlab/toolbox/local

 Start MATLAB. Configure MATLAB to run parallel jobs on the bwGRiD clusters by calling

configCluster.

 For each cluster (e.g. kit, tuebingen), configCluster only needs to be called once per

version of MATLAB (e.g. R2014b, R2015a)

CREDENTIALS

The first time a user submits a job to the cluster, the user will be prompted for their username

The user will then be prompted whether to supply a password or a private key

If the user chooses a private key, the user will be prompted for the location of the file. Both the

username and private key are stored with MATLAB so that they are not prompted for it at a later time.

If using a private key, the user may also be prompted if the key requires a passphrase.

SERIAL JOBS

Use the batch command to submit asynchronous jobs to the cluster. The batch command will return a

job object which is used to access the output of the submitted job. See the example below and see the

MATLAB documentation for more help on batch.

Note: In the example below, wait is used to ensure that the job has completed before requesting results.

In regular use, one would not use wait, since a job might take an elongated period of time, and the

MATLAB session can be used for other work while the submitted job executes.

To retrieve a list of currently running or completed jobs, call parcluster to retrieve the cluster

object. The cluster object stores an array of jobs that were run, are running, or are queued to run. This

allows us to fetch the results of completed jobs. Retrieve and view the list of jobs as shown below.

Once we’ve identified the job we want, we can retrieve the results as we’ve done previously. If the job

produces an error, we can call the getDebugLog method to view the error log file. The error log can

be lengthy and is not shown here. The example below will retrieve the results of job #3.

NOTE: fetchOutputs is used to retrieve function output arguments. Data that has been written to

files on the cluster needs be retrieved directly from the file system.

PARALLEL JOBS

Users can also submit parallel workflows with batch. Let’s use the following example for a parallel job.

We’ll use the batch command again, but since we’re running a parallel job, we’ll also specify a MATLAB

Pool.

The job ran in 5.43 seconds using eight workers. Note that these jobs will always request N+1 CPU

cores, since one worker is required to manage the batch job and pool of workers. For example, a job

that needs eight workers will consume nine CPU cores.

We’ll run the same simulation, but increase the Pool size. Note, for some applications, there will be a

diminishing return when allocating too many workers. This time, to retrieve the results at a later time,

we’ll keep track of the job ID. We can also query for when the cluster may run the job by calling

showStart.

Once we have a handle to the cluster, we’ll call the findJob method to search for the job with the

specified job ID.

The job now runs in 3.1 seconds using 16 workers. Run code with different numbers of workers to

determine the ideal number to use.

Alternatively, to retrieve job results via a graphical user interface, use the Job Monitor (Parallel >

Monitor Jobs).

CONFIGURING JOBS on KIT

Prior to submitting the job, we can specify:

 Email Notification (when the job is running, exiting, or aborting)

 Memory Usage per Core,

 Procs Per Node

 Queue Name

 Reservation, and

 Wall time

Specification is done with ClusterInfo. The ClusterInfo class supports tab completion to ease

recollection of method names.

CONFIGURING JOBS on TUEBINGEN

Prior to submitting the job, we can specify:

 Email Notification (when the job is running, exiting, or aborting)

 Memory Usage per Core,

 Procs Per Node

 Queue Name, and

 Wall time

Specification is done with ClusterInfo. The ClusterInfo class supports tab completion to ease

recollection of method names.

Any parameters set with ClusterInfo will be persistent both between jobs and MATLAB sessions.

To see the values of the current configuration options, call the state method. To clear a value, assign

the property the appropriate empty value (‘’, [], or false).

TO LEARN MORE

To learn more about the MATLAB Parallel Computing Toolbox, check out these resources:

 Parallel Computing Coding Examples

 Parallel Computing Documentation

 Parallel Computing Overview

 Parallel Computing Tutorials

 Parallel Computing Videos

 Parallel Computing Webinars

http://www.mathworks.com/products/parallel-computing/code-examples.html
http://www.mathworks.com/help/distcomp/index.html
http://www.mathworks.com/products/parallel-computing/index.htmlhttp:/www.mathworks.com/products/parallel-computing/index.html
http://www.mathworks.com/products/parallel-computing/tutorials.html
http://www.mathworks.com/products/parallel-computing/videos.html
http://www.mathworks.com/products/parallel-computing/webinars.html

