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O Introduction

The Willmore energy or elastic bending energy of a surface immersed into R? is given
as half of the integral over its squared mean curvature vector. It measures the deviation
from local sphericity. Immersions of surfaces which are critical points of this energy have
been studied since 1929 and are called Willmore surfaces. They are of interest in several
areas such as conformal geometry?, elastic membrane physics®, and biology of red blood
cells?.

Since 2002, the gradient flow of the Willmore functional has been an object of active
research, both theoretically’ and numerically®. Most of the research has been dedicated
to immersions of the sphere S2. In this diploma thesis, a scheme for the construction of
discrete surfaces of arbitrary genera is introduced. The behaviour of these surfaces under
the discretised gradient flow of the Willmore functional is studied.

The scheme we will present is based on an existence result for surfaces minimising the
Willmore energy by M. Bauer and E. Kuwert”. Imitating the glueing procedure they use
to prove this result, we construct higher genus surfaces by glueing together surfaces of
lower genera. Knowing that the gradient flow of the Willmore energy converges to the
round sphere if the starting point is chosen appropriately®, we are interested in finding out
to what surfaces the glued surfaces might converge.

As U. Clarenz and G. Dziuk have shown®, the discretised gradient flow drives the mesh of a
discrete surface to degeneration. They have presented an algorithm for mesh improvement
relying on the existence of conformal parameters which has proven to stabilise the mesh of a
spherical surface during the flow. We will study the applicability of their mesh improvement
trick to glued surfaces in chapter 6. In chapter 5, we provide evidence for the existence of
such global conformal parameters in a smooth setting. Our proof simplifies a proof of J.
Jost10.

I would like to thank my supervisors Prof. Dr. E. Kuwert and Prof. Dr. G. Dziuk for
introducing me to this fascinating topic and for giving me advice. I would also like to

Lef. [Bla29).

2cf. [Wil91].

3¢f. [LH92].

4Canham-Helfrich model, cf. [Can70,Hel73].
Scf. [KS02].

b¢f. [Rus, DDEO5|.

"cf. [BKO3].

8¢f. [Sim01, KS04].

9cf. [CDO3)].

10¢f. [Jos90].
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thank Dr. C.-J. Heine, Dr. M. Fried, Dipl.-Math. S. Suhr, Dipl.-Math. Th. Albrecht, Dipl.-
Math. C. Eilks and B. Link for their helpful answers to many questions may they be of
mathematical or technical nature.

The code of the discretised gradient flow of the Willmore functional has been provided
by G. Dziuk, M. Fried, and A. Schmidt. It is written in FORTRAN 77!, The digital
images in this thesis have been processed with the help of the Graphics Programming
Environment GRAPE'?, the sketches and flow charts have been manufactured with the
aid of the Gnu Image Manipulation Program GIMP!3. The thesis has been typeset with

BTEX.

Hef. [Hei9l].
2gee www.mathematik.uni-freiburg.de/TAM/Research/grape/ GENERAL/
1Bsee www.gimp.org



1 Mathematical Setting

In this chapter, we will briefly study the mathematical framework for the glueing construc-
tion and for conformal reparametrisation. Proofs will only be given where they are either
central for understanding or refer to not very well-known facts. All notations and defini-
tions are listed in the index. Section 1.1 introduces some notations and is based on [Alt91].
Section 1.2 gives a very concise overview over the topological notions of genus, orientability
and Euler characteristic of a surface, introduces concepts from differential geometry and
quotes a topological as well as a geometric variant of the surface classification theorem.
These concepts are needed to describe Willmore surfaces, cf. chapter 2. Also, curvature and
conformality concepts are introduced. The concept of mean curvature is needed to formu-
late Willmore energy, conformality is important both for the theoretic and the numerical
treatment of Willmore energy as well as for the topic of conformal reparametrisation (cf.
chapter 5). Section 1.2 is based on [Hir91, Lee03,Soe04, Jos91]. Section 1.3 concisely treats
Sobolev spaces on manifolds based on [W1082].

1.1 Analysis in R”

Let us first of all agree on some basic notations. Let N denote the set of natural numbers
(without 0), Ny := NU {0}. Let Z,Q,R and C denote the sets of integer, rational, real,
and complex numbers respectively.

Definition 1.1.1 (Euclidean R"). For any n € N let R" denote the n-dimensional
Euclidean space. Its standard inner product will be denoted by z -y, its norm by |x| for all
z,y € R™. If A C R” is any subset, let A denote its topological boundary, A its closure
and int A its interior. €) usually denotes an open subset of R”, in symbols 2 C, R".

Definition 1.1.2 (Continuous Function Spaces C° and C%'). Let Q C, R". We say
f e %) if f:Q — R is continuous. If f : @ — R is continuous, we say f € C°(Q). Any
f € C%) (or C°(Q)) is said to be Lipschitz continuous, in symbols f € C%1(Q) (C%'(Q)),
if there is a constant C' > 0 such that

[f(@) = f(y)| < Clz —y| forall z,ye€Q(Q)

It is said to be Holder continuous with exponent o € (0,1), in symbols f € C%%(Q)
(C%(Q)), if for a constant C' > 0

[f(z) = fy)| < Clo—y|* forall z,yeQ(Q)
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If 2 is bounded, C°(Q) is a Banach space if equipped with the norm

Ifllco == suplf(z)| for feC(Q).

z€Q

Definition 1.1.3 (Derivatives, C*-Spaces, C*“-Spaces). Let Q2 C, R™. Then C*(Q)
denotes the space of k times continuously differentiable maps f : Q — R, C*%(Q) denotes
the subspace of C*(Q) consisting of all maps where the highest (k-th) order derivative is
Hoélder-continuous for « € (0,1) or Lipschitz-continuous (a = 1). C®(Q2) := (), .y C"(Q)
is called the space of infinitely differentiable or smooth maps.

Wesay f: Q — R is of class C* (C*)if f € CF(Q) (f € C*(Q)) fork e No. If f: Q — R
is of class Ct, 0,f = V,;f = D, f denote the partial i-th derivatives, grad f = Vf = df the
gradient, and Af = div-grad f the Laplacian of f € C'(Q2). We will frequently use all
common rules for differentiation, especially the chain and product rules.

meN

Definition 1.1.4 (Test Functions, C{°(Q2)). The space C§°(£2) contains all functions
¢ : 2 — R that are infinitely differentiable and that have compact support. This means
that supp(¢) = {x € Q| ¢(x) = 0} CC Q. Functions in C§°(2) are called test functions.

Definition 1.1.5 (LF-Spaces). A map [ : Q — R,  being an open subset of R", is
called measurable if the pre-images of all open subsets of R are measurable with respect
to the n-dimensional Lebesgue-measure A" on (). If, for such an f and any p € [1,00),
the Lebesgue-integral [,|f(x)[Pd\"(x) is finite, we say f € LP(Q). If p = oo, we say
[ € L£2(Q) if the essential supremum esssup,.q|f(z)| is finite. We factor £P(2) through
the equivalence relation of being identical outside a set of measure zero and get LP(£2). We
use LP as a shorthand for LP(Q2) for p € [1,00]. In the usual way, LP-spaces are Banach
spaces when equipped with the natural norms

[ fllze = (/If($)|pdA"(l°)); for pell,o0), and |f]L= = esssup,cqlf(z)]-
Q

L*(Q) is a Hilbert space with the well-known inner product

(. ghe = / f(@)g(x)dN"(x) for f.g e L3(S).
Q

Definition 1.1.6 (Sobolev Spaces H™"). Let Q C, R", m € Ny, p € [1,00], f € LP(),
a a multi-index of length m. f is said to have a weak partial a-th derivative if there is a
map g, € LP(12) satisfying

/3ag0f = (—1)m/<pga for all ¢ € C§°(9).
Q Q

Jo 1s necessarily unique up to changes on a set of Lebesgue measure zero and is usually
denoted by 0, f. If f has partial weak derivatives for all multi-indices a with |a| < m,
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we write f € H™P(Q). The vector grad f = (01 f,...,0,f) is called the weak gradient of
f. We write H™P? as a shorthand for H™?(Q2). Again, H"™? is a Banach space with norm
given by

1fllsmo =Y N10afllr for fe H™(Q) (p e [1,00).

|ar|=0

H™ := H™? is a Hilbert space with the inner product

= (Oof.Oag)re Vf g€ H™(Q).

|ar|=0

Remark. The function spaces C°(Q), C*(Q), LP(£2), and H™P(Q) contain real valued func-
tions by definition. By (C°(Q))" = C°(Q,R"), C¥(Q)" = C*(Q, R") etc., we understand
the spaces of all functions f : 2 — R” that have components in C°(Q2), C*(Q) etc., respec-
tively. The norms (or inner products) on these spaces arise canonically from the norms of
the R-valued spaces.

Proposition 1.1.7 (Sobolev Chain and Product Rule). ! Let Q C, R" be an open
subset, m € N, p,q € [1,00], f € H™P(Q)), g € H™1(), %‘F % =1. Then f-g € H™(Q)
can be differentiated by the product rule. Also, if h : Q — Q is bijective and if h and its
inverse are of class C' with bounded differentials, f € H"P(Q), then foh € H"(Q) and
the weak derivatives of f o h can be calculated by the chain rule.

Proposition 1.1.8 (Density of Smooth Functions). ? Let Q C, R" be an open subset,
meN, p e [l,00). Then C* N H™P(Q) is dense in H™P(Q).

Definition 1.1.9 (Boundary Values in H™?). We define H™?(Q)) as the closure of
Cse(2) € H™P(Q) with respect to [|.[|gms. f € H™P(Q2) then has boundary values 0 if
fe H™P(Q). f,g € H™P(Q2) have the same boundary values if (f — g) € H™P(Q).

Remarks. There are several different definitions of H™?(2) (as well as several names). If
Q) has a sufficiently smooth boundary, they all agree. There are different ways of defining
boundary values for maps f € H™P?({2), too.

We use the same notation for weak and classical derivatives. One can show that no con-
fusion arises since, if both derivatives globally exist, they agree outside a set of Lebesgue
measure zero, cf. e.g. [GT70].

Lef. [A1t91], pp. 109.
2cf. [Alt91], pp. 108.
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1.2 Topology and Geometry of Surfaces

In this section, we will give some important definitions from the topology of surfaces and
quote a classification theorem. We will then describe how this classification carries over to
a geometrical setting.

1.2.1 Topological Surfaces

Definition 1.2.1 (Topological Surfaces). A topological second countable Hausdorff
space Y is called an n-dimensional topological manifold if for every p € X there is an open
neighbourhood U C Y homeomorphic to an open subset V' C R™. Such a homeomorphism
¢ : U — Vis called a (coordinate) chart of 3, ¢(p) = (z'(p),...,x"(p)) are called (local)
coordinates on U. We also write ¢ : U — R" instead of ¢ : U — V. The inverse of ¢
is called a local parametrisation of U. A topological manifold of dimension 2 is called a
topological surface. A manifold is called closed if it is compact. Any set A = {¢: U, — R"}
of charts of X satisfying that for every p € ¥ there is a chart ¢ € A with p € U,, is called
an atlas of X. An atlas B is said to be subordinate to A if for every chart ¢ : U — R? in
B there exists a chart ¢ : V — R? in A such that U C V and ¢ = @|y.

Remarks. The dimension of ¥ is uniquely determined. A topological surface is usually
required to be connected. The notion of closed manifolds arises in the context of manifolds
with boundaries where it describes a manifold with empty boundary that is compact.
Here, as we only treat manifolds without boundaries to start with, both notions coincide.
Clearly, on every closed manifold we can find a finite atlas. The standard examples of
topological surfaces are the sphere S?, the torus T?, and the projective plane RP?.

We will later need the notion of compact charts in order to generalise Sobolev spaces to
manifolds.

Definition 1.2.2 (Compact Charts and Atlases). Let ¥ be a manifold. A chart
w: U — R" is called compact if there are a compact set K and an open set V satisfying
U C K C V and ¢ can be extended to V, i.e. there is a chart ¢ : V' — R" that is identical
to ¢ on U. An atlas consisting of compact charts only is called compact.

Lemma 1.2.3 (Existence of Compact Atlases). Let ¥ be any closed manifold. Then
there exists a finite atlas of compact charts, a compact atlas on . In particular, if A is
any finite atlas on X3, there is a finite compact atlas subordinate to A.

Proof. Let A = {p}, : Uy — R"}X_| be any finite atlas of 3 (exists by compactness). As
each ¢ is a local homeomorphism into R", every p € ¥ has an open neighbourhood V)
the closure of which lies inside of some Uy,). By compactness of X, there are pi,...,pg
such that the set of restricted charts B := {@xyly,, : Vi — R}, is an atlas of ¥. By
construction, B is finite and compact as well as subordinate to A. O
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We will now introduce the notion of a disk in a surface. Then, we will quote the connected
sum construction which allows us to formulate a theorem that classifies all closed connected
topological surfaces.

Definition 1.2.4 (Disks). Let ¥ be a closed connected surface. A disk D in ¥ is a subset
D c U, C ¥ of the domain U, of a coordinate chart ¢, the image of which is the unit
disk D? := {z € R?||z| < 1}, in symbols ¢(D) = D?.

Proposition 1.2.5 (Connected Sum). Let 31,3 be closed connected surfaces, Dy, Dy
disks in 31, 3o respectively, h : 0Dy — 0Dy a homeomorphism. Then the connected sum of
Y1, Yo, X #3, is defined as the union (X1 \int(D1))U (22 \ int(Dy)) modulo identification
via h. The connected sum s a topological surface. It is known that this surface is in
fact independent (with respect to homeomorphy) of the identification homeomorphism. #
s a commutative and associative binary operator on the homeomorphy classes of closed
connected surfaces with unique neutral element [S?].

Theorem 1.2.6 (Topological Classification of Closed Connected Surfaces). ¢ Any
closed connected surface is homeomorphic to the sphere, a (finite) connected sum of tori
or a (finite) connected sum of projective planes. The number of addenda (tori or projective
planes) in such a connected sum is unique. The surfaces in this list are all distinct. The
topological type of a closed connected surface 3 is the (unique) surface in this list to which
Y. is homeomorphic.

Next, we will introduce the notions of orientability, genus, and Euler characteristic. The
approach chosen here is somewhat misleading, since one would usually use these notions
in the proof of 1.2.6. Also, the definitions are not easy to verify for a given surface,
since its homeomorphic image in the above list has to be found out first. However, we
will follow this path for simplicity. See e.g. M. Hirsch’s book [Hir91| for more informa-
tion.

Definition 1.2.7 (Orientable Surfaces). A closed connected surface ¥ is called ori-
entable if it is homeomorphic to either the sphere or a connected sum of tori. Otherwise,
Y} is called non-orientable.

Definition 1.2.8 (Genus). To each closed connected surface ¥ we assign a natural
number g(3), the genus of X, as follows: If ¥ is homeomorphic to the sphere, g(X) := 0.
If ¥ is homeomorphic to a connected sum of n tori, then g(¥) := n. If ¥ is homeomorphic
to a connected sum of n projective planes, then also g(X) := n.

Definition 1.2.9 (Euler Characteristic). The Euler characteristic x(X) of a closed
connected orientable surface is defined as x(3) = 2—2¢(X). It is defined as x(X) = 2—g(%)
if 3 is non-orientable.

Remark. The Euler characteristic of a surface can be calculated directly via triangulations:
It can be shown* that every closed connected surface ¥ can be topologically triangulated,

3¢f. [ST80, Soe04].
4cf. [Rad25].
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which means it is homeomorphic to a simplicial complex that is a surface in its own right.
If, for any triangulation, one counts the number of vertices f, the number of edges fi, and
the number of faces (triangles) fo, then x(X) = fo — f1 + f2°. We can also calculate the
genus of ¥ from the Euler characteristic if we know whether it is orientable or not. Thus, we
can determine the Euler characteristic very easily if we are given an oriented triangulated
surface as will be shown in chapter 3. Indeed, we make use of it for a verification test in
the glueing scheme.

Proposition 1.2.10 (Properties of #). Let X1, %5 be closed connected surfaces. Their
connected sum X1#o is orientable if and only if both ¥, and X9 are orientable. If the
surfaces are either both orientable or both non-orientable, then g(X1#X2) = g(X1) +9(29);
if 31 is non-orientable and Y5 is orientable we have g(X1#%2) = g(X1) + 29(22), and in
any case X (E1#%2) = X (1) + x(22) — 2.

From this proposition and the classification theorem, we can derive

Corollary 1.2.11. Two closed connected surfaces are homeomorphic if and only if they
are both (non-)orientable and have the same Euler characteristic. This allows us to describe
the topological type of X by specifying its genus or Fuler characteristic and its orientability.

1.2.2 Smooth Surfaces

In this section, we will carry over the topological notions introduced above to a differential
geometry setting.

Definition 1.2.12 (C* and C*“-Manifolds). Let ¥ be a topological manifold, let A
be an atlas of X. Let k& € N. If all coordinate changes @ o)~ : (U N V) — R? between
charts o : U — R, ¢ : V — R" € A are of class C*, we call A a C*-atlas and (3, A)
a C*-manifold. Similarly, let ¥ € Ng,a € (0,1], and o = 1 if £ = 0. If all coordinate
changes @ o ¢~ : (U NV) — R? between charts p : U — R" ¢ : V — R" € A are of
class C*“, we call A a C*“-atlas and (%, A) a C**-manifold. We usually don’t mention
the atlas which should be clear from context. We call two atlases compatible if they are
of the same regularity C* or C** and if all coordinate changes between their respective
charts are of this regularity. The union of all compatible atlases on a given manifold ¥ is
called its differentiable structure. If 3 is a surface, we call (3, A) a C*- or C*“-surface,
respectively. A manifold or surface is called smooth if it has a C*>-atlas.

Let us agree on some notations for the following familiar notions. We use 7,,% to denote the
tangent space of X in a point p € 3 and 7Y to denote the tangent bundle. The cotangent
bundle is denoted by (TX)*. Let f : 3; — Y, between differentiable manifolds X1, X5 (of
any class) be a differentiable map defined in the usual way. Then, we denote its differential
by df : T, — T%y and by df, : T,X1 — T2, its differential in p. The usual rules for
differentiation (chain, product rule) will be used frequently. Also, we will throughout use
Einstein’s summing convention wherever it seems helpful. Vector and tensor fields, local
frames, pull backs etc. are defined as usual, cf. [Lee03], for example.

Scf. p. 139 in [ST8O0).
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Definition 1.2.13 (Continuous Function Spaces C* and C*?). The function spaces
Ck(¥1,35) and CF(X, %,) are defined analogously to section 1.1.

Definition 1.2.14 (Immersion, Embedding). A differentiable map f : ¥; — ¥ be-
tween the C*-manifolds 31,3, (k > 1) is called an immersion if its differential is injective
at every point. An immersion f : ¥; — Y is called an embedding if it is a homeomorphism
onto its image f(3;) C Xo.

We will mainly be interested in immersions (or embeddings) of surfaces into Euclidean R?.
Next, we will now quote the geometric variant of 1.2.6:

Theorem 1.2.15 (Geometric Classification of Closed Connected Surfaces). ¢ Any
closed connected smooth surface is diffeomorphic to the sphere, a (finite) connected sum
of tori or a (finite) connected sum of projective planes.

Orientation of differentiable manifolds is usually defined as follows:

Definition 1.2.16 (Orientation). " A vector space is called oriented, if we are given a
specific basis to be positively oriented. A C'-manifold is called pointwise oriented if we are
given an orientation on each tangent space. A local frame is called (positively) oriented
if it is a positively oriented basis at each point of its domain of definition. A pointwise
oriented manifold is called oriented if every point lies in the domain of definition of a
positively oriented frame. A manifold is called orientable if there exists an orientation for
it, otherwise it is called non-orientable.

Proposition 1.2.17 (Orientation). A closed connected C*-surface is orientable in the
sense of definition 1.2.16 if and only if it is orientable in the sense of definition 1.2.7.

Proof. 1t is sufficient to show that proposition 1.2.10 remains valid for the geometric
definition of orientability since it is known that both the sphere and the torus are orientable
in both senses of the word whereas the projective plane is not. This can be found in
[Hir91]. O

1.2.3 Surfaces and Curvature

This section intends to give the necessary background for the definition of mean curvature.
As the Willmore energy is proportional to the integral over the squared mean curvature
of a surface, we are getting to the heart of this chapter, here.

Definition 1.2.18 (Riemannian Metric). Let ¥ be a C'-manifold. A (Riemannian)
metric g is a continuous symmetric positive definite 2-tensor field on the tangent bundle
TY. The metric is called of class C* or C** for k € Ny and a € (0,1], if its local
representations are of this class (and the manifold is sufficiently smooth). The pairing
(T,X, gp) is a Euclidean space. We often write (.,.) instead of g, if no confusion arises

b¢f. chapter 9, [Hir91].
"cf. [Lee03], for example.
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thereof. A manifold with a Riemannian metric is called a Riemannian manifold. A map
f X1 — X between the Riemannian manifolds (X1,¢), (X2,9) is called isometric if
Gp(X,Y) =Gy (dfp(X), dfp,(Y)) Vpe ¥ VXY €T,%. An isometric diffeomorphism
is called an isometry.

Remark. There also is a notion of Riemann surfaces in conformal geometry and a notion
of Riemannian surfaces in the theory of complex functions. The first is going to play an
implicit réle in chapter 5 and will be defined below, the second will not appear in this text
and will therefore not cause any confusion.

In the following, we will have a look at the curvature of a surface with a Riemannian
metric. We will restrict ourselves to surfaces immersed in R?® for simplicity and since this
will be the only case we need. For the rest of this section, let X be a C?-surface, f : ¥ — R?
an immersion. We can define a Riemannian metric g on X by setting

0o(X,Y) = (df,X,df,Y) VpeX VXY eT,Z.

We sometimes call g the first fundamental form of ¥ for historical reasons. The area
measure on Y is given by duy = dp, = /det g# dN\? o ¢ in coordinates ¢. It is clear that
there exists a C! local unit-normal field on X, i.e. a C''-section of the normal bundle 7, %+
that has unit length everywhere in its domain of definition.

Definition 1.2.19 (Second Fundamental Form). Let f : ¥ — R? be a C%-immersion,
U C, ¥ an open subset with unit normal field v : U — (TU)*. Then the second funda-
mental form of f on U is the pointwise defined symmetric 2-tensor field

hy(X,Y) = —(dv,X,df,Y) VpeU VXY eT,X.

One can show that & is continuous and that h,(X,Y) = (v(p), d*f(X,Y)],). The sign of
h depends on the choice of the normal field v.

Remark. One could get rid of this dependency if > were assumed to be orientable. We

could then choose a positively oriented atlas on > and define local unit normal fields by

o _ O7fxo5f
YT rrxos Al
chart domains. As we want to include non-orientable surfaces, we will not do so. The
dependency will not carry over to the Willmore energy integral, though, since we are

integrating over the squared mean curvature there.

for each chart ¢. By positivity, these fields agree on the intersections of

Definition 1.2.20 (Weingarten map). Let f : ¥ — R? be a C*-immersion, U C, 3, v
as above. Then we can associate a pointwise defined linear map L, : 1,2 — T,¥ to the
second fundamental form satisfying

0oLy X, Y) = hy(X,Y) VpelU VXY eT,X.

L, is called the Weingarten map of ¥ in p. L also is continuous on U and its sign depends
on the choice of the normal field. In addition, L, is self-adjoint for all p € U.
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Definition 1.2.21 (Mean Curvature, Gaufiian Curvature). Let the setting be as
above. We define the Gaufian curvature K,(f) of ¥ in p € U as the product of the (real)
eigenvalues of L, (the determinant of L,), and the mean curvature H,(f) of ¥ inp € U
as their average (half the trace of L,). Both curvatures K(f), H(f) then are continuous
on U. K(f) is independent of the choice of the normal field, H(f) depends on it. We also
define the so-called mean curvature vector H(f) by H(f) := 2H(f)v which is independent
of the choice of normal. The factor 2 is introduced for convenience.

It is possible to define the gradient, divergence, and Laplacian of a sufficiently smooth map

on a differentiable surface just as in R", see e. g. [Lee97]. Let grad, denote the gradient, div,

the divergence and A\, the Laplace-Beltrami operator on ¥ with g induced by an immersion

f ¥ — R? of class C?. In local coordinates, denoting by det(g) the Gram determinant
T _ id : iy — 1 i

of g, it is well-known that grad,u = ¢70;u0;, div,(X'0;) = \/T@ai(x det(g)) and

JANRTIES \/%(g)ﬁi(gij\/det(g) Oju) for u : ¥ — R, X a vector field on ¥, both smooth

enough. We will often use the following fact.

Lemma 1.2.22. % Let ¥ be a C?-surface and f : ¥ — R3 a C?*-immersion. Then

Agf = H(f)

Proof. By product rule, differentiating the identity, and the Weingarten equations® we get
(choosing a unit normal v and denoting the Christoffel symbols'® of g by I'.))

(Dgf,Ocf) = 0ig” gjr + §g”8kgij + g”Flijgkl =0 and

1 . -
(Dofov) = ———(0i(g"/det(9)) (D, v) + v/det(g) ghi;) = 2H ()
det(g)
for £ = 1,2 and thus the claim follows. 0

Integrals of 2-forms over orientable surfaces are defined with the help of a partition of
unity'?, as usual. On orientable surfaces with a Riemannian metric, we can define the inte-
gral of a continuous function u : ¥ — R by the integral of the 2-form w dy . Since the trans-
formation laws for integrals and 2-forms possibly differ by a sign on non-oriented surfaces,
we have to be more careful for those, see below. We will later need

Theorem 1.2.23 (Gauf-Bonnet). * Let 3 be an oriented closed connected surface and
f: ¥ — R3 a C*-immersion. Then

[ K dug = 2m(5).

8as found in [Kuw98|.

9¢f. [Lee97].

10¢f. [Lee97|.

HExistence and definition of partitions of unity subordinate to a given atlas can be found in J. M. Lee’s
book [Lee03], for example.

12¢ited from [Lee97].



1 Mathematical Setting 10

If 3 is non-orientable, let P :ﬁ] — ¥ be its orientation covering (cf. pp. 329 in [Lee03]). It is
shown in the same text that X is an oriented closed connected surface of the same regularity
as > and that P is 2-sheeted. In section 2.2, we will frequently need

Lemma 1.2.24 (Lifting to Orientation Cover). Let ¥ be a non-orientable, closed,
and connected surface, f : 3 — R3 a C2-immersion. Let P : ¥ — ¥ be the orientation
covering of ¥. Then f := f o P is an immersion of ¥ into R3. Let §, K, H, H, and
pj denote the Riemannian metric, the Gaufian curvature, the mean curvature, the mean

curvature vector, and the surface measure of ¥ induced by §, respectively. Then!?

Gg=Pyg, K=K(f)oP, H=H(f)oP, H=H(f)oP, and P(uj)= puy.

Before we prove this lemma, we explain how, relying on it, we can define integrals over non-
orientable surfaces. Let X be a closed, connected, and (possibly) non-orientable surface,
embedded into R? by f: ¥ — R3 of class C2. let P : £ — X be its orientation covering, f
as in the lemma. If u : ¥ — R is continuous, we define fz udpy = %fz uwoPduj. By the
factor %, we take into account that the orientation cover is 2-sheeted so that this definition
agrees with the one given before in case ¥ is orientable.!4

Proof. The orientation covering is a local diffeomorphism (cf. p. 40 in [Lee03]), so f is both
locally injective and as regular as f, i.e. an immersion whence all geometrical properties
mentioned in the lemma are well-defined. The metric § induced on ¥ by f clearly agrees
with P*g and makes P a local isometry. It follows from the transformation behaviour
of measures'® and from det(7) = det(dP)* det(g) o P that P(pz) = ps. Let 7 be a unit
normal on ¥. Let U C, ¥ be such that P|; is a diffeomorphism onto its image U. On U,

let v := 7o (P|z)~". Then v is a unit normal field on U as unit length is measured by the
surrounding R? and (v, df (X)) o P = (v, df (dP)~'X|p) = 0 for all vector fields X on .

All arguments in the next paragraph are local on U. Let X,Y be two arbitrary smooth
vector fields on U ,set X = dPX lp, Y = de/|~p. For the second fundamental form, we get
hMX,Y) = <D,d2f()§,Y)) = (vo P, f|p(dPX,dPY)) = (v,d*f(X, Y))lp =h(X,Y) 073
by product rule, or h = P*h. Consequently, for the Weingarten map L, L = dPL(dP)~*

Since dP, is an isometry for p € 3, or, in the language of linear algebra, an orthogonal
mapping, the trace and determinant of Land LoP agree, thus K=K (f) o P and
H = H(f)oP. Also, H = 2H0 = 2(H(f)oP) (voP) = H(f) o P on U and since every
p € ¥ has a diffeomorphy neighbourhood U, the lemma is proved. O

With this technical result, we conclude the section of surfaces with Riemannian metrics.
We will come back to these facts in the following chapter, where we will use them to define
the Willmore energy.

13¢f. p. 87 in [Els00] for a definition and for the notation of pushed forward measures.

"We could alternatively use the Riemannian measure ;17 and integrate measurable functions on ¥ on
both orientable and non-orientable surfaces. The result would be the same, cf. [Lee97].

15¢f. pp. 203 in [Els00].
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1.2.4 Conformal Geometry

On Riemannian manifolds, we can define angles between intersecting curves as we are
given an inner product on every tangent space. We can thus generalise a fundamental
notion from Euclidean geometry, namely similarity, where angles are preserved. We will
do so by introducing the concept of conformal maps which take the place of similarity
transformations. Conformality is important for our treatment of Willmore energy as it
turns out that this energy is invariant under conformal transformations. Also, conformal
maps of S? will play a key role in chapters 5 and 6 which discuss the theoretical and
numerical background for mesh improvement in the Willmore flow.

In order to shorten our notation, we give the following definition:

Definition 1.2.25 (f-Compatible Charts / Atlases). Let 3, be closed manifolds.
Set C9(Xy, %) := {f : ¥ — 3o | f is continuous}. Let f € C°(3;,%,). We call a pair of
charts ¢ : U — R™ of ¥y and ¢ : V — RF of 3y f-compatible if f(U) C V. We call an
atlas A; on ¥y f-compatible to an atlas A on X, if for any chart ¢ € A; there is a chart
1 € Aj such that o, are f-compatible. In that case, we also say that A; and A, are
f-compatible atlases.

Lemma 1.2.26 (Existence of f-compatible Atlases). If 31, % are closed manifolds,
feC%X, %), Ay is any atlas on Xy, and A, is a finite compact atlas on Xy, then there
is a finite compact atlas on X1 which is f-compatible to As and subordinate to Aj.

Proof. Let A; be any finite compact atlas on ¥; subordinate to A, (exists by lemma 1.2.3).
Since f is continuous, we know that f~!(V) C ¥, is open for all chart domains V C 3.
We can thus refine A; such that for any ¢ € A; with domain U satisfying UN f~1(V) # 0,
we restrict ¢ to every open set W with W C UN f~1(V). As f is defined on all of 3, this
refinement gives an atlas on Y; of the same regularity as A; and f-compatible to Ay. By
compactness of 1, we can find a finite sub-atlas. Also, we can further refine this atlas in
order to secure its compactness by lemma 1.2.3. O

Definition 1.2.27 (Conformal Maps, Conformal Metrics). Let 3,3, be Rieman-
nian manifolds with metrics g, 7, respectively. A map f : 31 — ¥ is called conformal if
there is a smooth positive function A : ¥; — R* s.t.

9p(X,Y) = Ap) gf(p)<dfp<X)7 dfp(Y)).

