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Abstract

In this Part III essay, a class of functions is introduced that includes harmonic
functions on a domain in the complex plane. It is proved that the spectral radius
– composed with an analytic function on a domain in C with values in a Banach
algebra – belongs to that class of functions (Vesentini’s theorem). Applications of
Vesentini’s theorem such as analytic variation of isolated spectral elements, auto-
matic continuity of algebra homomorphisms and spectral addtivity are studied.
These results are applied to the Banach algebra of all compact endomorphisms
on a Hilbert space.



Introduction

The main purpose of this essay is to study the methods used when applying results
originating from the theory of subharmonic functions to Banach algebra theory.
The first chapter introduces subharmonic functions and studies their properties,
the second one is mainly concerned with proving the upper semi-continuity of the
spectral function and Vesentini’s theorem, often referred to as “folklore results”
of Banach algebra theory. The third chapter studies various applications of these
theorems, whereas the fourth one is concerned with demonstrating the use of the
obtained results (and those proven in the appendix) with concrete examples. In
the appendix, some more results concerning the spectral function are studied and
another example for subharmonic methods is presented.

Throughout the essay, a Banach algebra is understood to be non-trivial and
over the complex field. This restriction permits the use of analytic methods which
would otherwise be inefficient. The following notations are used: A ⊂o B means
A is an open subset of B, A ⊂c B means A is a closed subset of B. Also, all
analytic functions are defined on domains of the complex plane so that attention
need not be paid to issues of connectedness when applying various maximum
principles.

The topic is a truely beautiful area of mathematics and demonstrates, in my
opinion, the way in which different branches of mathematics should be combined
to lead to a deeper understanding. As an introduction, I would like to quote from
B.S. Yadav’s paper on the algebraization of toplogy [30]:

It is aphoristically said that mathematics consists mainly of three ba-
sic disciplines: algebra, analysis and geometry, and the rest is their
applications. However, in todays mathematics, the interplay of those
disciplines is so intertwined and they are blended into one another to
such an extent that it has become almost impossible to draw a line
of demarcation between them. Each intrudes very often on territory
of the others to give rise to new disciplines and in turn gets greatly
stimulated in its own growth. Applications of topology (which is es-
sentially analysis) to algebra and geometry have changed their entire
fabric beyond recognition.
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This essay was written under the supervision of Dr. G.R. Allan whom I here-
with would like to thank. It is mainly based on the book “A Primer on Spectral
Theory” by B. Aupetit and on the paper “Schurian Algebras and Spectral Addi-
tivity” by L.A. Harris & R.V. Kadison.1

The reader is assumed to be familiar with complex analysis, elementary
algebra, Lebesgue integration theory, functional analysis and Banach algebra
theory. As references covering these areas I mainly used the books by Alh-
fors [1], Rudin [26] and Fischer & Lieb [12], Cameron [7], Alt [4], Rudin [27] and
Heuser [16], as well as Dales [10].

For convenience of the reader, all results using representation theory are col-
lected in the appendix. All other chapters do not assume any prior knowledge
about representations.

1Typeset by TEX.
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I Subharmonic Functions

In this chapter we will briefly study the properties of subharmonic functions.
For a more detailed approach the reader might want to consult Hayman and
Kennedy [15], Ahlfors [1], Conway [8], or Rudin [26]. We will also investigate the
relationship between subharmonic, analytic, and harmonic functions.

The notion of subharmonicity first arose in potential theory where it is used
to solve the Dirichlet problem for the Laplace equation.2 Ahlfors [1] describes
subharmonic functions as a generalisation of convex functions in that they lie
“below” all (suitable) harmonic functions (in 2D)3 just as a convex function lies
“below” all (suitable) linear functions (in 1D)4.

1 Semi-continuous Functions

First of all, we define semi-continuous functions:

Definition 1.1 Let X be a metric space. Then u : X → R ∪ {−∞} is said
to be upper semi-continuous or usc iff the set {x ∈ X |u(x) < α} ⊂o X for
all real numbers α. u is called lower semi-continuous or lsc iff −u is upper
semi-continuous. Following Růžička in [25], we define the epigraph of u, epi(u),
by

epi(u) = {(x, α) ∈ X × R |u(x) ≤ α}.

Clearly, every continuous function from a metric space into R is both upper
and lower semi-continuous. The converse also holds true which can be shown by
means of the following lemma (which is straight-forward to prove):

Lemma 1.2 Let X be a metric space, u : X → R ∪ {−∞}. Then the following
are equivalent:

(i) u is upper semi-continuous

(ii) xn→n x inX ⇒ u(x) ≥ lim supn→∞ u(xn)

(iii) ∀x ∈ X : u(x) ≥ lim supy→x u(y) := infε>0 supd(x,y)<ε u(y)

The equivalent holds for lower semi-continuous functions.

Next, we will see how the epigraph of a semi-continuous function behaves.

2For details see [1] (p. 237ff).
3see paragraph I.3
4Note that the harmonic functions in 1D are exactly the linear functions.
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Lemma 1.3 Let X be a metric space, u : X → R∪{−∞}. Then epi(u) ⊂c X×R
iff u is lower semi-continuous and convex iff u is convex.

Proof. Let epi(u) be closed. Let α ∈ R, Sα := {x ∈ X |u(x) > α}, x0 ∈ Sα,
xn→n x0 inX. Then by 1.2, α < u(x0) ≤ lim infn→∞ u(xn) and consequently
xn ∈ Sα ∀n ≥ n0. Hence Sα is open and u is lsc.
Now suppose that u is lsc. Let (xn, αn)→n (x, α) inX×R, (xn, αn) ∈ epi(u). Then
u(x) ≤ lim infn→∞ u(xn) ≤ limn→∞ αn = α. Thus (x, α) ∈ epi(u) and epi(u) is
closed. The rest of the proof is left to the reader. �

Lemma 1.4 Upper semi-continuous functions defined on the same metric space
X have the following properties:

(i) u1,u2 usc ⇒ u1 + u2 and u1 ∨ u2 := max(u1, u2) are usc

(ii) u usc, λ ≥ 0 ⇒ λu is usc

(iii) (uλ)λ∈Λ usc ⇒ infλ∈Λ uλ is usc

(iv) (un)n∈N usc and un→n u locally uniformly on X ⇒ u is usc

(v) u usc and φ : R → R continuous and increasing ⇒ φ ◦ u is usc
(where φ(−∞) := limx→−∞ φ(x) ∈ R ∪ {−∞})

(vi) u usc ⇒ u is a Borel function

(vii) If X is compact and u usc then u is bounded above on X and attains its
upper bound.

(viii) If X is compact, u usc and µ a bounded, regular Borel measure on X then∫
X
u dµ is well defined as an element of R ∪ {−∞}.

The equivalent holds for lower semi-continuous functions.

Proof. We will exemplarily prove (iv), (vi) and (vii).

(iv) Let x ∈ X, K ⊂ X compact s.t. un ⇒ u on K. Let ε > 0, δ > 0 s.t. the
open disc B(x; ε) ⊂ K. ⇒ ∃n0 ∈ N : supy∈K |un(y) − u(y)| < δ ∀n ≥ n0.
Thus for all n ≥ n0 and all y ∈ B(x; ε):

u(x)− u(y) = (u(x)− un(x)) + (un(x)− un(y)) + (un(y)− u(y))

> −δ + (un(x)− un(y))− δ

⇒ sup
d(x,y)<ε

un(y) + u(x) ≥ −2δ + sup
d(x,y)<ε

u(y) + un(x)

⇒ lim sup
y→x

un(y) + u(x) ≥ −2δ + lim sup
y→x

u(y) + un(x)

≥ −2δ + lim sup
y→x

u(y) + lim sup
y→x

un(y)

⇒ u(x) ≥ −2δ + lim sup
y→x

u(y)
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Since δ was arbitrary, u is upper semi-continuous.

(vi) The sets of the form [−∞, α) and (α,∞) (α ∈ R) form a basis of the topology
on R∪ {−∞}. Their preimages under u are Aα := {x ∈ X |u(x) < α} and
Bα := {x ∈ X |α < u(x)} respectively. Since u is usc, Aα is open. Also,
Bα = (

⋂∞
n=1Aα+ 1

n
)c and hence is Borel measurable. Therefore, u is a Borel

function.

(vii) For α ∈ R let Aα := {x ∈ X |u(x) < α}, then Aα is open andX =
⋃

α∈RAα.
Whence since X is compact it is covered by a finite union of Aαi

. Since the
Aαi

are ordered by inclusion, X = Aαi0
, so u is bounded above by αi0 . Now

either u ≡ −∞ and thus attains its supremum or αi0 ∈ R. In this case, let
αn ↗ αi0 and observe that for each n there exist xn ∈ X \ Aαn . But X is
compact so wlog xn→n x ∈ X. Thus, αi0 ≥ u(x) ≥ lim supn→∞ u(xn) ≥ αi0

which concludes the proof. �

Examples

1. Let F ⊂ X be open/closed. Then its characteristic function χF is lower/
upper semi-continuous.

2. Let u : X → R be bounded. Then its modulus of continuity5

ωu(x) := inf
ε>0

(sup{|u(x1)−u(x2)| | dist(x1, x) < ε and dist(x2, x) < ε}), (x ∈ X)

is upper semi-continuous.

3. Let u : X → R ∪ {−∞} be bounded above, u∗(x) := lim supy→x u(y) its
upper regularisation. Then u∗ is upper semi-continuous.

The link to Banach algebra theory comes from upper semi-continuity proper-
ties of the spectrum and its radius which will be studied in chapter II.

Sketches:

5The modulus of continuity is a tool from approximation theory, see [23].
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2 Subharmonic Functions

Let D be a domain in C. Some of the results in this section can be reformulated
for superharmonic functions, but this would take us a bridge to far.

Definition 2.1 u : D → R ∪ {−∞} is said to satisfy the mean inequality iff
∀z0 ∈ D ∀r > 0 s.t.B(z0; r) ⊂ D:

u(z0) ≤
1

2π

2π∫
0

u(z0 + reiθ) dθ

(in particular, the integral must be defined). u : D → R ∪ {−∞} is called
subharmonic or sh iff it is upper semi-continuous and satisfies the mean inequality.
It is called superharmonic, if −u is subharmonic.

Remarks The integral in the mean inequality is well defined for any upper
semi-continuous function defined on D by lemma 1.4. The name subharmonic
will become clear in lemma 3.6. The name mean inequality arises from the fact
that the integral on the right-hand side is the mean of u on the circle C(z0; r).

Standard examples arise from the fact that the absolute value of an analytic
function on D and its logarithm are subharmonic:

Proposition 2.2 Let f : D → C be analytic. Then |f | and log |f | are sh.

Proof. Since f is continuous, |f | is upper semi-continuous. log is continuous
and increasing hence by lemma 1.4 log |f | also is upper semi-continuous. Cauchy’s
integral formula now shows that |f | is subharmonic. It can be shown6 by means
of Jensen’s formula7 that log |f | satisfies the mean inequality. �

Lemma 2.3 Subharmonic functions defined on the same domain D ⊂ C have
the following properties:

(i) u1,u2 sh ⇒ u1 + u2 and u1 ∨ u2 are sh

(ii) u sh, λ ≥ 0 ⇒ λu is sh

(iii) (uλ)λ∈Λ sh, u := supuλ usc ⇒ u is sh

(iv) (un)n∈N sh and un↓nu pointwise on D ⇒ u is sh

(v) (un)n∈N sh and un→n u locally uniformly on D ⇒ u is sh

6see [3] (p. 37)
7see [26] (p. 368)
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(vi) u sh and φ : R → R convex and increasing ⇒ φ ◦ u is sh
(where again φ(−∞) := limx→−∞ φ(x) ∈ R ∪ {−∞})

Special case of (vi): (φ = exp)
Let u : D → R ∪ {−∞} with log u subharmonic. Then u is subharmonic.

Proof. We will only prove (iv) and (vi), the others being straight-forward.

(iv) By lemma 1.4, u is usc. Also, u(z0) ≤ un(z0) ≤ 1
2π

∫ 2π

0
un(z0 + reiθ) dθ.

Hence by Lebesgue’s theorem on monotone convergence, u satisfies the
mean inequality since u1 is bounded above on [0, 2π] by lemma 1.4.

(vi) φ is convex and increasing ⇒ φ is continuous ⇒ φ ◦ u is usc and Borel
measurable by lemma 1.4. Jensen’s convexity inequality8 ensures the mean
inequality: if µ is a Borel probability measure on a compact Hausdorff space
Ω, u ∈ L1(µ) and φ convex on an open interval including im(f \ {−∞}),
then φ(

∫
Ω
u dµ) ≤

∫
Ω
(φ ◦ u dµ) (applied to Ω = [0, 2π]). �

Lemma 2.4 Let u : D → R ∪ {−∞}. Then

(i) If u is locally integrable on D and satisfies the mean inequality, and if
its upper regularisation u∗ satisfies u∗(z) < ∞ for all z ∈ D, then u∗ is
subharmonic on D.

(ii) If u is a Borel function, bounded above, and satisfying the mean inequality,
then its upper regularisation u∗ is subharmonic and bounded above.

Proof.

(i) By example 1 on p. 3, u∗ is usc on D. u satisfies the mean inequality,

hence u(z) ≤ 1
2π

∫ 2π

0
u(z + reiθ) dθ ≤ 1

2π

∫ 2π

0
u∗(z + reiθ) dθ whenever r is

small enough. By taking the limes superior we get the result using Fatou’s
lemma and the fact that B(zn; r) ⊂ D for all sufficiently large n.