Y1, 2o are called conformally equivalent if there is a conformal diffeomorphism f : 3, — .
A Riemannian metric on > is called conformal if all charts on X, are conformal maps
with respect to g and the canonical metric on R".

Remark. As announced above, a map is conformal if and only if angles are preserved.
Conformality is a weaker notion than isometry where lengths are preserved as well. Also,
conformality induces an equivalence relation both on the Riemannian metrics on one man-
ifold as well as on all Riemannian manifolds of a fixed dimension.
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Definition 1.2.28 (Isothermal Coordinates, Conformal Charts). ' Let ¥ be a
Riemannian manifold of class C! with metric g. We call a chart ¢ : U — R" of 3 conformal
with respect to g, if there is a continuous map p¥ : U — R such that

g5 = p¥ 0i5 on U.

It is clear that p? is as smooth as g if g has higher regularity. We call an atlas conformal if
it consists of conformal charts. The coordinates associated to a conformal chart are called
1sothermal.

For the following, it will be useful to know

Theorem 1.2.29 (Existence of Isothermal Coordinates). 7 Let 3 be a smooth closed
surface, g a Riemannian metric of class C*° on Y. Then there exists a finite conformal
atlas A on X the charts of which are of class C* and compatible with the given atlas. If,
additionally, 3 is orientable, then A can be chosen to be oriented.

Proof. Tt is well-known that the Gaufian curvature is an isometry invariant and that it can
be defined for any smooth surface with Riemannian metric which need not be immersed
into R?® whatsoever, see pp. 143 in [Lee97|. Let K be the GauRian curvature of (3, g), then
K : ¥ — R is smooth by the same result. It is well-known that the elliptic equation

N, f =K (1.1)
locally has smooth solutions f : U — R.

[In fact, for each p € ¥, we can choose an open neighbourhood U C ¥ so that U is
contained in the domain of a chart ¢ of ¥ and that ¢(U) = D, where D is the open unit
disk in R2. In coordinates, the equation then reads

1 . 59 1) o 1 _ o 1oy
—(m@( det(g)g”9;f)) o (¢[p) Ko (¢|p) D.

As the differential operator of this equation is strictly elliptic by smoothness of the g;; and
by compactness of U, Corollary 6.9 in [GT70| tells us there is a (unique) solution of the

above equation (with boundary values = 0, for example). We can deduce the existence of
local solutions of the Poisson equation on 3.

Let thus for every p € X f : U — R be a smooth solution of 1.1 on an open neighbourhood
U of p. Setting § := e*/ g|y;, we know that § and g|y; are conformally equivalent metrics on
U as €% : U — RT is smooth. From [KP88|, p. 72, we deduce that

K+Agf262ff(

on U, where K : U — R is the GauRian curvature of § and whence by 1.1 K = 0. As X is
two-dimensional, it follows'® that the Riemannian curvature tensor of (U, g) vanishes. In

16The notion of isothermal coordinates goes back to C. F. GauR in the real analytic case, cf. [Beh95, KP88].
17Parts of this proof have been found in [KP88§].
18¢f. lemma 8.7 in [Lee97].
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consequence'®, (U, §) is flat, i.e. locally isometric to R%. We deduce that there is an open
neighbourhood V' C U of p and an isometry ¢ : (V,g) — (¢(V) C R?,6|,(v)), where &
denotes the canonical metric on R2. In symbols, this means

0" (0lon) = glv = el gly

or in other words, ¢ : V' — R? is a conformal chart of (3, g) at p compatible with the
given atlas. As p was arbitrary, we have shown that a conformal atlas of (3, g) exists.

Let ¥ additionally be oriented. Then since (X, §) is locally flat, there exists an atlas
A consisting of all local isometries compatible with the given atlas. As reflections are
isometries of R2, we can choose an oriented atlas A C A, so that all charts in A are
conformal with respect to g. O

Finally, we define holomorphy and Riemann surfaces.

Definition 1.2.30 (Holomorphic Functions). % Let U C, C be an open subset, let
f=(f'f%) : U — C. Then f is called holomorphic, if it is complex differentiable, i.e.
if the limit %(z) = limy_,o w exists for every z € U. This is equivalent to f*, f2
being continously differentiable on U and satisfying the Cauchy-Riemann equations

oft  ap

o~ o (1.2)
oft _ of?

ox2 oxl’

in all of U, where (z',z?) are the (real) coordinates in U.

Remark. Holomorphic functions with non-vanishing derivative are conformal with respect
to the standard Riemannian metric on C and have a positive Jacobian.?!

Definition 1.2.31 (Riemann Surface). ?? A smooth surface is called a Riemann surface,
if it possesses a complex-valued atlas with holomorphic chart transitions.

Corollary 1.2.32. ?* Riemann surfaces are orientable.

Definition 1.2.33 (Holomorphic Maps, Conformal Metrics). ?* Let ¥;, %, be Rie-
mann surfaces, f : U C, X1 — 3 continuous. Then f is called holomorphic on U if its
coordinate representations 1) o f o p~! with respect to all pairs of f-compatible charts ¢, v
are holomorphic. If g is a Riemannian metric on a Riemann surface X, we say that ¢ s
conformal if all charts are conformal with respect to ¢g. This notion of conformality agrees
with the one given before.

19¢f. theorem 7.3 in [Lee97].
20¢f. pp. 24 in [Ahl66].

Zlcf. pp. 74 in [Ahl66].

2¢f. p. 19 in [Jos00].

23¢f. p. 55 in [Jos00].

24ef. p. 19 in [Jos00].
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Corollary 1.2.34. Holomorphic maps between Riemann surfaces with non-vanishing com-
plex derivative (i. e. with non-vanishing Jacobian) are conformal with respect to any con-
formal Riemannian metrics g1, ga on 31, Yo, respectively.

Lemma 1.2.35 (Orientable Surfaces are Riemann). Let ¥ be a smooth closed ori-
entable surface, g a Riemannian metric of class C™ on Y. Then there exists a finite atlas
on X the charts of which are compatible with the given atlas and have holomorphic chart
transitions.

Proof. By theorem 1.2.29, there exists an oriented atlas .4 compatible with the given atlas
and consisting of charts conformal with respect to g. As conformality is transitive, all
chart transitions p o ¢! : (U, NU,) — R? can be understood as orientation-preserving
conformal complex-valued functions on (open subsets of) C. By complex analysis?, they
are holomorphic.

Corollary 1.2.36. Let g be any smooth Riemannian metric on S*. Then S? can be given
a Riemann surface structure with respect to which g is a conformal metric.

1.3 Analysis on Surfaces

In order to introduce Finite Elements on surfaces, we will need Sobolev spaces on surfaces.
We will also use these spaces in chapter 5 to prove an existence theorem for conformal
diffeomorphisms. As in the Euclidean setting, we define

Definition 1.3.1 (LP-Spaces on a Surface). Let ¥ be a closed surface immersed in R”,
let p € [1,00), f : X — R measurable with respect to the pulled back surface measure p
on ¥. Then f is said to lie in £P(X) if the integral [ |f[?dp is finite. If p = oo, we say
f € LX(X), if esssupy|f]| is finite. The spaces LP(X) are obtained by factorising £7(X)
through the equivalence relation of identity outside a set of measure zero. We use L” as a
shorthand for LP(X). In the usual way, LP-spaces are Banach spaces when equipped with
the natural norms

1
1l o= ( / FPdu)t for pelloc), and ||fllie = esssupslf].
>

L*(Y) is a Hilbert space with the well-known inner product

(fghie = / fgdp for fge ).
>

Z5cf. pp. 74 in [Ahl66].
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Definition 1.3.2 (Sobolev Space H' on a Surface). % Let X be a closed C%!-surface.
We call f : ¥ — R a member of H'(X) := H“2(X), if for a given partition of unity
{n;} subordinate to a (finite) atlas {y; : U; — R"} of X, all maps of the form (fn;) o
¢ 0i(U;) — R belong to H*(¢;(U;)). This definition is independent of the particular
choice of atlas (as long as it belongs to the same differentiable structure) and of the
partition of unity. H'(3) becomes a Hilbert space if it is equipped with the inner product

(f, 9 sy = 2 ((fm) o i b (9mi) © 97 1) i gy for frg € HY (D).

Remark. As in the Euclidean case, the function spaces C°(X), LP(X), and H'(X) contain
real valued functions by definition. By C°(X)" = C°(2,R"), LP(2)" = LP(2,R") etc., we
understand the spaces of all functions f : ¥ — R™ that have components in C°(X), LF(X)
etc., respectively. Also, the norms (or inner products) on these spaces arise canonically
from the norms of the R-valued spaces.

Also, if ¥ satisfies “further conditions” — which S? satisfies —, strong (weak) H!(X)-
convergence implies strong (weak) L?(3)-convergence on H'(X) C L3(%).

Before we proceed to define H'(X;,Y,), we remark

Lemma 1.3.3. We have f € H'(X) if and only if fo o™t € H' (p(Uy,)) for all compact
charts ¢ : U, — R" of X.

Proof. Let f € HY(X). Let {p; : U; — R?}L_| be a finite compact atlas of 3, V; C, &
open and such that ¢; can be extended to V; with U; C V; (exists by lemma 1.2.3).
Then the set A := {p; : V; — R?}L_| is another finite atlas of 3 belonging to the same
differential structure. Choose [ € {1,...,I}. Let {n'} be a partition of unity subordinate
to A satisfying 7} = 1 on U,. Then, by definition, (fn!)o¢; ' € Hl(gol(Vz)) for all 7 and in
particular f o ;' € H'(¢)(1)).

On the other hand, let f o o' € H'(p(U,)) for all compact charts ¢ : U, — R2 Let
A = {p; : Uy — R?}L_,| be any finite atlas of 3, {n;} a subordinate partition of unity.
Let next B = {1, : V;,, — R?*}X | be a compact atlas subordinate to A with the following
property (x): for all ¢ € {1,...,I} and for all z € Uj, there is a k € {1,..., K} with
z € Vi and ¥y, = ¢, |y, (exists by lemma 1.2.3). We have f o, ' € H*(¢%(Vi)) so that
(i) e (i)™ = (P ot € HY(t(VA), as well. Thus, (fns)o ;' € H(:(U7)) by
(*) and finiteness of the compact atlas B. It remains to show that the boundary values of
(fni) o, Yin ;(U;) are zero which is immediate since 7; has compact support in U;. [

Lemma 1.3.4 (Invariance under Diffeomorphisms). Let ¥1,%, C R" be closed em-
bedded surfaces of class at least C', h : X1 — X9 a diffeomorphism. Let U be a bounded
open subset of R?, f:U — 1. Then f € H'(U)" if and only if ho f € HY(U)™.

Proof. Tt suffices to show one direction since the other one follows from h~! being a
diffeomorphism, too. Thus, let f € HY(U)", i.e. 9;f € L*(U)" for all j and f € L*(U)".
As h is bounded by its continuity and by compactness of 31, ho f clearly lies in L?(U)"
as it is clearly measurable. By the Sobolev chain rule (see proposition 1.1.7), we can

26See pp. 92 [W1o82] for more information about this definition.
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deduce that 9;(h o f)! = (Oxh’ o f) - 0;f*. In this sum, all coefficients of the derivatives
of f* consist of derivatives of h and are thus clearly measurable. Since ¥; is compact and
h is a diffeomorphism, the coefficients lie in L>°(U)™. Taking all together, by the Holder
inequality 0;(ho f) lies in L*(U)". As j was arbitrary, ho f € H'(U)" and we are done. [

We now proceed to define H 1(21, Y5). The Whitney embedding theorem?” states that any
closed smooth surface can be embedded into some R". We can thus assume that >, is
embedded into some R™.

Definition 1.3.5 (Sobolev Space H'!'(3;,Y,)). Let ¥;,%, be closed C'-surfaces and
e : ¥y — R™ an embedding. Then a map f : ¥; — X, is said to belong to H'(X,Y,) if
e o f belongs to H'(3;)" as defined above. This definition is independent of the chosen
embedding.

Proof. Let ey, e; be two embeddings of 35 into R, R* respectively. Then without loss of
generality k = n, since R is canonically embedded in R" for k& < n. Thus e;(2s), ea(2s)
are two surfaces as needed for lemma 1.3.4 and h := €3 0 (e]')c,(s,) is a diffeomorphism.
Choose a finite atlas A = {¢; : U; — R?} on ¥; consisting of compact charts with ¢;(U;)
having smooth boundary (its boundedness and openness being immediate). Thus for any
i,e10fow;t € HY(p;(Uy))™ if and only if ea 0 fop; ' = hoejo fop;t € H (p;(Us))" by
the above lemma and since ¢;(U;) satisfies all necessary conditions. O

Proposition 1.3.6. Let 31, %, be closed surfaces of class Ct, ¥y embedded in some R™.
If f € C°%21,%,), we have f € HY(X1,%s) if and only if all its compact coordinate
representations 1 o f o o=t lie in H (p(U, N f~H(Uy)))?%.

Proof. Let all compact coordinate representations of f belong to H'. Let m, denote the
projection onto the first two components of R™, m,_» the projection onto the last n — 2
components. Since X, is embedded into R", there is a finite atlas A, = {¢, : Uy, — R"}

of R™ consisting of slice charts®®, i.e. such that the projections {1} := m o EMEQQUE }
— k
constitute a compact atlas of ¥y and such that m,,_» oz/;“zm% = 0. Set Uy, := XN U%.
k

By possibly refining the atlas A, we find a finite compact atlas A; = {¢} : Uy — R?*}
on ¥; satisfying f(Uy) = Uy, by continuity as in lemma 1.2.26. We have to show that
f € HY(X))", or, by lemma 1.3.3, that 1,0 fop, ' € H(px(Uy))" for all k. By construction,
we know that myo), 0 fop, ' = o fop, ' € H (px(Us))? so that the first two coordinate
functions of ¢, o fo, ! lie in H'(¢.(Uy)). All other coordinate functions are zero anyway,
so we have shown f € H'(X;)" and thus f € H'(3,%,).

Let us now suppose that f € H'(3;,%,). Let A; be a compact atlas of ¥; f-compatible
to a slice chart atlas A, of ¥ as above (exists by lemma 1.2.26). It then follows that
pofopt=motofoptec H (pU))? from lemma 1.3.3 whenever 1) € A, is the
restriction of a chart 1) of R™ to ¥, and ¢ : U — R? € A, such that ¢, ¢ are f-compatible.
We have thus got the desired result. 0

ZTcf. p. 251 in [Lee03].
Z8¢f. [Lee03], pp. 174.



2 Willmore Surfaces

In this chapter, we will define the Willmore energy and study some of its properties.
Section 2.1 introduces some concepts from the calculus of variations which will allow us
to differentiate the Willmore energy in order to find minimisers. It is based on [Str96]. In
section 2.2, we will give the definition and study some properties of the energy functional.
Parts of this section are based on [Wil93].

2.1 Calculus of Variations

We will need a few basic definitions from the calculus of variations, such as the notion of the
first variation of a functional, of Fréchet- and Gateaux differentiability.

Definition 2.1.1 (Gateaux Differentiability). A functional F : U — R on a subset
U of a linear space X is called Gateauz-differentiable in x € U in the direction ¢ € X if
there exists § > 0 such that 2 +c¢ € U for all € € (—6,9) and the limit

lim F(x+e¢p) — F(x)

e—0 £

=: 0F(x)¢ (2.1)

exists. In that case, we call §F(x)¢ the first variation of F in x (in direction ¢). If F
is Gateaux-differentiable in x in all directions, we just say F is Gateaux-differentiable in
x. In particular, if X is equipped with a norm and U C, X is open with respect to the
induced topology, then F is Gateaux-differentiable in z (in direction ¢) if the limit in 2.1
exists.

Definition 2.1.2 (Fréchet Differentiability). A functional 7 : U — R on an open
subset U of a normed space X is called Fréchet-differentiable in x € U if there exists a
continuous linear functional 0F(x) : X — R satisfying

- NF (x4 ¢) = Fla) - 0F ()l

lim
I8l —0 ]|

for all € X\{0}. 0F () is called the first variation of F in x. If F is Fréchet-differentiable
on an open set U C X and its first variation is continuous (in the dual X*), we say that
F is C'(-Fréchet-differentiable).

0

The connection between Gateaux- and Fréchet differentiability is illuminated by
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Proposition 2.1.3 (Fréchet Differentiability). ' If a functional F : U — R on an
open subset U of a normed space X is Gateauz-differentiable on U and its first variation
is continuous with respect to x (for fized ¢), then F is C1-Fréchet-differentiable on U.

Definition 2.1.4 (Critical Points, Euler-Lagrange Equations). Let 7 : U — R
be Fréchet-differentiable on an open subset U of a normed space X. An element x € U
is called a critical point for F if the first variation of F vanishes in z. The equations
0F (z) = 0 characterising critical points of F in U are called its Fuler-Lagrange equations.

2.2 Definition of Willmore Energy

In this section, we will study some properties of the Willmore energy of a surface. It is also
called the classical bending energy of this surface and measures the deviation of a surface
from the round sphere S?. Examples will be given at the end of this section. For the whole
section, let X be a closed connected sufficiently smooth surface.

Definition 2.2.1 (Willmore Energy). Let f : ¥ — R® be a C?-immersion. The Will-
more energy of f, W(f), is defined by

W) =5 [ Py

We define
W(X) == inf{W(f)|f: £ — R? is a C* — immersion}.

As discussed in section 1.2.3, in the case of a non-orientable X, the integral is in fact
calculated on the orientation cover of . As lemma 1.2.24 explains, it makes no difference
whether we talk of curvatures of > or those of its orientation cover.

Remark. Tt is clear, that the Willmore energy of a given C?-immersion is finite as the
integrand is continuous and the domain of integration is compact. Conventionally, there
is a factor i preceding the integral. The variant used here has technical advantages in the
numerical context and can be found in [Rus, DDE05], for example. Many authors also use
the expression

/ (H(f)? — K(f)) dys

as a definition of the Willmore energy. By the theorem of Gauf-Bonnet 1.2.23, this is only
a constant shift of the Willmore energy as defined above and does thus not affect critical
point or flow theory.

Definition 2.2.2 (Minimal Willmore Surface). A C?-immersion f : ¥ — R? satisfying
W(f) =W(X) is called a minimising Willmore surface.

Lef. p. 222 in [Str96].
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Lemma 2.2.3 (Invariance under Reparametrisation). The Willmore energy of a
C?-immersion f : ¥ — R3 is invariant under reparametrisation, i. e. W(f o ¢) = W(f)
for all C?-diffeomorphisms ¢ : ¥ — .

Proof. Let f, ¢ be as in the lemma, let g := gy, § := g be the metrics induced on X by the
immersions [ and fo¢, respectively. Let X, Y be any pair of continuous vector fields on 3.
Then by the chain rule, §,(X,Y) = (d(f 0 ¢),X,d(f 0 ¢),Y) = (df y(»)dDp X, df () dppY ) =
Go(p)(ddp X, dp,Y ) which shows that ¢ is an isometry of (X, §) and (3, g). If we denote
by v : U — R3 a local unit normal field on U C, ¥, then 7 : ¢~} (U) — R3 defined
by 7 := v o ¢ is a local unit normal field, too, since for any continuous vector field X
on ¢~ (U) we have (0(p),d(f o ¢),X) = (v(¢(p)), dfsp)(dppX)) = 0. Thus, the second
fundamental form of ¥ with respect to the immersion f o ¢ and the unit normal 7 is
given by h(X,Y) = —(dvX,d(f o ¢)Y) = —(dvg - dpX,df, - dpY) = hy(X,Y) for all
continuous vector fields X,Y on ¢~1(U) and X,Y on U given by X = d¢X, Y = dpY.
Let p € ¢'(U). If k1, ko are the mean curvatures of (X, g) in ¢(p) and ey, es € Ty X
are associated unit main curvature vectors, then setting ¢; := (d¢,) 'e; (i = 1,2), we
have h,(é;, ;) = he(p)(€1,€;) = Kid;; and thus the mean curvatures agree in corresponding
points. In consequence, H(f o ¢) = H(f) o ¢ and the Willmore energy of the immersions
f and f o ¢ of ¥ into R? agree. O

2.3 Conformal Invariance

The Willmore energy of an immersion f is obviously invariant under isometries M of R3
performed after the immersion, in symbols W(f) = W(M o f). In the following, we will
study its behaviour under conformal transformations of R3.

Definition 2.3.1 (Inversion at a Sphere). The inversion at the sphere of radius r and

centre c is the map C' : R"\ {c} = R"\ {c}:z— c+ r?(z—c)

lz—c|?

Inversions are conformal mappings on their domains of definition. If f : ¥ — R? is an
immersion, ¢ € f(X), and C : R3\ {¢} — R3\ {c} is an inversion at a sphere with centre
¢ and any radius, the map C o f : ¥\ f7!(c) — R3 is an immersion, but its domain
of definition is not closed. Here, f~!(c) := {p € | f(p) = c¢}. By compactness of ¥,
the pre-image of c is a finite set, so that the integral for the Willmore energy can be
defined although X\ f~!(c) is not closed. We will thus speak of the Willmore energy of the
immersion C'o f. We will not, though, include those immersions when taking the infimum
in order to calculate W(X).

Before we come to proving the conformal invariance of W, we cite a theorem that characteri-
ses all conformal transformations (i.e. automorphisms) of R3. A similarity transform of
R3 is a bijective linear map S : R* — R? that is a composite of isometries (with respect to
the canonical metric on R?) and of dilations, i.e. linear maps of the form S = pIdgs with
peR p>0.
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Theorem 2.3.2 (Liouville’s Conformality Theorem). ? Every conformal transfor-
mation of R? is a composite of similarity transforms and inversions at spheres.

Theorem 2.3.3 (Conformal Invariance of W).  Let card A denote the cardinality of
a set A. The Willmore functional VW transforms by

W(C o f) = W(f) — 8rcard f~'({c}) (2.2)

if C is a conformal transformation of R3. In particular, if C does not contain inversions at
points lying on the surface f(X), the energy is invariant under C. Note that card f~1({c})
s finite by compactness of 3.

Proof. As stated above, we can neglect isometries. By Liouville’s conformality theorem,
it suffices to treat dilations and the inversion at the sphere of radius 1 with centre in
the origin. We will treat these cases separately. If X is non-orientable, we work with its
orientation covering P : > — 3, where X is a closed, connected sufficiently smooth surface
in its own right, immersed in R?® by f o P. We then get W(C' o f) = s W(C o foP) =
TOV(f o P) — 8rcard (f o P)({c})) = W(f) — 8mcard f({c}) recalling that P is a
2-sheeted covering. So, from now on, assume additionally that > is oriented.

Let C:R* = R’ : 2 — pr be a dilation, p#0,and set f := Cof. Then df = pdf, so that
the metric ¢ of f satisfies § = p? g. Therefore dpy = v/det gd\* = p*dpy. Since the mean
curvature vector H(f) satisfies H(f) = A, f (cf 1 2.22) we get the pointwise equality

2

: 2 1 » -
H(f) = Dyf = \/mgjlai(g Vdet §0;f) = \/szla g7\/det gd; f) = = H(f),

where (¢”7) and (§") denote the inverses of (¢;;) and (g;;), respectively. Combining these
results, we get

/ P dpi; = = / L2 2 dpy = / RO dysy = W),

It remains to show that 2.2 is valid for the inversion at the sphere of radius 1 with centre
in the origin. Let C': R3\ {0} — R3\ {0} : z — npand f: Y\ f7H0) = R®:p+— Cof(p).
Then we have for all p € X\ f71(0) and all X|Y € T,%

2

dfpX = ‘ ( B (dfp X W(f(p)adpr> f(p)); and thus
; _ ! _ 2 _ 2
gp(X,Y) = Ok (dfp X Ok {(f(p), dfpX) f(p), dfyY Ok {(f(p). dfpY) f(p))
1 4

1
= Fope®Y)

2cf. pp. 232, [SY94].
3¢f. section 7.3, [Wil93] and pp. 557, [BK03].
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In consequence, du; = md,uf. Let U C X\ f71(0) be an open orientable subset with
flu injective, v a unit normal field on U with respect to g. Let (p) := | f(p)|* dC|s¢) v(p)
for all p € U. Then 7 is a unit normal field on U with respect to g as by conformality of C

(0(p),o(p)) = |f®)*(dC|s)v(p), dC] sy (p))
|f59 2 (v(p), f()) f(p), v(p) — 2

)
4

2(dC |y (p), 0; f (1))
2(dCpyv(p), dC| ) 05 f (p))

o), 0;f(p) = [f(p)

= |f(p)
= 0,

for j = 1,2. Let h, h denote the second fundamental forms of f, f, respectively, (hij), (izzj)
the according matrices with respect to some chart on U. Denote by (g;;) the matrix of the
first fundamental form ¢ with respect to these coordinates. We calculate

>

ij = (7, 83f>
_ (v —

chain rule 1

|f|2

‘f|2<1/f>f85’f>
2

(v, 0i0;f) — |f|4g¢j<%f> |f|4< v, [)(f, 00 f)

= (0N 0:0) v f) — W S 00 f)

=5 W N0, 0if) + 2 v S, 00 f)

(v, )0 0)CF, 051)

|f|6
8

Rl
16

Ifl6

2
= 0 et

1 2
Whij - W%(’/, f)

. 1 2
= — h—
= b T e e

|f|4
|f|4
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Let k1, k2 be the eigenvalues of the Weingarten map L, of f, i.e.the main curvatures of
3], e1, eo associated unit length directions. Then by quadratic form theory

R 1 2
h(€¢7€j) = Wh(%@j) - W<V7 f>g(ei7 ej)
1 2
= —0= 251] ~ 172 v, 52]
e e d)

We see that h is diagonalised by ey, €s, too, so that unit main curvature directions of f ,

€1, €5, are given by ¢é; = mei = |f|?¢;. The main curvatures £y, K, of f are given by
1y%1

fi = h(é,é) = | f|"h(ei, ;) = |f‘4<\;|i2 - ﬁ@a £)) = |fPPr;i — 2(v, f). Together with the

transformation of the measures (s.above), we get (on U):

GIHEP = K(diy = (27 = )
9R1 — R2 9 1
(P25 s
- ((Hl ; HQ)Q — Kikz)dpy
= (GIMOIP ~ K(F))duy. (23)

Let us assume for a moment that f~'(0) = (.* Then we can integrate the above equality
on all of X with the aid of a partition of unity and get by the Gauf-Bonnet theorem 1.2.23

W(Co p)—am(C(HE)) = 5 [H(Co PP dug—2 [ K(Cof)du;

1 2
— 2 [ (GIH(Co NP~ K(Co ) du;

%

= 2 [ GIHOP - K dny

= W(f) —dmx(f(%)).

Since C is a diffeomorphism of R? \ {0} and the Euler characteristic is a homeomorphic
invariant, we get the desired result of W(C o f) = W(f). Let us now return to the more
general case where f~!(0) need not be empty. Clearly, g and ¢ are conformally equivalent
metrics on U, hence we can apply a formula for the sectional curvatures (cf. pp. 183, [SY94])

saying K (f)duy = K(f)dps+ Alog|f|* dpy which allows us to transform equation 2.3 to
the pointwise equality

1. 1
SR dpg = S dpg + 2 Alog| fI* dpyy (2.4)

4This is somehow superfluous as this special case is included in the proof given below. As it is more,
maybe, classical, we include it for clarity.
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on X\ f71(0). Due to the locality of the arguments we can assume without loss of generality
that > is oriented. We plan to apply the divergence theorem to the integral of the above
equality, where the domain of integration is > with disk holes around the pre-images of
the origin, and then let the disk radii converge to zero.

Let p € f71(0). After performing a rigid motion M, of R* (which does not change the
energy), we can assume by the implicit function theorem that f is locally given as the
graph of a function u := u, : Dg(0) — R on Dg(0) = {2z € R?||z| < R}, satisfying
u(0) = 0 and du(0) = 0, in symbols f := f, := Myo fop, - Dr(0) — R? : 2 — (2, uy(2)).
Again, we denote by g := g, the induced metric on the disk. For 0 < r < R let 0D, denote
the circle about 0 with radius 7 in R? and let n : Dp(0) \ {0} — TDx(0) ~ Dr(0) x R?
be the outward unit normal to D, with respect to g. For simplicity, we write n(z) € R?
instead of n(z) = (z,7(z)) € Dr(0) x R? for z € Dg(0). Let G := (g,;) be the matrix of §
with respect to the canonical basis of R?. Let r(z) := |z| for z € D,(0), e, := 2, e := Re,
with R a rotation about 7 in the Euclidean metric. Then 7(z) = \/577@@)@) since the

right hand side is orthogonal to ey [§(G e, e9) = (GG te,, e9) = (e, Re,) = 0] and
normed by

B G e, G e, 1 o o
ey iGeay  Greneyc @
1
= m(GG GT,G 1€r>
= 1.

For the divergence theorem, we have to calculate grad;log| f|? in terms of u and G:

grad;log| fI*(z) = G~' gradlog(|z|* + |u(2)[)
2 1 u(z

R | ¢ ulz)
— T1+u(3l2(}’ (e, + du(z) 7’)

The boundary term B, (r) at the circle 0D, appearing in the divergence theorem can thus
be evaluated by the transformation formula (/; being the induced measure on 0D,)

Byr) = [ alerad ogl 7P 0) ) ()
oD,
= /g(gradg log| f|2,1)(r0) \/(Geq, €9) (r0) rd
— r/(Ggradg log| f12, 1) (r0) \/(Geq, €9) (r0) db

1 Geg, e
— 2/ 1+ |u(r6)[2 r9)|2 <é 166 9>>( 6) <€r+du G €r>(7’6) A6
St
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Letting r tend to zero, we get (remembering u(0) = du(0) = 0, d*u bounded)

u(ro)* = [u(0)[* +2(0,u(0), u(0))r + (D7u(£0), u(£0))r* + (0ru(0), O,u(&0))r
= r*((07u(€0), u(£0)) + (Dru(£0), 9ru(éh)))
with £ € (0,r) by Taylor’s theorem, so that the first factor in the integral tends to 1.
Also, setting T'(¢) := Id +t du' du for ¢ € [0, 1], we know that the eigenvalues of I'"!(¢) are

bounded above by 1. We can deduce with the main theorem of calculus and the chain rule
that

G —1d] = |/%F(t}‘1 dt|
= |/P(t)1 %F(t)l“(t)l dt|

1
< /\F(t)_1|2 \du du] dt
0

< |dul®

whence G(rf) and G(rf)~! uniformly tend to the identity as r — 0 which cares for the
second factor in B, (r). Then, by Cauchy-Schwarz’s and by the triangle inequality, we get
|(duu, G7te,)| < |du| |u| |G < |du| |u|. We conclude (using again u(0) = du(0) = 0)

2
liH(l) B(r) = /2 do + hII(l) “(du'u,G e, (r0) df = 4.
r— r— T
st st

Integrating equation 2.4 on ¥, := X\ Upes-1(0)¢p(D:(0)) and using, as announced, the
divergence theorem, we get

W(Co fls,)=W(fls,) =2 Y. Byr)

pef~1(0)

and in the limit r — 0

W(Co f)=W(f)—2 Y dr=W(f)—8rcard(f}(0)).

pEf~1(0)

O

The conformal invariance of the Willmore energy guarantees that a conformal image of
a minimising Willmore surface is a minimising Willmore surface (as long as it is a C*-
immersion into R?). We can thus not expect to find unique minimising Willmore surfaces.
Also, if we were interested in minimising sequences or in flows, we would have to secure the
fixation of some normalisation parameters in order to get a chance of proving convergence.
This will play a role in chapters 4 and 6.
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M. Bauer and E. Kuwert( [BK03]) take advantage of the reduction of the Willmore energy
coming from the inversion at a sphere with centre on the surface when constructing higher
genus minimising Willmore surfaces via a connected sum construction where one of the
addends is inverted, cf. chapter 3.

2.4 Euler-Lagrange Equations

In the previous section, we have defined minimising Willmore surfaces. We would now
like to define general Willmore surfaces as critical points of ¥/. The aim of this section
is to prove the Fréchet-differentiability of VW, to calculate its first variation, and to char-
acterise Willmore surfaces by the associated fourth order Euler-Lagrange equations. We
will later describe how discrete Willmore surfaces can be constructed based on the notions
introduced here, cf. chapter 3.

Theorem 2.4.1. ° Let ¥ be a closed connected smooth surface. The Willmore functional
W is C'-Fréchet-differentiable on the open set {f € C*(X,R?)| f is an immersion}. Its
first variation is given by

SW(f)o =2 / (A H(F) + 2H(F)H(F) — K(F))] (60) dug,

%

for all € C*(X,R3) with respect to any unit normal field® v. H(f) is the scalar mean
curvature of f defined by H(f) = 3(H(f),v).

f € C*3,R?) is needed since H(f) already involves second order derivatives. Since
Fréchet-differentiability is defined on normed spaces, we have to specify the norm on
C4(2,R3) we are working with. As we will see, the specific norm does not play a key role
in the proof of Fréchet-differentiability. We could, for example, choose ||-||c+. However, if
we want to secure the C''-differentiability of W, it is crucial to use the C*-norm in order to
ensure that all the appearing curvature notions and the Laplace-Beltrami of the mean cur-
vature are continuous. We could also use H*? as the normed space where we test Fréchet-
differentiability (with its natural norm). As in two dimensions this space (locally) embeds
in C?, cf. e.g. [Alt91, Wlo82], we would be able to derive a weak formulation. This would
probably be more natural but lies beyond the scope of this text.

Proof. Again, if ¥ is non-orientable, we work on its orientation cover. Lemma 1.2.24 and
the definition preceding the lemma secure the carrying over of the result to . Let us thus
from now on assume that X is orientable. Let v be a global unit normal field on .

We will use proposition 2.1.3 and thus first check Gateaux-differentiability of V. Let
U :={f € CY3,R?) | f is an immersion} C C*(X,R3). Then U is open with respect
to ||.]lcs+ by the following argument showing that its complement in C*(3,R?) is closed.

SParts of this proof originate in [Wil93].
61f ¥ is non-orientable, we work on its orientation cover.
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Suppose there was a sequence (f,)nen of C4(2, R3)-mappings that are not immersions
with limit f € U. Let g be the Riemannian metric on ¥ induced by f. Then there exist
pn € X and X, € T, ¥ with g, (X, X,,) = 1 that satisfy df,, X, = 0. Since ¥ is compact,
the sequence (py,)nen converges to p € ¥ without loss of generality and in particular, for
every neighbourhood V' of p in X there is a number ny with p, € V for all n > ny . Let
now (FE1, F5) be a g-orthonormal frame on some neighbourhood V' of p (cf. p. 24 in [Lee97]
for definition and existence of orthonormal frames.), w.l.o.g. ny = 1. As X, has unit
norm, it can be written as X,, = cos o, E(p,) + sin o, Es(p,,) for all n, where «,, € R. Let
X, € C*(V) be the unit norm vector field given by X,,(¢) := cos a,, E1(q) +sin av, F2(q) for
all ¢ € V. Then (X, (p))nen is a bounded sequence in (7,%, g,) and thus w. 1. 0. g. converges
to a vector X € T, with g,(X, X) = 1. Extend X =: cos aF;(p) +sinaEy(p), « € R, toa
smooth vector field X (¢) := cosaF(q) +sinaFy(q)on V. Then Y :=dfX : V — TR?is a
continuous vector field. Using ||.||,, as a symbol for the matrix norm on 7;% induced by g,
and |.|,, for the g,-norm on 7%, we have by linear algebra and by the triangle inequality

|dpr(p) - dfan(pnﬂ + |dfan(pn) - dfann(pn)| + |dfann - (dfn)ann|
1Y (p) = Y ()| + | dfp.. Nl g, | X (Pr) = Xn(Pi) gy, + 5 — (dfn)pallgpn | Xnlgp, -

By continuity of Y, the first addend converges to zero. By C*-convergence of (f,.), ||dfy, ||,
is bounded and ||df,, — (dfy)p,|l4,, converges to zero as p, — p. |X,|y, = 1 is valid by
construction, so the last addend vanishes, too. | X (p,) — X, (pn)|g,, = [X(p) —X0n(p)lg,
whence the right hand side of the above inequality converges to zero as n — oo. Thus,
df,X =0 and f cannot be an immersion. We conclude that U is open in C4(2, R3).

Let ¢ € C4(3,R3). We can globally write ¢ = ¢ + ¢7 with ¢7 € df (TY), ¢+ = (¢, V) v.
We will use § := |6 —o as a shorthand and snnphfy our terms by Einstein’s summing
convention. By deﬁnltlon we have S W(f)p = W(f + £¢)|.—o if this limit exists. By the
implicit function theorem, we can locally erte o7 = df(X) with X = X'9; a smooth
vector field. We can choose a compact, orientable atlas {¢ : U, — R?}X_ | satisfying
T = df (X) on Uy, by lemma 1.2.3 with X;, € C*°(TUy). Then ¢ = ¢+ + df (X}) on Uy.
Let {nx} be a partition of unity subordinate to {1, }. We use the suggestive notation .(¢)
to mean .(f + €¢). First of all, we discuss whether integration and differentiation can be
interchanged. We have

dfp, X| <
<

— 0

K
W =Y [ HEP VEHGE) o vy (2.5)
Uy

F=L g (U)

and use ay,(e, ) := (0, |H(g)|? \/det(g¥#(g))) o1b, () as a shorthand for the integrand, so
that oy : (—p, p) XY (Uy) — Rforall k € {1 K}, pbelng so small that f+e¢ € U for all

€ (—p, p) (such a p exists by openness of U). For convenience, we will only explicitly refer
to the k-dependency where it seems necessary. By a theorem on interchanging integration
and differentiation, cf. [Els00], p. 147, we are allowed to do so if a(e,-) € L'(¢(U)) for
all € small enough |which is clear since « is continuous and the domain of integration can
be extended to a compact set in R? by choice of coordinates.|, if additionally « can be
partially differentiated with respect to ¢ for all # € ¢(U) and e small enough (x), and if
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there is an almost everywhere non-negative A € L'(¢/(U)) with [22(e, z)| < A(z) almost
everywhere in ¢ (U) and for all € small enough (*x). Let us check whether « is partially
differentiable with respect to <.

Clearly, suppressing the dependency on the chart, for ¢,5 € {1,2}, g;;(¢) is a quadratic
polynomial in ¢ and thus smooth w.r.t. . Using (¢) = (g;;)", it follows that ¢ is
smooth w.r.t. ¢ for i, j € {1,2}, too, as the inverse of a matrix can be calculated via the
determinant and the adjunct of this matrix which both smoothly depend on the matrix
components by linear algebra. Also, if we choF)se V(é?)' = gigiiigigjgii% as unit norrgal,
then v depends smoothly on € as f +¢¢ is an immersion and the numerator of the fraction
is a polynomial in e. This implies smooth dependency on ¢ of h;;(c) = (v(e), d*(f + €¢))
for i,j € {1,2}. Thus, «(-,z) is smooth for every fixed x € ¢(U) and whence (x) and
(xx) are satisfied. We conclude that WW(e) is differentiable and that we are allowed to

interchange integration and differentiation.

By the product rule and Zszl . = 1, we deduce from 2.5 that
1K
sWino= [ (Horydus+ 5 Y [mHPs /Al v, (20)
s k=17,

where we have already shown that the derivatives on the right hand side exist. We will now
calculate the derivatives dg;;, 0/det g;;, g%, dv, dh;;, and 6H with the aid of the chain
and product rules. Let V denote the Levi-Civita connection’ of (X, g), T'}; the associated
Christoffel symbols.

e Using the equation V,Y7 = 9,7 4 T/, Y* for arbitrary local fields Y on ¥ and the
Gauk equations 9;0; f = I'}}0,, f +hyv, we deduce g;(c) = (0;f +c0;¢, 0;f +c0;0) =
Gij + €(<8Zf, 8j(l§l> + (@(bl, 0]f> + gileXl -+ glein) + 0(82) and thus by definition
of the second fundamental form dg;; = —2h;; (¢, v) + g4 V; X' + g; Vi X"

= 6y/detg = 2¢76g;;v/detg = (—(H,¢) + divy X)\/det g using div,Y = V,Y? for
arbitrary Y.

e gigy = 5 implies 69 = —g™* (gu)g" = 2(6,v)high — gV X — gV, X7, where
(h}) is the matrix of the Weingarten map L.

e Since v(¢) is normed, (dv,v) = 0, so that dv = b'0;f. We can determine the coeffi-
cients b’ by differentiating (v(€), 0, f +£0;¢) = 0. We get b’ = —g" (9; (¢, v) + X'h;1)
and thus év = —g70;{¢,v)0;f — hiX'0; [, using the GauR equations.

e Using again the Gauf equations, the Weingarten equations 0;v = h{ 0;f, and the
expression for ov derived above, we can use the fact that V{(¢,v) is a (0,1)-tensor
field to see that 5h” = VZV]<§Z5, I/> — <¢, V)hfhjk — hlelej + 8ihlel + hz‘leXl +
hiuV, X' — h;T, X*.

"For the notions of Levi-Civita connection and associated Christoffel symbols as well as the equations
used below, cf. for example [Lee97].



2 Willmore Surfaces 28

e Differentiating h;; = —(0;v, 0, f) shows that 0;h;; = Ojh;; —thimtrfjhlk which leads
to 5}7,2] = VZVJ <(Z5, V>—<¢, u)hfhij@lhinlehuVle—|—hﬂV@-Xl—hijlel—hikF;?le.

o H = g“h;;v locally, so H = 6(g7)hi;v + g70(hij)v + g hijov. From the above and
since Aju = ¢¥V,;V;u for every smooth function v on ¥, we finally deduce that
OH = (¢, V)hihty + A y(p, v)v — 2R, TE X' + 91hy; X gYv + g¥hyi0v.

Elementary linear algebra shows hih! = trace(L?) = (trace L)2—2det L = |H(f)|*—2K(f).

But remembering H(f) = 3 (H(f),v) it is easy to see that 20,(H(f)) = —2h5Ty, + g9, hs;.

We conclude (M, H) = 2H(f) [(4H(f)* — 2K (f)){d.v) + Dg(0, v)] + 4H(f)OH (f) X' =
2H(f) [(A4H(f)* = 2K(f)){¢,v) + Dg(o,v)] + 2g(grad, H(f)? X). By the above, the first
integral in 2.6 can be evaluated by Green’s identity® to

2 [ WY = 2KUNH) + 2,500 dus +2Y [ eglarad, HPX) duy.

% k=17,

The second integral in 2.6 turns out to equal

4 [ HP 0.0 dug — 23 [ neglerad, 1 X) diy

klek

by the definition of the divergence and by integration by parts. Together, we get

SW(f)o =2 / (A H(f) +2(H(f) — K () H(S)] (6.0) duy.

by

We have thus shown that W is Gateaux-differentiable on the ||.||cs(x rs)-0open set
U ={f € C*(Z,R?) | fis an immersion}.

Obviously, for every f € U, § W(f) is a well-defined linear functional on C*(3, R?). We
will now show that § W(f) is a continuous functional with respect to ||.||c« which gives us
Fréchet-differentiability. This becomes trivial if we realise that by compactness of X,

OW(f)9] < 2/ [AGH (f) +2(H(f)* = K(M)H(f) dpg [ dlleo < Clllles.

Finally, W is C'-Fréchet-differentiable on U since § W(f)¢ is continuous on all of
U C, C*X,R3) with respect to ||.||cs for fixed ¢ € C*(2, R?), cf. proposition 2.1.3. This
proves our claim. O

Definition 2.4.2 (Willmore Surfaces). Let X be a closed smooth surface. A Willmore
surface is an immersion f € C*(X,R3) that is a critical point of W, i.e. that satisfies
OW(f) = 0. By the fundamental lemma of the calculus of variations® (which is applicable
as W is of class C1), this is equivalent to f satisfying the Euler-Lagrange equation

NgH(f) +2H(f)(H(f)* = K(f)) = 0. (2.7)

8¢f. pp. 44 in [Lee97).
9¢f. p. 32 [BGHO8| for a variant for integrals over O C R™ which can be applied to our situation with
the aid of a partition of unity.
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Calculus of variations then tells us that every minimising Willmore surface is a Willmore
surface (if it is of class C*). We will give examples of Willmore surfaces of different topo-
logical types in the following section.

Remark. We only consider immersions into R?; it is also possible to study Willmore surfaces
in arbitrary R" but this lies beyond the scope of this text.

2.5 Examples

Let us calculate the energy of the round sphere immersion of S? and of special immersions
of the torus T? into R®. For more examples and some results on minimising properties of
the sphere and the Clifford torus, see chapter 3.

Proposition 2.5.1. Every round sphere embedding 1 : S* — R3 is a Willmore surface.
We have
W(t) = 8.

Proof. Choose v = idg2 as unit normal field on S%. Let ¢ : S? — R : p +— rp+ c be a
round sphere embedding of S? into R?, with » € R* and ¢ € R3. It is then well-known
that'® K(:) = &% and H (1) = + so that AgH () + 2H(¢)(H(:)> — K(:)) = 0 on S*. We
have thus shown that ¢ is a Willmore surface as it is of class C*. To calculate the energy,
we use polar coordinates on S*. Remember that by conformal invariance (theorem 2.3.3),
the energy of any round sphere immersion into R® must be the energy of the identity
id : S — R3. As the image of polar coordinates differs from S? only by a subset of
area measure zero, we can deal with this one chart only. Polar coordinates are given by
Pl (=2 5) x (0,27) — R3: (6, ¢) — (cosB cos ¢, cos Osin ¢, sin 0)".

272
We calculate the derivatives 9p10 71 (6, ) = (—sin 6 cos p, — sin @ sin , cos ) and similarly
0,10, ¢) = (—cosfsing, —cosfcosp,0)', so that gin(0,0) = 1, 98,(0,0) = cos®f
and the off-diagonal terms are zero. Whence by lemma 1.2.22 the mean curvature vector
satisfies H(id) o1 = (A, id) o~ = 2@/)*1 so that |H(id) o ¢~ 1|*> = 4 and the energy

can be evaluated to W(id : §* — R?) = 1 f f 4/ gingo, dp d = 8. O

Next, we will discuss the energy of tori of revolution of constant circular cross-section. By
conformal invariance, we can assume that the inner radius equals 1. The torus of revolution
of constant circular cross-section of radit 1 and R > 1 is given by

Tr = {(2', 2%, 2%) € R®|( (x1)? + (22)? =1}

with differentiable structure and Riemannian metric induced by R3. The Clifford torus'!
is the torus satisfying R = v/2, see the figure below.

0in any coordinates

UTn fact, the Clifford torus is defined by \%(Sl x S!) c S3. The embedding considered here then is
the S3-stereographic projection of this into R? (easy to verify by straightforward calculation). As
stereographic projection is conformal, this does not change the energy.
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Proposition 2.5.2. '? For the torus Tg, we have W(id : T — R3) = \2/% and, in
particular, W(id : Cl — R3) = 4n%. The Clifford torus has least energy among all tori of

revolution of circular cross-section and is the only Willmore surface among them.

Proof. We parametrise the upper half of the torus Tk by the adapted “flattening” coor-

dinates ¢! : (R—1,R+ 1) x (0,27) — R®: (r,0) — (rcosf,rsinf, /1 — (R—r)?)
We will calculate its Willmore integral and use the symmetry of the torus to calculate

the Willmore energy as twice this value since the uncovered remainder has measure zero.

We have 0,4 1(r,0) = (cos@,sin@,\/%) gy~ (r,0) = (—rsinf,rcosd,0)!, and

thus g%.(r,0) = m, gi(r,0) = 72 and the off-diagonal matrix elements are zero, so
that \/det(g¥) o =1(r,0) = T By lemma 1.2.22, we deduce H(id) o ¢p~'(r,0) =

(Ayid) oy~ 1(r,0) = (cosf (—F=2 4 R — ) sing (=822 L R ), (R — o) VTS 1_(71R‘7")2)t
and whence get |H(id)[? o ¢~ ( r,0) = (R 2 Thus,

R+1 27 R 5
W(id: T — R?) = - // — L dfdr
r V1= (R—r)?
R-10
R+1 ,
27 / (F—2r) dr
ry/1—(R—r1)?
R-1
R+1 R+1

1

27?(4R_/1 \/F(Z%—_mdr - 4RR/ —

-1

dr

R+1

1
R? / dr
R—1
B 22 R?
R2—1’

where the integrals are evaluated with the aid of [BS70|. This gives W(Cl) = 4r? (for

R = V/2). Since R \2/71 has a global minimum in at R = v/2, we have proved the

minimality of the Clifford torus. In the same coordinates, we have H(id) o ¥~!(r,0) =
S/H(id)| o ¥~ 1(r, §) = £2- where we have chosen the unit normal p01nt1ng to the outside.
From the formulae we have derived for g¥, we get13 K(id) o9~ (r,0) = =£. The Laplace-
Beltrami of H(id) is A H (id) o ¥~ 1(r,0) = & (1 + Rr — R?) so that

2r2
2 — R?
43

on (R—1,R+1) x (0,27). The same is true on the lower half of the torus. On the two
circles not covered by the flattening coordinates, the equality follows by continuity. Hence,

AgH (id) + 2H (id) (H (id)? — K (id)) = R=0 & R=42

12The energy result is due to Willmore, cf. p.274 in [Wil93]; this proof is due to the author.
13¢f. p. 37 in [Wil59)].
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the Clifford torus is a Willmore surface — the only one among the tori of revolution of
constant circular cross-section. U

Figure 2.1: Clifford torus viewed from inside and from above.
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In this chapter, we will develop an algorithm for glueing “discrete” surfaces together. The
glueing scheme generates “discrete” (orientable) surfaces of any genus. These surfaces can
then be used in any setting where one wishes to apply a numerical scheme — some kind of
flow, for example — to a surface which cannot easily be discretised “by hand”. We intend to
use some glued surfaces as starting points for the gradient flow of the Willmore functional
defined in chapter 2. The glueing procedure imitates a theoretical result of M. Bauer and
E. Kuwert on the construction of minimisers of the Willmore energy, see chapter 4. As we
will explained there, some glued surfaces might be good candidates for minimising the (dis-
cretised) Willmore energy and act as limit surfaces under the flow.

In the first section, we will give a short introduction into the theory of Willmore surfaces
(see chapter 2 for the definition of Willmore surfaces). Our approach follows |[BK03, PS87,
Wil93]. In section 3.2, we will describe the glueing method and show several examples, in
section 3.2.3 we will discuss some numerical details of the scheme.

3.1 Continuous Willmore Surfaces

First of all, we give a concise (and incomplete) overview! over some results on Willmore

surfaces. By the surface classification theorem 1.2.15 and by lemma 2.2.3, it is clear that
only the topological type (genus and orientability) influences the Willmore energy of a
surface. We will thus concentrate on standard examples such as S?, T? and RP?. We begin
with §?: Tts Willmore energy is W(S?) = 87 ( [Wil65], see also proposition 2.5.1). This min-
imum is attained by all round-sphere immersions into R? (recall the conformal invariance
of W, theorem 2.3.3) and only by those. All Willmore surfaces of the topological type of
S? have been classified by R. Bryant in [Bry84]. They have energy 8mn (n € N), but these
critical values are not all attained. One famous example is the so-called Willmore sphere
which is a self-intersecting immersion of energy 32, see figure 3.1.

The situation for tori is far more complicated. T. J. Willmore proved in 1965 that the
Clifford torus has minimal energy 472 among all tori of revolution of circular cross-section
(see proposition 2.5.2 and the figures on p. 31). In 1970/71, K. Shiohama and A. Tagaki
as well as T. J. Willmore showed that it has minimal energy among all tori embedded as
tubes of constant cross-section. T. J. Willmore then conjectured that the Clifford torus
(together with all its conformal transforms) is a minimiser for genus one orientable surfaces.
L. Simon ( [Sim86|) showed in 1986 that a minimiser of the topological type of the torus

based on [PS87].
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Figure 3.1: Willmore sphere (n = 4) — one figure is taken from [PS87], the second one has
been constructed by G. Dziuk. It is cut in half

exists. In 2002, M. U. Schmidt [Sch02| presented a proof of this long-standing Willmore
Conjecture®.

P. Li & S. T. Yau [LY82] showed that W(RP?) > 247. Minimising Willmore surfaces have
been identified by R. Bryant [Bry88| and R. Kusner [Kus|. They have energy 24, indeed.
R. Bryant classified all minimising Willmore surfaces of the topological type of RP? in R3.
One of these is known as Boy’s surface, see figure 3.2.

Higher genus Willmore surfaces (and minimisers) are still an object of active research.
Many examples of Willmore surfaces are stereographic projections of minimal surfaces in
S3. The Clifford torus arises in this way, see section 2.5. However, by constructing counter-
examples, U. Pinkall showed in [Pin85| that not all Willmore surfaces can be obtained in
this way.

In [BKO3], relying on a result obtained by L. Simon in [Sim93|, M. Bauer and E. Kuwert
proved existence of minimisers of all genera in the orientable case, see below. In their
proof, they use a geometric connected sum construction which is the base for the discrete
glueing procedure presented in this text.

2say M. Bauer and E. Kuwert in [BK03].
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Figure 3.2: Boy’s surface — one figure taken from |[PS87|, the other from |[KP97| (Boy’s
surface in Oberwolfach)

3.1.1 Constructing Higher Genus Willmore
Surfaces

All surfaces and immersions in this section are assumed to be smooth. M. Bauer and E.
Kuwert showed in [BKO03|

Theorem 3.1.1 (Existence of Willmore Surfaces of all Genera). For any g € Ny,
let B, := W(Z) = inf{W(f)| f: £ — R? is an immersion}, where X is a closed orientable
surface of genus g. Then for any g € Ny, the infimum (3, is attained by an oriented, closed
Willmore surface of genus g.

The main idea of their paper lies in refining a theorem presented by L. Simon in 1993
( [Sim93]) using a geometric connected sum construction which will be sketched below.
Simon’s theorem says

Theorem 3.1.2 (Simon). For any g € Ny, there is a partition g = g1 + - - - + g, with
g; > 1, such that the infima 3, are attained and

T

By — 87 = Z (Bg, — 8m).

i=1

The connected sum theorem of M. Bauer and E. Kuwert says
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Theorem 3.1.3 (Connected Sum Construction). Let f; : ¥; — R3, i = 1,2 be two
smoothly immersed closed surfaces. If neither fi nor fy is a round sphere (i.e. totally
umbilic®), then there is an immersed surface f : X — R3 with topological type of the
connected sum Y1435, such that

W(f) < W(f1) + W(f2) — 8. (3.1)

In the following, we will give a very rough sketch of the idea lying at the heart of the
connected sum construction. We do this because the glueing scheme we will present in
this chapter is inspired by theorem 3.1.3. Recall that by theorem 2.3.3, the energy of
an immersed surface is reduced by the finite number 87 card f~!(c) when the surface is
inverted at a sphere with centre c. Having this in mind, M. Bauer and E. Kuwert choose
a regular value ¢ € f1(3;) (i.e. a value having pre-image cardinality one) and invert f;
at a sphere with centre ¢ leading to an immersion f; : £; \ f~!(¢) — R?® with energy

W(f1) — 87 by theorem 2.3.3. Then, they cut out a “disk around infinity” (the “planar
end” of f;) and scale down (and move) fi. Also, they cut a disk out of f, and scale up
the result. The boundaries of the two disk-holes are joined by a biharmonic interpolation
the energy of which is more than compensated by that of the two cut out disks so that
the glued surface has both energy less than W(fi) + W(f2) — 87 and is homeomorphic
to X1#Y,. For a more detailed insight, the reader is referred to [BK03|. The discrete
glueing construction presented in this text relies upon this idea. One can thus hope to get

“good approximations” to “numerical Willmore surfaces” with this procedure, see chapter
4.

3.2 Glueing Discrete Surfaces

In [DDEO05], K. Deckelnick, G. Dziuk, and C. M. Elliott present an algorithm for the
(discretised) Willmore flow relying on a trick of R. Rusu ( [Rus]). This algorithm allows
to study the flow behaviour of arbitrary orientable (discrete) surfaces “immersed” in R?,
numerically. G. Dziuk has applied the scheme to surfaces parametrised over S?. The au-
thor has applied G. Dziuk’s scheme to tori of revolution of circular cross-sections. The
algorithm and the results obtained by the author are discussed in the following chap-
ter.

As we were interested in the flow behaviour of higher genus surfaces, too, we have in-
troduced a glueing scheme for discrete surfaces. The basic idea is to approximate the
geometric connected sum construction presented above (very roughly). We intend to use
the surfaces obtained in this manner as starting values for the (discretised) Willmore flow,
see chapter 4. First of all, we will introduce the notion of “discrete surfaces” and of “dis-
cretised Willmore surfaces”. Although those are continuous, we will call our customary
(Willmore) surfaces “continuous” and mean this in contrast to “discrete/discretised”. As
we will only use the attribute “continuous” in order to make this distinction, no confusion
should arise.

3For a definition of this notion, see [Wil93], for example.
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Definition 3.2.1 (Discrete (Embedded) Surfaces). * A triangle T in R? is the convex
hull of three different points p1, ps, p3. p € T is a vertex of T, if p = p; for i € {1,2,3},
a subset £ C T is an edge of T, ift E = conv{p;,p;} for i # j € {1,2,3}. We say
that a closed C%'-manifold 3 C R? is (regularly) triangulated by a finite set of triangles
T ={T1,...,Tk} if it satisfies

[ J EZUTgTT

o If T, NT; = {p} for any two different triangles 7;,7; € 7, then p is a vertex of both
T; and Tj.

e Otherwise, T; N T} is an edge of both triangles.

If 3 is (regularly) triangulated by the triangulation or mesh T, we call X a discrete (embed-
ded) surface (in R3). Let diam ¢ denote the diameter of a triangle T'. h := maxpc7 diam T
is called the mesh size of 7 =: 7. Vertices and edges of the triangles in the triangula-
tion are also referred to as vertices and edges of the discrete surface. We usually omit the
explicit reference to the triangulation 7, of 3 and write Y;, to remind of it.

We say that T; is a neighbour of T if they share a common edge (and are not identical).
We also say that a vertex v; is a neighbour of a different vertex v;, if they belong to one
and the same triangle. A map f : ¥, — R" is called piecewise linear, if the restriction of f
to each triangle, f|r, is an affine-linear mapping. It is called locally injective, if each point
p € 3, has a (topological) neighbourhood U C ¥j, such that the restriction f|; is injective.
f is called a parametrisation if it is continuous, piecewise linear, and locally injective. In
that case, we say that f(X,) is parametrised over ¥ or that f(3,) is a deformation of
Y.

Ezample. Figure 3.3 shows a discrete (embedded) surface, displayed by drawing its edges.

Figure 3.3: Discrete embedded dumbbell (cut in half) by G. Dziuk.

It is more difficult to define self-intersecting surfaces as the notion of an “immersion” is no
longer defined in a merely continuous setting. Nevertheless, we need to give a definition of

4This definition is based on [Bra91,Rus].
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“discrete immersed surfaces” since the Willmore flow may drive embedded surfaces to self-
intersections, see chapter 4. We can, however, focus on orientable surfaces as we will only
apply the glueing scheme and the (discretised) Willmore flow to orientable surfaces. We
give a definition that is compatible with the glueing scheme and the (discretised) Willmore
flow, see below and see chapter 4. Moreover, it respects the parametric formulation of the
Willmore energy (see chapter 2) and of the Willmore flow, as well as the parametric
approach chosen in the discretisation of this flow, see chapter 4.

Definition 3.2.2 (Discrete Immersed Surfaces). 5 A set 3, C R? is called a discrete
immersed surface if it is parametrised over a discrete embedded surface 5, i. e. if there is
a discrete embedded surface ¥, and a continuous, locally injective, piecewise linear map
[, — R3 with f(3,) = Sy If 75, denotes the triangulation of ¥y, the set 7, := f(7n)
is called a triangulation or mesh of ¥ and its mesh size, vertices, edges, neighbourhoods,
and piecewise linear mappings are defined as above. If 3, is a discrete immersed surface,
we call the underlying discrete embedded surface ¥, the parametric domain of 3.

Note that %, is not, in general, a C%!-manifold as it might self-intersect. However, we
treat it just as if it was one; for example, we ask whether it is homeomorphic to a given
surface. This becomes meaningful if we “identify” 3, with the underlying surface ¥, when
it comes to topological questions. Similarly, we understand a map 7 : >, — R as a map
x : Y, — R where foZ = x. Using this convention, any subset of R? that is the image of a
parametrisation of a discrete immersed surface is a discrete immersed surface. Any discrete
embedded surface is a discrete immersed surface as the identity is clearly piecewise linear.
From now on, we will not distinguish between the embedded and the immersed cases unless
otherwise stated.

Ezamples. Figure 3.4 shows a discrete surface® that is not embedded. It is displayed by
drawing its edges, figure 3.5 illuminates the notation in the vicinity of an edge.

We define

Definition 3.2.3 (Degeneration). Let %, C R? be the image of a discrete embed-
ded surface ¥, under a continuous piecewise linear map f. We say that the mesh of >,
degenerates if f is not locally injective.

Remark. 1t follows from linear algebra that any continuous piecewise linear map defined
on a discrete surface and having values in R or R? is uniquely determined by its values on
the vertices of the surface.

Definition 3.2.4 (Discretised (Willmore) Surfaces). We say that a discrete (embed-
ded or immersed) surface Y, is the discretisation of a surface X immersed or embedded
into R3 if it is an interpolation of ¥ —i.e. if all vertices of ¥, lie on ¥ — and if it is homeo-
morphic to this surface. In particular, if 3 is embedded, we request that ¥, is embedded,
too. If 3 is a Willmore surface, then we call 3, a discretised Willmore surface.

5The author is not aware that this definition is explicitly used in any publication. It might be possible
to improve or generalise this definition. However, all discrete immersed surfaces appearing in this text
are of the kind defined here. Discrete immersed surfaces are also treated in [Rus, DDEOQ5].

6Tt is a lengthy but straightforward calculation to see that this surface really is a discrete immersed
surface. As we will not rely on this result, we do not show the calculation here.
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Figure 3.4: Discrete immersed surface (cut in half) by G. Dziuk. The cross-section of this
surface is a circle with two loops on opposite sides.

In the literature, one also finds a notion of “discrete Willmore surfaces”, see for example
the paper |[BS05] by A. I. Bobenko and P. Schréoder. They use a completely different
approach to get to a discrete version of Willmore energy, surfaces, and flow, by exploiting
the conformal invariance of WV to define a discrete conformally invariant Willmore energy
W depending only on the angles of the discrete surface. A discrete Willmore surface then
is a critical point (a solution of the Euler-Lagrange equations) of W, and their discrete
Willmore flow is defined respectively. As we want to rely on Finite Element techniques,
we will not follow them.

Figure 3.5: Notation for vertices, edges and triangles in the vicinity of an edge.



39 3.2 Glueing Discrete Surfaces

3.2.1 The Glueing Construction

In order to generate discretised surfaces of higher genera and good candidates for min-
imisers of the Willmore energy, we have developed a glueing scheme which we will now
present. A rough version of the algorithm is included here, the complete’ algorithm can
be found in the appendix ??7. A few ideas are discussed to more detail in section 3.2.3.
All discrete surfaces depicted in this chapter are displayed by drawing their edges if not
otherwise stated. The discretised Willmore energy of a discrete surface is calculated in the
following chapter.