(ii) Since u is bounded above, u∗ is well defined. Let M be a bound for u, then
u∗(z) = lim supy→z u(y) ≤ lim supy→z M = M whence u∗ is bounded above.
Finally, using (i ), u∗ is subharmonic. �

Again, the link to Banach algebra theory comes from a subharmonicity prop-
erty of the spectral radius (see chapter II).

8see [26] (p. 74)
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3 Harmonic Functions

In this paragraph, we will study the relationship between harmonic and subhar-
monic functions. To this end, let D be a domain in C.

Definition 3.1 u : D → R is harmonic iff u ∈ C2(D) and ∇2u = 0 on D.
Harmonic functions are also called potential functions.

Theorem 3.2
Let u : D → R be harmonic, z0 ∈ D. Then 1

2π

∫ 2π

0
u(z0 + reiθ) dθ = const.

independent of r > 0 as long as B(zo; r) ⊂ D.

Proof. see [1] (p. 164, Theorem 22). �

Similar to the case of analytic functions we have

Theorem 3.3 (Maximum Principle for Harmonic Functions)
Let u : D → R be harmonic and u(z) ≤ u(z0) on an open neighbourhood of z0,
then u is constant.

Proof. see [1] (p. 164, Theorem 23). �

Lemma 3.4 If u is harmonic on D it is also sub- and superharmonic on D.

Proof. We prove this for an open disc ∆ ⊂ D:
u : ∆ → R is continuous so it is upper semi-continuous. One can show that u is
the real part of some analytic function f on ∆ hence by Cauchy’s theorem

u(z0) = Re(f(z0)) = Re(
1

2π

2π∫
0

f(z0 + reiθ) dθ) =
1

2π

2π∫
0

u(z0 + reiθ) dθ

for all r small enough. This shows the statement for ∆. But if B(z0; r) ⊂ D then
there exists an open disc B(z0; r) ⊂ ∆ ⊂ D and hence the statement follows for
D. Since −u also is harmonic, it follows that u is superharmonic. �

Remark The notion of subharmonicity truely generalises harmonicity. Con-
sider for example u(z) := |z|. Then u is harmonic iff 0 /∈ D but subharmonic on
all of C by proposition 2.2.
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Remark A continuous u : D → R is said to have the mean-value property iff
for each z ∈ D there is a sequence (rn)n∈N converging to zero s.t.

u(z) =
1

2π

2π∫
0

u(z + rne
iθ) dθ

for all n. Rudin proves in [26] (p. 284ff) – using the Poisson formula9 – that a
continuous function is harmonic on D iff it satisfies the mean-value property.

Now, we can show the converse of lemma 3.4:

Theorem 3.5
If u : D → R is sub- and superharmonic it is harmonic.

Proof. Clearly u is continuous. It satisfies the mean-value property since
u(z) ≤ 1

2π

∫ 2π

0
u(z + rne

iθ) dθ and −u(z) ≤ 1
2π

∫ 2π

0
(−u(z + rne

iθ)) dθ for all z ∈ D
and n ∈ N and all sequences (rn)n∈N that converge to zero. Hence, by the above
remark, u is harmonic. �

Theorem 3.6
Let u : D → R∪{−∞} be subharmonic, K ⊂ D compact, h ∈ C(D)∩C2(intK)
harmonic and satisfying u(z) ≤ h(z) on ∂K. Then u(z) ≤ h(z) on all of K.

Proof. Let v := u− h. v is subharmonic by theorem 3.4. Suppose there exists
z ∈ intK s.t. v(z) > 0. By lemma 1.4, continuity of h, and compactness of K, v
attains its maximum m on K. Hence

E := {z ∈ K | v(z) = m} = {z ∈ K | v(z) < m}c

is non-empty and compact. Let z0 ∈ ∂E and r > 0 s.t. B(z0; r) ⊂ intK but a

non-trivial subarc of C(z0; r) lies in Ec. Then v(z0) = m > 1
2π

∫ 2π

0
v(z0 + reiθ) dθ

which contradicts the subharmonicity of v. �

Remarks

1. Conway proves10 that a usc function defined on a domain in C is sh iff
for any compact K ⊂ D, h ∈ C(D) ∩ C2(intK) harmonic and satisfying
u(z) ≤ h(z) on ∂K, u(z) ≤ h(z) on all of K.

2. Theorem 3.6 can also be shown for any open U ⊂ D instead of intK.11

9This formula stems from the study of the Dirichlet problem for the Laplace equation and
can be found in Ahlforses book [1] (p. 237ff).

10in [8] (p. 221f)
11see [1] (p. 237ff)
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3. It is well-known12 that the Dirichlet problem for the Laplace equation has
a solution for all suitably smooth prescribed boundary values/domains.
Thus, theorem 3.6 can be reinterpreted to state that for every subharmonic
function u : D → R ∪ {−∞} and every (smooth) compact K ⊂ D we can
find a harmonic function h : intK → R s.t. u(z) ≤ h(z) on intK (because
∂K is compact and hence we can take the boundary values to be constantly
equal to the supremum of u on K by lemma 1.4). This explains the name
“subharmonic”.

Theorem 3.7
If u ∈ C2(D), then it is subharmonic iff ∇2u ≥ 0 on D.

Proof. Suppose first that ∇2u ≥ 0 in D. For z0 ∈ D and r sufficiently small
define N(r) := 1

2π

∫ 2π

0
u(z0 + reiθ) dθ. N is differentiable since u ∈ C2(D). Let

µ(r) := rN ′(r). Then evidently µ(0) = 0 and µ is increasing since ∇2u ≥ 0. Thus
N ′(r) ≥ 0 and consequently N(r) ≥ limr′→0N(r′) = u(z0). Since u is continuous,
is must be subharmonic on D.
Now suppose conversely that ∇2u(z0) < 0 at some point z0 ∈ D. Since ∇2u is
continuous, there is an open neighbourhood of z0 with that property. Hence µ
decreases and is negative for small r. Thus N(r) < N(0) for sufficiently small r,
i.e. u is not subharmonic, a contradiction. �

4 Useful Properties

We will now try to establish properties of subharmonic functions similar to those
studied in paragraph I.3 and to those known for analytic functions. Again, many
of the results could be restated for superharmonic functions. Let D be a domain
in C.

Definition 4.1 Let u be subharmonic on D, z ∈ D and r > 0 s.t. B(z; r) ⊂ D.
We introduce the following notation:

N(z, r, u) :=
1

2π

2π∫
0

u(z + reiθ) dθ and

M(z, r, u) := max
0≤θ≤2π

u(z + reiθ),

i.e. N(z, r, u) is the mean, M(z, r, u) is the maximum of u on the circle C(z; r).

Our first analogy is the maximum principle:

12and cited in [1] (p. 243)
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Theorem 4.2 (Maximum Principle for Subharmonic Functions)
Let U : D → R ∪ {−∞} be subharmonic. Suppose there exists z0 ∈ D s.t.
u(z) ≤ u(z0) for all z ∈ D. Then u is constant.

Proof. The set E := {z ∈ D |u(z) < u(z0)} is open since u is usc. Also, if
z1 ∈ Ec and r small enough:

u(z0) = u(z1) ≤
1

2π

2π∫
0

u(z1 + reiθ) dθ

≤ 1

2π

2π∫
0

u(z0) dθ

Hence
∫ 2π

0
u(z1 + reiθ)− u(z0) dθ = 0. Since the integrand is non-negative there

must be a set Nr of measure zero s.t. u(z0) = u(z1 + reiθ) for all θ outside Nr (r
small enough). But if u(z1 + reiθ) < u(z0) for some r (small enough) and some
θ ∈ Nr, then z1 + reiθ ∈ E hence there exists open neighbourhood of z1 + reiθ

in E, a contradiction. In consequence, B(z1; r) ⊂ Ec which shows that E is also
closed. Since D is connected and Ec non-empty, u must be constant. �

Remark In contrast to the case of harmonic functions, the conclusion would
not follow if z0 were only a local maximum, consider e.g. the function u(z) = |z|∨ 1

2

on D = B(0; 1).

Inspired by theorem 3.2 we formulate

Corollary 4.3 Let u be subharmonic on D, z0 ∈ D. Then

u(z0) = lim sup
z→z0,z 6=z0

u(z) = lim
r↘0

N(z0, r, u) = lim
r↘0

M(z0, r, u)

Proof. Clearly u(z0) ≥ lim supz→z0
u(z). But if u(z0) > lim supz→z0

u(z) then
there is r > 0 s.t. on B(z0; r) \ {z0} : u(z) < u(z0) hence by the maximum
principle u(z) = u(z0) on B(z0; r), a contradiction.
We deduce that limr↘0M(z0, r, u) = u(z0) and hence the conclusion follows from

u(z0) ≤
1

2π

2π∫
0

u(z0 + reiθ) dθ ≤M(z0, r, u)

for all r small enough. �

Corollary 4.4 Let D be a bounded domain in C and u subharmonic on D. Sup-
pose there exists a bound M s.t. lim supz→x,z∈D u(x) ≤ M for all x ∈ ∂D. Then
u is constant or u(z) < M on D. If D is unbounded, we have the same result if
additionally lim supz→∞,z∈D u(z) ≤M .
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Proof. Let M be the smallest such constant.
Suppose D is bounded. Define u(z) := M on ∂D. Then u is upper semi-
continuous and thus attains its maximum on D at z0 ∈ D. If z0 ∈ D then the
maximum principle tells us that u is constant, if zo ∈ ∂D, M = supz∈D u(z) since
lim supz→x,z∈D u(x) ≤M for all x ∈ ∂D. Whence we have the same game again:
either u is constant or it does not attain the bound M , i.e. u(z) < M ∀ z ∈ D.
The unbounded case can be handled on the Riemannian sphere. �

Without giving a proof13 we state the following theorem which relies on some
properties of mollifiers14 and the Lebesgue integral:

Theorem 4.5 (Radó’s Theorem)
Let u : D → R be subharmonic. Then there exists an increasing sequence of
open and D-relatively compact sets Dn ⊂ D s.t.

⋃∞
n=1Dn = D, as well as a

decreasing sequence of subharmonic functions un : Dn → R with un ∈ C∞(Dn)
and u(z) = limn→∞ un(z) on D.

Theorem 4.6 (Hadamard’s Three Circle Theorem)
Let u : D → R be subharmonic and z0 ∈ D. Then r 7→ M(z0, r, u) is an

increasing, convex function of log r (as long as B(zo; r) ⊂ D).

Proof. Set M(r) := M(z0, r, u). By corollary 4.3 we have

lim
r→0

M(r) = u(0) ≤M(r) for all r > 0 with B(z0; r) ⊂ D.

By theorem 4.2 we conclude M(r) = max{u(z) | |z| ≤ r}, i.e., M is increasing.
Let 0 < r1 < r < r2 and B(z0; r2) ⊂ D. Define Mj := M(rj) (j = 1, 2) and

h(z) :=
log |z| − log r1
log r2 − log r1

M2 +
log r2 − log |z|
log r2 − log r1

M1.

If |z| = rj, h(z) = Mj and since the coefficients add up to one, h is a log r-
dependent convex combination of M1,M2. −h is harmonic if |z| 6= 0 and hence
sh by lemma 3.4. Apply theorem 4.2 to the annulus {z ∈ C | r1 ≤ |z| ≤ r2} and
note that on its boundary u − h ≤ 0. Hence M(r) ≤ h(r) in the annulus. Now
set t := log r, tj := log rj and define α := t2−t

t2−t1
. Then h(r) = αM1 + (1− α)M2,

t = αt1 + (1− α)t2, hence

M(r) = M(exp(αt1 + (1− α)t2))

≤ h(exp(αt1 + (1− α)t2))

= αM1 + (1− α)M2

i.e. M is convex as a function of log r. �

13A proof can be found in [8] (p. 226f).
14For some properties of mollifiers see [25].
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Motivated by Liouville’s theorem for analytic functions we claim

Theorem 4.7 (Liouville’s Theorem for Subharmonic Functions)
If u is subharmonic on the whole complex plane and lim infr→∞

M(0,r,u)
log r

= 0, then
u is constant.

Proof. If u is not identically zero, M(0, et0 , u) > −∞ for some t0 ∈ R. Since
t 7→ M(0, et, u) > −∞ is convex and increasing by Hadamard’s three circle
theorem 4.6, we have

0 ≤ M(0, et, u)−M(0, et0 , u)

t− t0

≤ lim
t→∞

M(0, et, u)−M(0, et0 , u)

t− t0

= lim
t→∞

M(0, et, u)

t

= lim
r→∞

M(0, r, u)

log r

= 0

So we have M(0, et, u) = M(0, et0 , u) for all t ≥ t0. Hence by monotony of
t 7→M(0, et, u) > −∞ and theorem 4.2 u must be constant on C. �

Corollary 4.8 If u is subharmonic and bounded above on C it must be constant.

Proof. cf. definition of M(0, r, u). �

Proposition 2.2 can be generalised, too:

Theorem 4.9
If D ⊂o C, f : D → R is analytic, f(D) ⊂ U ⊂o C, u : U → R subharmonic,
then u ◦ f is subharmonic on D.

Proof. We only prove this in the case u ∈ C2(D). A general proof can be found
in [15] (p. 53f) or, for the reader familiar with the theory of distributions, in [8]
(p. 220ff). By the rules of calculus and the real and imaginary parts of f are
harmonic we have ∇2(u ◦ f) = (∇2u) ◦ f · [(Re fx)

2 + (Im fy)
2] ≥ 0 by theorem

3.7 since u is sh. This implies that u ◦ f is sh. �
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II Vesentini’s Theorem

In the preceding chapter, we studied subharmonic functions defined on domains
in the complex plane. Our only motivation – apart from the beauty of the sub-
ject, that is – was the promise that we would soon be able to formulate an upper
semi-continuity property of the spectrum as well as a subharmonicity property
of the spectral radius. This promise will be delivered on in this chapter at the
heart of which lies Vesentini’s theorem.

This means we can give a (partial) answer to the main question in spectral
theory15: “What can be said about the spectral function x 7→ Spx as x varies in
a Banach algebra A?”

More details can be found in Aupetit [5]. Applications of Vesentini’s theorem
will be studied in the next chapter. Let A be a Banach algebra with identity
throughout this chapter, D a domain in C.

1 Semi-continuous Multifunctions

So what can we say about the spectral function? First of all, it is multivalued.
This makes it somewhat harder to formulate any kind of continuity or even an-
alyticity properties it might have. To overcome this hurdle we need to define

Definition 1.1 Let X be a metric space. Let K(X) ⊂ P (X) be the collection of
non-empty, compact subsets of X, O(X) ⊂ P (X) the collection of all non-empty,
open subsets of X. Define the Hausdorff distance ∆ on K(X) by

∆(K1, K2) := max{ sup
z∈K2

dist(z,K1), sup
z∈K1

dist(z,K2)}.

For r > 0, K ∈ K(X) define K + r := {z ∈ X | dist(K, z) ≤ r}.
Lemma 1.2 ∆ is a metric on K(X) and K1 ⊂ K2 + ∆(K1, K2) for any two
non-empty compact K1, K2.

Proof. The proof is left to the reader. �

Sketches:

15according to Aupetit, [5] (p. 48)

12



Now, we are able to formulate a notion of continuity for multi-valued functions
with range in K(X), X a metric space: A multi-function F : Y → K(X) on
a metric space Y can be attributed any property of mappings between metric
spaces if we equip K(X) with the Hausdorff distance. Since the spectrum of each
element in a Banach algebra is compact and non-empty, we can immediately
ask questions about its continuity, uniform continuity or Lipschitz continuity, to
name but a few.

Lemma 1.3 If E ⊂ A is a cone, i.e. αE ⊂ E for all α > 0, then Sp : A→ K(C)
is uniformly continuous on E iff it is Lipschitz continuous on E.

Proof. “⇐” is clear.
“⇒” Let ε > 0 and consider the restriction of Sp to E. Then there exists δ > 0
s.t. ‖x − y‖ ≤ δ implies ∆(Spx, Sp y) ≤ ε. Let L := ε

δ
. If ‖x − y‖ = δ then

∆(Spx, Sp y) ≤ ε = Lδ = L‖x− y‖, if for α > 0 ‖x− y‖ = αδ then ‖ x
α
− y

α
‖ = δ

whence ∆(Sp x
α
, Sp y

α
) ≤ L‖ x

α
− y

α
‖. Since for all α > 0 we have Sp(αx) = α Spx

and thus ∆(α Spx, α Sp y) = α∆(Spx, Sp y) we conclude that Sp is Lipschitz
continuous with Lipschitz constant L. �

Only seldom will we be in this lucky situation though; usually the spectral
function fails to even be continuous. But it is always upper semi-continuous:

Theorem 1.4 (Semi-continuity Property of the Spectral Function)
The spectral function on a Banach algebra A is upper semi-continuous in the
sense that ∀x ∈ A∀U⊂oC with Spx $ U ∃δ > 0 : ‖x− y‖ < δ ⇒ Sp y $ U .

Proof. Suppose not. Then there exists x ∈ A, U⊂oC with Spx ⊂ U, and
∀δ > 0∃yδ ∈ A : ‖x − yδ‖ < δ but Sp yδ * U . Choose δ = 1

n
, then y 1

n
→n x.

Let λn ∈ Sp y 1
n
∩ U c. λn ∈ Sp y 1

n
⇒ |λn| ≤ ‖y 1

n
‖ ⇒ (λn) is bounded. Hence

by the Bolzano-Weierstrass theorem it converges to a limit λ (wlog). U is open,
λ ∈ U c ⇒ λ /∈ Spx, so λ1−x is invertible and hence λn 1−y 1

n
∈ G(A)∀n ≥ n0

since G(A) is open; a contradiction. �

Remark This is called usc since “being strictly included in an open set U”
can be regarded as “being bounded above”. A very general definition of upper
semi-continuity could read:

Definition 1.5 Let X be a topological space, Y, Z arbitrary spaces s.t. Y ∪ Z
is partially strictly ordered. Let f : X → Y . f is called upper semi-continuous
whenever ∀z ∈ Z : {y ∈ X | f(y) < z} ⊂o X.

13



Examples

1. Sp : A→ K(C), A a Banach algebra, Z = O(C) and Z ∪K(C) ordered by
strict inclusion (by theorem 1.4).

2. If u : D → R ∪ {−∞} with D a domain in C, then u is usc in the classical
sense iff it is usc in the sense of the above definition with Z = R and
R ∪ {−∞} strictly ordered by < as usual.

Upper semi-continuous multi-functions have nice properties:

Lemma 1.6 Let X be a topological space, f : C → R continuous, H : X → K(C)
upper semi-continuous w.r.t. inclusion and O(C). Then f ◦ H : X → K(R) is
upper semi-continuous w.r.t. inclusion and O(R).

Proof. Let U ∈ O(R). We have to show that

M := {x ∈ X | f(H(x)) $ U} ⊂o X.

To this end, let x ∈M and observe that H(x) ⊂ f−1(f(H(x))) $ f−1(U). Since
f is continuous f−1(U)⊂oC and since H is upper semi-continuous

N := {y ∈ X |H(y) $ f−1(U)} ⊂o X.

Thus, M ⊂ N ⊂o X. On the other hand, if y ∈ N we have H(y) $ f−1(U) so
also f(H(y)) $ U i.e. N = M . �

Lemma 1.7 Let X be a topological space, H : X → K(R) upper semi-continuous
w.r.t. inclusion and O(R). Then S : X → R : x 7→ sup{H(x)} is upper semi-
continuous in the classical sense.

Proof. The proof is left to the reader. �

2 Points of Continuity or Discontinuity

of the Spectral Function

First of all, we need the following lemma concerning the spectral radius ρ(x):

Lemma 2.1 Let x ∈ A, α /∈ Spx. Then

dist(α, Spx) =
1

ρ((α 1−x)−1)

Proof. Let Sp x ⊂ Ω ⊂o C with α /∈ Ω. Then f(λ) := 1
α−λ

is analytic on Ω. By
the holomorphic functional calculus we have

ρ((α 1−x)−1) = sup{ 1

|α− λ|
|λ ∈ Spx} =

1

inf{|α− λ| |λ ∈ Spx}
=

1

dist(α, Spx)
.

�
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Although in general one cannot prove more than semi-continuity, there are
cases where the spectral function behaves nicely, for example:

Theorem 2.2
Let x, y ∈ A commute. Then Sp y ⊂ Spx+ ρ(x− y) and consequently

∆(Spx, Sp y) ≤ ρ(x− y) ≤ ‖x− y‖.
In particular, if A is commutative, Sp is uniformly continuous on A.

Proof. Let xy = yx. Suppose the inclusion were false, i.e. exists α ∈ Sp y s.t.
dist(α, Spx) > ρ(x − y). This implies ρ((α 1−x)−1)ρ(x − y) < 1 by lemma 2.1.
Thus ρ((α 1−x)−1(x− y)) < 1 since (α 1−x)−1 and x− y commute. But

α 1−y = (α 1−x) + (x− y) = (α 1−x)[1+(α 1−x)−1(x− y)],

a contradiction. We then swap the roles of x and y to get the inclusion the other
way round, this gives us the inequality. �

In the finite dimensional case the situation is also quite nice:

Proposition 2.3 Let A = Mn(C) be the Banach algebra of all complex n × n-
matrices normed as linear mappings on Cn. Then the spectral radius is continuous
on A, but not uniformly continuous.

Proof. The continuity of ρ can be proved by the implicit function theorem or by
Newburgh’s corollary 2.7. ρ is not even uniformly continuous if n = 2: Suppose
it were. Define

ak :=

(
k2 1

k2(k − k2) k − k2

)
, bk :=

(
k2 1

k2(k − k2) k − k2 − 1
k

)
Then Sp(ak) = {0, k} and Sp(bk) = {k

2
− 1

2k
±

√
1
4
k2 − 1

2
+ 1

4k2 + k}. M2(C) is a

cone, hence by lemma 1.3 it is Lipschitz continuous, i.e. ∃L > 0 :

∆(Sp ak, Sp bk) ≤ L‖ak − bk‖ =
L

k
.

But ∆(Sp ak, Sp bk) ≥ 1
2

if k is big enough, a contradiction. �

Remarks

• This can be generalised to LC(X), the Banach algebra of all compact en-
domorphisms of a Banach space X (with adjoint identity), see corollary
2.7.

• It can also be shown that the spectral function is uniformly continuous on
the subset of L(H) – the Banach algebra of all linear endomorphisms of
a Hilbert space H – consisting of all self-adjoint operators16, and that the
spectral function is continuous at all normal operators, see [9].

16see [5] (Theorem 6.2.1)
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Next, we will study an example where the spectral function behaves badly:

Example 2.4 (Kakutani) The spectral function is not continuous on L(H),
where H is any infinite dimensional Hilbert space.

Proof. Let V ⊂ H be an infinite dimesional, closed, separable subspace. Let
(en)n∈N be an orthonormal basis of V . Observe that ∀n ∈ N there exist unique
k, l ∈ N s.t. n = 2k(2l+ 1); define an := e−k ≥ 0. Let T : H → H be zero on V ⊥

and the weighted shift with weight (an)n∈N on V. T is linear and continuous by
the theorem on projections in Hilbert space. For each k ∈ N define Tk ∈ L(H)
by zero on V ⊥ and by

Tken :=

{
0 n = 2k(2l + 1) for some l

anen+1 otherwise

on V . Then Tk is nilpotent with order at most 2k+1 (easy to check), and it follows
that SpTk = {0}. Also

(T − Tk)en =

{
e−ken+1 if n ≡ 2k mod 2k+1

0 otherwise.

⇒ ‖T − Tk‖ ≤ e−k ∀k ∈ N ⇒ Tk⇒kT on H, i.e. Tk→kT in L(H). But
Aupetit [5] (p. 49, Example) shows that SpT 6= {0}. Thus, the spectral function
is discontinuous at T . �

Now for positive results:

Theorem 2.5 (Kuratowski)
Let A be a Banach algebra, then C := {a ∈ A | Sp is continuous at a} is a dense
Gδ-set, i.e. a countable intersection of open sets.

Proof. The proof is quite technical and can be found in [5] (p. 50f). We just
give a sketch:

• The algebra B = CR(C) of continuous real-valued functions on C is sepa-
rable. Let (fn)n∈N be a dense sequence in B.

• Use theorem 1.4 and lemmas 1.6, 1.7 to show that f̂n(x) := sup{fn(Spx)}
is usc in the classical sense (x ∈ A, n ∈ N).

• Show that Sp is continuous at a ∈ A iff f̂n is continuous at a for all n ∈ N.
(using the density of (fn)n∈N and Urysohn’s lemma)

• Convince yourself that the sets Cn of points of continuity of f̂n are dense
Gδ-sets in A.
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• Use Baire’s Category theorem to prove that the set C = ∩∞n=1Cn is a dense
Gδ-set in A. �

Theorem 2.6 (Newburgh)
Let A be a Banach algebra, x ∈ A, U ∩ V = ∅, U, V ⊂o C, Spx ⊂ U ∪ V and
Spx ∩ U 6= ∅. Then there exists r > 0 s.t. ‖x− y‖ < r implies Sp y ∩ U 6= ∅.

Proof. Wlog V 6= ∅, otherwise the conclusion follows from the upper semi-
continuity of Sp (theorem 1.4). Now suppose the theorem were false, i.e. for all
r > 0∃yr ∈ A with ‖x − y‖ < r but Sp yr ∩ U = ∅. Set r = 1

n
and observe that

y 1
n
→n x in A. Since U, V are disjoint the function

f : U ∪ V → {0, 1} : x 7→

{
0 x ∈ V
1 x ∈ U

is analytic. By holomorphic functional calculus we have f(y 1
n
) = 0 for all n ≥ n0

and thus by continuity of f f(x) = 0. Thus {0} = Sp f(x) = f(Spx) 3 1 since
Spx ∩ U 6= ∅, a contradiction. �

Remarks

1. This means that the spectrum does not “retract” from components under
small variations of λ.

2. A topological space is called totally disconnected iff all its components are
singletons. For example, every discrete space is totally disconnected. But
not every tot. disconnected space is discrete, consider e.g. { 1

n
|n ∈ N}∪{0}.

Corollary 2.7 (Newburgh) If the spectrum of a ∈ A is totally disconnected,
then Sp is continuous at a. This applies in particular to all elements with finite
or countable spectra.

Proof. Let ε > 0. Sp a is totally disconnected and compact and hence included
in the union U of a finite number of disjoint open balls B(zi; εi), i = 1, ..., n with
εi < ε that all meet Sp a. By upper semi-continuity (theorem 1.4) there exists
r0 > 0 s.t. ‖x − a‖ < r0 implies Spx ⊂ U . Now apply Newburgh’s theorem
subsequently to B(zi; εi), i = 1, ..., n and their respective complements in U to
get ri > 0 s.t. ‖x − a‖ < ri implies dist(λ, Spx) < εi for all λ ∈ Sp a. Hence
‖x− a‖ < min{ri | i = 0, ..., n} implies ∆(Sp a, Spx) < ε. �

Remark Recall the remark on p. 15 which says that the spectral function is
continuous on LC(X). This is now an easy consequence of Newburgh’s Corollary
since the spectrum of any compact endomorphism on a Banach space is at most
countable by the theorem of Riesz and Schauder17. The equivalent follows for
Mn(C) as stated in proposition 2.3.