The scheme is capable to glue together any two discrete surfaces from this list:

A round spheres, “crushed spheres” (see figure 3.6), a Willmore sphere as depicted in
figure 3.1, the surfaces depicted in the figures 3.4 and 3.3, a ufo-like surface (see
figure 3.7), and a further self-intersecting surface (see figure 3.8), all constructed by
G. Dziuk

A’ ellipsoids, see figure 3.10
B a dumbbell that has been constructed with the glueing scheme, itself see figure 3.9
C tori of revolution of circular cross-section, e.g. the Clifford torus, see figure 2.1

D any other triangulated surface

/\
W
R \\
N vz

\
WK~/

Figure 3.6: Crushed sphere by G. Dziuk.

7At least the new parts of it.
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Figure 3.7: Ufo-like surface (cut in half) by G. Dziuk.
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Figure 3.8: Self-intersecting surface (cut in half) by G. Dziuk.

The idea of the glueing scheme can be roughly described as follows: We load one discrete
surface from the above list, refine it, if wished, and cut out one triangle of its refined
triangulation. Afterwards, we refine the surface again but in a way that leaves the outer
edges — the edges of the cut-out triangle — unchanged. Then we inscribe an equilateral
hexagon into the hole and triangulate the remainder. This is followed by a parametrisation
which takes the discrete surface to its final geometric form, e.g. to an ellipsoid (and
by equilaterising the hexagon which might have changed in this process). Then we save
it.

Now, we go through the same process with a second discrete surface from the above list.
Additionally, the second surface can be inverted at a sphere with centre in the centre
of mass of the hexagonal hole. The surface is then scaled such that both hexagons are
congruent. The surfaces can now be joined directly or with a hexagonal cylinder in between.
In the second case, this cylinder is now constructed. Finally, both surfaces are taken to
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their final positions opposite of each other and rotated such that the outer normals to
the hexagons cancel. They are glued by identifying the edges and vertices of the hexagons
either directly or by means of the cylinder.

Figure 3.10: Ellipsoid.
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3.2.2 The Glueing Algorithm

Having given a rough sketch of the ideas lying at the heart of the algorithm, we will now
go into more detail. We will explain which options the user has when using the glueing
program and which effect these options will have on the resulting surface. A flow chart of
the program can be found on page 50. Most of the code is included in the appendix ?7?,
cf. pp. ?77.

(Input). The input for the program consists of a file Input_glue that specifies the values
of a number of parameters. Some models are available, in particular the input files used
for the results presented below. The documentation file Input_glue.DOKU explains all
parameters and, if necessary, their possible values, see appendix 77, p. ??7. As described
above, the program allows to glue any two surfaces from the above list. In order to shorten
the calculations in the case where both surfaces agree, we have introduced a parameter
samesurface which can take the values 1 (different surfaces) and 0 (identical surfaces). If
the second surface is supposed to be inverted at a sphere with centre close to the surface,
the parameter inverse is set to 0, otherwise, it is set to 1. In the first case, we have to
specify the radius rad of the inversion. If we wish to place a cylinder between the surfaces,
we can do so by setting the parameter withcyl to O and specify a small number adv by
which the cylinder shall be pushed out of the surface; otherwise, we set withcyl to 1.

Now, we can begin with the specifications of the first surface. We can specify the number
ilz of refinements the first surface will undergo before a hole is cut into it — this number
implicitly determines the size of the hole —, the number 11z2 of refinements it will undergo
after the cutting out of the hole, the genus of the surface, and the number iil of the
triangle that is to be deleted. Then, we decide what kind of surface we wish to use. If we
want to use a surface parametrised over the sphere as in items (A) or (A’) in the above
list, we set projection to 0, genus to 0, and choose a value for the parameter surface.
Possible choices are 0 for the round sphere of radius one, 1 for the “crushed sphere” depicted
in figure 3.6, 3 for the surface depicted in figure 3.4, 5 for the Willmore sphere, 6 for the
dumbbell of figure 3.3, 7 for the ufo-like surface of figure 3.7, 8 for figure 3.8, and 9 for an
ellipsoid as in figure 3.10. If we want to use a dumbbell that has been constructed with
glueing scheme itself (see figure 3.9) we choose genus = 0, projection = 2. There is no
need to assign a value to surface in that case. We can also choose to glue a torus. Then,
we set genus = 1, projection = 3, and specify the outer and inner radii r0, ri. If we
glue any other surface, we set projection to —1 and copy the data of the triangulation
into a file called triang.choose.

Afterwards, we go through a similar process for the second surface. If the second surface
is inverted, it is possible to refine the neighbourhood of the hole a certain number i1z3 of
times. Also, we can turn the second surface around the outer normal of the hole through
any of the five angles that leave the regular hexagon invariant. The angle is specified by
assigning a value 0,...,5 to rotangle. Finally, we can smooth the glued surface with an
iterative procedure called discrete_mcf (mcf_freq, projection) explained below, the
frequency of which is decoded by mcf_freq.
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(Output). The output of the glueing scheme consists of a triangulation for the glued
surface saved in triang.glued and of a figure in GRAPE format saved as GRAPE2309.

Data Structure

In this paragraph, we describe the data structure® we use to represent the mesh of a
discrete surface. A paper model of a macro dumbbell mesh can be found on page 49. A
vertex of a surface mesh is called inner if it is a topologically inner point of the surface,
otherwise it is called outer. A mesh is characterised by

e three integers nt,ne,nv that represent the number of triangles, edges, and vertices,
respectively,

e by 3xnv reals x(1,i),x(2,1),x(3,1i) that represent the three Cartesian coordi-
nates of the i-th vertex,

e by nv integers itype (i) that represent the type of the i-th vertex: 0 = inner vertex,
1 = outer vertex,

e by 3xnt integers itnode(1,i),itnode(2,1i),itnode(3,1i) that represent the num-
bers of the vertices belonging to the i-th triangle

e by 3xnt integers itneig(1l,i),itneig(2,1i),itneig(3,i) representing the num-
bers of the triangles neighbouring the i-th triangle, internally enumerated with their
opposing vertices,

e and by nt integers irefed (i) defining the refinement edge of the i-th triangle, i.e.
which edge with internal number 1, 2, or 3, enumerated with its opposing vertex, is
supposed to be refined first.

Note that the data structure does not explicitly tell whether the surface it represents is
embedded or not. Knowing that we only work with oriented surfaces, we can calculate the
Euler characteristic of a given discrete surface from its triangulation by using the formula
X(2;) = nt —ne + nv introduced in chapter 1. We should remark that not all possible
values of this data structure represent discrete surfaces; choose the origin as the position
of all vertices, for example. Also, for technical reasons, all triangles need to be consistently
oriented.

Ezample. A non-refined spherical mesh would be saved as the list

81261.0.0.0[0.1.0.0/-1.0.0.0[0.-1.0.0[0.0.1.0]0.0.-1.0[ 125|235 |
345(415(216|326|436|146|245|316|427|138|861|572|683
1754(3(3[3]3[3[3/3]3

that signifies that the mesh consists of 8 triangles, 12 edges, and 6 vertices. The first vertex
has the coordinates (1,0,0)" and is inner, the second vertex has the coordinates (0, 1,0)"
and is also inner etc. The first triangle consists of the vertices with numbers 1, 2, and 5,
the second of those with numbers 2, 3, and, 5, etc. All refinement edges have been set to

8This data structure was communicated to the author by G. Dziuk and M. Fried.
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3, this does not affect the appearance of the surface, though. A figure of this octahedral
mesh is shown below in figure 3.11.

Figure 3.11: Octahedron with coordinate axes.

A continuous piecewise linear map from a discrete surface to R or R? is represented by its
values on the vertices, i.e. as a list of nv or 3xnv reals, respectively. This representation
is justified by remark 3.2.

Structure of the Program

In this paragraph, we will describe the structure of the glueing program. A flow chart
can be found on page 50. Some of the subroutines (macro triangulations, refining, us-
tart glue, projecting, etc.) are discussed to more detail in section 3.2.3. Figures following
the course of the algorithm can be found in section 3.3 below. The program works as
follows:

e The parameters samesurface, inverse, rad, withcyl, and adv are read and

(1)

tested for compatibility. For example, if one surface is inverted, a cylinder should
not be used.

The parameters for the first surface, namely ilz, ilz2, genus, surface, iil,
projection, r0, ri are read and tested for compatibility. genus, surface, r0,
rl, projection are global variables, the others are local.

The chosen macro-triangulation is read by the subroutine macro_glue (projection).
The prepared files are called triang.sphere (non-refined round sphere mesh by
M. Fried; projection = 0), triang.dumbbell (refined glued dumbbell mesh con-
structed with the glueing scheme; projection = 2), triang.torus (non-refined
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torus mesh; projection = 3), or triang.choose (any mesh the user has made
available; projection = —1).

The mesh is refined ilz times with a variant of M. Fried’s and G. Dziuk’s subrou-
tine refglobal_glue (ilz, neighs, projection). neighs is a zero vector at this
point, projection determines to which surface the vertices shall be projected. If the
surface is a torus, the mesh is improved by discrete_mcf (5, 3), see below.

A triangular hole is pierced into the surface with pierce (iil, which, neighs).
The triangle with number ii1l is deleted; which describes the vertices, neighs the
neighbours of this triangle. The refinement edges of the neighbours of the hole are
set such that they do not agree with the outer edges. See figure 3.17.

The mesh is further refined i1z2 times with the subroutine refglobal_glue (ilz,
neighs, projection). neighs is updated. As the refinement edges of the neigh-
bours of the hole have not agreed with the outer edges in the step above, the hole
keeps its triangular form. Again, we set the refinement edges of the neighbours of
the hole such that they do not agree with the outer edges.

We calculate the centre of mass, mass, of the three vertices neighbouring the hole
(saved in which), the minimal distance of mass to these three vertices, eps, and
L = 3 X eps in case a cylinder is to be glued between the surfaces. L represents half
of the length of the cylinder, eps its radius. eps, L are global variables.

Using the subroutine trianglein (which, neighs, mass, eps), we first inscribe
a smaller triangle into the hole and triangulate the remainder. Then, the inscribed tri-
angle is equilaterised by triangleequi (which, mass, prop). Inscribing a smaller
triangle first ensures that the equilaterising process does not lead to overlapping
edges, see below. which, neighs, mass, eps are updated. See figure 3.18 for the
first part.

We fit a regular hexagon into the triangle given by which in the subroutine six
(mass, which, neighs, sixneighs, intarray, surf). The centre of mass of the
hole, mass, is updated. sixneighs takes over the role of neighs, i.e. marks the
six neighbouring triangles of the hole. Similarly, the first six entries in the vector
intarray take the role of which and save the numbers of the outer vertices. surf
represents the number of the surface and is hence 1 in the present case, see figure
3.19.

Now, we smooth the surface close to the hexagon by adding in three additional
vertices by calling smooth (neighs, sixneighs, projection, surf, inverse,
0). The new vertices will be projected onto the surface depending on the value of
projection, see figure 3.20.

In case we are working with a round sphere, this sphere will now be deformed to its
final geometric form determined by surface via ustart_glue() by G. Dziuk, for
example to an ellipsoid.
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(2)

We update the centre of mass of the hole called mass, update eps, L as radius and
half of the length of the cylinder and then equilaterise the hexagon by appealing to
equilaterise (0, intarray, mass, eps). Again, we update L.

In order to bring the surface to its nearly final glueing position, we translate the hole
surface such that the centre of mass comes to lie at the origin. Then, we calculate
the outer normal of the hexagon and rotate the surface about the origin so that the
outer normal points in direction of the xs-axis.

We advance the cylinder by adv via advance (intarray, adv, surf) and trans-
late the surface to its final position where the centre of mass of the hole lies at
(0,0, —L — eps X adv)".

Now, we save the mesh of the surface into a file called triang.glued.1 (with the
routine write_glue (1) by M. Fried), save a picture in GRAPE format in the file
GRAPE1 (with movie (1) by M. Fried and G. Dziuk), and save the coordinates of
the six outer vertices with the aid of a matrix variable called array.

Having finished with the first surface, we take care of the second one. If the variable
samesurface = 0, we reflect the coordinate vectors of all vertices of the first surface
at the z, y-plane through the origin (reflect (point, vector)). We re-orient all
triangles with orient (). Then, we save the coordinates of the six outer vertices of
the reflected surface to array and the internal numbers of these vertices to intarray.
Again, we write the mesh into a file triang.glued.3 and save a picture in GRAPE
format to GRAPE3. We discard all superfluous information from Input_glue.

If samesurface = 1, we set surf = 2 and go through all steps from (1) to (2) with
the second surface.

If inverse = 0, we invert the surface at the sphere with centre in the centre of mass
of the hexagonal hole and radius rad by invert (centre, rad). Afterwards, we
re-orient the triangles with orient () and update the centre of mass.

In any case, we rescale the second surface such that the regular hexagonal hole agrees
in size with the one of the first surface (and such that the centre of mass of the hole
remains invariant).

Now, we go through steps (3) and (4). Then, we reflect the second surface at the
x, y-plane so that it comes to lie opposite to the first one. We go through step (5) but
save the information to the entries at the back of array and intarray, respectively.

If rotangle takes a value of 1 through 5, we rearrange the coordinates saved in array
and the internal vertex numbers saved in intarray in their order corresponding to
the value of rotangle. The actual turning takes place in the step below.

We rotate the second surface about the outer normal of the hexagonal hole with
turn (array) so that both holes are mirror images of each other with respect to
the x, y-plane through the origin.
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e Having done so, we save the mesh of the second surface into a file called triang.glued.3,

save a picture in GRAPE format in the file GRAPE3.

o If withcyl = 0, we use the subroutine construct (array, intarray) to con-
struct a hexagonal cylinder that fits exactly between the hexagonal holes of the
two surfaces. array and intarray provide the necessary information, the mid part
of intarray is used to save the internal numbers of the outer vertices of the cylin-
der. The mesh of the cylinder is written to the file triang.6cylinder. We can hence
treat the cylinder just as any other surface, load its mesh from triang.6cylinder
with macro_glue(1), and refine it twice (refglobal_glue (2, neighs, 1) with
neighs = 0). Then, we save its mesh into a file called triang.glued.2, and save a
picture in GRAPE format in the file GRAPE2, cf. figure 3.13.

e In any case, mergesurfaces (intarray, withcyl, NSIX) glues the surfaces to-
gether by identifying the corresponding vertices and adapting the neighbourhoods.
NSIX represents the number of the last outer vertex of the second surface.

e A plausibility test is performed: we check whether the Euler characteristic® of the
surface calculated from its genus agrees with the number nt — ne + nv.

e Finally, we use a smoothing method of G. Dziuk, discrete_mcf (mcf_freq, -1),
to smooth the mesh of the glued surface. The method consists of iteratively moving
each vertex to the centre of mass of its neighbours with frequency mcf_freq. Then,
the output is generated.

Having in mind our definition of discrete (immersed) surfaces, we have to justify why
the glueing scheme generates data structures that really represent surfaces. All surfaces
in the list on page 39 are indeed discrete surfaces. As the scheme allows the user to use
his or her own data as an input, we have to make the assumption that those really are
discrete surfaces. Further, we assume that the refinement process generates data belonging
to a discrete surface if it starts with two discrete surfaces. Under these assumptions, the
glueing scheme usually produces data belonging to a discrete surface by the following
argument:

The piercing subroutine does not generate data representing a surface as surfaces are
closed by definition in this text. We can argue that the data still represents a discrete
“surface with boundary”!®. This is not changed by the subroutine trianglein(...).
The subsequent equilaterising subroutine triangleequi(...) does not lead to degen-
eration, see section 3.2.3, below. Neither does the inscribing of a hexagon performed by
six(...) nor the smoothing of the hexagon done by smooth(...), see 3.2.3. The subrou-
tine ustart_glue() performs a deformation of the surface and hence does not affect its
non-degeneracy. The subroutine equilaterise(...) might cause degeneration but will
not usually do so, see also section 3.2.3. After this, only bijective conformal mappings are
applied “to the data” before it is glued — in fact, they are only applied to the vertices

9
cf. p. 5.
0gee [Lee03]; we will from now on consider those generalised surfaces as surfaces for notational simplicity.
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and can thus be understood as locally injective, continuous piecewise linear mappings as
discussed above.

The glueing or merging itself does obviously not cause any deformations in the case when
the surfaces we are glueing do not intersect (in their final positions), see for example
the dumbbell in figure 3.12 or the glued tori at the end of this section. If the surfaces
do intersect (in their final positions), we have to name a discrete surface which acts as
the parametric domain of the surface represented by the output data. We can do this as
follows: by going over to the parametric domains of the input surfaces, we can assume that
the surfaces we wish to glue are embedded. Leaving the glueing hexagon’s edges where
they are, we can deform both surfaces (or all three, if a cylinder is involved) in a manner
that makes them disjoint. For example, scale up one of them and scale down the other.
The resulting discrete embedded surface then acts as parametric domain for the discrete
surface represented by the output data of the glueing scheme.

Figure 3.12: Non-refined dumbbell mesh viewed from the side and cut in half.

Figure 3.13: Non-refined cylinder mesh seen from the side.
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Figure 3.14: Dumbbell mesh paper model used as an aid for the implementation of the
glueing scheme. Not exact. Please feel free to copy and glue together.
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3.2.3 Discrete Methods for Glueing

Having gone through the skeleton of the glueing method, we will subsequently discuss and
justify some subroutines. The code of all these is included in the appendix.

Surface Representation

As we have described above, surface meshes are treated as specific data structures. These
meshes allow to work with Finite Element Methods, see chapter 4. Starting with rather
simple meshes, as for example an octahedral mesh as in figure 3.11 — we call these macro
meshes or macro triangulations —, we get more complicated surfaces by applying parametri-
sations. This means that we do not need to find a new mesh for each different surface we
would like to work with. Usually, we will refine!! the mesh before we transform it. We use a
standard refining procedure which we therefore do not explain here.

All surfaces listed under (A) and (A’) on page 39 are such parametrisations over the round
sphere mesh. The parametrisations are realised on data structure level by assigning new
coordinates to all vertices. One can understand such a map as a continuous, locally in-
jective, piecewise linear map by extending it linearly to the interiors of the triangles. For
example, in the case of the “crushed sphere” depicted in figure 3.6, the new vertex coordi-
nates are calculated by the rule (x(1,1),x(2,1),x(3,1))" = (x(1,1),%(2,1), £x(3, i)’ for
all i = 1,...,nt. This is the restriction of a linear transform of R? and gives thus rise to a
deformation of the round sphere mesh. In the glueing program, this deformation is applied
by calling ustart_glue().

The second basic mesh we work with is a toroidal mesh. Figures of it can be found on page
52. Any torus of revolution of a circular cross-section can easily be obtained from this torus
by a deformation. When the radii of the torus are not “too different” from those used in the
basic mesh, we can simply project'? the mesh onto the surface with the prescribed radii.
The third mesh also belongs to a topological sphere, it is a dumbbell mesh the author has
constructed by the glueing scheme. A paper-model of a macro-version of this mesh can
be found on page 49, a GRAPE picture of the macro-version is shown on page 48. When
glueing with a cylinder we use a non-refined mesh of the form depicted in figure 3.13 and
adapt the coordinates of the vertices.

Cutting Holes into Surfaces

Imitating the topological glueing construction, we glue two discrete surfaces together by
cutting “small” topologically circular holes into both of them and identifying the boundaries
of those holes. In order to prohibit the appearing of very acute angles in the case of glueing
two round spheres, for example, we allow that this identification takes place with a cylinder
between the surfaces.

Hgee also page 58 below for a discussion of the projection used when refining.
25ee below for a discussion of the projection.
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Figure 3.16: Non-refined torus mesh from above and from the side.

The easiest way to cut a hole into a triangulated surface the exact geometry of which
might not be very well-known is to delete a triangle from the triangulation. The result is
a discrete immersed or embedded surface that has a boundary consisting of three edges
(at least, if the surface was closed before) — a topological circle. However, identification
has not been convincing with triangles. Working without a cylinder, the glued surface
usually seemed to have a “belt” around the glueing curve. This belt did not vanish when
the Willmore flow was applied. On the other hand, working with a cylinder, a triangle
did not allow the cylinder to become round when being refined. We have thus decided to
glue via identification of higher order polygons inscribed into a triangular hole. Hexagons
have provided the best results. The piercing procedure thus consists of cutting a triangular
hole and inscribing a regular hexagon. The regularity of the hexagon allows to identify the
boundaries of two pierced surfaces, straightforwardly.

On the data structure level, piercing consists of adapting the neighbourhood relations
and the number nt of triangles of the mesh. The vertex numbers are not affected by the
piercing procedure. In fact, we proceed as follows:

e save the numbers of the vertices of the deleted triangle to a
vector which
e save the numbers of the neighbours of the hole to a vector

neigh
e tell the neighbours of the hole that they lie on the border
itype =1

e adapt positions in the neighbour-list; the neighbours of the
hole get negative neighbours in decreasing order

e adapt positions in the node-list; update neighs if necessary

e nt=nt—1

e make sure that no refinement edges are set to the border.
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which(2) ,‘,/////vlA hole

which(3)

Figure 3.17: Triangular hole.

In general, the hole can have an irregular form. It can thus happen that very “ugly” triangles
are produced when we inscribe a regular hexagon into the hole. It has proved convenient to
inscribe a smaller equilateral triangle into the hole, inscribe a regular hexagonal hole into
that, and refine its neighbourhood. The subroutine trianglein(...) inscribing a smaller
triangle works along the following lines:

e set NNTT=nt
e calculate the centre of mass mass of the hole
e calculate the minimal distance minprop of mass to any of the

e project these vertices to the surface!?
e insert six new triangles around the hole, each joining either

hole’s edges

define three new vertices x1, x2, x3 at distance w of
mass, xi lying on the line joining mass and the midpoint of
the edge opposite of the i-th vertex, set their itype to 0

one of the new vertices with the edge of the same index or
two of the new vertices with the old vertex saved in which
having the same index

set the neighbours of these new triangles as well as those of
the former neighbours of the whole saved in neigh

set the refinement edges of the new triangles such that the
edges of the new hole are not affected

update which and neighs

update nt=nt+6, ne=ne+9, nv=nv+3

refine the new triangles in pairs'?, update neighs

improve the mesh with discrete_mcf(mcf_freq,
projection), see below

equilaterise the hole with triangleequi(...), see below

A sketch of the situation in the neighbourhood of the hole can be found on page 54.

Hgee below for a discussion of the projection
Myith refloc_glue(...) by M. Fried.
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Figure 3.18: Inscribing a smaller triangle into a triangular hole — zoomed in on the hole.

As announced, the algorithm now equilaterises the triangular hole (see below) and inscribes
a regular hexagon into this equilateral triangular hole. The geometric fact at the heart of
this procedure is that the centre of mass separates the altitudes of an equilateral triangle
in the ratio 1 : 2. Thus, the three points separating the part of the altitude that lies
between the centre of mass and any vertex in the ratio 1 : 2 and the three points dividing
the other part of the altitude in the ratio 2 : 1 all have the same distance from the
centre of mass. Also they span a regular hexagon as the angle between two altitudes is
3 The subroutine six(mass, which, neighs, sixneighs, intarray, surf) inscribes
a regular hexagon with the vertices described above into the hole and fills the remainder
with triangles as depicted in figure 3.19. The subroutine smooth(...) then refines the
triangles around the hexagonal hole in order to adapt the mesh to the underlying surface
it is supposed to approximate (although we should remark that the actual projection to
the starting surface we have discussed above has not taken place yet), see figure 3.20.
After the projection to the final geometric form, the hexagon needs to be taken back to
its regular form. Nevertheless, it seemed easier to go through the steps in this order, as
we can keep track of the well-definedness of the mesh and of its regularity since we know
the exact “curvatures” of the non-projected surface — which is a sphere or a torus in most
examples.

Let us now discuss the equilaterising strategies for triangles and hexagons. We begin
with triangles (and the subroutine triangleequi(which,mass,prop)). We determine the
biggest inner angle of the triangle and the shorter edge at this angle. We reduce the longer
edge touching the biggest angle to the shorter edge’s length. The triangle must now be
isosceles. Now, we turn the formerly longer edge to the interior of the triangle until the
angle reaches % and obtain an equilateral triangle. As we have started by inscribing a small
triangle into a larger one, the small having edge length at most a sixth of shortest altitude
of the larger one, it is clear that the outside neighbourhood of this last is not affected by
this equilaterising process. Also, only one vertex is moved in the equilaterising process.
In the planar case we could argue that it remains in the convex hull of the neighbouring



55 3.2 Glueing Discrete Surfaces

which(1)
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Figure 3.19: Inscribing a regular hexagon into an equilateral triangular hole. ti = i-th new
triangle, vj = j-th new vertex, also called sixneighs(j).

vertices so that the mesh does not overlap and hence still is well-defined. Arguing only
in the neighbourhood of the moving point we find that by definition of discrete surfaces
the interiors of triangles sharing a common point cannot overlap so that the mesh remains
well-defined by Jordan’s curve theorem. Inscribing a smaller triangle first thus ensures that
the equilaterising process does not lead to overlapping edges. A sketch of the situation can
be found on page 57.

We continue with the equilaterising method for hexagons. This method treats an irregular
hexagon as split up into two triangles as in figure 3.22. Then both triangles are equilaterised
individually. We shift one of them so that their respective centres of mass coincide and
scale the larger one about this centre so that they agree in size. Subsequently, we turn
one of them around the centre of mass to yield a regular hexagon. As we move four
vertices in general, it can happen that the mesh is destroyed by this method. However,
as we apply this method to a hexagon that is the projection onto a given surface of a
regular hexagon, it will already be nearly regular in most cases so that the mesh remains
non-overlapping.

Merging Surfaces

Having seen how the glueing scheme cuts regular hexagonal holes into surfaces, we will now
discuss how such pierced surfaces are glued together by identifying the edges and vertices
of the hole. In the topological setting, this means that we have cut out disks from two
surfaces and now have to find a homeomorphism of the boundary circles. In the discrete
setting, this homeomorphism will actually consist of a Euclidean motion and a dilation of
one surface (at least if a cylinder is not involved). The algorithm is divided into two parts.
The first step corresponds to effectuating the homeomorphism, the second one is to carry



3 Glueing Surfaces o6

which(1)

neighs(3)

which(3)

which(2)

Figure 3.20: Smoothing around the hexagonal hole. The dashed lines are the new ones.

out the identification. We will only treat the variant without cylinder as the other one is
very similar.

As both holes are regular hexagons, the homeomorphism can be chosen to be a composite
of the following homeomorphisms. First dilate the surface having a larger hole about the
centre of mass of the hole so that the hexagons are congruent. Secondly, move both surfaces
in a way that the centres of mass of their holes coincide and the outer normals to their
respective holes lie along the x3-axis pointing in opposite directions. Thirdly, rotate one
of them about the outer normal of its hole until the hexagons coincide. Now, we have to
identify the vertices and the edges of the hexagons on data structure levels. In fact, to reach
this goal, we define a new surface the mesh of which is represented by

e nt = number of triangles of the first surface (F) + number of triangles of the second
surface (S)

e ne = number of edges of (F) + number of edges of (S) —6 (as twelve edges are
identified in pairs)

e nv = number of vertices of (F) + number of vertices of (S) —6 (as twelve vertices
are identified in pairs)

and by the merged lists of vertices, triangles, neighbours etc. When merging, we have
to

e leave out those six coordinate triples belonging to the hexagon of (S) (the numbers
of those had been saved in the vector intarray)
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Figure 3.21: Sketch for the equilaterising of a triangle. The red arrow shows the movement
of the vertex.

Figure 3.22: Two triangles combined to a hexagon.

e leave out the respective vertex types

e change the vertex types of the six hexagon vertices of (F) to 0, i.e. to inner type
(the numbers of those vertices had also been saved in the vector intarray)

e change the vertex numbers of triangles in (S) in the vicinity of the hole to the
respective vertex numbers of (F) (the neighbours of the hole had been saved in the
vector sixneighs and need not be calculated)

e change the neighbours of the neighbours of the hole in both (F) and (S) so that they
neighbour each other adequately

e set the refinement edges of the neighbours of the hole such that the glueing edges
are supposed to be refined.

This identification gives rise to a glued mesh representing the glued surface. If we know a
projection formula for the glued surface as in the case of a dumbbell or of a round sphere
pair where the second one is inverted, we can further refine the glued surface. In that case,
setting the refinement edges to the glueing edges helps adapting the mesh in the glueing
area.
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Projection to Discrete Surfaces

Describing the glueing scheme we have often talked about the projection of a vertex onto
a surface. This has no direct meaning as even arbitrary embedded discrete surfaces need
not be the surface of a convex body and can hence induce sets of equidistance to different
points of the surface. This happens for dumbbells, for example, cf. figure 3.23. Also, as the
surfaces are not smooth, a closest point projection cannot always be calculated via outer
normals to the surface. On the other hand, refining a surface mesh does not improve the
mesh in what concerns its closeness to a given smooth surface if we do not project the new
vertices onto the smooth surface. We have therefore decided to project as little as possible
and, if “necessary”, to project onto round spheres, tori, and dumbbells only as we have
explicit formulae for these projections. This projection problem is the reason why we use
our three standard models all through the glueing scheme and transform them to their
final form at a very late point in the routine, namely after the surface has been equipped
with a hexagonal hole.

z
||

The projection we use for the spherical case is © — = where we use the Euclidean norm of

R3. Here, we use that new vertices constructed in the refinement or in the piercing processes
do not lie in the origin'® but rather on the unrefined surface mesh. In the toroidal case with
radii ry > r;, we calculate the outer normal N(z) to the torus of x = (z1, 79, 73)" € R3
having the components

(1-—2=)n
mlerQ
Nl(l‘) = s
J%—Vﬁ+ﬁﬁ+ﬁ
(1-—F—=)
mlerQ
Ny(z) =
J%—Vﬁ+%ﬁ+ﬁ

Zs3
J%—Vﬁ+%ﬁ+ﬁ

and then the projection onto the torus, P(z) = z— (\/(ro — a4+ a3)2+23—7r1) N(z). In
the case of the (glued) dumbbell, we have to deal with sets of equidistance. However, these
sets only consist of several surfaces in R? and have hence measure zero. It will thus very
rarely happen that a point lying in one of the components of this set needs to be projected
to the dumbbell. A cross-section of the dumbbell together with the set of equidistance can
be found on page 59, a sketch of the surface on page 60. In this case, we project it to any
point that is a closest point of it.

I

The dumbbell projection uses two symmetries of the dumbbell. The first symmetry is a
rotational symmetry about the xs-axis, the second one is a mirror symmetry about the
x1, To-plane. To utilise the first symmetry, we introduce the new variable h(x) = /23 + 3.
The projection can only be defined if h(z) # 0'® and 23 # 4(L + 2) as it is not clear

5and not too close to it which is important numerically.
o1 not too small, numerically speaking.
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Figure 3.23: Sketch of cross-section of dumbbell with set of equidistance.

to where we should project in that case. This case, however will usually not happen as
new vertices always lie on edges or inside triangles of the old mesh. In order to sim-
plify the problem with the aid of the second symmetry, we always work with the abso-
lute value of x3. We use the variable eps as the radius of the cylinder and L as half its
length (approximately, see below). In fact, we project onto a dumbbell with an (affine)
linear interpolation between the spheres and the cylinder, see figure 3.24. The radius
of the spheres is 1. We set hsph as the height of the meeting point of the linear in-
terpolation and the sphere, and “elevation” as the elevation of the linear interpolation
for 3 > 0. The formulae are hsph = /1 — (eps — 1)% and elevation = %;:ps. For
each point x = (z1,72,73)" € R3 we set wside(xr) = sign(x3), where sign(0) := 0.
We now calculate the minimal distances of x to each of the individual pieces constitut-
ing the dumbbell. We find dcornl(z) = /(h(z) — eps)? + (|z3] — L + eps)?, and similarly
dcornr(z) = \/(h(x) — hsph)? + (|x3 — L — eps|)?, deyl(z) = |h(x) —eps| if |z3] < L—eps
and dcyl(x) = dcornl(x) otherwise, to be the distance of = to the lower (left) corner of
the linear interpolation, to the higher (right) corner of the linear interpolation, and to
the cylinder — by Pythagoras’ theorem. In order to calculate the minimal distance to the
linear interpolation, dpol(z), we determine the squared distance of (|z3|, h(z))! € Rt x Rt
to any point (z,elevation z + elevation (L — eps) — eps)' of the infinitely extended line
which is the quadratic polynomial d,(z) = (elevation + 1) 2* — 2(|x3| + h(x) elevation +
elevation?® (L — eps) — elevationeps) z + (23 + h(x)?* + (elevation (L — eps) — eps)?).
The minimal distance to the line then is the minimum of d,, i.e. the root zy(x) of

. . [ tion? (L— h l t1 — l ti
the first derivative of d,. We find zo(z) = <evation” (L=cp S)Jrlﬁ)lzvztfofgnﬂm‘ CpS e . We

therefore determine the distance of = to the linear interpolation polynomial, dpol(x),
to equal the minimum of dcornl(z), dcornr(x) and, if zo(x) € [L — eps, L + eps], of
v/ ([z3] — 20)2 + (h(z) — elevation (20 — L + eps) — eps)?. Finally, we find that the dis-
tance to the cut open sphere can be calculated as follows: set eps.(z) = lhff]fs (—|z|+L+1)
— this describes the line joining the right corner of the linear interpolation map to the
centre of the sphere — and then see that dball(z) = dcornr(z) if h(z) < eps.(x3) and

dball(z) = |\/h(x)? + (Jz3] — L — 1)2 — 1| otherwise.
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Figure 3.24: Cross-section of dumbbell with linear interpolation.

Having determined the distances of = to the individual pieces of the dumbbell, we compare
these distances and set mini(x) to their minimum and miniwhich(x) to a number between
1 and 5, where 1 stands for minimal distance to the cylinder, 2 for minimal distance to
the meeting point of the cylinder with the linear interpolation, 3 for minimal distance
to the linear interpolation, 4 for minimal distance to the meeting point of the linear
interpolation and the sphere, and 5 for minimal distance to the sphere. In critical cases
(where two or more values agree) we proceed in the order: 1,5, 3, 4,2 which means that in
case deyl(z) = dball(z), miniwhich(x) is set to 1 etc.

Then we project onto the respective part of the surface depending on miniwhich(x).
Remember that we project only in the case where h(z) # 0 if 23 # +(L+2). The projection
onto the cylinder is given by = +— (eﬁf;)l : %, x3)" (we can be sure that |z3| << L + 2
if we project onto the cylinder). We project to the left corner of the interpolation via

x = (P Fo (L — eps) wside(x))! (again, |r3] << L + 2), and to the interpolation
via z — (rslx();)“, rfg;f , z0(x) wside(x))t, where r = elevation (zo(x) — L + eps) + eps (and

again |r3| << L+ 2). The projection to the right corner of the interpolation is given by

the formula z — (h‘zp(’;;“, th(};?, (L + eps) wside(x))" (where again |z3| << L + 2). In the

case of the sphere, we project via the orthogonal projection onto the sphere, namely by

(z1,72,23—wside(z) (L+1))* . t
x—( V(@) +(Jes|—(1+1))2 )+ (0,0, wside(x) (1 + L))").

In fact, we also project onto a cylinder during the glueing process if we do not work with
a dumbbell. This happens if a cylinder is glued in between two surfaces and this cylinder
is refined. In that case, we use the canonical cylinder projection given by the formula

= (21,79, 23)" — (eps —2—=, eps —~2=, x3)", where eps is the radius of the cylinder
\/x1+m2 \/m1+5’32

whenever |z3| < L when L is half the length of the cylinder.
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Mesh Smoothing

We say that a mesh is of low (high) quality if the inner angles of the triangles in the
mesh are (not) obtuse or acute. In his Willmore flow program, G. Dziuk measures mesh
quality by measuring the minimal inner angle of all triangles contained in a given mesh
(winkel(...)).

During the Willmore flow, but also in the glueing scheme, we can be confronted with
low quality meshes. As we would like to apply the Willmore flow to the discrete surfaces
discussed here, we have to consider methods that improve the mesh quality. We will present
two options in this text. One of these is a local vertex displacement approach, the other is
a global scheme using the concept of conformality. We will discuss the first one here and
treat the second one in chapter 6.

In his Willmore flow scheme, G. Dziuk uses a local smoothing routine to improve the mesh
quality. This method consists of iteratively moving each vertex to the centre of mass of its
neighbours and to then project it back onto the given surface (in his case a round sphere).
We understand that this technique is known as “Laplacian smoothing” in the literature!'”.
In the glueing scheme, we apply this smoothing technique to round sphere, dumbbell, and
torus meshes — by the name of discrete_mcf (mcf_freq, projection)!®. As the vertices
are not moved very far by this method, we only need to project points that lie very close
to the surfaces so problems as described above will usually not arise. Tables showing the
influence of this smoothing method onto a round sphere mesh and a torus mesh can be
found on page 88.

However, we are also interested in smoothing the glued surfaces — for which we do not
know an explicit projection. It turned out that the Laplacian smoothing technique delivers
good results if we skip the projection of the vertices back to the surface. For example, if
we call discrete_mcf (mcf_freq, projection) once or twice when glueing two surfaces
with a cylinder, the glueing edges will get softer, see figure 3.25 below. A disadvantage
of this smoothing method lies in the fact that the new vertices do not necessarily lie on
the surface so that the mesh might not be a very good approximation to a given surface.
In particular, the surface described by the mesh will shrink by an amount depending on
the vertex density. This causes problems especially when the vertex density varies very
strongly in the mesh as it is the case if an inverted surface is glued to a non-inverted one. It
can then happen that the surface “shrinks” quickly where the mesh is coarse and virtually
nothing changes where the mesh is dense, see figure 3.25.

17¢f. p. 73 in [Hei03)].
18«mef” stands for “mean curvature flow”.
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Figure 3.25: Dumbbell without and with Laplacian smoothing (once, twice without pro-
jection), twice with projection.
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3.3 Results

Let us now have a look at the results of the glueing scheme. Figure 3.26 depicts a Clifford
torus inverted at the centre of mass of a hexagonal hole. Figure 3.27 shows a cut open
Willmore sphere with a round sphere glued to it at the inside. The parameters we have
chosen are samesurface = 1, inverse = 1, withcyl = 0, adv = 0.0; for the Willmore
sphere: ilz = 7, i1z2 = 1, genus = 0, surface = 5, iil = 1000, projection = 0; for
the round sphere: ilz = 4, i1z2 = 3, genus = 0, surface = 0, iil = 1, projection
= 0; for the glueing: rotangle = 0, and mcf_freq = 0. We also depict the glueing process
with intermediate results; first we treat the glueing together of two tori with a cylinder
in between. Afterwards, we depict the glueing together of one ellipsoid and one inverted
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Figure 3.26: Inverted Clifford torus; only the interesting curved region is shown.
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Figure 3.27: Willmore sphere with an inserted round sphere.
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Glued Tori

The parameters chosen here are: samesurface = 0, inverse = 1, withcyl = 0, adv = 0.0,
ilz = 5, i1z2 = 2, genus = 1, surface = 0, iil = 2, projection = 3, r0 = 1.0, r1
= 0.25, rotangle = 0, and mcf_freq = 0.

Figure 3.28: Macro triangulation used for the torus.

Figure 3.29: i1z times refined surface.
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Figure 3.30: Improved mesh.

Figure 3.31: Pierced surface. Only small part depicted.
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Figure 3.32: 1122 times refined pierced mesh. Only small part depicted.

Figure 3.33: A smaller triangle has been inserted. Only small part depicted.
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Figure 3.34: A hexagon has been inserted. Only small part depicted.

Figure 3.35: Neighbourhood of hexagon has been smoothed. Only small part depicted.
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3.3 Results

Figure 3.37: Mesh after equilaterise(...). Only small part depicted.
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Figure 3.38: Macro triangulation used for the cylinder.

Figure 3.39: Refined cylinder mesh.
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3.3 Results

Figure 3.40: Glued surface.
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Ellipsoid with Inserted Inverted Ellipsoid

The parameters chosen here are: samesurface = 1, inverse = 0, rad = 1.0, withcyl = 1;
for the first surface: ilz = 5, i1z2 = 2, genus = 0, surface =9, iil = 1, projection
= 0; for the second surface: ilz = 5, i1z2 = 2, genus = 0, surface = 9, ii2 = 1,
projection = 0, i1z3 = 2 (refining about hexagonal hole), rotangle = 0, mcf_freq = 0.

Figure 3.41: Macro triangulation used for the sphere.

Figure 3.42: i1z times refined sphere.
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Figure 3.43: Pierced surface cut in half.

AT

Figure 3.44: i1z2 times refined pierced mesh. Cut in half.
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Figure 3.45: A smaller triangle has been inserted. Cut in half.

Figure 3.46: A hexagon has been inserted. Cut in half.
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Figure 3.47: Neighbourhood of hexagon has been smoothed. Cut in half.

Figure 3.49: Final ellipsoidal form.
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Figure 3.50: Final ellipsoidal form zoomed to the hole. Only part shown.

Figure 3.51: Final ellipsoidal mesh zoomed to the hole. Only part shown.
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Figure 3.52: Ellipsoid inverted at a sphere with centre at the centre of mass of the hole.
Only part shown.



3 Glueing Surfaces 78

*\
\.
‘ AN
NN

"\‘ \i‘\\;\\
m\\&\‘\\
X X N
SRS
N\

Figure 3.53: Ellipsoid mesh inverted at a sphere with centre at the centre of mass of the
hole. Only part shown.
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Figure 3.54: Glued surface.
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Figure 3.55: Glued mesh (cut in half).

3.4 QOutlook

Let us now bring the discussion of the glueing scheme to an end with the question what
generalisations of the scheme would be useful. So far, we are only able to glue surfaces
in R3. As far as the author can see, there should be no obstacle to generalise the data
structure and the algorithm to discrete surfaces in R™ as all properties used are internal to
the surface except for one: we merge the surfaces by turning the outer normals of the holes
such that they cancel. Outer normals to a surface are not well defined in an arbitrary
surrounding R"™ so we would have to be careful here and use that two plane hexagons
always lie in a three dimensional subspace of R™. Apart from this, the generalisation to
R" should be straightforward.

Another kind of surfaces we could wish to glue together are non-orientable ones, espe-
cially some discrete version of RP?. This would be a more delicate change as the refining
subroutines rely on a common orientation of the triangles in a surface mesh. It should,
however, be possible to refine non-orientable surface meshes. This would allow to glue
non-orientable surfaces with the glueing scheme as orientability is used nowhere else in
the program.

Finally, having M. Bauer’s and E. Kuwert’s glueing result 3.1.1 in mind, it would be in-
teresting to be able to glue two surfaces together not with a round cylinder but with a more
complicated surface (of the same topology as the cylinder) in between.
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In this chapter, we will give a very short introduction into the theory and the discretisation
of the Willmore flow. We are mainly interested in this flow because it might allow to
identify minimising Willmore surfaces, see below. Moreover, it might be possible to use the
Willmore flow to prove existence, regularity, and other properties of minimising surfaces.
Last but not least, the geometric evolution equation arising as the flow equation of the
Willmore energy is interesting in its own right. The study of the Willmore flow has been
initiated by E. Kuwert and R. Schétzle in 2002 ( [KS02]). We begin with the definition of
the (continuous) parametric Willmore flow (section 4.1). Then, we discuss a discretisation
with Finite Element Methods presented by K. Deckelnick, G. Dziuk, and C. M. Elliott
in [DDEQ5| (section 4.2), study some examples, and give an introduction to the mesh
degeneration problem (section 4.3.1).

4.1 Continuous Willmore Flow

Recall that the Willmore energy W defined in section 2.2 is Fréchet differentiable on
C4(%,R3) (theorem 2.4.1) and that its Fréchet derivative at f € C*(3,R?) is denoted by
I W(f). Before we can define the Willmore flow, we need the following lemma.

Lemma 4.1.1. Let ¥ be a closed, connected smooth surface. Let L*(X,R®)* denote the
normed dual of L*(X,R3) as defined in [Alt91]. Then the Fréchet derivative  W(f) of W
at any C*-immersion f : X — R3 can be understood as a continuous linear functional
on L*(3,R3), 1. e. a member of L*(X,R3)*. There is a map W (f) € L*(Z,R?) satisfying
SW()6 = (W(F), ) ras.ao for all € L*(5,R?).

Proof. Let f € C*(X,R3) be an immersion, ¢ € L?(3, R?). Then
SWG =2 [ [B,H()+ 2(H () = K()](6,0) dus
5

is finite, since by Cauchy-Schwarz inequality

OW(f)o] < 2| AH(f) 4+ 2(H(f)* = K() 2w e 10l 2 rs =1 CO)0ll 12 re)

where the constant C'(f) is finite by compactness of ¥ and by the continuity of all involved
curvature notions since f is of class C*. We can also see from this inequality that § W(f) is
continuous on L?(%, R*) which allows us to understand 6 W(f) as a member of L?(3, R%)*.
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By the Riesz representation theorem', there is a function W(f) € L*(2,R3) satisfying
(W(f),d)r2mrs) = 0 W(f)o. We are done by theorem 2.4.1. O

The parametric Willmore flow is now defined as the L?-gradient flow of the Willmore
energy W.

Definition 4.1.2 (L?-Gradient of VW, Willmore Flow). 2 Let 3 be a closed, connected
smooth surface. The Riesz representation W (f) € L*(X,R3) of § W(f) (see lemma 4.1.1)
is called the L?-gradient of VW and is denoted by W(f) = grad;>- W(f). It follows from
theorem 2.4.1 that grad; . W(f) = 2(A,H(f) +2(H(f)*— K(f)) H(f))v. By the Willmore
flow or the elastic flow, we understand the fourth order geometric evolution equation

Ouf = —grad W(f) = =2(AH(f) +2(H(f)* = K(f)) H(f))v on L.
A solution of this flow equation is also referred to as a Willmore flow.

Remark. We recall that v denotes any (local) unit normal field, H(f) denotes the scalar
mean curvature (depending on the choice of the normal field), and K (f) denotes the Gauf
curvature of the immersion f. A, denotes the Laplace-Beltrami operator induced on ¥ by
the Riemannian metric g which arises as the pullback of the canonical metric on R3 via f.

We formulate the following initial value problem:

Problem 4.1.3 (Initial Value Problem (IVP)). ? To a given smooth, closed, and
connected surface X smoothly immersed into R? via fy : ¥ — R3? find a number T > 0 and
a family (f(t))ep,r) of smooth immersions f(t) : ¥ — R® which describes the evolution
of fo under the L*-gradient flow of the Willmore energy and that satisfies f(0) = fo. In
other words, the family (f(t))wcp,r) shall satisfy

Ouf (t,p) = — grad, W(f(1))(p)
f(0,p)= fo(p) }Vpezwe [0,7).

The interest in problem (IVP) (and the negative sign therein) stems from the idea of
“steepest descent”®. This idea coming from R" is based on the fact that the negative gra-
dient of a sufficiently smooth map w : 2 C, R* — R always points in the direction of
steepest descent of the graph of w. Also, the “rest points” of a solution of the accom-
panying gradient flow are precisely the critical points of w. Similarly, Willmore surfaces
are stationary for the Willmore flow, i.e. they satisfy grad, . W(f) = 0. We have seen in
chapter 2 that all round spheres as well as the Clifford torus are Willmore surfaces so that
the following corollary is immediate.

Corollary 4.1.4. All round sphere immersions of S* as well as the Clifford torus are
stationary for the Willmore flow.

Lef., for example, p. 145 in [Alt91].
Zbased on [KS02] and [Str96].

3¢f. p.1 in [Rus].

4cf. pp. 76 in [Str96].
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E. Kuwert and R. Schitzle ( [KS02]) have proved short time existence of smooth solutions
of the Willmore flow for any closed surface ¥ immersed into an arbitrary R" (n > 3) (initial
data). Their discussion of the Willmore flow is characterised by the conformal invariance
of the Willmore energy (see 2.3.3). G. Simonett ( [Sim01]) has proved® long term existence
of a solution of the Willmore flow with initial data close in C*“ to a (round) sphere;
furthermore, he showed that the solution gets spherical as t — co. Similarly, E. Kuwert
and R. Schiitzle ( [KS04]) have shown that any smooth initial immersion of a sphere into R3
with Willmore energy® less than 167 gives rise to an infinitely existing smooth Willmore
flow that converges to the round sphere. U. F. Mayer and G. Simonett have shown in
their paper [MS03] that the Willmore flow does in fact decrease the Willmore energy.
More precisely, they have shown W(f(t)) < W (fy) (t € [0,T]) for any smooth immersed
solution f(t) : ¥ — R3 of the Willmore flow with smooth initial data f, : ¥ — R? and for
any smooth orientable connected surface 3.

Having these results in mind, we can hope to identify minimisers of the Willmore energy
by studying long time behaviour of the Willmore flow on surfaces of higher genera. In
particular, they let us hope to be able to get information on possible minimisers by studying
the (discretised) Willmore flow numerically. But as U. F. Mayer and G. Simonett also
remark in [MS03], their numerical simulations “seem to indicate that the Willmore flow can
drive immersed surfaces to topological changes in finite time.” It is not known to the author
whether this effect has a theoretical equivalent. However, changes of topology cannot
happen in the parametric approach we are using as the domain of the parametrisation
fixes the topology — as long as the parametrisation gives rise to a (discrete) immersed
surface and does not degenerate. We will now discuss a discretisation of the Willmore flow
by Finite Element Methods.

4.2 Discretisation

In section 3.2, we have defined discrete embedded and immersed surfaces. We have also
introduced the notion of discretised (Willmore) surfaces. In this section, we will discretise
the Willmore energy with Finite Elements and give a concise overview over a discre-
tised Willmore flow presented by K. Deckelnick, G. Dziuk, and C. M. Elliott. As we have
noted above, one also finds a notion of “discrete Willmore energy” and “discrete Will-
more flow” in the literature, see for example the paper [BS05| by A. I. Bobenko and P.
Schréder.

When introducing immersed surfaces in section 3.2, we have succinctly stated that the
Willmore flow can drive embedded surfaces to self-intersections. This fact has been proved
by U. F. Mayer and G. Simonett ( [MS03]). More precisely, they have shown that the Will-
more flow can drive smooth orientable embedded (into R?) initial data to self-intersections
in finite time. They have also reproduced this effect numerically’.

®say E. Kuwert and R. Schitzle in [KS02].
Note that they use a definition of the Willmore energy differing from ours by a factor 1.
says R. Rusu in [Rus].
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For our study of the flow behaviour of the surfaces constructed by the glueing scheme, we
have used a Finite Element Discretisation of the Willmore flow which is due to K. Deck-
elnick, G. Dziuk, and C. M. Elliott ( [DDE05]) and relies on a trick by R. Rusu ( [Rus]).
Their approach is parametric. Other approaches as for example a level set method are
also commonly used (cf. [Alb05], for example). The code of the discrete Willmore flow
has been given to the author by G. Dziuk and contains pieces of code by M. Fried and
A. Schmidt. We only give a very rough description of the scheme, here. A flow chart
can be found on page 86. Convergence results of this scheme are not known to the au-
thor.

The continuous Willmore flow is of fourth order in space and of first order in time. The trick
of R. Rusu consists of regarding the mean curvature vector and the “position vector” of the
parametrisation as independent. This is called a “mixed method”. She can thus transfer
the single equation of fourth order into two coupled equations of second order in space, re-
spectively. The time discretisation is semi-implicit and linearises the equations. Hence, this
trick permits the use of piecewise linear Finite Elements for the space discretisation. Also,
it induces a natural discretisation of the Willmore energy, see below.

The only space derivative operator appearing in the two new equations is the so-called
“tangential gradient”. It is defined by

Definition 4.2.1. 8 If ¥ C R? is a smooth embedded surface and U is an open neigh-
bourhood of Y in R3, the tangential gradient of a smooth map f : U — R at a point
p € ¥ with normal v(p) € R? is defined as Vy f(p) := grad f(p) — (grad f(p) - v(p))v(p)-
Here, grad f(p) denotes the usual gradient of f in p. The tangential gradient then is the
projection of the gradient grad f(p) to the tangent plane of 3 at p. It only depends on the
values of f on X.

Remark. The GauR formula for Euclidean hypersurfaces® tells us that the tangential gra-
dient of f agrees with the covariant derivative of f, Vf, if f is sufficiently smooth.

From now on, we deviate slightly from the notation introduced in chapters 1 and 2 and
work with the notation customary in the field of Finite Element Methods on surfaces. In
particular, parametrisations are denoted by X, the mean curvature vector by Y, see below.
Recall the definition of the Sobolev space H' on a C%!-surface (cf. chapter 1). The discreti-
sation of problem 4.1.3 formulated by R. Rusu in [Rus| then reads!®

Definition 4.2.2. Let X;, be a discrete surface!!, 7, its triangulation. The space
X, (21) = {¢ € C°(Zp, R?) | ¢|7 is a linear polynomial for each T € 7;,}

is called Finite Element space for 3. We have &), C H'(X,R?) and dim X}, < cc.

8¢f. [Rus, GT70].

9¢f. p. 140 in [Lee97].

0We vary slightly from R. Rusu’s treatment as we have given a different definition of discrete immersed
surfaces.

H1Tf 33, is not embedded into R3, all following maps and spaces are meant to be defined on its parametric
domain which is a discrete embedded surface.
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Definition 4.2.3 (Discrete Position Vector, Discrete Curvature Vector). Let ¥,
be a discrete surface, X € X),(3,) locally injective, i.e. a parametrisation. Then we call
X the (discrete) position vector of the discrete surface X (X,,). Let du;, denote the surface
measure on Xy, let “:” denote the canonical inner product of 3 x 3-matrices. Y € X,(X,)
is called the (discrete mean) curvature vector for X if it satisfies the weak equivalent'? of
the identity A, f = H(f) proved in 1.2.22 or in other words if it satisfies

/Y . @/)d,uh + /thX : th’g/) d,uh =0 for all ¥ € Xh(Eh)
Zh

Zn

The discrete mean curvature vector for a given position vector is unique by the fundamental
lemma of the calculus of variations.

Problem 4.2.4 (Discretised Parametric Willmore Flow). Let X0 be a discrete sur-
face. Let X° € X,(30) be the identity map on XY, and let Y° € X,(X9) be the curvature
vector for X°. Let 7 > 0 be a time step, mo € N. Denote by ° the normal to 39 (defined
only and constant on the interiors of the triangles in the triangulation), and by p) the
surface measure on X9. For m = 0,1,...,my — 1, find functions X", Y™ € X, (27)
such that

o N = X™H(EM) is a discrete surface (< X™TL is locally injective)
o Y1 s the curvature vector for X™*!

e "L s the normal to ZZ”H (defined only and constant on the interiors of the tri-
angles in the triangulation), " is the surface measure on X}

o and such that for all p € X,(X}"), we have

1 1
~ / (X" —X™) - pdpy + 3 /|Yhm|2V2;7Xm+1 : Ve dpy!
Em

m
Eh h

Xy

The discrete parametric Willmore flow is implemented by use of the canonical “nodal
basis”!® having nodes in the vertices only. In the following, we discuss the parameters and
the output of the Willmore flow scheme.

(Input). The input for the program consists of a file Input_will that specifies the values of
a number of parameters. The documentation file Input_will.DOKU explains all parameters
and, if necessary, their possible values, see appendix 77, p. 77. We can specify the number
ilz of refinements the surface will undergo before the flow is applied to it. As in the
glueing scheme, we can specify its genus, the number surface, and the projection that is
supposed to be used for the refinement and for the Laplacian smoothing. In case of a torus,

12¢f. [Rus] for more information on the partial integration argument leading to this weak formulation.
13¢f. p. 62 in [Bra91].
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we can specify the torus radii r0, rl. Finally, we can determine whether a “conformal
reparametrisation” is supposed to take place by setting conformal to 0 (yes) or 1 (no)
— conformal reparametrisation will be discussed below. Also, we can specify the number
mcf_freq of times the Laplacian smoothing scheme is applied to the surface before the
discretised flow is applied. Last but not least, we can specify the time step tau by fixing
an exponent expo. The time step will then be calculated from the mesh size'* h by setting
tau = h**P°. Other parameters are read from the file ein; as we have not changed those,
we will not go into into detail. A few parameters are specified in the program, for example
the frequency of the conformal reparametrisation.

(Output). The output of the Willmore flow scheme consists of images of the surface (pro-
duced with the subroutine movie(...)) and of its triangulations, both written down at
certain steps of the iteration (specified internally with the variables mmm and cut, respec-
tively). Also, a file called Track.DOKU is created to keep track of the process. It informs
which surface the scheme works with, notes the level of refinement ilz, the time step
tau, the envisaged hours of operation finish, the image and protocol frequency mmm, and
the mesh writing frequency cut. Then, it states whether a conformal reparametrisation is
undertaken. For each of the first ten steps of time, it notes the mesh regularity'® measured
by the subroutine winkel(...) and the discretised Willmore energy. The same is done in
each mmm’th step.

The data structure used is the same one as in the glueing algorithm, see chapter 3.
We give a short overview over the structure of the program; see the flow chart on the
following page, too. The subroutines refglobal_glue(...), discrete_mcf(...), and
ustart_glue(...) and all their subroutines are exactly those used in the glueing scheme.
macro_glue(...) is slightly changed as it now allows to load the triangulation of a sur-
face produced with the glueing scheme (saved in triang.glued). Some pieces of the chart
are dashed; this indicates that we have not (yet) discussed the corresponding pieces of
the code. The boxes containing the text “Prepare flow” and the box containing “adap-
tiv” stand for the discretised Willmore flow. The boxes named “Prepare harmonic” and
“harmonic” describe the conformal reparametrisation and will be discussed in chapter 6.

!4The mesh size h is calculated in the subroutine gitter() by G. Dziuk.
5Note that high numbers returned by winkel(...) correspond to low regularity and vice versa.
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Figure 4.1: Flow Chart for the Willmore flow algorithm. The dashed pieces of the program
have not (yet) been discussed.
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4.2.1 Discretised Willmore Energy

In order to determine the Willmore energy of a glued surface, we have discretised the
Willmore energy using the Finite Element spaces R. Rusu introduced for the discretisation
of the Willmore flow. We use the subroutine kruemmung() of the implemented Willmore
flow to determine the curvature vector of the surfaces; the subroutine calculating the
Willmore energy is called willenergy (Will).

Proposition 4.2.5 (Discretised Willmore Energy). % Let 3, be a discrete surface,
Ty, its triangulation. Let Y be the curvature vector associated to the identity mapping
X : Y, — Xy as described in definition 4.2.3. Recall that nv denotes the number of vertices
in the triangulation. Let y = (Yi)i=1,.. av and = (2;)i=1,.nv be the respective coefficient
vectors with respect to the nodal basis. The discretised Willmore energy is given by

Wh(x) = % Z T Z Hij,

T€Tn  y#v; are nodes of T
where H;; = y; - y;, and |T'| is the area of T.

Proof. Let b = (by, by, b3) be barycentric coordinates on the standard simplex 7 and thus
by +by+by=1.Forany T € Tp, let a” = (al,al, al’) denote the canonical R3-coordinates
on T. Setting Y7 (b) := Y (a” (b)), we have |YT(b)|? = er L beb HZT(T i on T € Ty,
where we denote the numbers of the vertices of T' by i7(1),i7(2),i”(3). Thus, by the
transformation formula, we get by symmetry of H

Wh(z) = —Z/w )|? da

TETh T

\Tl
|T‘ YT (b)|* db

11b13

=0.5
S / / > " bebHyr i1 (s) dbadby

TeTy, o o ™ms=1

TET

8

1 1-b1

Z|T|ZHZT(MT //brbsdbgdbl

TeT, r,s=1 0

- Z |T| Z Hyryir(s)(1 -+ 8r5)

Te’Th r,s=1

= 1—12 > I > Hij

T€Tn 4,40, are nodes of T

by calculating the integrals over all appearing quadratic polynomials. O

16¢f. [Bra91] for the necessary definitions.
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4.2.2 Examples

It seems that the discretised Willmore energy of some (discrete) surfaces depends very
strongly on the regularity of this surface (measured by measuring the minimal angle in
the mesh in subroutine winkel (.. .)). It is also influenced strongly by the Laplacian mesh-
smoothing described in section 3.2 for some surfaces, especially for tori. The values for the
eight times refined torus mesh with torus radii 1 and 0.25 are collected in table 4.2. For the
eight times refined round sphere mesh, we get less variation — probably because the round
sphere mesh is very regular by itself; the values are displayed in table 4.3. Note that the
values of both the regularity and the discretised Willmore energy seem to become more
or less stagnant after a few iterations of the Laplacian smoothing.

Using Laplacian smoothing without projecting back to the surface (as discussed in chap-
ter 3 would change the surface and is thus not applicable. Neither does it yield better
results in the sense that the energy remains more or less constant in case of the torus
mesh.

mcf_freq | Willmore energy | regularity || mcf_freq | Willmore energy | regularity
0 1255.06 159.79 8 294.79 77.78
1 1869.16 504.99 9 285.57 72.38
2 553.77 162.81 10 279.50 67.19
3 722.36 2365.99 11 276.08 63.61
4 401.00 124.96 12 274.50 60.53
5 363.58 144.05 13 274.40 58.09
6 329.22 96.17 14 275.42 56.00
7 309.47 89.33 15 277.34 54.25

Figure 4.2: Rounded discretised Willmore energy and regularity of an eight times refined

torus mesh, to which Laplacian smoothing is applied mcf_freq times.

mcf_freq | Willmore energy | regularity || mcf_freq | Willmore energy | regularity
0 29.31 10.25 8 26.54 8.73
1 28.27 15.80 9 26.47 8.72
2 27.46 9.84 10 26.41 8.70
3 27.22 10.09 11 26.35 8.68
4 27.00 9.24 12 26.30 8.66
5 26.85 9.05 13 26.26 8.64
6 26.72 8.76 14 26.22 8.62
7 26.63 8.75 15 26.18 8.60

Figure 4.3: Rounded discretised Willmore energy and regularity of an eight times refined
round sphere mesh, to which Laplacian smoothing is applied mcf_freq times
(with round sphere projection).
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The (discretised) Willmore energy of some exemplary surfaces is listed in table 4.5. We
have used the Laplacian smoothing method in order to achieve more or less stagnant
regularities and stagnant discretised Willmore energies. The author has the impression
that an energy increase takes place with higher refinement levels in all listed surfaces
apart from the (non-glued) dumbbell and the (non-Clifford) torus. We explain this effect
by the conjecture that further refined meshes realise more of the curvature of the curved
surfaces they are interpolating. Also, the triangles of the triangulation become smaller so
that the susceptibility to small variations increases.