17see, e.g. [4] (p. 363ff)
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3 A Maximum Principle for the Spectral Function

In the 1960’s, A. Brown and R.G. Douglas considered the problem of formulating
a maximum principle for the multi-function Sp ◦f , where f is analytic.18 This
question was solved by E. Vesentini in 1968-70 with the help of subharmonic
functions. In this section we will prove his theorem and combine it with our
previous results to get the desired maximum principle.

Lemma 3.1 Let X be a complex Banach space, D a domain in C, f : D → X
analytic. Then ‖f(·)‖ and log ‖f(·)‖ are subharmonic on D.

Proof. By lemma I.2.3 we only need to prove the second claim. log ‖f(·)‖ is
continuous as a function into R ∪ {−∞} and hence upper semi-continuous. Let
B ⊂ X∗ be the closed unit ball of X∗. Then, since log is increasing, we have (for
all r > 0 sufficiently small):

log ‖f(λ)‖ = sup
χ∈B

(log |χ ◦ f(λ)|)

≤ N(λ, r, sup
χ∈B

(log |χ(f(·))|))

= N(λ, r, log ‖f(·)‖)

since χ ◦ f is analytic and by lemmas I.2.2 and I.2.3. �

Theorem 3.2 (Vesentini)
Let D be a domain in C, A a complex Banach algebra with identity, f : D → A
analytic. Then ρ ◦ f and log ◦ρ ◦ f are subharmonic on D.

Proof. Again, the first follows from the second by lemma I.2.3. Define

φn(λ) := log ‖f(λ)2n‖
1

2n =
1

2n
log ‖f(λ)2n‖ (n ∈ N, λ ∈ D, )

inspired by the Beurling-Gelfand formula ρ(x) = limn→∞ ‖xn‖ 1
n (x ∈ A). Since

f 2n
is analytic the above lemma tells us that φn is subharmonic for all n. We

also know that φn ↘ log(ρ ◦ f) pointwise as n→∞ since

φn+1(λ) =
1

2n+1
log ‖f(λ)2n+1‖

≤ 1

2n+1
log(‖f(λ)2n‖‖f(λ)2n‖)

=
1

2n
log ‖f(λ)2n‖ = φn(λ)

Thus, by lemma I.2.3, log ◦ρ ◦ f is subharmonic. �

18says Aupetit in [5] (p. 52)
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Vesentini’s theorem has many important applications some of which will be
presented in chapter III. The interested reader can find more applications in
Aupetit [5] (chapters III §4 and VI). Before we start with the applications though
we need to convince ourselves that Vesentini’s theorem really provides a maximum
principle for the multi-function Sp ◦f , where f is analytic.

Lemma 3.3 Let f : D → A be analytic, α /∈ Sp f(λ)∀λ ∈ D. Then the functions
λ 7→ 1

dist(α,Sp f(λ))
and λ 7→ − log dist(α, Sp f(λ)) are subharmonic on D.

Proof. By lemma 2.1 dist(α, Sp f(λ)) = 1
ρ((α1−f(λ))−1)

. Now apply both cases

of Vesentini’s theorem to λ 7→ (α 1−f(λ))−1 which is analytic. �

Remark If the complement of A ⊂ C has exactly one unbounded component U ,
we write Â := U c. The spectrum of a Banach algebra element has this property,
see [2].

Theorem 3.4 (Spectral Maximum Theorem)
Let f : D → A be analytic and suppose ∃λ0 ∈ D s.t. Sp f(λ) ⊂ Sp f(λ0) for all
λ ∈ D. Then ∂ Sp f(λ0) ⊂ ∂ Sp f(λ) and Sp f(λ0)̂ = Sp f(λ)̂ for all λ ∈ D. In
particular if Sp f(λ0) has no interior points, or if Sp f(λ) does not seperate the
plane for all λ ∈ D, then Sp ◦f is constant.

Proof. Suppose that z0 ∈ ∂ Sp f(λ0) and z0 /∈ ∂ Sp f(λ1) for some λ1 ∈ D. Of
course z0 ca not be an interior point of Sp f(λ1) because in that case it would also
be interior to Sp f(λ0). Hence there must exist r > 0 with B(z0; r)∩Sp f(λ1) = ∅.
Since z0 lies on the boundary of Sp f(λ0) there exists z1 exterior to Sp f(λ0) with
|z1 − z0| < r

3
. Then by geometric considerations dist(z1, Sp f(λ0)) < r

3
and

dist(z1, Sp f(λ1)) >
2r
3
. But by hypothesis Sp f(λ) ⊂ Sp f(λ0) and in conse-

quence dist(z1, Sp f(λ)) ≥ dist(z1, Sp f(λ0)) for all λ ∈ D since z1 lies in the
exterior of the latter. So by lemma 3.3 and the maximum principle for subhar-
monic functions I.4.2 we get dist(z1, Sp f(λ)) = dist(z1, Sp f(λ0)) for all λ ∈ D
which leads to a contradiction at λ1.

Now let U(λ) be the unbounded component of C \ Sp f(λ). Then clearly
U(λ0) ⊂ U(λ). Suppose they were not equal. Then there is z ∈ U(λ)∩ Sp f(λ0)̂.
Let z be connected to infinity by an arc Γ included in U(λ). Since Sp f(λ0) is
compact and Γ∩ Sp f(λ0) 6= ∅ there must be z0 ∈ ∂ Sp f(λ0)∩ Γ by the interme-
diate value theorem. But by the above, ∂ Sp f(λ0) ⊂ ∂ Sp f(λ), a contradiction
to z0 ∈ U(λ).

In particular, if Sp f(λ0) has no interior points, then so has not Sp f(λ) for
any λ ∈ D. Thus ∂ Sp f(λ) = Sp f(λ) ⊂ Sp f(λ0) = ∂ Sp f(λ0) ⊂ ∂ Sp f(λ) by
the above and the spectral function must be constant.
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If the set Sp f(λ) does not separate the complex plane for any λ ∈ D, i.e.,
their respective complements are connected, then we can complete the proof by
noting that Sp f(λ) = Sp f(λ)̂ = Sp f(λ0)̂ = Sp f(λ0). �

As in the single-valued case, we can derive

Theorem 3.5 (Liouville’s Spectral Theorem)
If f : C → A is entire, C ⊂ C bounded and Sp f(λ) ⊂ C ∀λ ∈ C, then Sp f(λ)̂ is
constant.

Proof. The proof relies heavily on Liouville’s theorem for subharmonic func-
tions and can be found in [5]. �

Remark Note that we only claimed that Sp f(λ)̂ be constant, no claim has been
made as to the constancy of Sp f(λ). This has the simple reason that we can
produce counter-examples that satisfy all the assumptions we made but do not
have constant spectrum, even in the endomorphism algebras on Hilbert spaces
as common as l2(Z) - the space of all square-summable double infinite sequences
- see [5].

4 Spectral Diameters

In this paragraph, we will encounter the spectral diameter - the subharmonicity
of which will prove to be a useful tool for using subharmonic methods in Banach
algebra theory. It is a consequence of Vesentini’s theorem 3.2.

Definition 4.1 Let X be a metric space, n ∈ N, K ∈ K(X). The n-th diameter
of K is defined by

δn(K) := max

( ∏
1≤i<j≤n+1

|λi − λj|
) 2

n(n+1)

.

the maximum being taken over all possible values λ1, . . . λn+1 ∈ K, δ(K) being a
shorthand for δ1(K). If A, as always, is a Banach algebra with identity, x ∈ A,
then the n-th diameter of its spectrum is called the n-th spectral diameter of x.
(notation: δn(x) := δn(Spx))

Lemma 4.2 δn(x) ≤ δ(x)∀x ∈ A, ∀n ∈ N.

Proof. |{(i, j) | 1 ≤ i < j ≤ n+ 1}| =
∑n

k=1 k = n(n+1)
2

for all n ∈ N. Thus

δn(x) = max

( ∏
1≤i<j≤n+1

|λi − λj|
) 2

n(n+1)

≤ max

( ∏
1≤i<j≤n+1

δ(x)

) 2
n(n+1)

= max δ(x) by the above �
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Lemma 4.3 Let f : D → A be analytic. Define

u(λ) := max{Reu |u ∈ Sp f(λ)}
v(λ) := min{Re v | v ∈ Sp f(λ)}

Then u(λ) = log ρ(ef(λ)) and v(λ) = − log ρ(e−f(λ)) and u,−v are subharmonic.

Proof. v(λ) = −max{Re v | v ∈ Sp(−f(λ))} hence it is enough to show that
u fulfils the claims. Set g(z) := ez; then we deduce by holomorphic functional
calculus since log is increasing:

log ρ(ex) = log max{|eu| |u ∈ Spx}
= max{log |eu| |u ∈ Spx}
= max{log eRe u |u ∈ Spx}
= max{Reu |u ∈ Spx}

for all x ∈ A. Now apply Vesentini’s theorem. �

Theorem 4.4 (Diametric Vesentini)
If f : D → A is analytic, then δn ◦ f is subharmonic for all n ∈ N.

Proof. We only prove this for n = 1 the other cases being much more com-
plicated19. Let x ∈ A, |α| = 1. By lemma 4.3, the length of the projec-
tion of Sp x on {tα | t ∈ R} is given by log ρ(eαx) + log ρ(e−αx). This im-
plies δ(x) = max{log ρ(eαx) + log ρ(e−αx) |α ∈ C, |α| = 1}. By lemma 4.3,
λ 7→ log ρ(eαf(λ)) + log ρ(e−αf(λ)) is subharmonic and whence satisfies the mean
inequality. Thus, by lemma I.2.3, δ ◦ f satisfies the mean inequality. From theo-
rem 1.4 and lemma 1.7 it follows that δ ◦ f is subharmonic. �

Sketches:

19says Aupetit in [5] (p. 62). A proof can be found in this very book, theorems 7.1.3 and
7.1.13.
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III Subharmonicity and Banach Algebras

Now that Vesentini’s theorem II.3.2 has become familiar to us, we will address
several of its applications to Banach algebra theory. As mentioned before, the
interested reader is referred to Aupetit’s book [5] (chapters III §4 and VI) for a
more complete survey.

The applications we will discuss in this essay are spectral variation and au-
tomatic continuity (in this chapter), characterisation of commutative Banach
algebras and spectral additivity (in the appendix), as well as several special re-
sults for matrix or operator algebras (in chapter IV).

As always, let A be a Banach algebra with identity and D a domain in C,
f : D → A analytic.

1 Spectral Variation

In the preceding chapter we adressed the question of variation of the spectral
function and the spectral radius if composed with an analytic function. We came
to the conclusions that

(1) The spectral function Sp is upper semi-continuous. (II.1.4)

(2) Sp does not “retract from components” (Newburgh, II.2.6)

(3) ρ ◦ f and δ ◦ f are sh. (Vesentini, II.3.2 and diametric Vesentini, II.4.4)

(4) Sp ◦f satisfies a maximum principle. (spectral maximum principle, II.3.4)

(5) f entire and Sp ◦f “bounded” ⇒ f constant. (spectral Liouville, II.3.5)

In this paragraph, we want to study the variation of the spectrum in more
depth and see e.g. that isolated spectral values vary analytically.

Our first result concerns spectral elements in the periphery:

Definition 1.1 Let A be a Banach algebra, x ∈ A, λ ∈ Spx with |λ| = ρ(x).
Then λ is called an element of the peripherical spectrum Spp(x) of x.

Sketches:
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Theorem 1.2 (Peripherical Maximum Principle)
Suppose there exists λ0 ∈ D s.t. ρ(f(λ)) ≤ ρ(f(λ0)) for all λ ∈ D. Then the
peripherical spectrum of f , Spp(f(·)), is constant.

Proof. ρ ◦ f must be constant by the maximum principle for sh functions I.4.2.
If it is constantly zero, we are done since spectra are non-empty. So let us
consider the case ρ(f(λ)) =: c > 0. Suppose there were λ1, λ2 ∈ D and z ∈ D
with z ∈ Sp(f(λ1)), z /∈ Sp(f(λ2)) and |z| = c. Since for fixed a > 0 the function
g : D → A : λ 7→ f(λ) + az 1 is analytic, Vesentini’s theorem II.3.2 tells us that
ρ ◦ g is subharmonic. Thus the inclusion

Sp g(λ) ⊂ B(az; c) ⊂ B(0; (a+ 1)z)

is valid for all λ ∈ D (the second inclusion follows from a geometrical argument).
This implies ρ(g(λ2)) < (a+ 1)c and ρ(g(λ)) ≤ (a+ 1)c = ρ(g(λ1)) for all λ ∈ D,
contradicting the maximum priniple. �

Corollary 1.3 Suppose Sp f(λ) ⊂ R for all λ ∈ D. Then Sp ◦f is constant.

Proof. Let λ0 ∈ D be fixed and E := {λ ∈ D | Sp f(λ) = Sp f(λ0)}. We will
show that E is open and closed and are then done by connectedness of D. To
this end let λ1 ∈ E. Replacing f by λ 7→ αf(λ) + β 1 with appropriate complex
numbers α and β we can assume that Sp f(λ1) ⊂ (0, 2π) and thus by upper semi-
continuity of the spectral function (theorem II.1.4) there is a neighbourhood N1 of
λ1 with Sp f(λ) ⊂ (0, 2π) for all λ ∈ N1. By the holomorphic functional calculus
we know that g : D → A : λ 7→ eif(λ) is analytic and has its spectrum contained
in the circle C(0; 1). Thus Sp g(λ) = Spp g(λ) and ρ(g(λ)) = 1 = ρ(g(λ1)) for all
λ ∈ D, hence by the above theorem the spectrum of g must be constant. But,
again by holomorphic functional calculus,

ei Sp f(λ) = Sp g(λ) = Sp g(λ1) = ei Sp f(λ1).