The glued dumbbell shows a similar behaviour as the surfaces that arise as parametrised
over the round sphere (apart from the deformed dumbbell). Neither its regularity nor
its discretised Willmore energy depend strongly on the number of refinements or on the
number of Laplacian smoothings applied to it. The glued ellipsoid cannot be refined in
the scheme as there is no projection available for it. A Laplacian smoothing is also not
feasible as it would need a projection, too. A non-projective Laplacian smoothing does
severely change the geometric form as the mesh is much finer where the inverted ellipsoid
has been inserted so that the main part of the ellipsoid shrinks and the inverted part
remains more or less constant. The author assumes that the large value of the discretised
Willmore energy of the glued ellipsoid is due to its low regularity.

The torus mesh (with radii 1 and 0.25) has a pattern after the refinement (see figure 4.4);
this pattern vanishes with the Laplacian smoothing; the regularity and the discretised Will-
more energy are lowered significantly. If we perform some hundreds of Laplacian smoothing
iterations, we can still get to significantly lower discretised Willmore energy. The oscilla-
tion of the discretised Willmore energy with the number of refinements in the torus can
maybe be explained by the fact that the refinement process alternately produces “good”
triangles (with not very acute or obtuse angles) and “bad” triangles.

Figure 4.4: Torus mesh with pattern.
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Surface (energy) || ilz | freq | W. energy | reg. || ilz | freq | W. energy | reg.
round sphere (25) || 5 2 25 7 6 5 26 9
7 2 26 7 8 9 26 9
9 3 26 7 10 4 28 10
ellipsoid ) 3 34 13 6 4 36 10
7 2 37 13 8 2 38 9
9 4 38 14 10 3 39 9
glued ellip. 0 - 80 53
dumbbell ) 3 41 18 6 4 41 13
7 4 51 18 8 3 48 12
9 5) Y 22 10 4 o1 12
glued dumb. 0 2 56 20 1 2 63 11
2 4 66 13 3 4 73 14
Willm. sph. (101) || 5 | 2 61 26| 8 73 12
7 3 86 8 8 6 95 9
9 2 99 9 10 6 105 10
CIff. torus (39) || 5 | 5 45 17 ] 6] 5 16 15
7 9 50 19 8 5) o1 18
9 19 56 22 10 4 55 20
torus (82) 5 5 81 21 6 | ~7 ~ 300 ~ 70
7 10 85 22 8 | ~10 ~ 300 ~ 70
9 | ~15 86 ~ 35| 10 | ~40 ~ 300 ~ 60

Figure 4.5: Rounded discretised Willmore energy and regularity of different discrete sur-
faces. i1z is the level of refinement, freq=mcf_freq is the number of iterations
of the Laplacian smoothing we have applied. “ellipsoid” refers to the deformed

ellipsoid mesh depicted in 3.10, “glued ellip.’

b

refers to the glued surface de-

picted in 3.54. “dumbbell” refers to the dumbbell mesh constructed by G.
Dziuk, “glued dumb.” refers to the mesh depicted in figure 3.9. “Willm. sph.”
refers to the mesh depicted in 3.1. “W.” is a shorthand for “Willmore”, “reg.”
for “regularity”. The radii of “torus” are 1 and 0.25. “energy” stands for the
theoretical Willmore energies that can be found in chapter 3.
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4.3 Behaviour under the Flow

Let us have a look at the behaviour of different surfaces under the discretised Willmore
flow. We begin with the ellipsoid depicted below. The chosen parameters are ilz = 8§,
genus = 0, surface =9, projection = 0, conformal = 1, mcf_freq = 0, expo = 3.
We depict the surface before the start of the iteration, after ten iterations, then after
100, 200, 300, 400, and 500 steps. As expected, the surface approximates a round sphere
under the flow. The table below illustrates the behaviour of the Willmore energy under
the Willmore flow: it decreases — which is consistent with the theoretical results. The same
is true for the mesh regularity, at least at first.

step of the iteration | Willmore energy | regularity
1 40.03 10.03
2 35.84 9.68
3 35.12 9.60
4 34.63 9.54
5 34.23 9.49
6 33.89 9.44
7 33.60 9.40
8 33.33 9.37
9 33.09 9.34
10 32.86 9.31
100 26.69 10.02
200 25.10 11.18
300 24.84 12.17
400 24.81 13.31
500 24.80 14.70

Figure 4.6: Willmore energy under the Willmore flow for the ellipsoid.

Figure 4.7: Before the iteration begins.
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Figure 4.8: After 10, 100, and 200 steps of the iteration.
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Figure 4.9: After 300, 400 and 500 steps of the iteration.
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Now, we study the same situation for tori. The parameters for the following figures are
chosen as ilz = 7, genus = 1, projection = 3, r0 = 1, r1 = 0.25, conformal = 1,
mcf_freq = 10, and expo = 2. We depict the surface before the start of the iteration,
after ten iterations, then after 20, 30, 40, 50, and 60 steps. Recalling that the Clifford torus
is a minimiser for the Willmore energy we are not surprised that the torus approximates
the Clifford torus under the Willmore flow. The Willmore energy also shows the expected
behaviour as the table below illustrates.

step of the iteration | Willmore energy | regularity
1 84.64 22.33
2 76.30 22.33
3 74.02 20.38
4 72.03 19.83
5 70.26 19.35
6 68.66 18.93
7 67.21 18.55
8 65.88 18.22
9 64.66 17.91
10 63.53 17.63
20 55.45 15.78
30 50.51 14.90
40 47.09 14.46
50 44.61 14.15
60 42.79 13.92

Figure 4.10: The behaviour of the discretised Willmore energy under the Willmore flow
for the torus.

Figure 4.11: Before the iteration begins (this figure is scaled more than the following ones).
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Figure 4.12: After 10, 20, and 30 steps of the iteration.
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Figure 4.13: After 40, 50, and 60 steps of the iteration.
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4.3.1 Mesh Degeneration

However, the “long time behaviour” of the surfaces, i.e. their behaviour under “many”
iterations of the flow differs from the theory. The regularity explodes, the Willmore energy
increases, too. This effect appears more quickly if we work with lower levels of refinement.
We get the following data for the parameters listed above and the pictures on this and the
following page.

step (ellipsoid) | W. energy | reg. step (torus) | W. reg.
600 24.80 21.06 170 39.33 33.39
700 24.81 64.81 210 39.33 149.62
740 24.86 269.81 240 21744 | 763.81
796 25.18 6151.23 260 307.30 | 15296.05

Figure 4.14: Discretised Willmore energy after many iterations for ellipsoid and torus.

Figure 4.16: Torus after 210 and 240 steps of the iteration (figures are larger than those
shown before.

Having seen the expected “short time behaviour” for the ellipsoid and for the toroidal
mesh, we will now have a look at the effect of the Willmore flow on the glued dumbbell
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mesh. The chosen parameters are i1z = 2, genus = 0, projection = 2, conformal =1,
mcf_freq = 0, and expo = 5. We depict the surface before the start of the iteration, after
ten iterations, then after 20, 30, 40, 50, and 60 steps, respectively. In the first few steps,
the neck of the dumbbell widens as we have expected because most of the curvature is
“concentrated” there. Unfortunately, the mesh is destroyed much quicker as it is the case
for the torus or the ellipsoid and we cannot study “long time behaviour”, cf. figures 4.18
through 4.20.

U. Clarenz and G. Dziuk ( [CD03]) have invented a trick for improving the mesh of a sphere
that is parametrised over S?. Their method relies on “conformal reparametrisation”. The
theory behind this trick is presented in chapter 5, its discretisation and connection with
the Willmore flow are discussed in chapter 6.

step | Willmore energy | regularity || step | Willmore energy | regularity
1 66.32 91.02 10 48.35 106.43
2 54.04 109.01 20 48.36 124.84
3 49.81 89.53 30 48.58 180.52
4 48.86 93.97 40 52.17 241.16
5 48.63 96.65 50 108.30 119.12
6 48.50 99.33
7 48.44 101.04
8 48.40 103.20
9 48.37 104.56

Figure 4.17: The behaviour of the Willmore energy under the flow for the glued dumbbell.

Figure 4.18: Before the iteration begins.
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Figure 4.19: After 10, 20, and 30 steps of the iteration.
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Figure 4.20: After 40 and 50 steps, and zoomed to the neck of the destroyed surface (after
60 iterations).



5 Conformal Parameters

In chapter 2, we have seen that conformality is a fundamental concept in the theory of
Willmore surfaces. This is due to the conformal invariance of the Willmore functional
(theorem 2.3.3). As announced in chapter 4, we can utilise this invariance to improve
the mesh quality of deformed spheres — which we called the “conformality trick of U.
Clarenz and G. Dziuk”. In this chapter, we will describe the theoretical background of
the conformality trick by proving an existence result for “global conformal parameters”.
The chapter is divided into four parts, namely an introduction, a proof of the existence
result, a discussion of a similar proof by J. Jost, and, finally, a description of higher genus’
phenomena. Chapter 6 will discuss the conformality trick, its conversion in the discrete
setting, and the gained effects.

5.1 Introduction

It is well-known that a sphere with smooth Riemannian metric ¢ can be conformally
parametrised over S? equipped with the canonical metric can — which means there is a
conformal orientation-preserving diffeomorphism A : (S?, can) — (S?, g), a global conformal
parameter. To prove this, it suffices to combine the existence of isothermal coordinates
(i.e. of local conformal parameters) with the uniformisation theorem!; the first can be
reformulated to say that S? is a Riemann surface and g is a conformal metric (see corollary
1.2.36), the second then states that every compact Riemann surface of genus 0 can be
parametrised over the standard sphere by a biholomorphic® diffeomorphism h. By corollary
1.2.34, h is conformal.

Nevertheless, we wish to give a second, variational proof of the existence of global confor-
mal parameters. We wish to do so because our proof makes the mesh-improving strategy
chosen by U. Clarenz and G. Dziuk (the “conformality trick”) plausible. At the same time,
our proof constitutes a simplification of a variational proof given by J. Jost in [Jos90]
(pp- 85). The first aspect is illuminated in chapter 6, the second will be discussed be-
low (section 5.3). Our approach is guided by J. Jost’s proof but presents some new
ideas.

First of all, we state the existence theorem for global conformal parameters that we wish
to prove. The definition of the Sobolev space H' and of h-compatible charts can be found

lef. p.184 in [Jos91].
2both h and h~! are holomorphic.
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in chapter 1, the necessary explanations will be given below. J. Jost ( [Jos90]) generalises
this theorem by approximation techniques.

Theorem 5.1.1 (Existence of Global Conformal Parameters). Let g be a Rieman-
nian metric on S? of class C*, let can denote the canonical metric on S?. Then, there
exists a conformal, orientation-preserving diffeomorphism h : (S?, can) — (S2,g) of class
C>. Any two such diffeomorphisms differ by a preceding Mdbius transform of S?, only.
They are called global conformal parameters.

Definition 5.1.2 (M&bius Transforms, Stereographic Charts). > A stereographic
projection is a chart ¢ : U, — R? of S? of the form ¢(p) = p;fi(;'qq) € E, = R? where
q € S\ U, and E, C R? is the plane with normal ¢ through the origin. A Mdbius
transform of S? is a diffeomorphism that has the form

az+b
cz+d

VA e d

with respect to any one stereographic projection ¢ interpreted as ¢ : S> — CU{oo}, where
a,b,c,d € C, ad — be # 0.

Proposition 5.1.3. Stereographic projections are conformal charts as defined in 1.2.28.
Let p1,p2,p3 € S, q1, 42, q3 € S? satisfying p; # p; and ¢; # q; for i # j € {1,2,3}. Then
there is exactly one Mébius transform p of S* sending p; to q;, respectively. In particular,
if ¢ = o(p;) (i = 1,2,3) with respect to any orientation-preserving diffeomorphism o, then
i s orientation-preserving. If p : S* — S? is a smooth transform, then p is a Mobius
transform if and only if it is conformal with respect to the canonical metric can on S?.

Before we prove the existence theorem, we sketch why it might become useful for mesh
improvement (cf. chapters 4 and 6).

Remark. The global conformal parameters mentioned above are obtained as minimisers of
a generalised Dirichlet energy F,; depending on the metric g. We roughly sketch the idea
behind the conformality trick: Let Y, C R?® be a discrete surface. Try to find a “good”
discretisation of S?, called S?, and a parametrisation f : 3, — S? (as defined in chapter
3) which is a homeomorphism and a minimiser of a discretised version of E, (with respect
to the “metric” induced on Y, by the canonical metric on R?).

Having found such a parametrisation f and a discretisation S? of S?, we can pull back any
mesh on S? via f to yield a new mesh with vertices on ¥;,. Because of the “conformality”
of f, the quality of the new mesh in terms of its interior angles equals the quality of the
mesh chosen on S?. We then use this new triangulation as starting surface for the next
steps of the iteration of the Willmore flow.

3The definition of Mdbius transforms and the following proposition can be found in [Ahl66,J0s00,SY94],
for example.
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5.2 A Proof

In this section, we will give a variational proof of theorem 5.1.1. We will assume throughout
that the metric ¢ is of class C'"*°. Many proofs, however, apply to continuous metrics, too.
First of all, we will prove the uniqueness property.

Proof (Uniqueness). Let g be a Riemannian metric on S?. Suppose there are global con-
formal parameters h, I : (S, can) — (S?, g). As conformality carries over to composites,
their composite := h~ o h : (S? can) — (S?, can) is a conformal diffeomorphism. Thus,
by proposition 5.1.3, i is a Mobius transform and A = ho it which proves the uniqueness
assertion of the theorem. O

Before we begin with the proof of theorem 5.1.1, we will make a few definitions and prove
some lemmata. Fix three points py, ps, p3 € S?, p; # p; fori # j € {1,2,3}.

Definition 5.2.1. Let h : S — S? be continuous. We say h satisfies the three point
condition (3P)if h(p;) = p; for i € {1,2,3}. We call h monotone if the pre-images (under
h) of connected sets are connected. If h € CO°N H2(S?, S?) (cf. proposition 1.3.6) we write
det dh > 0 (det dh > 0) (and say h has a non-negative (positive) Jacobian), if its coordinate
representations 1 o ho o' : (U, Nh™ 1 (Uy,)) — R? satisfy detd(¢poho ') >0 (> 0)
a.e. in all oriented charts ¢ : Uy, — R?, ¢ : U, — R? of S? with non-empty intersection
Uip N h_l(U¢).

We will take a variational approach in order to prove theorem 5.1.1. The class defined
by

C:={h e C'n H"*(S? S?) | h is monotone and satisfies (3P) and det dh > 0}

acts as the domain of definition of the functional E, (a generalisation of the classical
Dirichlet energy*) we will wish to minimise. Note that C is independent of the Riemannian
metric g chosen on S?. A rough plan of the proof is given below. The following few lemmata
collect some properties of C.

I E, attains its minimum on C.
II Every minimiser & : (S?, can) — (S?, ¢) of E, in C is a confor-
mal, orientation-preserving diffeomorphism.
v/ Any such diffeomorphism is unique up to a preceding Mébius
transform.

4For an introduction about Dirichlet energy cf. e. g. [Jos90].
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Lemma 5.2.2.
C # 0, in particular ids: € C

Proof. Tt is clear that idgz lies in C°(S?, S?), is monotone, and satisfies (3P). Also, it has a
positive Jacobian in the classical sense so that it has a non-negative Jacobian by chain rule.
For any compact chart ¢ : U — R? of idge, we have ¢ o ids2 oo™ = idy,w) € H' (¢(U))?
and thus ids2 € C by 1.3.6. O

Lemma 5.2.3. If f is an orientation-preserving C'-diffeomorphism of S? that satisfies
(3P), then
heC = hofeC.

Proof. Let h € C, f as in the lemma. Then obviously ko f € C°(S? S?) is monotone and
satisfies (3P). Let ¢ : U, — R?, ¢ : U, — R? be compact oriented charts of S* satisfying
(ho f)(U,) C U, wlog. Define ¢ := ¢ o f~', then since f is an orientation-preserving
diffeomorphism ¢ : Uz := f(U,) — R? also is a compact oriented chart of S* and satisfies
h(Uz) C Uy. We thus have poho fop™ =t ohog™t € H(P(U;) = ¢(U,),R?) so
that lemma 1.3.3 tells us ho f € H'(S? S?). The same equation tells us that h o f has a
non-negative Jacobian and whence ho f € C. O

Lemma 5.2.4. If h € C°(S?,S?) is monotone and non-constant, then h is surjective. In
particular, every h € C is surjective.

Proof. S? is compact, h is continuous, so h(S?) is compact. Suppose there were p € S*\ h(S?)
and let q;, ¢» € h(S?) be different points (such points exist since / is non-constant). Then
there are great circles through p and ¢, p and g9, respectively, parametrised by arc length
and denoted by v; : [0,27] — S? with (7) = p for i € {1,2}. If 1,7, describe the
same great circle, we assume that ; = 7,. By compactness of h(S?), there must be
t; € [0,7) with v((t;, 7)) C S*\ h(S?) and ~1(t1) € h(S?) as well as ty € (7,27) with
1 ((m,t2)) € S\ h(S?) and v2(t2) € h(S?). As g1, g2 have been chosen to be distinct, we
have 71 (t1) # 72(t2). Let v : [ti,ta] — S% v := Y1liy .0 * V2l(rs) Which is well-defined
due to v;(r) = p (i = 1,2). Then ~ is a curve in S* \ A(S?) with endpoints in h(S?).
Therefore, by monotonicity of h, h=(y([t1,t2])) C S* must be connected. On the other
hand, h=!(y([t1,t2])) = R (y(t1)) U h=1(y(ta)). Since 7' (y(t1)), A~ (v(t2)) are closed,
non-empty, and disjoint, this gives a contradiction. h must therefore be surjective. In
particular, any h € C satisfies (3P) and is henceforth non-constant. O

In the next lemmata, the metric g plays a role.
Lemma 5.2.5. ° Let h € C° N H'(S?,S?), g any smooth Riemannian metric on S?. Let

dvols: denote the Riemannian volume form on S* with respect to can. We set

1
Eg(h) = 5 / <dh7dh>(TSgan)*®h_1TSngOISQ7

SQ

where (., .>(ngan)*®h—1T§£2] is the Riemannian metric on the bundle (T'S*)* @ h™'TS? induced
by can and the pullback of g via h. In this formula, (TS?)* denotes the cotangent bundle

The definition of E, is based on pp. 401 in [Jos91].
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of S%. h™'T'S? denotes the pullback of T'S* via h. Then the energy E, is well-defined (i. e.
independent of the chosen atlas), non-negative and finite. In particular, in local coordinates,
the inner product can be calculated as

oh' O

% @. (5.1)

<dh, dh>(TS§an)*®h—1TS§ = canaﬁ gij © h
Proof. For h € C*(S?,S?), all appearing bundles and the metrics thereon are clearly well-
defined and the energy F, is finite. Choosing h-compatible compact charts ¢ in the domain
and 1 in the target by lemma 1.2.26, the inverses of which we denote by 2 and y’,
respectively, we have dh = gxi;dxo‘ ® 832. and thus equation 5.1 applies. The right hand
side is well-defined as a member of L! if h € C°NH'(S?, S?) by proposition 1.3.6 and by the
Holder inequality. Also, the right hand side term transforms in a way that leaves the energy
integral unchanged — the calculation being the same as for C'-maps (cf. p. 109 in [Alt91]
and pp. 86 in [Jos91] (Sobolev sections)). We can thus define (dh, dh)(rsz, )on-17s2 for
h e C°N HY(S%'S?) by using equality 5.1 as a definition. Using a partition of unity
subordinate to the finite compact atlas in the domain of h, we deduce 0 < E,(h) < co. O
Remark. We use E := FE.,, as a shorthand and call E(h) the Dirichlet energy of h. We

write Ci == {h € C|E(h) < K} for K > 0. Again, note that Cx is independent of the
metric g chosen on S2.

Lemma 5.2.6. Let g be a smooth Riemannian metric on S®. Then there are constants
m, M > 0 such that for all h € C° N HY(S? S?), we have

mE(h) < E,(h) < ME(h).

Proof. Let B = {p : U, — R?} be a finite compact atlas on S* so that ¢ can be extended
to an open set containing U, (exists by lemma 1.2.3). Then we can view (g;;) : U — R**?
and (can;;) : U — R**2 as two continuous families of positive definite symmetric matrices
(dropping the explicit reference to the charts for notational simplicity). By linear algebra,
we know that for each p € U, there are two positive eigenvalues r;(p), k2(p) of (gi;)(p)
and pu1(p), u2(p) of (can;;)(p), respectively, which are the roots of a quadratic equation
the coefficients of which depend on p continuously. Since these roots must henceforth be
continuous, the eigenvalues can be understood as continuous functions on U and do thus
attain their minimal and maximal values in R* by compactness of the domain. Let

Mg = min mm{fiz(p), /ii(p) peUst 4 My = max mi}X{ﬁ; (p), 3 (p)|pe %}’
veB max{p{ (p), u5(p) |p € Uy} veB min{uf(p), us(p) |p € U,}

then 0 < mg, Mg < oo only depend on the atlas chosen. We conclude by quadratic form
calculus that in a chart ¢ € B, we have

my can; X' X7 < g2 X' X7 < Mg canf, X' X7 (5.2)

for all vectors X € TS? (p € U). Let h € C° N H(S? S?). Choose a finite compact
stereographic atlas A in the domain of h which is h-compatible to B as in lemma 1.2.26.
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Then we can write can = p¥045, with p¥ : V;, — R* continuous for all ¢ : V, — R? € A.
We thus locally have by lemma 5.2.5

Oh' Oh?

dx® Oz

mp(dh, dh) sz y-on-17s2, = annw oh
a=1

(52) 1 Oht oW
< — Y oh —
- pw Zgzﬂ © or® Ore

< p—chanZ‘;oha Oh’

oz Ox“
a=1

= M5<dh,dh> S2 )®h 1782

can

almost everywhere, where ¢ € BB and (2*) are the coordinates with respect to ¢. Integrating
this local inequality with the aid of a partition of unity, we get the desired result with
constants mp, Mp depending on the atlas. However, as both £/ and F, are independent of
the atlas by lemma 5.2.5, the constants are universal. O

The generalised Dirichlet energy is conformally invariant in its domain just as the Willmore
energy is in its image (see theorem 2.3.3). This explains the three point condition in the
class C.

Lemma 5.2.7. Let h € C°N HY(S%, S?), let o : S* — S* a Mébius transform, let g be any
smooth Riemannian metric on S*. Then

Ey(hou) = E4(h).

Proof. Let ¢ : U, — R? and ¢ : Uy — R? be (ho u)-compatible charts of S* and such that
¢ is a stereographic projection (such charts exist by continuity of h o ). Then, denoting
by (y“) the local coordinates associated to the conformal chart ¢ := gp o /fl :u(Uy,) — R?

and by (z%) those associated to ¢, we locally have a(gTog)i = g% o ks 8 "~ by the Sobolev
chain rule 1.1.7 and thus obtain in local coordinates (using proposition 5.1.3 and linear

algebra)
op O Oy b Oh' OhJ

{d(hop),d(hom) sz, wmom-r1s3 = ;0% 5= 5590 D ayp) p
1 Ohi Ohj
= 35 ldet(d)](97 gljo oy 3y
)\w __ oh' O
= |det(d,u)|(canw gz o 8yp) H
)\“5 o

= S ldet(dn)] (dh, dh) sy, -onrs; o

almost everywhere with can; = A\?J,s and can,s := canfﬁ = A\?d,5 by conformality of
the charts. By the transformation formula for integrals and using y/det(can¥) = A\? as
well as /det(can®) o = ¥ o i, we get the desired result of E,(h o p) = E,(h). O
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There are two ways of defining uniform convergence for sequences (%, ),eny C C°(S?,S?) to
alimit € C°(S?, S?). One consists of requesting that sup,cg2 ds2(h,(p), h(p)) — 0 as n — oo
where ds2 is the distance function induced by any Riemannian metric on S?; the other is
to understand h,,h as members of C°(S?, R?) and to request ||k, — hl|cos2rsy — 0. As
S? is compact, both notions coincide. We will thus speak of uniform convergence without
specifying the exact meaning.

Lemma 5.2.8. Let g be a smooth Riemannian metric on S?, K > 0. Then the functional
E, : Cxk — R is lower semi-continuous with respect to uniform convergence, i. e. for any
uniformly converging series (hy)nen C Ci with limit h € Cx, we have

E,(h) < liminf E/(h,).

We will give two different proofs of this lemma. One uses J. Nash’s embedding theorem
(cf. [Nash6, Gii89]), the other is more directS. A third proof can be found on pp. 449
in [Jos91].

Proof (Using J. Nash’s Embedding Theorem). By J. Nash’s embedding theorem, (S?, g) is
isometrically embedded into some R” via e. We can thus understand e o C as a subset of
HY(S*,RY) by definition of H'(S? S?). Let (h,)nen be a uniformly converging sequence in
Cx with limit h € Ck, then E(h,) < K by assumption. It is straightforward to see that
(eohy,) converges uniformly in C°(S?, RY) to eoh. As, by lemma 5.2.6, there is a constant
M with E, < ME on C°N H'(S?,S?), so we have F,;(h,) < MK < oo for all n € N. Also,
according to our remark on page 15 and by J. Wloka’,

leo e, = [leohuli dvolss +2E,(h)
SQ

< vol(S?) suple(p)[gn + 2By (hn)
pEeS?

< vol(S?) suple(p)|an +2MK < oo,
peS?2

so that (e o h,)nen is a bounded sequence in H'(S? RY). From Hilbert space theory?,
it follows that (e o hy)nen has a H'(S?, RY)-weakly converging subsequence’ with limit
h € H*(S*,RY). We denote the subsequence by (e o h,),cn, again. Uniform convergence
implies strong and thus weak L?(S*, R")-convergence; also H'(S*, R")-weak convergence
implies L?(S?, R")-weak convergence. Thus, we can deduce eoh = h a.e. The norms then
satisfy |leoh||gis2 gy < liminf, o |le © byl g1 g2 ryvy and thus Eg(h) < liminf, . Eg(hs,)
which shows that £, : Cx — R is lower semi-continuous. OJ

In order to replace J. Nash’s embedding theorem, we prove the following elementary lemma
that ensures that the properties of uniform convergence, being of class H', and being
“energy bounded” carry over to local representations. We will frequently use this lemma
in the proof of theorem 5.1.1.

6and allows for lower regularity (¢ need only be continuous).

"pp. 92 in [W1o82].

8¢f. e.g. [Alt91].

9¢f. pp. 209 in [Alt91] for the definition of weak convergence and weak topology.
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Lemma 5.2.9. Let h € C° N HY(S*,S?), let ¢ : U — R, ¢ : V — R? be h-compatible
compact charts of S* such that V is contained in an open hemisphere. Let u := poho ™!
Then v € C° N HY(p(U),R?). Next, let (hy)neny € C° N HY(S? 'S?) be a sequence with
ho(U) C V. If (h,) is energy bounded (i. e. there is a constant K > 0 such that E(h,) < K
for all n € N) then the sequence (u,)nen defined by u,, :== Y oh, oo™ has a H (¢(U), R?)-
weakly converging subsequence with limit in H'(o(U),R?). If (h,) converges uniformly to
h, then (u,) converges uniformly to w. If (hy) is energy bounded and converges uniformly
to h, then a subsequence of (u,) converges uniformly and weakly in H*(o(U),R?) to u.
Moreover, if (hy)neny C C°(S?,S?) is any uniformly converging sequence with limit h, we
can find finite compact sub-atlases of any given pair of atlases on S* that are both h- and
h.,,-compatible for all n > ny.

Proof. u is well-defined as a member of C°(p(U),R?) as ¢ and ¢ are h-compatible. If
we understand ¢ (and u with it) to be defined on some open set W containing U with
h(W) C V by compactness and h-compatibility, we can estimate the H'-norm of u by
[ullZr ooy mey < 19120 wme) vol(@(U)) + 2E(u), where E denotes the classical Dirichlet
energy of u. As in lemma 5.2.6, there is a universal constant C' > 0 such that the in-
equality 0;;X"X7 < Ccan?} X?X7 holds for all continuous vector fields X defined on a
neighbourhood of V. Therefore, we can calculate E(u) by definition of u and compactness
of all charts involved, and obtain

E(u) = / |dul|? dz' da®

o(U)
ou’ ou’
= 5°C 6 da'dax’
/ T 0z P
o(U)
{ J
= / can® o™t % ot ghg o ¢! y/det(can) o ¢! da'dx?
o(U)
h* Ok’
< C / (can®” can! ohg— %\/det(can)) o ! drtds?
™ dx
e(U)
= C/ <dh, dh>(TSgan)*®h_1TSgan dVOlSQ
U

where (%) denotes the coordinates with respect to ¢. Choose a pair of finite compact
h-compatible atlases A, B on S? containing ¢, 1) respectively with a partition of unity (;)
subordinate to A satisfying 7 = 1 on U. Then E(u) < CE(h) < oo by the above and thus
ue CO'NHY pU),R?).

Next, let (h,)neny C CONHY(S?, S?) be a sequence with h,,(U) C V that satisfies E(h,,) < K
for all n € N. Let u,, := 1oh, o', then replacing u by u, in the above calculation, we get
||un||%{1(@(U)7R2) S ||¢||éO(V,R2) VOl((p(U))+20 fU <dh/n, dh > TS(Qzan) h_lTSgan dVOlSQ AS abOVG,

choosing any finite compact h,-compatible pair of atlases A, B, on S? containing , 1,
respectively, we derive [[u, |7 o2y < 191602 vol(0(U)) + 2CK. Thus by Hilbert
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space theory'?, there is a weakly H'(¢(U), R?)-converging subsequence of (u,) with limit
in H(p(U), BY).

Let now (hyp)neny € C° N HY(S?,S?) be a sequence with h,(U) C V and uniformly con-
vergent to a limit A € C°(S% S?). We extend the chart 1) to an open neighbourhood
W= {p € R?|[p| € (0,2),5 € V} of V in R’ such that ¥ : W — R? is of class C"
by setting ¥ (p) := z/;(ﬁ) for p € W. W contains all line segments connecting points of V'
since V' is contained in an open hemisphere, so that we can apply the mean value theorem

of calculus to 1. For x € p(U), this gives (since h,(U) C V C W)
|un () — u(@)] < sup|ldy(y)[| |7a(0™" () = ™ (@) < sup[|de(y)]| [|hn — hl|co
yew yew

so that (u,) converges uniformly to u as n — oo on ¢(U). Let now, additionally, (h,,)
be energy bounded and thus (u,) have a weakly H'(¢(U), R?)-converging subsequence
with limit @ € H'(p(U),R?). As both types of convergences imply weak L?(p(U), R?)-
convergence, we have v = @ almost everywhere and thus u € C° N H'(p(U), R?).

Finally, let (h,,)nen C C°(S?,S?) be a uniformly converging sequence with limit i, A, B any
given pair of finite atlases on S%. Let ¢ > 0. Then by lemma 1.2.3 and lemma 1.2.26, we can
refine A = {¢ : U, — R*} and B = {¢ : Vi, — R?} such that they are finite, compact, and
h-compatible and that all charts in B can be extended to e-balls about their domains (i. e. to
B.(V})). Then, by uniform convergence, there is an ng with h,,(U,) C B.(h(U,)) C B.(Vy)
for all n > ngy. Hence the refined atlases are h,-compatible for n > ny. O

As differentiation is a local process, the chain and product rules described in proposition
1.1.7 carry over from the planar case to Sobolev functions on surfaces by the above lemma.
We are now in a position to prove the lower semi-continuity of £, (lemma 5.2.8) without
relying on J. Nash’s embedding theorem. Let g be a smooth Riemannian metric on S?,
K > 0 such that Cx # () by lemma 5.2.2.

Proof (Not Using J. Nash’s Embedding Theorem). Let ¢ > 0 and let (h,,)nen be a uniformly
converging sequence in Cx with limit h € Cx. Choose a pair of finite compact h- and h,,-
compatible atlases A = {p; : Uy — R*} B = {¢; : V; — R?}L | on S?, such that A
consists of stereographic projections with the aid of lemma 5.2.9. Without loss of generality,
counting charts in B several times if necessary, we can assume that h(U;) C V. Then by the
same lemma, the functions u,,; := oh,00; ' 1 o (U;) — R2, u; := thohop;* : ¢y(U;) — R?
lie in C° N H'(p(U;),R?) and (u,,;) converges uniformly and weakly in H'(¢;(U;), R?) to
u; wlog. Collecting all results and notation, we use the symmetry and positive definiteness
of gi; := g/ to get ((m) being a partition of unity subordinate to .A)

ou! , au
Bh) = Y [ roor el o vrt o) o S St s
=1 w1(Ur)
S —1y/ ! -1 aun;l 8unl 1
= ZZ (0 @ )(gz‘jO@Z)z Oun;l)(8$a ) Gy ) dx da?
a=1 [=1
ei(U1)

10¢f. e. g. [Alt91].
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+0 2. & out auj
2SS [ o 0w o) (DG de'ds?

a=1 [=1

(1)
2 L ‘ )
_ _ Oty — wp)" ,0(upg — wp)?
D 3 S B e
a=1 1=1 X z
o1 (Ur)
L Ol Oty — i)’
s 23> [ oo oun) (AU gpiay
a=1 =1 €T xr
w1 (Ur)
120 Ou; 8”1 17,2
2 [ oot o) (SO et
i,a:1l21 s
e (Un)
oui - O(upg —w)?
+ QZZ / (o QUO?/H Ounl)<axi>( ( élxa l>)dazld:c2
i,a=1 [=1
w1 (Ur)

where the first term on the right hand side converges to E,(h) since (u,;) converges

uniformly to w; and since g}; o ¢ ! is continuous. Finally, (8(""8;7;"1)]) converges weakly to

0 in L*(¢(U;),R?) and g!; is bounded so that the second term vanishes as n — oco. We
conclude liminf,, . E,(h,) > E,(h) and are done. O

Lemma 5.2.10. Let G C R? be a bounded domain with smooth boundary, u € H'(G,R?).
Writing u = (a,b) and taking (x,y) as coordinates in G, we have

/77 det(da, db) dx dy = — /a det(dn,db)dxdy  for all n € C5°(G).
G G
In particular, if u, — u weakly in H'(G,R?) and uniformly in C°(G,R?), then

/n det(du,,) dz dy — /n det(du)dzdy asn — oo.
G

Proof. Tt is well-known that C*NH!(G, R?) is dense in H!(G,R?) (cf. e. g. p. 56 in [A1t91]).
We intend to lead an approximation argument. Thus, let v € C* N H'(G,R?), u = (a,b),
n € C3°(G). Then we have by definition of the wedge product, by the product rule for
differential forms, by Stokes’ theorem!!, and since n has compact support in G

/n det(da, db) dxedy = /nda/\db

a el
= /d andb) — /adn/\db

G

0—

/ a det(dn, db) dxdy

Hef. p. 359 in [Lee03].
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so that the postulated equation is valid for u € C* N H'(G;R?). Let now u = (a,b) be as
in the lemma. Then det(da, db) € L*(G) and det(dn, db) € L*(G) since a, d;a, 0;b € L*(G)
by definition, so that both [, 7 det(da,db) dz dy and [, a det(dn,db) dx dy are finite. Let
now (u, = (an,b,))nen be a sequence in C* N H'(G,R?) with (strong) H'-limit u. Then
clearly det(da,, db,) — det(da, db) in L'(G) and we can use Holder inequality to see that

|/n det(da, db) dxdy — /ndet(dan,dbn)dxdm
e e

< /\anet(da,db) — det(day,, db,)| dzdy
G

< ||n||CO(G) ||det(da, db) — det(dan,dbn)HLl(G) — 0.

Moreover, we find that

\/an det(dn, db,) dxdy — /a det(dn, db) dzxdy|
G G

= |/ (an, — a) det(dn, db,) + a(det(dn, db,) — det(dn, db)) dxdy|
G

< o = a2 ||det(dn, dby)| 2
H/ (a0ym)(0yby, — 0yb) dady| + |/ (a0yn)(Dyby, — 0,b) dxdy|.
G G

We have ||det(d77,dbn)||%2(G) = 1020y bn — OmOuby |* dx dy < 4\dn||Zol|dbn 7. < C < oo
since (b,)nen converges [weakly] in H'(G) and thus its H'-norm is bounded by Hilbert
space theory. Consequently, the first addend in the above inequality converges to zero for
n — oo as (a,) converges strongly to a in L?(G). We will now care for the second and
third addends in the same inequality. As a € H'(G), n is smooth, and G is bounded, both
ad,n and adyn lie in L*(G) so that the second and third term in the above inequality
converge to 0 by [weak]| convergence of (b, ),cn to bin H'(G). As the brackets indicate, we
can lead similar arguments if any sequence (u,),en C H'(G,R?),u, = (a,,b,) converges
uniformly and weakly in H'(G,R?) to u € H*(G,R?),u = (a,b). Indeed, the first addend
in the above inequality converges to zero as ||det(dn, dbn)||%2(G) < C' by weak convergence
of (b,), and by the uniform convergence of (a,,) to a on the bounded domain G. The second
and third addends can be treated as above as only weak convergence was used there. This
gives us the required results. O

Lemma 5.2.11 (Courant-Lebesgue). * Let G C R? be a disk, v € H'(G,R") with
E(u) < K,0< 6§ <1, €G. Then there evists some r € (5,V/5) for which u|op, @G 15
(absolutely) continuous'® and

STK

lu(zy) — u(zy)] < for all 1,29 € OB, (x) N G.

12¢f. [Jos90], p. 2.
13We need not be interested in the notion of absolute continuity here, for a definition cf. [Alt91], p. 60.
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Now, we come back to the proof of theorem 5.1.1. First of all, we give a more detailed
account of what we intend to do:

I E, attains its minimum on C.

1 Ck is equicontinuous for every K > 0.

2 Ck is closed with respect to uniform convergence.

3 Using Arzela-Ascoli, (1) & (2) lead us to: Ck is (sequen-
tially) compact in C°(S?,S?).

4 Let (hy)nen be a minimising sequence for £ in C, then
by (3), there is a limit A € C of a subsequence with re-
spect to uniform convergence. By lower semi-continuity
of F,, it is immediate that ~» minimises F,,.

IT Every minimiser & : (S?, can) — (S?, g) of E, in C is a confor-
mal, orientation-preserving diffeomorphism.

v/ Any such diffeomorphism is unique up to a preceding Mébius
transform.

Note that (I1)-(I3) are independent of the metric chosen. The restriction to Cx is indeed
necessary to get (sequential) uniform compactness:

Proposition 5.2.12. F is unbounded on C. C is not (sequentially) uniformly compact.

Proof. Let h,, : S* — S? be defined by

2 —sin(np®)p! + cos(np*)p?, p°)*

hn(p) = (cos(np®)p" + sin(np®)p
for p = (p', p?, p*)t € R3. Then h,, is clearly well-defined and smooth. h, leaves the north
pole and the south pole invariant. If we calculate the coordinate representations of h,
with respect to the north and the south pole stereographic projection restricted to become
compact charts — they are each h,-compatible with itself - we find that h,, € C°NH'(S? S?)
by proposition 1.3.6 and that det d(y; o hy, o goi_l) = 1, where 7 stands for either the north
or the south pole projection. This means that h, is a local diffeomorphism. Also, one
can check that h, is bijective so that it is an orientation-preserving diffeomorphism of
S2. By 5.1.3, there is a Mébius transform i, such that h,, o u, satisfies (3P). Altogether,
hy o pi, € C for all n € N. On the other hand, F(h, o u,) = E(h,) by lemma 5.2.7 and we

can estimate (with 6,,(r) := n}:,j)

ohl
ozl

oh?
0r?

) = 2 [ (psohaows ) (GRP + (58P di'ds?

{2€R? | |2|<1}=:B1(0)

=4 / (ps © hy o p5") cos® 0, (|z]) do'da® +

B1(0)
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|z

+16n / (psohnogogl)( cos O, (|z|) sin 0, (|x|) do' da?

S L
1L [z]?)
B1(0)
+32n? / (ps o hyo gpgl)ﬁ(sin On(|z|)2t — cos 0, (|x|)z?)? da' da?
(1 J)*

B;(0)

212
+32n? / (ps o hy o ¢§1)L(sin 0, (|2)2* + cos O, (|z|)z")? da' da?

(1 J2[)*
B1(0)
elementary
> —8mn + 2 H?}il(l] ps(p)n? / (sin 6, (|z)z' — cos O, (|x|)z?)?(z")? da' dx®
P>
B1(0)
+ 2 min ps(p)n? / (sin 0, (|z|)z" + cos 0, (|z|)z*)?(z")? da' dz?
p°>0

B1(0)
1

—87n + min pg(p) n? 27 / sin? 0, (r)r° dr + z]
p3>0 6

polar coord.

0

T 9
> —87m+6n — 00

where pg denotes the conformal factor of can and (z') the coordinates with respect to
the south pole projection ¢g. Hence E is unbounded on C. Also, for any p € S? and
any n > k € N, we have |h,(p) — he(p)|*> = 2(1 — (p*)?)(1 — cos((n — k)p?)) and thus
|, — hk”?ﬂ)(S?,R?‘) >0.1>0foralln>keNas2(1—(5)*)(1—cos((n—k)7%)) >0.1

forn —k 20 mod 8 and 2(1 — (=1:)?)(1 —cos(1)) > 0.1if n —k =0 mod 8, n —k #8

n—k
and 2(1— (3)?)(1 —cos(4)) > 0.1 if k48 = n. Thus, (h,)nen does not contain a uniformly
converging subsequence and C cannot be uniformly compact. 0

Proof (of (I)). (I1) Let K > 0, wlog Cxr # 0 (cf. lemma 5.2.2). Let 0 < & < min,4;|p; —p;|.

An elementary calculation shows that there is a 6 = 0(e, K) € (0,1) with (lfgg ))% < 5. Let
5

h € Ck, p € S* with antipodal p such that p,p & {p1, ps, p3}. Let o : S*\ {p} — R? be the
stereographic projection about p, u := hop™!. Then u € C°(R?,S?) is weakly differentiable

and its energy satisfies E(u) = [o, [dul®dz'ds® = fSQ\{p} |dh|? dvolge = E(h) < K. Let

Tg € R? 0 := min{g,imin#jkp(pi) — ¢(p;)I*}. Let D(xo) = B j(r) C R* so that
u|p(zo) € H'(D(z9), R?), since D(zo) is bounded, u has values in S* and E(u) < K < 00
as we have seen above. Since § € (0, 1), we can apply the Courant-Lebesgue lemma 5.2.11

and get (o) € (5,V0) with |u(z1) — u(x,)| < (lfg(fi))% for all @1, xy € OB, (zy) (o). As we
5

have chosen § < 5 and § such that Sl 3 < £ we can see that |u(z;) — u(xy)| < £ for
log(g) 4 4

all 1,22 € 0B, (30)(20).

Let now z € 0B,(z)(70), then u(0B;(sy)(20)) C Bes(u(z)) C Bs(u(z)). The open set
V(zo) := S* \ u(dB,(s)(20)) separates into open connected components. Precisely one

of these components (=: W (o)) meets the connected set S* \ Bz (u(z)) C V(20) which
is non-empty by choice of €. Also by choice of ¢, W (xq) contains at least two different
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pi- As b € C, we know that h='(1W(zy)) C S? is open and connected and contains at
least two different p;. We can “pierce” h='(W (zo)) at p without losing these attributes,
i.e. the set h=1(W(x)) \ {p} also is open and connected and contains at least two dif-
ferent p; (remember that p was chosen different of all p;). Now we can apply the diffeo-
morphism ¢ and get that ¢(h™'(W(zo)) \ {p}) = v (W(zy)) C R? also is open and
connected and contains at least two different o(p;). u=' (W (xo)) N OB, (4,)(20) = @ im-
plies that the inclusion u™'(W(20)) C Brao) (o) U (R?\ Byap (7)) holds. Thus, by
connectedness, either u™' (W (z¢)) C By(zg)(0) or u (W (xg)) C R? \ By(y)(20). Since
M(zo) < V3 < Lmingle(n) — (py)l, at most one (py) lies in Buuy(zo) 5o that

u™ (W(xo)) C R*\ Byay)(wo). Since § < 7(x9) and $* \ Bz (u(z)) C W(xy) we have

u(Bs(o)) C u(Br(x)(20)) C Bs(u(z)). Therefore,
diam u(Bj(wo)) < e for all 2y € R%.

Applying the same arguments to the stereographic projection ¢ about the antipodal p of
p we get
diam @(B;s)(mg) <& for all zy € R?

where ¢ := min{0, Tmin;4;|@(p;) — ¢(p;)|*} and @ := ho @t

Let M be the maximal conformal factor of ¢ on §*\ Bz (p) (which equals the maximal

conformal factor of ¢ on §?\ Bz(p)), p := min{, 3,5}, let y € S*. Then one of the

following cases is applicable:

e y lies in the closed upper hemisphere with respect to p (i.e. y € Bx(p)), thus
By(y) 1 Bz (p) = 0 and h(B,(y)) = a3~ (B,(y))) C a(Buyl(y))) © a(Bs((y))
and therefore

diam h(B,(y)) < diam a(B;($(y)) < &,

e y lies in the open lower hemisphere with respect to p (i.e. y € S?\ Bz (p)), but then
it lies in the upper hemisphere with respect to p and the same argument as above
gives us

diam h(B,(y)) < e.

As y € S? and ¢ were arbitrary and p was chosen independent of 3, we conclude that Cx
is equicontinuous. H

(I2) Now, we wish to show that Cx is closed with respect to uniform convergence. Let
K > 0 again be such that Cx # 0 (by lemma 5.2.2). Let (h,)nen C Cx be a uniformly
converging sequence with limit A € C°(S?,S?). Then obviously h satisfies (3P). As in
lemma 5.2.8, the inequality ||,[|71 g2 sy = nll72(g2 gy +2E(hn) < vol(S?) + 2K implies
the existence of a H'(S? R?)-weakly converging subsequence with limit 4 € H'(S?,R?)
by Hilbert space theory (cf. e.g. [Alt91, Wlo82|). Again, since both uniform and weak
H'(S? R3)-convergence lead to weak L?(S?* R?)-convergence individually, it is clear that
h = h almost everywhere and thus h € C° N H'(S?,S?). By lower semi-continuity of
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the norm with respect to weak convergence, we also know that E(h) < K. It remains to
show that h has a non-negative determinant and is monotone.

Instead of directly checking the definition of det dh > 0 we will prove the following simpler
condition (*): for all z € S? there is an open neighbourhood U, C S?, a compact oriented
chart ¢, : U, — R? of S? as well as an oriented chart 1, : V, — R? of S? h-compatible
to o, so that detd(, o ho ;') > 0 a.e. on p,(U,). By Sobolev chain rule (cf. 1.1.7),
the multiplication property of the determinant, and the fact that finite unions of sets of
measure zero have measure zero as well, it suffices to show (*).

So let x € S, y € S? with h(z) # h(y) (remember that h is not constant by (3P)). Let
¢, be the stereographic projection of S* about y, Yn(y) the stereographic projection of S?

about h(y). Let 0 < & < 3[h(z) — h(y)|, Uy := S* \ A" (B(h(y))) = h™'(S* \ B-(h(y))),
then U, is open by continuity of h. Also, x € U, and y ¢ U, by choice of €. Collecting our
thoughts, we see that U, is an open neighbourhood of z in S?. Let V,, := B.(h(U,)), then V,
is an open neighbourhood of h(r) in S? satisfying h(U,) C V,. Again, h(y) ¢ V, by choice
of £ and thus 1), 1= ¥y |y, is a compact oriented chart of S*. Let G, C ¢,(U,) C R* be a
bounded open disk with centre ¢, (x), then ¢, == ¢,| 671 (Ga)? is a compact oriented chart
of 2. Let u =, ohop t: G, — R? u, :=,0h,0p,': G, — R? (u, is well-defined
for n > ng since by uniform convergence h,(p;'(G.)) C h,(U,) C B.(h(U,)) = V,; wlog
no = 1). We know that det du,, = det d(1, o h, o ©, ') > 0 almost everywhere on G, since
h, has a non-negative Jacobian by definition and since both charts involved are oriented.
We want to show that det du > 0 which implies (*), and therefore, as discussed above,
detdh > 0. We know from lemma 5.2.9 that w, — wu uniformly and wlog u,, — u in
H'(G,,R?) since (h,) is energy-bounded. Let n € C5°(G,,) with > 0 and let (s, t) denote
the coordinates in G, then by lemma 5.2.10 we know that

/77 det(du) dsdt = lim [ ndet(du,)dsdt > 0.

n—oo

Gz Ge

The fundamental lemma of the calculus of variations (cf. p. 32 [BGH98|) then gives
det du > 0 almost everywhere on GG, and so we have shown (*). Thus, det dh > 0.

Last but not least, we will show that A is monotone. The first step consists of showing that
h is surjective. By lemma 5.2.4, all h,, are surjective. Let now y € S?, then by surjectivity
of h, there must be z, € S* with h,(z,) = y. Since S? is compact, a subsequence of
(T )nen converges to x € S?. For this subsequence, we have by triangle inequality

|h(z) — y| < |W(z) = ho(2)] + [hn(z) — y| < [[h = hallco + [ha(2) = b (25)]

where the first term converges to zero by uniform convergence and the second by equicon-
tinuity of Cx (cf. (I1)). Thus, h(x) = y and h is surjective. The second step will now be
to show that the pre-images (under h) of connected sets are connected assuming that the
pre-images of singletons are connected (which we will show in the last step). Let A # ()

be a connected subset of S? and suppose that h1(A) = X UY with X,Y # 0 relatively
closed sets in h~'(A) with empty intersection. By continuity and surjectivity of & as well
as compactness of S?, h(X) and h(Y) are non-empty relatively closed sets in A satisfying
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h(X) U h(Y) = A so that their intersection cannot be empty since A was assumed to
be connected. Let a € h(X) N A(Y), then h~(a) = (h"'(a) N X) U (k" (a) NY) where
h='(a)NX # 0 and h™1(a)NY # 0 are relatively closed, which is a contradiction to h~1(a)
being closed and connected.

The last step is — as announced — to show that the pre-images of singletons are connected.
Let a € S?. By uniform convergence we know that for all ¢ > 0 there is a number ny € N
such that for all n > ny we have h='(a) C h,'(B.(a)). We use this property to define a
strictly increasing sequence (ny)ren inductively: Choosing € = 1, there is n; € N such that
h=Y(a) C h;'(Bi(a)) for all n > ny. If ny,...,n;_1 have been defined, there is ny > ny_,
such that h™'(a) C h,'(B1(a)) for all n > ny (choosing & = ). Now (hn, ke is a
subsequence of (h,)neny (Which we will denote by (hy)ren in the sequel). Suppose that

h='(a) = X UY, where X,Y C S? are non-empty, compact sets with empty intersection
(remember that h is continuous). Let § := 3d(X,Y) > 0. Set X° := B;(X), Y := Bs(Y),
then we know that X°NY? = (). Let Z := S\ (X°UY?), then Z is compact. By construction,
both h,;l(B%(a)) N X? and h,;l(B%(a)) NY? are open and non-empty for all k¥ € N. By
monotonicity of h; and connectedness of balls, we deduce that h;'(B 1 (a))NZ # O for
k € N. Let henceforth x;, € h,;l(B%(a)) N Z. By compactness of Z there is a subsequence
of (z)ren with limit z € Z (we denote this subsequence by (21)ren). Let now € > 0, then
by equicontinuity of Cx (cf. (I1)) there must be p > 0 with diam(h(B,(z))) < £ for all
h € Ck. Let now ko € N be such that d(z, z;) < p, ||he — hljco < 5 (uniform convergence)
and % < £ for all k¥ > ko. Then by triangle inequality

() = a < [h(x) = hi(2)] + [P () = i ()| + [ha(2x) —af <€

by construction. Thus h(z) = a, which is a contradiction to x € Z since the set ZNh~'(a)
has been chosen to be empty. So, all three steps together guarantee that h is monotone.
Collecting all bold face information, we see that h € Cx. We have now shown that Cy is
closed with respect to uniform convergence. O

(I3) Let K > 0 such that Cx # 0, cf. lemma 5.2.2. Then for any h € Cg, we have
|2||cos2,rsy = 1 and thus by (I1) and (I2), Cx is equicontinuous, closed, and uniformly
bounded in C°(S? R3) so that by the theorem of Arzela-Ascoli (cf. [Alt91], p. 93) Ck is
(sequentially) compact with respect to uniform convergence. O

(14) Since C # () by lemma 5.2.2, there is a minimising sequence (h,)nen for £y in C, and
thus there is a constant K > 0 with E,(h,,) < K for all n € N. By lemma 5.2.6, there is a

constant m > 0 with E(h,) < E,(h,) < £ < oo for all n € N. Then with K := £ and
(I3), there is a limit h € Ck of a subsequence of (h,,) with respect to uniform convergence.

By lower semi-continuity of F, cf. lemma 5.2.8, it is immediate that 4 minimises F,. [

Taking together (I1)-(I4), we have shown that E, attains its minimum on C and are thus
done with (I). N
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Corollary 5.2.13. If g is a smooth Riemannian metric on S?, h € C°(S?,S?), then there
is a pair of finite, h-compatible, compact, oriented C*-atlases on S? the first of which is
conformal with respect to can, the second to g.

Proof. Follows from lemma 1.2.3 and lemma 1.2.26. O

Definition 5.2.14 (Variation of the Independent Variables). ** Let X be a smooth,
Y a C'-manifold, D C C°(X,Y). We say that a function h € D is stationary with respect
to variation of the independent variables for a functional F : D — R, if for every pair of
h-compatible atlases A = {p}, : U, — R} of X and B of Y and every smooth family
of diffeomorphisms o, : X — X (t € (—¢,¢)) with 0y = idx, and o, = idyx outside some
compact set W C U; with non-empty interior (I € {1,..., K}) satisfying W N U, = 0 for
k#1,ke{l,...,K}, we have hoo, € D for all t € (—¢,¢) and

d
@h:o}—(h ooy) =0.

In particular, the derivative on the left hand side shall exist.

Remark. Variation of the independent variables is very similar to differentiation of the
functional (cf. chapter 2), only that we consider tangential instead of linear variations in
some ambient space. Whence, this notion permits us to not embed (S?, g).

The following is a plan for the remaining proof:

v E, attains its minimum on C.
II Every minimiser  : (S?, can) — (S?, g) of E, in C is a smooth,
conformal, orientation-preserving diffeomorphism.

1 Every such minimiser is stationary with respect to vari-
ation of the independent variables for £, : C — R, with
C:={hou|heC,u Mobius transform}.

2 Every h € C° N HY(S? S?) that is stationary with re-
spect to variation of the independent variables for E is
holomorphic and consequently smooth and conformal.

3 Every such minimiser is a smooth orientation-preserving
diffeomorphism.

v/ Any such diffeomorphism is unique up to a preceding Mébius
transform.

Proof (of (II)). ' Let g be a smooth metric on S?. We will use theorem 1.2.29, i.e.
rely on the existence of isothermal coordinates/ conformal charts with respect to g. Set
C:={hou|heC,u Mébius transform}.

H1Cf. p. 15 in [Jos90].
15Regularity of (weakly) harmonic energy-minimisers was established by C. E. B. Morrey in 1948, see
[Har97].
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(IT1) Let h € C be a minimiser of E,. Choose a compact, conformal, h-compatible pair
of atlases A = (¢y : U, — R?)E ) B = (¢, : Vi — R?)E_ on §? as in corollary 5.2.13
subordinate to the given pair of atlases'®. Let (1;)X_; be a partition of unity subordinate
to A. By definition of variation of the independent variables 5.2.14, it suffices to show the
following property (*): for any [ € {1,..., K} and any smooth family of diffeomorphisms
0;:S* = §% t € (—¢,¢), with 0y = idg> and 0; = idge outside some compact set W C U,
with non-empty interior, we have hoo; ! € C and Ll—0Eg(h o o, ') = 0. This variation
of the definition is admissible since the inverse family to any such family satisfies all the
required criteria as well.

By proposition 5.1.3, for every ¢t € (—e¢,¢), there is a Mébius transform p; of S?* such
that o; ' o p, satisfies (3P)'7. It is clear that o, is orientation-preserving since oy = idge
is. Thus, by the same proposition, p; is orientation-preserving. Using lemma 5.2.3 we
deduce that h o o;' oy, € C and hence hoo;! € C. As h is a minimiser of E,, we
have E,(hoo; ') = E,(hoo; ' o) > E,(h) by lemma 5.2.7. The function E,(ho o, ') :
(—e,6) = R :t+ E,(hoo; ") thus has a minimum at ¢ = 0. We will now show that it
is differentiable at ¢t = 0 and thus 4|,_oE,(h o o; ') = 0 whence h has been shown to be

stationary with respect to the variation of independent variables on C.

Denoting the coordinates with respect to ¢, by (z®) and using can®® \/det(can) = 5%,
g;pj’c = pid;; by our choice of coordinates, we get by the transformation formula for inte-
grals with the new variable y = 3 0 ;' 0 ¢, ' (z) (pr 0 07" 0 ;. (wr(Ur)) = wx(Ux) by
construction)

2E,(hoa, ")

K 2 i —1 —1
D 3D S B B e N
xa

k=1 a,i=1
G ok (Uk)

K 2

B 0@ ohop AW ohop )
o 1 1 k k k k
= > [ twomo i mono i) ST i)
= ) 1=

e (U
2
agoﬁocr_logo_l oloo; oy ! _
X Z( ( . a;a : ) ( . a;a . ))|g0k00t090;1 det d(@kﬁ © 0t 0@y l)dyldyQ

where we have used the chain rule to calculate the partial derivatives. Note that the
domains of the integrals are not changed by this transformation due to the choice of
the family o,. Use fi(t,y) as a shorthand for the integrand in the above equation where
t € (—¢g,¢),y € r(Ug). Then fi, : (—¢,¢) X ¢r(Ux) — R is measurable. By the rules for
interchanging integral and differentiation (cf. e.g. p. 147 in [Els00]), it suffices to show
that fi.(¢,-) € L'(pr(Uy)) for all t € (—¢,¢), that the partial derivatives % exist for all
y € pr(Uy) and all t € (—¢,¢), and that there is a a.e. positive function Fy € L*(¢x(Uy))

16again counting charts in B several times, if necessary.
1711; need not be continuous with respect to t.
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which bounds the absolute values of these partial derivatives for ¢ € (=5, 5). We will thus
proceed to check these three conditions.

First of all, it is obvious that f; > 0 is measurable and thus fi(¢,-) € L'(p,(Uy)) for all
t since the energy of h o o; ' is finite for all ¢. Secondly, it is only necessary to derivate
the terms outside the braces respectively, which are smooth with respect to ¢, as the
terms in the braces are independent of ¢, so the partial ¢-derivatives of f; exist for all &,
Yy € QOk(Uk), and t € (—8,8). Thirdly, let £ # . For y € gOk(Uk), fk(t,y) = fk((),y) for
all ¢ since o, = idge outside W and W N Uy, = 0, so that Zk(t,y) = 0 =: Fy(y) for all
t € (—e,¢e) and y € @i (Uy). The same is true for £ = [ and y € U; \ W. Let now k = [.
Then, the partial t-derivatives we calculate by product rule are all bounded by continuity
of pl and compactness of the atlas, and thus there are constants C®7 > 0 such that in
(=5, 5] x @i(W), we have

e S e )

a,i=1

whence 0 < F, € L'(pi(Uyg)) for all k. As discussed above, we can now interchange
integration and differentiation and obtain

0
Ey(ho o7 ]emo = Z/ Towata = [ Loy,
)

‘Pk: Uk <P1(W

so in particular this derivative exists. We thus see that h is stationary with respect to
the variation of independent variables for E; and are done with (II1). O

(I12) We have to show that every h € C° N H'(S?,S?) which is stationary with respect
to variation of the independent variables for F, is smooth and conformal. To this end, let
heC'nHY(S%S?), let A= (or : U, — CF |, B= (¢ : Vi — C)E_| be a compact,
conformal, oriented h-compatible pair of atlases on S? as in corollary 5.2.13'%. Denote the
conformal factor of g by pj. as above. Fix | € {1,..., K}, p € Uy C S% Let ()X, be a
partition of unity subordinate to A with 7, = 1 on a closed neighbourhood W of p with
W C U,. Let o, be a smooth family of diffeomorphisms such that o, = idg2 outside W,
0p = idg2 as in definition 5.2.14 (such a family always exists as it arises as the flow of any
smooth vector field with support in W). As h is stationary for E,, we have h o o, e C
and 4|,_oE,(hoo; ') =0 by (II1). Using the abbreviations f = fl and u =0 hop "

Aproo; topr )

as above, x := ———5—"—|;—o, and (z*) as coordinates belonging to ¢, We have on W
(with 7, =1 on W and the usual rules for differentiation, as well as ¢; 0 ;' = idy, )
of & Coout oul [oxP oY o G
h 1 Y B Bsv(ZA 4 ZA
ot o= i;1(pl ehowr) 0P o1 | Do %+ 50‘8 50‘50‘(8 t 8x2)

8again counting charts in B several times, if necessary.
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2

! 2 ‘ i L 9wt Oul 2 9,0 Ay
= Z(/)lohowfl) {(8X _Ox )((S;Ll)g_(@u )2)+28X ou’ Ou +25X ou’ Ou

— orl  0x? ox? 0x? Ox1 02 Ozt Oxl 02
ot o2, Ou oxt  ox* ., 0u Ou
- (&rl - 8x2>(|8x1| | ) (al_g + 8x1>(<8x1’8x2>g)’

where |.|, and (., .), denote the norm and inner product induced by g, respectively. Setting
(b : Spl(lnt W) - Ci ¢($17x2) - aml |2 ‘312 |2 - 2Z< Ju 8_u>g’ this reads

Ozl Ox?
of _ a0, 0x OxE
ot (0,2) =¢' (8:101 B axz) ¢ (8:102 + axl)

for all z € ¢;(int W), where ¢!, ¢? denote the real and imaginary part of ¢, respectively.
Thus

Im) 4 .
0 = a‘ﬁOEg(hoat Y
in (I11
as ln:( ) gf (O .T) dxldx
@ (int W)
1 2
ox*  Ox oxt | ox’
- [ 0ES-R-RGS St 69)
1 (int W)

-1 _ -1
Remember that y was defined by y := WM- Since we can understand any map

x = (X', x%) € C5°(¢i(int W), R?) as being a tangent vector field to R? and then use its flow
oy to vary the independent variables, we are allowed to choose !, x? € C5°(¢;(int W), R)
in equation 5.3. Choosing first x := x! and x? = 0 and then y := x2, x! = 0, we get both

Ix
0 = / { %— 2@}61271(&52 and

1 (int W)

0 = / {(b ¢2%}d:cldx2

1 (int W)

for all x € C5°(¢;(int W)). This means that ¢ : ¢;(int W) — C is weakly holomorphic'.
Also, as [ and p were arbitrary, S? is covered by finitely many such sets W,,, with ,,(int ,,)
being the domains of maps u,, = ¢, o h o ¢! and maps ¢,, : @, (intW,,) — C by
compactness with W,, C U,,. Refine the atlas A on (S? can) such that the sets int W,
are domains of definitions of charts ,, : int W,, — C. It follows from regularity theory
of the Cauchy-Riemann equations that all ¢,, are holomorphic and of class C*° on their
respective domains, cf. e.g. pp. 18 in [Kuw98|. Also, we quote from [Jos91|, pp. 407, that
the transformation behaviour of the holomorphic maps ¢,, allows us to understand them
as the coefficients of a holomorphic quadratic differential, ¢ = ¢,,d2?, = = 2! + iz? being
the complex coordinate with respect to o, dz = d(x!) + id(2?), dz* := dz ® dz. By

19¢f. e. g. [Kuw98] for more details on this notion.
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lemma 8.2.4 in [Jos91], ¢ must vanish as its domain of definition is S* (and consequently
Gm = 0 on @, (int W,,)).