Since x 7→ eix is injective on (0, 2π) we conlude N1 ⊂ E and hence E must be
open. Leading the same argument with λ2 ∈ Ec we conclude that E is also closed.
Actually, we could reformulate this proof to show that Sp ◦f is locally constant
and hence constant. �

Remark In the case A = C this leads to the following theorem which is well-
known in complex analysis: If f : D → A is analytic and has its range included
in R, then f is constant.

Liouville’s spectral theorem II.3.5 can be strengthened in the following way:

Theorem 1.4
Let f : C → A be analytic. Then either Sp f(λ)̂ is constant or

⋃
λ∈C Sp f(λ)̂ is

dense in C.
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Proof. A proof involving polynomially convex subsets of C can be found in [5]
(p. 57). �

Remarks One can define the notion of capacity of a subset of the complex plane
and prove that the latter case in the above theorem implies that C\

⋃
λ∈C Sp f(λ)̂

is a Gδ-set having zero capacity. This would be a bridge to far though for this
essay. The interested reader can find the definition of capacity in [5] (appendix,
p. 177ff) and a proof for the above statement in chapter VII of the same work.

We will now embark on showing that, in some sense, the composite of the
spectral function with an analytic function is also analytic.

Lemma 1.5 Let 0 ≤ r ≤ s, 0 < θ2 − θ1 < 2π, f : D → A analytic. Let
Ω = {z ∈ C | |z| > s, θ1 < arg z < θ2}. Suppose that Sp f(λ) ⊂ D := Ω ∪ B(0; r)
for all λ ∈ D. Define

u(λ) := max{arg u |u ∈ Sp f(λ) ∩ Ω}
v(λ) := min{arg v | v ∈ Sp f(λ) ∩ Ω}

Then u,−v are subharmonic.

Proof. Again, the proof for v is similar to the one for u. Wlog Ω∩ Sp f(λ) 6= ∅
for all λ. On Ω we consider the branch of the logarithm log z = log |z| + i arg z
and define

h(z) =

{
−i log z on Ω

α on B(0; r)

where α < θ1 is fixed. Then h is analytic on D and by holomorphic functional
calculus we have

Sph(f(λ)) = h(Sp f(λ)) ⊂ {−i log z | z ∈ Sp f(λ) ∩ Ω} ∪ {α}.

So u(λ) = max{Re z | z ∈ Sph(f(λ))}. Apply now lemma II.3.3 to h ◦ f . �

Theorem 1.6
Let f : D → A be analytic and suppose that Sp f(λ) = {0, α(λ)} for all λ ∈ D,
where α : D → C. Then α is analytic on the whole of D.

Proof. We already know that α must be continuous (Newburgh’s corollary,
II.2.7). Let D′ := {λ ∈ D |α(λ) 6= 0}. Hence D′ is open. If it is empty we are
done, so suppose it is not. By Radó’s extension theorem (see [26] (p. 315)) it
is enough to show that α is analytic on D′. Let λ0 ∈ D. By continuity of α
there exists δ > 0, 0 ≤ r ≤ s, and 0 < θ2 − θ1 < 2π s.t. |λ − λ0| < δ implies
α(λ) ∈ Ω ∪ B(0; r), where Ω is defined as in the lemma. By definition of u and
v we conclude that u = v and thus “both” must be harmonic on B(λ0; δ) by
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the above lemma and theorem I.3.5. Thus, there must be an analytic function
k : B(λ0; δ) → C satisfying u = Im k. But then, taking g : B(λ0; δ) → A :
λ 7→ e−k(λ)f(λ), and observing that Sp g(λ) ⊂ R for all λ ∈ B(λ0; δ) we can use
corollary 1.3 to show that Sp g is constant on its domain of definition. Using the
equality

Sp g(λ) = e−k(λ) Sp f(λ) = e−k(λ){0, α(λ)} = {0, e−k(λ)α(λ)} = {0, C}

we conclude that α(λ) = Cek(λ) on B(λ0; δ) which shows that α is analytic at λ0.
Since λ0 was arbitrary, α must be analytic on D. �

Similarly, one can prove:

Corollary 1.7 Let f : D → A be analytic, Sp f(λ) = {α(λ)} for all λ ∈ D
where α : D → C. Then α is analytic.

Theorem 1.8
Let f : D → A be analytic and suppose that Sp f(λ) lies on the same vertical
segment for all λ ∈ D. Then there exists an analytic h : D → C and K ∈ K(R)
s.t. Sp f(λ) = h(λ) + iK.

Proof. Using the notation from lemma II.4.3 we have u = v on D and thus, by
lemma I.3.5, u is harmonic. Let h(λ) be the element of Sp f(λ) having smallest
imaginery part – this works since spectra are compact. Fix λ0 ∈ D and let δ > 0
be s.t. B(λ0; δ) ⊂ D. Since u is harmonic there is an analytic function k on
B(λ0; δ) satisfying Re k = u. Let g1 : B(λ0; δ) → A : λ 7→ −i(f(λ) − k(λ)1),
so Sp g1(λ) ⊂ R. Now we can use corollary 1.3 which tells us that Sp g1(·) is
constant. By definition of h it follows that h is analytic at λ0, so, since λ0 was
arbitrary, h must be analytic. Using the same argument with g2 : B(λ0; δ) → A :
λ 7→ −i(f(λ)− h(λ)1) we get the result. �

Motivated by the example of LC(X) which will be explained in paragraph
IV.2, we formulate:

Theorem 1.9 (Holomorphic Variation of Isolated Spectral Values)
Let f : D → A be analytic and suppose there exist λ0 ∈ D, α0 ∈ Sp f(λ0) and
positive r, δ s.t. |λ − λ0| < δ implies λ ∈ D and Sp f(λ) ∩ B(α0; r) = {α(λ)}
where α : B(λ0; δ) → C. Then α is analytic on a neighbourhood of λ0.

Proof. Assume first that Sp f(λ0) = {α0}. By upper semi-continuity of the
spectral function (theorem II.1.4) there must be δ ≥ δ′ > 0 s.t. Sp f(λ) = {α(λ)}
for all λ ∈ B(α0; δ

′). By corollary 1.7 α is analytic on B(α0; δ
′).

Now assume that {α0} $ Sp f(λ0). Again since the spectral function is usc
we have Sp f(λ)∩ ∂B(α0; r) = ∅ for all λ sufficiently close to λ0. In consequence,
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Sp f(λ0) ∩ {z ∈ C | |z − α0| > r} 6= ∅. By Newburgh’s theorem II.2.6 we can
conclude wlog that Sp f(λ) = {α(λ)} ∪ S where α(λ) ∈ B(α0; r) and S 6= ∅,
S ⊂ {z ∈ C | |z − α0| > r}. Let h : C \ C(α0; r) → C, h equal to the identity
inside the disc of radius r and equal to zero outside. Then h is analytic and by the
holomorphic functional calculus h ◦ f is well defined and Sph(f(λ)) = {0, α(λ)}
for all λ close enough to λ0. Hence the result is obtained by theorem 1.6. �

Remarks

• It is not true in general that if Sp f(λ0) contains an isolated singleton so
must Sp f(λ) for λ nearby (see first example on p. 35). Newburgh’s theorem
(II.2.6) only ensures that there will be a small component of Sp f(λ) close
to α0 if λ and λ0 are sufficiently close. The holomorphic variation theorem
only states that if there is an isolated spectral value close to α0 for all λ
close enough to λ0, then it varies analytically.

• The holomorphic variation theorem can be generalised, see chapter VII
in [5].

2 Automatic Continuity

It is a well-known fact from classical Banach algebra theory that all complete alge-
bra norms on a commutative, semi-simple Banach algebra are equivalent. In the
1950’s, I. Kaplansky conjectured that the same result is true for non-commutative
semi-simple algebras. This problem was solved in 1967 by B.E. Johnson. His
proof is based on representation theory and will thus not be treated in this essay.
It can be found in [3] (p. 34f). We will give two proofs using subharmonic meth-
ods. These proofs are due to B. Aupetit and T.J. Ransford (1989) respectively.

First of all, we give all the necessary definitions to formulate the theory:

Definition 2.1 Let A be an algebra with identity over C. Then the Jacobson
radical of A, Rad(A), is defined by

Rad(A) :=
⋂
{I ⊂ A | I is a maximal left ideal in A}

A is called semi-simple iff Rad(A) = {0}. a ∈ A is called quasi-nilpotent iff
ρ(a) = 0.

Remark It can be shown20 that

Rad(A) =
⋂
{I ⊂ A | I is a maximal right ideal in A}

20see [5] (p. 34)
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and that A/Rad(A) is semi-simple for any Banach algebra A with identity21.
The Jacobson radical is included in the set of all quasi-nilpotent elements of A22

and equals this set if A is commutative23.

Definition 2.2 Let X, Y be topological vector spaces, T : X → Y linear. The
seperating space Σ := Σ(T ) of T is defined by

Σ(T ) := {y ∈ Y | ∃xn→n 0 in X with Txn→n y in Y }.

Before we prove Johnson’s theorem which will directly lead to the verification
of his conjecture, we need to study the properties of the seperating space.

Lemma 2.3 Let X, Y be Banach spaces, T : X → Y linear. The seperating
space of T has the following properties:

(i) Σ(T ) ⊂c Y is a closed subspace

(ii) If X, Y are Banach algebras and T is an algebra homomorphism whose
image T (X) is dense in Y , then Σ(T ) ⊂c Y is a closed 2-sided ideal.

(iii) T is continuous if and only if Σ(T ) = {0}

Proof. The algebraic properties are straight-forward to prove. We will just
consider the topological claims.

(i) The closedness of Σ follows from a diagonal sequence argument.

(iii) T is continuous iff it is continuous at 0. The claim then follows from the
closed graph theorem. �

Lemma 2.4 Let A,B be Banach algebras, T : A → B an algebra-with-identity
homomorphism. Then ρB(Ta) ≤ ρA(a) for all a ∈ A. If S : A → B is an
arbitrary mapping satisfying ρB(Sa) ≤ ρA(a) for all a ∈ A, we call S spectrally
decreasing.

Proof. Let a ∈ A, λ /∈ SpA(a) and xλ the inverse of λ1−a. Then Txλ is an
inverse of λ1−Ta and thus λ /∈ SpB(Ta). The conclusion is immediate. �

Theorem 2.5 (Johnson)
Let A,B be Banach algebras with identity, B semi-simple, T : A→ B a surjective
algebra-with-identity homomorphism. Then T is continuous.

The first proof we present is due to B. Aupetit.
21see [5] (p. 35)
22see [5] (p. 36)
23see [26] (p. 443)
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Proof. We will show that Σ(T ) = {0} and are then done by lemma 2.3. By
the same lemma, we know that Σ is a closed 2-sided ideal in B. If we were able
to show that Σ is quasi-nilpotent, we could argue that Σ must be included in
the Jacobson radical Rad(B) of B24 and whence since B is semi-simple Σ = {0}.
This is what we are now proving:

Let z ∈ Σ, xn ∈ A, xn→n 0 in A, Txn→n z in B. Since T is surjective there
is x ∈ A with Tx = z. Then λxn + x→n x in A and λTxn + Tx→n (λ+ 1)z in B
for all λ ∈ C. Define φn(λ) := ρB(λTxn + Tx) and ψn(λ) := ρA(λxn + x) for all
n ∈ N, λ ∈ C. By the above lemma ρB(Ta) ≤ ρA(a) for all a ∈ A and hence
φn(λ) ≤ ψn(λ) for all λ ∈ C. Consequently,

φ(λ) := lim sup
n→∞

φn(λ) ≤ lim sup
n→∞

ψn(λ) ≤ ρA(x)

since ρA is upper semi-continuous. By Vesentini’s theorem II.3.2 φn is subhar-
monic on C, hence by lemma I.1.4 φ : C → R∪{−∞} is a Borel function. Recall
that φ(λ) ≤ ρA(x) for all complex λ, i.e., φ is bounded above. We will subse-
quently show that φ satisfies the mean inequality and conclude that its upper
regularisation φ∗ is subharmonic and bounded above by lemma I.2.4. By the
maximum principle for subharmonic functions I.4.2, φ∗ must then be constant.
So ρB(z) = φ(0) ≤ φ∗(0) = φ∗(λ) for all complex λ. On the other hand,

φ(λ) = lim sup
n→∞

φn(λ) ≤ ρB((λ+ 1)z) = |λ+ 1|ρB(z)

by upper semi-continuity of ρB. Thus, we have

0 ≤ φ∗(λ) ≤ lim sup
µ→λ

|µ+ 1|ρB(z) = |λ+ 1|ρB(z)

and whence φ∗(λ) = φ∗(−1) = 0 for all λ ∈ C. Since ρB(z) = φ(0) ≤ φ∗(0) = 0
we have shown that z = Tx is quasi-nilpotent.

It remains to be shown that φ satisfies the mean inequality. Let λ0 ∈ C, r > 0.
Since φn is subharmonic we can conclude by Fatou’s lemma that

φ(λ0) = lim sup
n→∞

φn(λ0)

≤ lim sup
n→∞

N(λ0, r, φn)

≤ N(λ0, r, φ),

i.e., φ satisfies the mean inequality. �

24see [3] (p. 33, Corollary 4.1.6)

28



Corollary 2.6 (Johnson’s Uniqueness of Norm Theorem) Let A be a uni-
tal Banach algebra w.r.t. ‖·‖; |·| an arbitrary Banach algebra norm on A. Suppose
further that A is semi-simple. Then both norms are equivalent on A.

Proof. Take A to be normed with | · |, B := A to be normed with ‖ · ‖. Then
B is unital and semi-simple and T : A→ B : a 7→ a is a surjective algebra homo-
morphism. Hence by Johnson’s theorem 2.5 T must be continuous. Considering
T as a linear, continuous, and surjective mapping between two Banach spaces
and applying the open mapping theorem we secure the continuity of its inverse.
Thus T is a Banach algebra isomorphism and the conclusion follows. �

Remarks

• It is remarkable that the purely algebraic notion of semi-simplicity has such
severe topological consequences.

• Remembering that there always is an equivalent unital norm on a Banach
algebra, we can reinterpret our result to state that any two Banach algebra
norms on a semisimple algebra must be equivalent.

• Note that we can always apply this reformulated theorem to A/Rad(A)
since this algebra is semi-simple.

We will now study the proof of T.J. Ransford. He actually proved a slightly
more general form of Johnson’s theorem which does not assume that T is an
algebra homomorphism but only that it be linear and spectrally decreasing. By
lemma 2.4 any algebra-with-identity homomorphism is spectrally decreasing and
thus Ransford’s version of Johnson’s theorem is stronger than the one presented
in theorem 2.5. To keep things simple, we will only prove Ransford’s version in
the case when T is an algebra-with-identity-homomorphism.

In the following, we will prove two lemmata that will lead to the announced
result. The first one is a step in the proof of Dini’s theorem25, the second one
is due to Ransford. Ransford’s lemma is a special case of the Hadamard’s three
circle theorem I.4.6 although no explicit use of subharmonicity occurs.

Lemma 2.7 (Dini) Let X be a compact metric space, (fn)n∈N a decreasing se-
quence of non-negative, continuous, R-valued functions on X, f(x) = limn→∞ fn(x)
for all x ∈ X. Then

sup
x∈X

fn(x)→n sup
x∈X

f(x).

25Thanks to Dr. Aupetit for bringing the proof of both the theorem and the lemma of Dini
to my attention. Dini’s theorem can be found in [10] (p. 789).
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Proof. By lemma I.1.4 f is usc, and since fn ≥ f it is bounded above. Also, it
is clear that

∞ > sn+1 := sup
x∈X

fn+1(x) ≥ sup
x∈X

fn(x) ≥ sup
x∈X

f(x) =: s ≥ 0

for all n ∈ N since X is compact. (sn)n∈N is a decreasing sequence that is bounded
below and is hence convergent to a limit s′. Clearly s′ ≥ s. To show the converse,
let ε > 0 and fix x ∈ X. Since fn(x)→n f(x) there is nx ∈ N s.t. for all n ≥ nx we
have fn(x) ≤ f(x) + ε ≤ s + ε. Since fn is continuous, there is a neighbourhood
B(x; rx) s.t. fn(y) ≤ s+ ε for all y ∈ B(x; rx). The open balls B(x; rx) cover X.
Hence since X is compact it is covered by a finite union of them. Take n0 to be
the maximum of the finitely many numbers nx and note that fn(x) ≤ s + ε for
all x ∈ X and n ≥ n0. Hence s′ ≤ s and the conclusion follows. �

Remark Note that, unlike Dini’s theorem itself, there is no hypothesis about
the continuity of f ; but the conditions do necessarily imply that f is upper semi-
continuous.

Lemma 2.8 (Ransford) Let A be a Banach algebra, p ∈ A[z] – the set of all
polynomials in a complex variable z with coefficients in A –, R > 1. Then

ρ(p(1))2 ≤ sup
|z|=R

ρ(p(z)) sup
|z|= 1

R

ρ(p(z)).

Proof. Let q ∈ A[z]. By the Hahn-Banach theorem there is χ ∈ A∗ with
‖χ‖ = 1 and χ(q(1)) = ‖q(1)‖. Set F := χ ◦ q, then F ∈ C[z]. Applying
the maximum modulus theorem to the analytic function z 7→ F (z)F (1

z
) on the

annulus {z ∈ C | 1
R
≤ |z| ≤ R} we get:

‖q(1)‖2 = |F (1)|2 ≤ sup
|z|=R

|F (z)| sup
|z|= 1

R

|F (z)| ≤ sup
|z|=R

‖q(z)‖ sup
|z|= 1

R

‖q(z)‖.

Choose q = p2n
for n ∈ N to get

‖p(z)2n‖2 ≤ sup
|z|=R

‖p(z)2n‖ sup
|z|= 1

R

‖p(z)2n‖.

Take the 2n-th root of this and let n tend to infinity. By the Beurling-Gelfand
formula the sequence (‖p(z)2n‖2−n

)n∈N converges pointwise to ρ(p(z)). It also
satisfies all the other assumptions that are needed to apply Dini’s lemma and
hence the proof is complete. �

Now we will study Ransford’s proof:
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Theorem 2.9 (Johnson)
Let A,B be Banach algebras, B semi-simple. Let T : A → B be a surjective
algebra-with-identity homomorphism. Then T is continuous.

Proof. Again, we will show that Σ(T ) is quasi-nilpotent. Let b ∈ Σ(T ) and
choose (an) ⊂ A with an→n 0 in A and Tan→n b in B. Since T is surjective, we
can choose a preimage a of b. For all n ∈ N, z ∈ C let the polynomial pn ∈ A[z]
be defined by pn(z) := zTan + (Ta − Tan); then pn(1) = Ta = b and hence
ρB(pn(1)) = ρB(Ta) = ρB(b). Also

ρB(pn(z)) ≤ ‖pn(z)‖ ≤ |z|‖Tan‖+ ‖Ta− Tan‖.
T decreases the spectral radius, hence

ρB(pn(z)) ≤ ρA(zan + (a− an)) ≤ |z|‖an‖+ ‖a− an‖.
By Ransford’s lemma 2.8,

ρB(b)2 ≤ sup
|z|=R

ρB(pn(z)) sup
|z|= 1

R

ρB(pn(z))

≤ (R‖an‖+ ‖a− an‖)(
1

R
‖Tan‖+ ‖Ta− Tan‖)

Letting n tend to infinity we get ρB(b)2 ≤ ‖a‖( 1
R
‖b‖), letting R tend to infinity

this implies ρB(b) = 0. The rest follows as in Aupetit’s proof (since we only
consider homomorphisms and not spectrally decreasing operators). �

Remarks

• There is an unsolved problem in the theory of automatic continuity: suppose
that A,B are Banach algebras, B semi-simple, T : A→ B a homomorphism
with range dense in B. Is T necessarily continuous?

• It can be shown that this is equivalent to the following question26: suppose
that A,B are Banach algebras and let T : A → B be a homomorphism.
Then Σ(T ) is quasi-nilpotent. Note that in this equivalent formulation, B
is not assumed to be semi-simple.

• The corresponding problem in Ransford’s formulation has been disproven,
see Dales’ monograph [10] (p. 601). By this, it is meant that there are
Banach algebras A,B, B semi-simple and T : A→ B linear and spectrally
decreasing s.t. T (A) = B, yet T is discontinuous.

• One can generalise the notion of a spectrally decreasing linear operator to
the notion of a spectrally bounded one, i.e., a linear operator satisfying
ρB(Ta) ≤ MρA(a) with a universal constant M . This seems to be closely
related to the theory of automatic continuity and is presented in M. Mathieu
and G.J. Schick’s paper [20].

26see [10] (p. 601)
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IV Applications

In the last two chapters, we have seen many theorems on Banach algebras. This
chapter is intended to illustrate the applicability of these theorems (and those
proven in the appendix) in other branches of mathematics. As our time and
space are very limited, we will only consider subalgebras of the operator algebra
on a Hilbert space. The writer is aware that this is a very limiting choice that
deprives the reader of many beautiful insights. Sources for stimulating further
reading include the books by Heuser [16], Zeidler [31,32], and Douglas [11].

1 Models of Banach Algebra Axioms

There are many models of the Banach algebra axioms that are frequently used in
mathematics and theoretical physics. Also, some models are used in engineering
and computer science. Without providing further details we will now list a few
of them, some of which we have already met. Let K be a compact Hausdorff
topological space.

(1) C(K), the algebra of all continuous complex-valued functions onK, normed
by the uniform norm

(2) CA(K), the algebra of all continuous A-valued functions on K, normed by
the uniform norm, where A is a Banach algebra

(3) If X is any complex Banach space, then L(X), the algebra of all continuous
linear operators on X, w.r.t. the operator norm is a Banach algebra. A
closed subalgebra of this is the algebra LC(X) of all compact linear opera-
tors on X.

(4) If G is a locally compact Hausdorff commutative topological group27 and µ
its Haar-measure, then L1(µ) is a Banach algebra w.r.t. convolution, i.e.

(f ∗ h)(x) :=

∫
f(x− t)g(t)dµ(t).

Examples are l1 = L1(Z), L1(Ω) where Ω ⊂o Rn etc.

(5) The algebra l1 can be identified with the Wiener algebraW of all continuous
functions f on [0, 2π] with Fourier coefficients (an)n∈Z satisfying

‖f‖ :=
∑
n∈Z

|an| <∞.

27For a definition of topological groups, their properties and the construction of the Haar
measure, the reader is referred to Rudin’s book [28].
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Also, closed subalgebras, product, quotient, and matrix algebras of Banach
algebras are Banach algebras with the usual norms. Important examples of these
include:

• uniform algebras, i.e. norm-closed subalgebras of C(K) containing the
constant functions and seperating the points of K. If K ⊂ Cn, then
P (K) ⊂ R(K) ⊂ O(K) ⊂ A(K), the respective closures of polynomi-
als, rational functions without poles in K, functions analytic on some open
set containing K, and functions analytic on the interior of K, are uniform
algebras; there are examples for n ≥ 2 for which all the inclusions are strict.

• Calkin algebras L(X)/LC(X), where X is a complex Banach space

• Mn(C) normed as operator algebra on Cn

Convolution algebras are extremely important in theoretical physics, engineer-
ing, computer science, and in the theory of Wavelets28, especially those associated
with the Fourier transform.

2 Compact Operators on a Hilbert Space

In this paragraph, we will mainly consider the Banach algebra A := LC(H)⊕C id
on the Hilbert space H. If H is finite dimensional A contains all linear operators
(or, equivalently, matrices) on H since these are always compact. Let D be a
domain in C and L : D → A be analytic.

The algebra A has many nice properties which are consequences of our work
in the previous chapters:

Theorem 2.1 (Compact Operators)
Let A := LC(H)⊕C id on the Hilbert space H, L : D → A analytic on a domain
D ⊂ C. The following statements hold true:

(1) The spectral function is continuous on A. (Newburgh’s corollary, II.2.7)

(2) It is not uniformly continuous since it is not even so if H is finite dimen-
sional. (proposition II.2.3)

(3) ρ ◦ L and δ ◦ L are subharmonic on A. (Vesentini, II.3.2 and diametric
Vesentini, II.4.4)

(4) SpL(λ)ˆ = SpL(λ) and SpL(λ) has no interior points for all λ ∈ D

(5) If there exists λ0 ∈ D with SpL(λ) ⊂ SpL(λ0) for all λ ∈ D then SpL(·)
is constant on D. (spectral maximum theorem, II.3.4)

28see [19]
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(6) Suppose L is entire and there exists C ⊂ C s.t. SpL(λ) ⊂ C for all complex
λ, then SpL(·) is constant. (spectral Liouville, II.3.5)

(7) Suppose there exists λ0 ∈ D s.t. ρ(L(λ)) ≤ ρ(L(λ0)) for all λ ∈ D, then
the peripherical spectrum Spp(L(·)) is constant. (peripherical maximum
principle, III.1.2)

(8) If L is entire, then either SpL(·) is constant or
⋃

λ∈C SpL(λ) is dense in C.
(theorem III.1.4)

The spectrum of any compact operator on a Banach space is at most countable
by the theorem of Riesz and Schauder29. Its only possible accumulation point
is zero. An eigenvalue of a linear operator T ∈ L(H) is a complex number α
for which there exists a so-called eigenvector x ∈ H \ {0} satisfying Tx = αx.
If T ∈ A is of the form T = K + µ1 and α 6= µ is an eigenvalue of T , then
its multiplicity n ∈ N is defined by the dimension of the space spanned by all
eigenvectors corresponding to the eigenvalue α. These considerations enable us
to strengthen the theorem on holomorphic variation of isolated spectral values
III.1.9 for the algebra A.

Theorem 2.2 (Holomorphic Variation of Spectral Values)
Let H be a Hilbert space, D a domain in C, A as before, L : D → A analytic.
Then, for each λ0 ∈ D and α0 ∈ SpL(λ0)\{0} having mutiplicity one, there exist
r, δ > 0 s.t. |λ − λ0| < δ implies λ ∈ D and SpL(λ) ∩ B(α0; r) = {α(λ)} where
α : B(λ0; δ) → C is analytic. If H is finite dimensional, α0 ∈ SpL(λ0) may take
the value 0 if it is an eigenvalue of multiplicity one.

Proof. Suppose first that there is λ0 ∈ D, α0 ∈ SpL(λ0) \ {0} s.t. ∀r, δ > 0
there is λr,δ ∈ C with |λ0−λr,δ| < δ and λr,δ /∈ D or SpL(λr,δ)∩B(α0; r) is not a
singleton. Since D is open we can choose δ small enough s.t. |λ0 − λr,δ| < δ im-
plies λr,δ ∈ D. Hence we only need to consider the case when SpL(λr,δ)∩B(α0; r)
is not a singleton.

Case 1: SpL(λr,δ) ∩B(α0; r) = ∅:
Let U := B(α0; r), V := C \B(α0; r), x := L(λ0). Then the assumptions of New-
burgh’s theorem II.2.6 are fulfilled if r is suitably small. Hence there exists ε > 0
s.t. ‖x− y‖ < ε, y ∈ A implies Sp y ∩ U 6= ∅. Since L is continuous there exists
δ > 0 s.t. |λ− λ0| < δ implies ‖L(λ)− L(λ0)‖ < ε and hence SpL(λ) ∩ U 6= ∅, a
contradiction.

Case 2: SpL(λr,δ) ∩B(α0; r) contains at least two elements:
Gohberg and Krĕin show in [13] (Chapter II) that this is impossible30.

29see, e.g. [4] (p. 363ff)
30says Aupetit in [5] (p. 59)
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So we have shown that for all λ0 ∈ D and α0 ∈ SpL(λ0) \ {0} having
multiplicity one, there exist r, δ > 0 s.t. |λ − λ0| < δ implies λ ∈ D and
SpL(λ) ∩ B(α0; r) = {α(λ)} where α : B(λ0; r) → C. It remains to show that
α is analytic. The theorem on holomorphic variation of isolated spectral values
III.1.9 tells us that α is analytic on a neighbourhood of λ0. We can then choose
our δ even smaller so that B(λ0; δ) is included in this neighbourhood.

Let H be finite dimensional. Let µ0 /∈ L(λ0) and let L′(λ) := L(λ) + µ0 id.
Then L′ ∈ A and 0 /∈ SpL′(λ0). Hence we can apply the theorem to L′ and
subsequently substract µ0 to get the desired result. �

Remark The assumptions that α0 be a non-zero (in the infinite dimensional
case) eigenvalue of L(λ0) having multiplicity one are necessary as the following
examples demonstrate:

Example 2.3 Let H be a Hilbert space (at least of dimension two), V a two-
dimensional subspace with basis {v, w}. Let L : C → A be the linear operator
defined by L(λ)v := 2λv, L(λ)w := (2 − 2λ)w and by zero on the orthogonal
complement of V . Since L(λ) has finite range for all λ ∈ C, L is indeed a
mapping with range in A. Sp(L(λ)) = {2λ, 2− 2λ, 0} for all λ ∈ C (no zero if H
is two-dimensional). Choose λ0 = 1

2
and α0 = 1. Clearly 1 is an isolated spectral

value of L(1
2
). But there is no neighbourhood N of 1

2
and no r > 0 s.t. the set

SpL(λ) ∩ B(1; r) is a singleton for all λ ∈ N since |2λ − 1| = |(2 − 2λ) − 1| for
all complex λ.

Example 2.4 Let H be infinite dimensional. Let L : C → A be constantly
equal to T ∈ LC(H). Then 0 is not an isolated spectral value of T and hence
there cannot be any λ0 ∈ C, r > 0 (not to speak of a whole neighbourhood) s.t.
SpL(λ0) ∩B(0; r) is a singleton.

The afore presented automatic continuity results also have immediate conse-
quences for A:

Theorem 2.5 (Johnson)
If B is any Banach algebra and L : B → A(= LC(H) ⊕ C id) is a surjective
algebra homomorphism, then L is continuous. In particular, there is no Banach
algebra norm on A that is not equivalent to the operator norm.

Proof. One can show that A is semi-simple. Since it is unital w.r.t. the operator
norm, too, Johnson’s theorem III.2.5 and Johnson’s uniqueness of norm theorem
III.2.6 prove the result. �

These results, although valuable in their own right, might be very useful in the
theory of integral equations. There, they could be used in the following way: Let
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D be a domain in C and L : D → LC(H) an analytic family of integral operators
– e.g. Fredholm or Volterra operators31 – s.t. there is a parameter λ0 ∈ D for
which we know that the equation L(λ0)x = αx (x ∈ H) has a one dimensional
space of solutions for a certain non-zero eigenvalue α0. We can then conclude
by theorem 2.2 that there must be a neighbourhood of λ0 in D on which α0 is
an approximative eigenvalue of multiplicity one, i.e., that there is an eigenvalue
α(λ) of multiplicity one that depends on λ not only continuously but even ana-
lytically. It might also be possible to combine the results of this paragraph with
the Fredholm alternative to give necessary and sufficient conditions for solvabil-
ity of such integral equations, but this would be far beyond the scope of this essay.

It is shown in the appendix that every complex Banach algebra with identity
is a Schurian algebra. Hence A = LC(H) ⊕ C id is such an algebra, and we can
apply all theorems proven for Schurian algebras to A. Note that the centre of A
consists of all scalar multiples of the identity.

Theorem 2.6 (Commutators and Spectral Additivity)
• a ∈ A satisfies La ⊂ L for every maximal left ideal L iff it is a scalar

multiple of the identity. (theorem A.3.1)

• For a fixed a ∈ A Comm(a, b) + 1 is invertible for all b ∈ A iff a is a scalar
multiple of the identity. (theorem A.3.2)

• There exist a, b ∈ A s.t. Comm(a, b) + 1 is not invertible. (corollary A.3.3)

• There exist a, b ∈ A s.t. Comm(a, b) is not nilpotent. (corollary A.3.4)

• There even exist a, b ∈ A s.t. Comm(a, b) is not quasi-nilpotent. (corollary
A.3.5)

• a ∈ A is spectrally additive iff it is a scalar multiple of the identity. (theorem
A.4.6)

Remark As all operators on a finite dimensional space are compact, all the
above theorems also apply to matrix-algebras.

31see [16]
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3 Self-adjoint Operators

To practice applying the results to operator algebras, we prove:

Lemma 3.1 Let S denote the subset of L(H) or LC(H) containing all self-
adjoint operators. Let L : D → S be analytic, where D is a domain in C.
Then SpL(·), ρ ◦ L, and ‖L(·)‖ are constant.

Proof. If T is self-adjoint, then SpT ⊂ R and ‖T‖ = ρ(T ). Thus, by corollary
III.1.3, Sp ◦L is constant. This clearly implies the constancy of ρ ◦ L and hence
of ‖L(·)‖. �

One can even show that any analytic function with range in S must be con-
stant:

Theorem 3.2 (Self-adjoint Operators)
Let S and L be as in the lemma. Then L is constant.

Proof. 32 Let x ∈ H, f : D → C : λ 7→ (L(λ)x;x) where (·; ·) denotes the
scalar product in H. Then f is analytic on D since the scalar product is linear
and continuous in its first component. Also, since L(λ) is self-adjoint for each
λ ∈ D, f has its range in R and is thus constant by the remark on p. 23.
Since H is a complex Hilbert space, we can reconstruct L(λ) using the identity

(L(λ)x; y) = (L(λ)(x+y);x+y)−(L(λ)x;x)−(L(λ)y;y)
2

for all λ ∈ D and all x, y ∈ H, and
see that is must also be independent of λ. �

32Thanks to Dr. Allan for helping me with this proof.
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A Representations and Subharmonicity

This appendix assumes that the reader is familiar with representation theory for
algebras (or, equivalently, with algebra modules). A concise introduction to the
theory can be found in Dr. Allan’s notes [3] (p. 31ff). We follow L.A. Harris
and R.V. Kadison in their paper [14]. Let Lin(X) be the algebra of all linear
endomorphisms on a vector space X.

1 Schurian algebras

In this paragraph, we will introduce the class of Schurian algebras that includes
unital Banach algebras over the complex field. In the following paragraphs we
will then derive properties of Banach algebras stemming from the general ones
proven for Schurian algebras.

We begin with the basic definitions:

Definition 1.1 Let A be a complex algebra with identity.

• A is said to be Schurian iff La ⊂ L for a maximal left ideal L in A and
some a ∈ A implies that there is a λ ∈ C s.t. λ1−a ∈ L.

• Let X be an A-module. A is said to act transitively on X iff all non-zero
vectors in X are cyclic. This is equivalent to the statement that X is an
irreducible A-module.

• A representation π of A on X is said to satisfy the Schur condition iff
each linear endomorphism of X that commutes with π(A) is effectively a
multiplication by a scalar.

Remark The name “Schurian algebra” is motivated by the assumptions made
in Schur’s lemma.

Schurian algebras and transitive representations satisfying the Schur condition
are in fact closely related:

Theorem 1.2
An algebra A over the complex field is Schurian iff each transitive representation
of A on a complex vector space X satisfies the Schur condition.

Proof. Let A be an algebra represented transitively on a complex vector space
X by π. Let x be a non-zero element in X and let Lx := {a ∈ A |π(a)x = 0}
be the annihilator of x. Clearly, Lx is a left ideal in A. Aupetit proves on p. 34
of [5] that Lx is in fact a maximal left ideal.
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Assume that A is Schurian. Let T be a linear endomorphism on X that com-
mutes with π(A). Since π is transitive, there is an element aT ∈ A such that
π(aT )x = Tx. For each b ∈ A we have Tπ(b)x = π(b)Tx = π(b)π(aT )x. If
b ∈ Lx, this implies π(b)π(aT )x = Tπ(b)x = 0, i.e. baT ∈ Lx. It follows that
LxaT ⊂ Lx. Since A is Schurian, there must be λ ∈ C such that λ1−aT ∈ Lx.
Hence π(aT )x = λx and for all b ∈ A we have Tπ(b)x = π(b)λx = λπ(b)x, in
short, π(b)x is an eigen-vector of T to the eigen-value λ. Since b was arbitrary
and x is cyclic we conclude that T = λ idX and whence that π satisfies the Schur
condition.

Suppose next that each transitive representation of A satisfies the Schur con-
dition. Let L be a maximal left ideal in A, a ∈ A s.t. La ⊂ L. Let X := A/L and
let π be the left regular representation of A on X (i.e. left multiplication). We
will show that π is transitive. Let b+ L ∈ X be non-zero, i.e. b ∈ A \ L. Ab+ L
is a left ideal in A containing L properly. Thus, by maximality of L, Ab+L = A.
Thus, π(A)(b+L) = A(b+L) = Ab+L = A, i.e., b+L is cyclic. So π is transitive.
Let T : X → X : b+ L 7→ ba+ L, then T ∈ Lin(X) and T commutes with π(A)
since π(a)T (b + L) = a(ba + L) = aba + L = T (ab + L) = Tπ(a)(b + L). Thus
by the Schur condition, T must be multiplication by some complex scalar λ, i.e.
ba+L = λb+L for all b ∈ A. Hence λ1+L = T (1+L) = 1 a+L = a+L which
gives us λ1−a ∈ L. It follows that A is Schurian. �

Lemma 1.3 Ã := A/Rad(A) is Schurian iff A is Schurian.

Proof. The quotient mapping q carries the set of maximal left ideals in A into
the corresponding one in Ã. If A is Schurian, L̃ a maximal left ideal in Ã and
ã ∈ Ã s.t. L̃ã ⊂ L̃, then L := q−1(L̃) and a ∈ q−1(ã) satisfy

La = q−1(L̃ã) ⊂ q−1(L̃) = L

and thus, since A is Schurian, there exists λ ∈ C s.t. λ1−a ∈ L. In consequence,
0 = q(λ1−a) = λ(1+L̃)−ã and it follows that Ã is Schurian. Suppose conversely
that Ã is Schurian, L is a maximal left ideal in A, a ∈ A and La ⊂ L. Then
q(L)q(a) ⊂ q(L) and thus there exists λ ∈ C s.t. q(λ1−a) ∈ q(L). Since
Rad(A) ⊂ L by def. of Rad(A), λ1−a ∈ L and it follows that A is Schurian. �
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2 Banach Algebras as Schurian Algebras

After having proven some basic facts about Schurian algebras, we will now show
that finite dimensional algebras and complex Banach algebras with identity are
indeed Schurian. Let A first be an n-dimensional complex algebra with identity.
Suppose π is a representation of A on an m-dimensional complex vector space X.
Wlog we can consider π as a representation of A in Mm(C). Using the left-regular
representation of A we can view A as a subalgebra of Mn(C).

Lemma 2.1 A representation π of the n-dim. algebra A on the m-dim. space X
is transitive iff it satisfies the Schur condition.

Proof. Let π be transitive. Then m ≤ n. Let T be a linear endomorphism
on X commuting with π(A). Then the kernel and the range of T are invariant
under π(A). By transitivity, they are each either equal to {0} or to X, i.e. T is
either constantly zero or invertible. Since the determinant of z 1−T is a complex
polynomial in z it has a zero λ ∈ C by the fundamental theorem of algebra. As
λ1−T commutes with π(A) and is not invertible, we conclude T = λ1., i.e., π
satisfies the Schur condition.

Conversely, let π satisfy the Schur condition. Suppose m > n. Then there is
a non-trivial vector y ∈ X which is annihilated by all mappings π(a) (a ∈ A).
Let T : X → X be defined by the identity map on the span of {y} and by zero
on π(A)X (as well as zero in all other linearly independent directions). Then T
commutes with π(A) but is not equal to a constant multiple of the identity, a
contradiction. �

The next corollary is a simple consequence of this lemma and theorem 1.2:

Corollary 2.2 Every finite dimensional complex algebra is Schurian.

Examples The following algebras are thus Schurian:

• Mn(C)

• the subalgebra of Mn(C) containing all upper (lower) triangular matrices

• Cn with coordinate-wise multiplication

Remark Harris and Kadison prove in [14] (p. 5) that an arbitrary algebra A
need not Schurian if it is not finite dimensional, using the example of C(x), the
abstract algebra of all rational functions over C. But if we are in the case that
A is normed and complete (and has an identity), then A is Schurian, as we will
see now:
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Theorem 2.3
Every complex Banach algebra with identity is Schurian.

Proof. Let A be a complex Banach algebra with identity. Let X be a Banach
space, B := L(X) its algebra of continuous linear operators. Let π be a transitive
representation of an algebra C on X. We will prove that if T ∈ B commutes with
each operator in π(C), then T is effectively a multiplication by a scalar. To see
this, let λ ∈ SpT . As in the finite dimensional case, the kernel and the range of
λ1−T must be invariant under π(C). Since π is transitive we are either in the
case that T = λ1 or its range is the whole of X. We thus only need to consider
the case that λ1−T is surjective and its kernel must hence be trivial (note that
this follows from a different argument than in the finite dimensional case). But
this means that λ1−T is a continuous automorphism of X and hence invertible
in B by the oppen mapping theorem.

Conversely, let L be a maximal left ideal in A and a ∈ A s.t. La ⊂ L.
We have to show that there exists λ ∈ C s.t. λ1−a ∈ L. Let X := A/L,
T : X → X : b + L 7→ ba + L, then T ∈ L(X). Let C := A and let π be
the left regular representation of C on X. Since L is a maximal ideal, π must
be transitive. Also, T commutes with π(C). Hence, we have proven above that
there exists λ ∈ C s.t. T = λ1. In particular, a + L = T (1+L) and whence
a+ L = λ1+L. This shows that A is Schurian. �

3 Characterisation of Commutative Schurian Algebras

The following theorems study the relationship between commutators, maximal
left ideals, and the Jacobson radical:

Theorem 3.1
Let A be Schurian. Then a ∈ A has the property La ⊂ L for every maximal left
ideal L iff the commutator of a and b, Comm(a, b) := ab− ba, lies in Rad(A) for
all b ∈ A.

Proof. Fix a ∈ A. Let Ca : A → A : b 7→ Comm(a, b). Suppose first that
Ca has range in Rad(A). Let L be a maximal ideal in A and b ∈ L. Then
ab ∈ L, ab− ba ∈ Rad(A) ⊂ L, and hence ba ∈ L. Since b ∈ L was arbitrary we
conclude La ⊂ L.

Suppose conversely that every maximal left ideal L ⊂ A satisfies La ⊂ L and
let b ∈ A. If L is an arbitrary maximal left ideal, define Lb := {z ∈ A | zb ∈ L}.
Then Lb is a left ideal in A. We will now show that Lb is maximal iff b /∈ L.
Clearly, if b ∈ L, then Lb = A and Lb is not a maximal left ideal. Let b /∈ L. Then
there is z /∈ Lb and thus zb /∈ L. Since L is a maximal left ideal in A there is
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s ∈ A s.t. szb−b ∈ L. Thus sz−1 ∈ Lb. It follows that Lb is a maximal left ideal.

By assumption Lba ⊂ Lb. By theorem 1.2 it follows, since A is Schurian, that
there is an element λb ∈ C s.t. λb 1−a ∈ Lb, or, equivalently, (λb 1−a)b ∈ L.
Thus λbb− ab ∈ L for all b ∈ A. We will soon prove that we can actually choose
λ ∈ C satisfying λb− ab ∈ L for all b ∈ A. In particular, λ1−a ∈ L and conse-
quently λb − ba ∈ L for all b ∈ A. We can then conclude that Comm(a, b) ∈ L.
Since L was an arbitrary maximal left ideal, Comm(a, b) ∈ Rad(A) for all b ∈ A.

It remains to be shown that we can choose λ ∈ C independent of b ∈ A. The
choice of λb is unique if b /∈ L; if b ∈ L, then every complex number will serve as λb.
Therefore we only need to consider the case when b /∈ L. Suppose first λz−b ∈ L
for some z ∈ A, λ ∈ C. Then λaz−ab ∈ L, λbb−ab ∈ L, and λzz−az ∈ L. Con-
sequently, λλzz−λbb ∈ L. But we have made the assumption that λbλz−λbb ∈ L.
Hence λ(λz − λb)z ∈ L and thus (λ 6= 0, z 6= 0 since b /∈ L) λb = λz.

Now let b /∈ L, z /∈ L, and λz − b /∈ L for all complex numbers λ. Then
(λb+z 1−a)(b+ z) ∈ L, λbb− ab ∈ L, and λzz − az ∈ L. Thus

(λb − λb+z)b+ (λz − λb+z)z ∈ L.

By the assumptions on b, z, and b − λz this implies λb = λz+b = λz. Since for
b, z /∈ L either λz− b ∈ L for some complex λ or λz− b /∈ L for all complex λ we
have indeed shown that λ can be chosen independent of b which completes the
proof. �

Theorem 3.2
Let A be Schurian, a ∈ A. Then a has the property that Comm(a, b) + 1 is
invertible for all b ∈ A iff Ca : A → A : b 7→ Comm(a, b) has its range included
in Rad(A). If A is semi-simple as well, then Comm(a, b) + 1 is invertible for all
b ∈ A iff a lies in the centre of A, i.e. in the set {z ∈ A | Comm(a, z) = 0∀a ∈ A}.

Proof. Fix b ∈ A. Suppose first that Ca has range in Rad(A). Then Comm(a, b)
lies in every maximal left and every maximal right ideal of A and Comm(a, b)+1
lies in no such ideal. Hence Comm(a, b) + 1 lies in no proper left or right ideal
at all. From this we get that A(Comm(a, b) + 1) = A = (Comm(a, b) + 1)A. In
particular, Comm(a, b) + 1 has left and right inverses which therefore must be
equal, i.e., Comm(a, b) + 1 is invertible.

Suppose conversely that Comm(a, b) +1 is invertible for all b ∈ A. If Ca does
not have range in Rad(A), then by theorem 3.1 there is a maximal left ideal L
in A s.t. La * L. Thus there is a z ∈ L with za /∈ L. Since L is a maximal
left ideal, there is s ∈ A s.t. sza − 1 ∈ L. Now asz ∈ L since L is a left ideal,
and hence Comm(a, sz) + 1 ∈ L and can therefore not be invertible. Choosing
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b = sz, we get a contradiction.

In particular, if A is semi-simple, then Comm(a, b) + 1 is invertible for all
b ∈ A iff Ca ≡ 0, i.e. Comm(a, b) = 0 for all b ∈ A. It follows that a lies in the
centre of A. �

The following corollary is immediate:

Corollary 3.3 If A is semi-simple, Schurian and such that Comm(a, b) + 1 is
invertible for all a, b ∈ A, then A is commutative.

Corollary 3.4 If A is semi-simple and Schurian, then each commutator is nilpo-
tent iff A is commutative.

Proof. An easy consequence of the theorem on the Neumann series is the fol-
lowing: if nk=0 for some k ∈ N, then 1−n + n2 − . . . (−1)k−1nk−1 is inverse
to 1+n. In particular, 1+n is invertible for all nilpotent n. By corollary 3.3
we can deduce from the nilpotency of all commutators that A is commutative.
Conversely, if A is commutative, then all commutators vanish. �

Remarks The semi-simplicity is an essential assumption in this last corollary.
Consider for example the non-commutative algebra A of all upper triangular
n× n-matrices. We have shown in corollary 2.2 that this algebra is Schurian. It
is easy to verify that it has the property that all commutators are nilpotent. Its
radical consists of all upper triangular matrices with zero diagonal so that A is
not semi-simple.

Applied to Banach algebras, corollary 3.3 gives the following characterisation
of commutativity:

Corollary 3.5 If A is a semi-simple complex Banach algebra with identity, then
all commutators in A are quasi-nilpotent iff A is commutative.

Proof. If n ∈ A is quasi-nilpotent, then its Neumann series converges and thus
n + 1 is invertible. Hence if al commutators are nilpotent corollary 3.3 tells us
that A is commutative. The opposite direction follows as before. �
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4 Spectral Additivity

A.A. Jafarian and A.R. Sourour show in their paper [18] that

Lemma 4.1 (Jafarian and Sourour) If L ∈ L(X), X a Banach space, then
Sp(T + L) ⊂ SpT for every T ∈ L(X) iff L = 0.

L.A. Harris and R.V. Kadison call an element a of a complex Banach algebra
A with identity spectrally additive iff a has this property. Then they show with
the help of maximal commutative subalgebras that the centre of A is included in
the set of all spectrally additive elements:

Lemma 4.2 If a, b ∈ A commute, then Sp(a+ b) ⊂ Sp a+ Sp b.

This has an immediate corollary:

Theorem 4.3
The centre of A is included in the set of spectrally additive elements in A.

M.S. Moslehian shows on his website [21] that there exist Banach algebras and
elements therein that do not satisfy Sp(a + b) ⊂ Sp(a) + Sp(b). Hence it seems
an interesting question to ask which elements of a Banach algebra are spectrally
additive. His example is the following:

Let A be the matrix algebra M2(C), a a forward and b a backward shift. Then
Sp a = {0}, Sp b = {0} yet Sp(a+ b) = {−1, 1}.

We will now begin to characterise those elements of a Banach algebra A with
identity that are spectraly additive:

Lemma 4.4 Let A be a Banach algebra with identity. Then for each a ∈ A
we have SpA(a) = SpA/ Rad(A)(q(a)) where q : A → A/Rad(A) is the quotient
mapping.

Proof. It suffices to prove that b is invertible in A iff q(b) is invertible in
A/Rad(A). If a is the inverse of b in A, then q(a) is the inverse of q(b) since
q is multiplicative and takes the identity in A to the identity in A/Rad(A).
Suppose conversely that q(a) is the inverse of q(b) in A/Rad(A). This implies
q(ba− 1) = 0 = q(ab− 1) and thus ba− 1 and ab− 1 lie in the radical of A. By
theorem 3.1.3 in [5] it follows that ab(= ab−1+1) and ba are invertible. We can
conclude that b has both a left and a right inverse and that those must then be
equal. �
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Corollary 4.5 Let A and q be as in the lemma. a ∈ A is spectrally additive in
A iff q(a) is spectrally additive in A/Rad(A).

Proof. Let a be spectrally additive, q(b) ∈ A/Rad(A). Then

Sp(q(b)+q(a)) = Sp(q(b+a)) = Sp(b+a) ⊂ Sp(b)+Sp(a) = Sp(q(b))+Sp(q(a)).

The other direction is similar to prove. �

Theorem 4.6
a ∈ A is spectrally additive in A iff Comm(a, b) ∈ Rad(A) for all b ∈ A. If A is
semi-simple, then a is spectrally additive iff it lies in the centre of A.

Proof. Let Comm(a, b) ∈ Rad(A) for all b ∈ A and let q again be the quotient
mapping. Then q(a) lies in the centre of A/Rad(A). From 4.3 we know that
q(a) must hence be spectrally additive. Corollary 4.5 tells us that a is spectrally
additive in A.

Let conversely a be spectrally additive. Then ρ(a + b) ≤ ρ(a) + ρ(b) for all
b ∈ A. Fix b ∈ A and define f : C → A : λ 7→ exp(−λb)a exp(λb), then f is entire.
Moreover, f(λ) is spectrally additive since it is the image of an automorphism of
A and since we know that Sp(cd) ∪ {0} = Sp(dc) ∪ {0} for all c, d ∈ A. Whence
ρ(f(λ) + c) ≤ ρ(f(λ)) + ρ(c) = ρ(a) + ρ(c) for all complex λ and all c ∈ A.

Let g : C \ {0} → A : λ 7→ f(λ)−f(0)
λ

. g is analytic on its domain of definition
and limλ→0 g(λ) = ab − ba. Hence we can extend g to the whole complex plane
by setting g(0) := Comm(a, b) and noting that g must be entire (as in Morera’s
theorem). Vesentini’s theorem tells us that ρ ◦ g is subharmonic on C. Note that
for all λ 6= 0 we have

ρ(g(λ)) = ρ(
f(λ)− f(0)

λ
) ≤ 2

|λ|
ρ(a),

and ρ(g(0)) is finite. By Liouville’s theorem for subharmonic functions 4.7 we

conclude that ρ ◦ g must be constant. (M(0,r,ρ◦g)
log r

≤ 2ρ(a)
r log r

tends to zero as r tends

to infinity.) We can also conclude that this constant must be zero since ρ ◦ g
decays as 1

r
. Hence ρ(Comm(a, b)) = 0, i.e. Comm(a, b) is quasi-nilpotent. It

follows as before (Neumann series) that Comm(a, b)+1 is invertible for all b ∈ A.
Since A is Schurian by theorem 2.3 we can apply theorem 3.2 and conclude that
Comm(a, b) ∈ Rad(A) for all b ∈ A.

In particular, if A is semi-simple, we have shown that Comm(a, b) = 0 for
all b ∈ A if a is spectrally additive, i.e. a lies in the centre of A. The opposite
direction follows from theorem 4.3. �
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Remarks

• L.A. Harris and R.V. Kadison also give a second proof of this theorem that
uses the Hahn-Banach theorem instead of subharmonic functions.

• If A is a complex Banach algebra with identity, then all elements of the
form c+ r – where c lies in the centre of A and r in its Jacobson radical –
are spectrally additive (remember that Rad(A) is a two-sided ideal).

• Not all spectrally additive elements need to be such a sum. For an example
of this, we can take A to be the algebra of all upper triangular complex n×n-
matrices. In this case, the centre just consists of all multiples of the identity,
and the radical, as seen before, of all strictly upper triangular matrices, i.e.
those elements of A having zero diagonal. The elements considered above
are those whose diagonal entries are all equal. But a diagonal matrix m
with different entries still satisfies the property that Comm(m, a) ∈ Rad(A)
for all a ∈ A. (easy to check)

• The example A = LC(H)⊕ C id is considered in chapter IV.
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