We know from lemma 5.2.9 that u,, € C° N H'(p,,(int W,,,), C). Thus, using complex
notation?” and suppressing the index m, 2% := (24 —j2%) and 2 .= L( 2% 424 it is

8z '~ 2\0x! Ox2 — 2
easy to see that ¢ = po o~ (|§2[* =[G4 — 2i(F%, §4)) = 4po ™' G2 5 a.e. on p(int W)

(remembering that p denotes the conformal factor of g on int 1W). Also, we can calculate the

. 1 2 2 1 1 2 2 1
Jacobian of u by |%|2— %P = i((%%+%iy)2+(%ix—%)2—(%—%)2—(%—%%)2) =

%—g%—f — %—f%}l = det(du) a.e. on p(int W). As ¢ = 0 on p(int W) and detdu > 0 a.e.

since h € C and the involved charts are oriented, we have %“(z) = 0 or %4(z) = 0 for

almost all z € ¢(int W) (since p # 0) and |24 > |2%|2 so that

8810_; =0 a.e. on p,(int W,,).
Multiplying this equation by x € C5°(p,,(int W,,)) and integrating over ¢,,(int IW,,,), this
means that wu,, is weakly holomorphic. As above, this guarantees u,, to be holomorphic
and of class C'"*°. This implies in particular that h is holomorphic and smooth. By
definition of ¢, and ¢,, = 0 on ¢,,(int W,,), we deduce that u,, must be conformal. Using
lemma 8.2.2 in J. Jost’s book (p. 408) and remembering that by choice of our atlas on
(S?, g), the metric g is conformal, we conclude that h is indeed conformal. O

(II3) It remains to show that every minimiser 4 € C of E, is an orientation-preserving
diffeomorphism. For this, let & € C be a minimiser of E,,. Then by (II1), & is stationary with
respect to the variation of independent variables of E; on C. By (I12), h is a holomorphic,
conformal map of class C°. We know that h is surjective as it is monotone, cf. lemma,
5.2.4. Also by monotonicity, every point has a connected pre-image. But & is holomorphic,
so the pre-image of each ¢ € S? must consist of isolated points for the following reason: let
p € h™*(g). Then there are h-compatible conformal charts ¢ : U, — R?, ¢ : U, — R? with
p € U, and p(p) = 0. u: p(U,) — C defined by u(z) := o hop !(z) —1(q) has a zero
at 0. Complex analysis?' then tells us that there either is a neighbourhood G C ¢(U,)
of 0 in which 0 is the only zero of u or v = 0 on its domain. u = 0 implies h|y, = q.
As h is non-constant, we can choose U, big enough that h|y, # ¢. Thus, p = ¢~1(0)
is the only pre-image of ¢ under h in ¢ !(G) so that the pre-image of ¢ has shown to
consist of isolated points. As h™1(q) is connected by monotonicity, h is injective and
thus a homeomorphism as S? is compact and Hausdorff. It now suffices to show that
the Jacobian determinant det dh is strictly positive, since then we are in a position to use
the inverse function theorem which tells us that h is a diffeomorphism onto its image S.
From det dh > 0 we can also derive that h is orientation-preserving. Let us thus check
whether det dh > 0 everywhere.

Let p € S?, ¢, ¢ as above with ¢ := h(p). Then by the above, u(z) = z"a(z) on G with
some n € N and a : G — C holomorphic and a(z) # 0 for all z € G. u is injective with h,
so it follows from complex analysis?? that n = 1. Whence by product rule and continuity,

20¢f. the same chapter in [Jos91] as above.
2lef. pp. 127 in [AhI66].
2¢f theorem 11, p. 131 in [Ahl66].
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24| = 292 + a(z)| > 0 on a neighbourhood of z = 0 since |24|(0) = |a(0)| > 0. Hence
det d(y) o hop™!) = detdu = 54> > 0 locally. Thus det dh > 0 and consequently h is
a smooth orientation-preserving diffeomorphism. O

We have thus shown that for g of class C°, every minimiser h € C of E, in C is
a conformal, orientation-preserving diffeomorphism of class C'°° and are finally
done with (II). N

Corollary 5.2.15. The global conformal parameters corresponding to a smooth Rieman-
nian metric g on S* can be found by minimising E, on the class C defined above.

5.3 A Different Proof

As noted above, we have used J. Jost’s proof of theorem 5.1.1 as a guideline for our proof.
But our proof differs from J. Jost’s in three main aspects. The first difference lies in the
class chosen as domain for the functional we wish to minimise. Secondly, we simplified J.
Jost’s argument for “det dh > 0” (see lemmata 3.1.3 and 3.1.4 in [Jos90]) with a partial
integration argument. Finally, using isothermal coordinates, we do not need the Hartman-
Wintner lemma and the lemma of Heinz to ensure bijectivity and the non-vanishing of the
Jacobian. We will now discuss these differences going into detail. In order to make the two
approaches comparable, we present J. Jost’s work in our notation.

The Domain of E,

Our proof of theorem 5.1.1 was divided into three main parts: existence of minimisers
of E, in C, proof of the fact that these minimisers are conformal diffeomorphisms, and
uniqueness. J. Jost equally carries out these steps. However, he chooses a different class as
the domain of variation of £,. The path he follows is to define a class

D := {h € C°(S* S?) | h is an orientation-preserving diffeomorphism and satisfies (3P)}

and to henceforth work with its “closure” D “with respect to weak H' and uniform con-
vergence”.?> We understand that “closure of D w.r.t. weak H'? and uniform convergence”

23 This is, at least, how we understand his definition which seemingly contains a type-set error. Literally,
he writes on page 87: “We choose three different points 21, 2o, 23, in S? and three different points
p1,p2,p3 in X [ is a differentiable surface homeomorphic to S* with continuous metric (g;;) i.e. a
surface diffeomorphic to S — the author]. Let D be the class of all diffeomorphisms v : S§* — %
satisfying E(v) = 3 [ gi;(v(2))(vivd + viv)) dxdy (3.1.5) and let D be the closure of D w.r.t.weak
H'? and uniform convergence.” Note that what J. Jost denotes by F is E, in our notation. We assume
that he understands the three point normalisation h(z;) = p; for i = 1,2, 3 to be included instead of
the void condition E(v) = % [ gi;(v(2))(vivd + viv))dx dy. This hypothesis is strengthened by his
reference to (3.1.5) on the same page: “Moreover, if we have a sequence (wy,)nen in the uniform and
weak closure of the class of diffeomorphisms between ¥ and S?, but not necessarily satisfying (3.1.5),
then we still have E(v) < E(w) (3.1.7) since the normalisation (3.1.5) can always be achieved by
composing w, with a Mdbius transformation, i.e. conformal automorphism of S?, without changing
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signifies that D is supposed to be the closure of D with respect to the uniform and the
weak H'! topology at the same time; i.e. in the topology generated by the intersections
of sets that are open with respect to uniform convergence and those that are open in the
weak H'-topology.

It is clear that J. Jost’s class D is contained in our class C. With the aid of Jost’s lemma
(3.1.4) and the fact that any h € D can be uniformly approximated by a sequence in
D, it can be shown that D is also contained in C. We preferred to use the class C as
domain of I/, as we found it easier to deal with, see below. Nevertheless, some arguments
work as for C. These include e. g. lemma 5.2.2 (non-emptyness of the class), all statements
on C° N HY(S?,S?), e.g. lemma 5.2.6 (E, and FE are “equivalent”), lemma 5.2.7 (Mobius
transforms leave the energy invariant), 5.2.8 (E, is lower semi-continuous) and finally
proposition 5.2.12 (the energy is unbounded on D).

Non-Negative Jacobian

All maps in class C have a non-negative Jacobian. We use this property to ensure both
orientation preservedness and diffeomorphy of the minimiser of E,, see (II3). It carries
over to uniform and weak H'-limits by lemma 5.2.10 which relies on a partial integra-
tion argument. J. Jost also works with the notion of a non-negative Jacobian but he
proves a stronger result, namely that non-negativity of the Jacobian carries over to uni-
form limits (see lemma (3.1.3) and (3.1.4) in [Jos90])**. We understand that he needs
this stronger result in order to show that the members of his minimising class D have a
non-negative Jacobian. He uses the notion of a winding number and a formula relating
this number to the Jacobian as well as some approximation arguments in the proof of
(3.1.4).

Thus, we can profit from using the class C as simpler arguments for the non-negativity of
the Jacobian become available.

Diffeomorphy

First of all, we review our proof of diffeomorphy of the minimisers ((II2), (II3)). We
prove (weak) holomorphy of minimisers of E, in C with the aid of isothermal coordi-
nates and deduce smoothness and conformality. Surjectivity is immediate, injectivity fol-
lows from monotonicity and holomorphy, again expressed in isothermal coordinates. The
(non-negative) Jacobian of a minimiser cannot vanish since the minimiser is holomorphic

E(wy) [...].” Also, he uses the three-point normalisation when applying the Courant-Lebesgue lemma
(p. 87). In our language, this can be expressed as (3P) since we can identify ¥ with S2. As, on p. 90,
he assumes that J(v,) := det dv,, has the same sign for all n € N — where (v, )nen C D is a sequence
that approximates a minimiser v € D uniformly and weakly in H'? — we have included the condition
of “orientation-preserving” in the definition of D.

24 Again, we assume that the condition that the sequence converges weakly in H' is a type-set error
as J. Jost does not use this condition on the one hand and cannot straightforwardly secure it for a
minimising sequence on the other hand.
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and injective (see (II3)) and whence it is a (orientation-preserving, conformal) diffeomor-
phism.

J. Jost proceeds differently to show that (conformal, harmonic, holomorphic, and smooth)
minimisers are indeed diffeomorphisms. He gets surjectivity from the fact that any map in
D is the uniform limit of a sequence of diffeomorphsims in D. He shows that any minimiser
in D is injective by appealing to the Hartman-Wintner lemma?®. Finally, he deduces the

strict positiveness of the Jacobian by the lemma of Heinz?.

The differences described in this paragraph do not arise as a consequence of the choice
of classes. In fact, they are owed to the use of isothermal coordinates which transfers the
problem to a standard complex analysis setting.

5.4 Higher Genus Surfaces

In the first part of this chapter, we have seen that two Riemannian metrics on the sphere
are always conformally equivalent in the sense that there is a conformal diffeomorphism
between them. This statement does not apply to surfaces of higher genera. Indeed, even for
the torus there is more than one conformal equivalence class, i.e. there exist two smooth
metrics on T? that are not conformally equivalent?”.

25¢f. p. 70 in [Jos90].
26¢f. p. 78 in [Jos90].
27 cf. pp. 75 in [Jos00].
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At the end of chapter 4, we have seen that the discretised Willmore flow drives the mesh
of a discrete surface to degeneration. This effect has equally appeared for glued surfaces
and for conventionally constructed surfaces. We will now describe the “conformality trick”
introduced by U. Clarenz and G. Dziuk in [CDO03| as a strategy for mesh improvement
for topological spheres and study its applicability to discrete glued surfaces. We will only
go into detail where differences between glued surfaces and surfaces parametrised over S?
arise.

6.1 The Conformality Trick

As we have shown in chapter 5, every smooth Riemannian metric g on S? is conformally
equivalent to the canonical metric can. If we could find a numerical equivalent of a con-
formal diffeomorphism between a discrete spherical surface 3, (that is given to us as a
step of iteration in the discretised Willmore flow) and a fixed discrete sphere the mesh
of which has a high quality, then we could use this “discrete conformal diffeomorphism”
in order to transfer the “good” mesh to >,. This idea is the basis for the conformality
trick.

In the smooth setting, the global conformal parameters that realise the conformal equiva-
lence have been identified as the minimisers of the generalised Dirichlet energy F, in the
class C = {h € C° N H“?(S? S?)| h is monotone and satisfies (3P) and detdh > 0} - a
result that can be exploited numerically. We define

Definition 6.1.1 (Harmonic Maps). ! A map h € C*(S?,S?) is called harmonic with
respect to the canonical metric can in the domain and a smooth Riemannian metric g
on S? in the image if it is a solution of the Euler-Lagrange equations of the generalised
Dirichlet energy E,.

Corollary 6.1.2. Let g be a smooth Riemannian metric on S*. Any minimiser of E, in
C and hence any global conformal parameter h : (S*, can) — (S?, g) is harmonic.

Proof. The first claim follows from theorem 5.1.1 as holomorphic maps are automatically
harmonic on Riemann surfaces (see [Jos91]). Let h : (S? can) — (S?,g) be any global
conformal parameter and let h be a minimiser of E,. Then by the uniqueness statement of
theorem 5.1.1, the composition i := h~' o/ is a conformal automorphism of S? and hence

Lef. p. 403 in [Jos91] or p. 2 in [SY94].
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a Mgbius transform by proposition 5.1.3. But this implies E,(h) = E,(h o u) = E,(h) by
lemma 5.2.7 so that h must be a minimiser of £, too. O

The converse is also valid:

Theorem 6.1.3. ? Let g be a smooth Riemannian metric on S* and suppose there is a
harmonic diffeomorphism h : (S?, can) — (S%, g). Then h is conformal.

We now give a new interpretation to our result 5.1.1. Let X be any smooth surface diffeo-
morphic to S? and immersed into R?, let g be the smooth Riemannian metric induced on
by the canonical metric of R3. Then we can restate the theorem to say that X can be glob-
ally conformally parametrised over S* which means that there is a conformal orientation-
preserving diffeomorphism & : (S? can) — (3, g). [Let § be the smooth Riemannian metric
induced on S” via the given diffeomorphism f : S* — X. Then theorem 5.1.1 states that
there exists a conformal orientation-preserving diffeomorphism s : (S? can) — (S?, 7).
Setting h := f o h proves the claim.]

For the following, we adapt our notions and notations to the discrete setting as introduced
in the chapters 3 and 4. For example, if f : ¥ — R3 is an immersion, we “identify” ¥ and
its image under f. In this language®, the trick of U. Clarenz and G. Dziuk consists of the
following idea:

Problem 6.1.4 (Mesh Improvement Problem I). 4 Let 3 be a smooth surface im-
mersed into R®. Let VX denote the tangential gradient’ of X and let Nx, denote the
induced Laplace operator, i.e. ANx X = Vyx - Vs X. Find a conformal diffeomorphism
X : ¥ — S§2, i.e. a diffeomorphism satisfying the non-linear elliptic system

—AsX = |VeX[2X, |X|=1 on 3.

Remark. 1t is important for the discretisation that the conformal diffeomorphism maps
onto the round sphere equipped with the canonical metric and does not start there as
it did in chapter 5, see below. This implies that we cannot minimise £, but need to
minimise some “dual” energy EY where the roles of g and can are interchanged. But as
we have reinterpreted theorem 5.1.1 to apply to arbitrary smooth surfaces the metric of
which is induced by an immersion into R3, it is possible® to work with the energy

1

Eg(X) = 5

/ ‘VEXP d:uEa

%

where uy denotes the measure induced by the immersion, and Vy is defined as above.
The critical points of Ey; are then obtained by differentiating ¢ — fE|V2 X+eX 12 41 where

X+eY]
Y € C°N HY(S,R3) (cf. [CDO3)).

2This is due to J. Eells and J. C. Wood, [Eel92], say U. Clarenz and G. Dziuk in [CD03].

3These notions and notations are sloppy; in case ¥ is not embedded, we would have to be more careful
in order to be precise. As no confusion arises, we prefer to follow [CDO03].

4cf. [CDO3].

Sas introduced on page 83.

bcf. [CD03,SY94].
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We would like to solve the mesh improvement problem by minimising Ey, but first we
have to define a class where we minimise on. Although it does not depend on g and could
thus be used as the domain of F;, the class C is not perfectly appropriate for discretisation
purposes as the conditions of three point normalisation and monotonicity are not linear.
The class used in [CDO03| replaces’ the three point condition by an integral condition
(ICM) that also “fixes the Mdbius group” of S?. The advantage of this integral condition
is that it is linear and thus easily discretisable. Secondly, it does not request the property
of non-negative Jacobian.

The class used as a starting point for the discretisation is
C(X)={X e C'NnH(Z,R*)||X(p)| =1Vp € £ and X satisfies (ICM)}.
Let us reformulate the mesh improvement problem as a minimiser problem:

Problem 6.1.5 (Mesh Improvement Problem II). & Let 3 be a smooth surface im-
mersed into R®. Find a minimiser of Ex, in C(2).

In [CDO03|, it is not discussed whether Fy really attains its minimum on C(X). However,
making small adaptions, it should follow from our proof of theorem 5.1.1 that such a
minimiser is a harmonic/conformal diffeomorphism.

6.1.1 Discretisation and Implementation

Let 3J;, C R3 be a discrete surface. Recall the definition of the finite element space X}, (%},)
given in chapter 4. According to |[CDO03|, the integral condition can be discretised with
linear Finite Elements to a condition (ICM),,. Let nv denote the number of vertices of ¥;
let v;, i € {1,...nv}, denote the vertices of ¥,. U. Clarenz and G. Dziuk introduce the
discrete class

Ch(Xn) = {X € X(Eh) || X (v)| = 1Vi € {1,...,nv}, X satisfies (ICM), }.

They discretise the energy by En(X) := 3 [i, |V, X[*duy for X € X;,(3,) and formulate

the discretised mesh improvement problem

Problem 6.1.6 (Discretised Mesh Improving Problem I). Let ¥, C R3 be discrete
surface homeomorphic to the sphere. Also, let S be a given discretisation of S*. Find an
injective map X € Cp(Xy,) which is a minimiser of the generalised Dirichlet energy Ej,.
The discrete surface 3y, defined by 3y, = X~1(S?) is then used as starting point for the
following iterations of the discretised Willmore flow. The vertices of ), lie on 3.

"In fact, their integral condition allows for rotations by 7. This does not influence the discretised scheme
as the steps of the iteration are small.
8¢f. [CDO3].
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The side conditions | X (v;)|*> = 1 for all i € {1,...,nv} are reformulated as non-linear
integral conditions (ICS2), with the aid of a real-valued continuous piecewise linear La-
grange multiplier A. The linear integral conditions (ICM), that fix the Mobius group are
realised by six real Lagrange multipliers p. Before we formulate the final version of the
mesh improvement problem, let us agree on some notation. Let the real-valued piecewise
linear Finite Element space be denoted by

Vi(3h) == {\ € C°(Zy, R) | M|z is linear for every T € 7, }.

Recall that X3, (2;,) = Vi (25)3. Also, let Mj, : X,,(X;) — R be a linear operator chosen such
that M, (X) = 0if and only if X satisfies the integral conditions (ICM)j,.

U. Clarenz and G. Dziuk introduce an energy F}, : X, (3,)x V5, (25) xRS — R,

Fu(XAp) = Bu(X) + 5 [ AXP = 1)+ - My(X)

Zp
that additively combines the energy E} with terms corresponding to the integral conditions
(ICS2),, and (ICM), respectively. A solution of problem 6.1.6 then consists of a parametri-
sation X € X;,(3;), Lagrange parameters A € V() and p € RS such that (X, ), p) sat-
isfies the Euler-Lagrange equations of F},. We quote without proof

Problem 6.1.7 (Discrete Mesh Improvement Problem II). Let 3, C R? be a
discrete surface homeomorphic to the sphere. Also, let S; be a given discretisation of S2.
Find an injective map X € Cy(24) and Lagrange parameters X € Vi,(31), p € R® such that

/thX : VghYd,uh—i—/)\XYd,uh+th(Y) = 0 VY e Xh<2h) (61)

P/ Zh

//@(|X|2 —Ddu, = 0 YeeV(S,)  (6.2)

My(X) = o. (6.3)

The discrete surface ), defined by 3y = X~U(S?) is then used as starting point for the
following iterations of the discretised Willmore flow. The vertices of Xy, lie on Xy,.

In their mesh improvement algorithm, it is assumed that the given surface ¥, is explicitly
parametrised over a discretisation (S?)? of S%. Denote this parametrisation by U : S7 — 3.
As for the implementation of the discretised Willmore flow, the nodal basis of X},(3,) is
used. A simplified Newton method? is used to reduce the problem to a linear equation. As
starting point for the Newton method, X" is chosen to be the inverse'® of the parametri-
sation U, \° and p" are chosen equal to zero. The linear equation is then iteratively solved
by the method of conjugate gradients (CG)'!. The flow chart on page 133 illustrates the
procedure.

9¢f. |[CD03, Sto79]. In fact, the author has used a damped Newton method as this has proved more
convenient for the glued surfaces, see below.
10Recall that we have understood an immersed surface as parametrised over an embedded one. Mappings

etc. are then defined on the embedded parametric domain.
Hef. [CDO3, Sto79).
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Problem 6.1.8 (Discretised Mesh Improvement Algorithm). Let ), be a discrete
surface parametrised over a sphere. Let X° = U1 € C,(Zy), \° = 0 € Vu(2y), and
P’ =0¢€RS. Let e > 0 be a tolerance and let my € N,

Denote by py, the surface measure and by Vs, the tangential gradient on ¥Xy. For each
m=0,1,...,mg— 1, find X" € X,(Z1,), A" € Vo(Zh), and p™** € R that solve the
linear system

/Vthm-H : VEhY d,uh + /)\me+1 : Ydﬂh
Zh

Zh
+/)\m+1Xm Ydu, + p" - M(Y) = 0 VY € X5 (Xh)
Zh
1
/HXerl L X™ d,uh _ §/H<‘Xm|2 _ 1) dﬂh VK€ Vh(Eh)
Sh Zn

My(X™1) = 0.

If X™ gs locally injective’® (& (Si)™t := X™Y(S7) is a discretisation of S?) and if
the L*-error || X+ — X™|| 125, g3y + | N = X"l 25, 1) + | 0" = 0| > €, continue with
the next iteration. If X™! is locally injective and if the L?-error lies below € for m,, then
set X = (X)) 7H(S2)™) and let U : (S3)™ — X, be the parametrisation with which the
Willmore flow is continued.

6.1.2 Examples

Let us first have a look at the behaviour of the deformed ellipsoid under the discretised
Willmore flow with mesh improvement by the conformality trick. The chosen parameters
are ilz = 8, genus = 0, surface =9, projection = 0, conformal = 0, also mcf_freq
= 0 and expo = 3. The mesh improvement is carried out every sixth iteration. As ex-
pected, the surface approximates a round sphere under the flow as it did without mesh
improvement. This time, however, the mesh does not degenerate and the scheme does
not stop before the final time final = 1 is reached. This is equivalent to approximately
13400 iterations. We depict the surface before the start of the iteration, and after 10, 100,
1000, and 10000 steps. The table below illustrates the behaviour of the Willmore energy
and of the mesh regularity. The Willmore energy and the mesh regularity behave under
the mesh improvement as listed in the table on page 131. The data and figures indicate
that the conformality trick works well for discrete surfaces parametrised over the round
sphere.

Although, theoretically, conformal reparametrisation does not leaves the Willmore energy
invariant, we get changes, numerically, see table 6.3. Changes in the Willmore energy oc-
curring because of the mesh improvement are probably due to two factors: the first (small)

127f X™+1 is not locally injective, it cannot be inverted and a new parametrisation over the sphere is not
available.
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effect is that the iterative Newton and CG schemes do not find exact solutions to problem
6.1.7; the second is that the surface changes under the reparametrisation. The vertices of
the reparametrised surface lie on the old surface, but if the old mesh is not very “good”,
features can be lost. The author supposes that this is what happened to the ellipsoid after
five iterations, cf. the table and the figures on page 132 below — which would explain the
sharp edges of the surface after ten iterations, see figure 6.1. The author further assumes
that these sharp edges are smoothed out by the Willmore flow in the following iterations.
The quality of the mesh does not change very much through the six steps that lie between
two mesh improvements; this can be seen at the number of iterations the Newton scheme
needs to converge (i.e. to reduce the L?-error so that it is smaller than ¢), cf. figure 6.6.
Please note that the surfaces on page 132 are scaled down more than the others for display
purposes.
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Figure 6.1: Before the iteration, after 10, and 100 steps of the iteration with mesh im-
provement.
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Figure 6.2: After 1000, and 10000 steps of the iteration with mesh improvement.

step | W. energy | reg. || without mesh improvement: W. energy | reg.

1 40.03 10.03 40.03 10.03
10 31.78 11.62 32.86 9.31
100 27.03 10.44 26.69 10.02

1000 24.92 10.41 - -
10000 24.92 10.40 - -

Figure 6.3: Willmore energy and regularity under the flow with mesh improvement.

after step | W. energy before | reg. before || W. energy after | reg. after
6 33.89 9.44 50.42 10.96
12 31.44 11.99 32.25 10.99
18 30.98 11.41 31.18 10.92
24 30.66 11.22 30.81 10.78
30 30.36 11.06 30.47 10.71
36 30.06 10.92 30.14 10.71
42 29.77 10.81 29.84 10.69

Figure 6.4: Willmore energy and regularity under the mesh improvement.
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Figure 6.5: Mesh improvement after the fifth iteration: before and after improvement.
Figure 6.6: Mesh improvement after the eleventh iteration: before and after improvement.

Figure 6.7: Mesh of a glued ellipsoid and the corresponding round sphere mesh as described
in the text.
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Figure 6.8: Flow Chart for the mesh improvement algorithm. The light coloured pieces of
the program have not been discussed.
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6.2 Glued Surfaces and the Conformality
Trick

For topological spheres that are the output of the glueing procedure, the conformality trick
is not applicable without changes as they are not explicitly parametrised over a round
sphere mesh by construction. This means that we cannot easily determine a starting point
for the Newton method. As the Newton method is fairly sensitive to the starting point and
the energy F}, and the class C, (X)) we are minimising on are not easy to understand, this
has forced us to investigate on how to find a starting point from where the Newton method
converges. First of all, we have replaced the Newton method by a damped Newton method,
see section 6.2. Then, we have tried several techniques for calculating a discretisation (S?)°
of S? and a parametrisation U : (S?)° — ¥, for two exemplary surfaces: for surfaces of the
type of the glued ellipsoid described in section 3.3 and for surfaces similar to the glued
dumbbell depicted in figure 3.9. The parameters chosen for the glueing of the dumbbell
are: samesurface = withcyl = 0, ilz = 3, i1z2 = 1, genus = surface = 0, finally
iil =1, projection = rotangle = mcf_freq = 0.

For some embedded surfaces such as the glued ellipsoid, for example, it is straightforward
to calculate a discretisation of S? by simply projecting all vertices of the surface onto S* via
 +— 1. This gives a mesh the vertices of which lie on S? at least if its centroid!? lies in the
origin. A similar strategy can be applied to the glued dumbbell (in subroutine round () );
the vertices can be projected via z = (1, xq, x3)" — (\/17?’%”2), \/17%@2)’ 725)", where
L is the length of the cylinder and 1 is the radius of the spheres in the dumbbell.
However, the resulting meshes discretising S? are of a very low quality, see page 132

above.

We have tried to improve this mesh with Laplacian smoothing (both with and with-
out round sphere projection) but without success. Neither the usual nor the damped
Newton method converge with this starting point, not even for very low levels of refine-
ment. For glued dumbells, the situation is a little better. Although the damped Newton
method does not converge with a starting point constructed as above — even not for low
levels of refinements — we were able to construct a finer mesh on the dumbbell and a
parametrisation over S? which constitutes a suitable starting point. We have done this as
follows:

Having in mind the hugely different sizes of the triangles in the pictures above and below,
we have written subroutines reksurf_s(order, last, divided) and surf_s(i, divid,
avarea) that iteratively subdivide all triangles having larger size than thirty percent of
the “average size” avarea of a triangle on the sphere. The average size of a triangle is
calculated as avarea = %52). The refinement process is encoded into the vectors order
and divided so that we can afterwards refine the dumbbell mesh analogously. This is
realised in the subroutine refsurf_recursive(order, last). All the above subroutines

are called by the subroutine xgood_mesh(). For a glued dumbbell being constructed from

Bor centre of mass
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two four times refined spheres, the damped Newton method converges. However, the re-
sulting new mesh does not approximate the initial glued dumbbell very well, see the figure
below.

Figure 6.9: top: a glued dumbbell (left) — surface C, the round sphere mesh before the mesh
improvement; bottom: the round sphere mesh after the mesh improvement
(right) — surface B, and the new “dumbbell mesh” after the mesh improvement
(left) — surface A. (The surfaces are scaled differently for display.)

We can see in this figure that the mesh concentrates where the curvature is concentrated
and does not grep the spherical parts of the dumbbell shape. We tried to remedy this defi-
ciency by further refining the surfaces. The idea is the following: subdivide some triangles
of the surface that is the output of the mesh improvement, “surface A”, chosen for their
“non-niceness” (see below), then imitate these refinements in the discretised round sphere
mesh having been calculated by the mesh improvement algorithm, “surface B” (with a
subroutine reksurf_s(...) similar to reksurf(...)). Finally, imitate these refinements
again in the dumbbell mesh we took as starting point for the mesh improvement algorithm,
“surface C”. This procedure ensures that surface C is parametrised over surface B. Also,
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it allows us to decide whether a specific triangle should be refined by only considering the
shapes of the triangles in A. We have developed three methods to decide which triangle
shall be subdivided. Inspired by figure 6.9, we compare the area of all triangles with a
characteristic area and subdivide large triangles; also, we compare the length of every
edge with a typical length and subdivide the triangles having long edges in a way that
these edges are refined; and thirdly, we try to smooth the tips at both ends of surface A
by subdividing triangles that have large “outer angles”. By “outer angles”, we understand
the angles between the normal of the triangle under consideration and the normal of each
of its neighbours, respectively.

As before, we save the information needed for an imitation of the refinement to the
vectors order, last, divided, and dividedge. We rely on the refinement subroutines
rekref_glue(...) and refel_glue(...) which we have also used for the glueing scheme.
We do not go into detail, the code is included in the appendix. A flow chart is shown on
page 138.

area We decide to subdivide a triangle if it is larger than a characteristic size in the
surface — this size is calculated as avarea = 0.5(minarea + 0.5maxarea), minarea,
maxarea are the minimal and maximal sizes of triangles in the mesh. For this, we use
the subroutines reksurf(order, last, divided, dividedge), surf(i, divid,
avarea, edg), and minmaxsurf (minarea, maxarea). The first subroutine simu-
lates a recursive call and controls the refinement process. We iteratively compare
the triangles’ sizes with the number avarea several times. The number avarea is
adapted in each loop. The second subroutine calculates the minimal and maximal
area a triangle in the mesh of surface A has and the third one then prepares and
executes the subdivision of this triangle (and the neighbour thereof).

edges Similarly, we iteratively subdivide all triangles that have “untypical” edge lengths. We

~ choose those triangles for subdivision that have particularly long edges. We use the
subroutine rekedge (order, last, divided, dividedge) as simulator for a recur-
sive call and as controller and the subroutine minmaxedge (minedge, maxedge) to
calculate the minimal and maximal edge length of the mesh. We define a character-
istic length avedge = 0.5(minedge + 0.5maxedge). maxedglength(i, edg, divid,
avedge) then subdivides all triangles that have an edge longer than fifty percent of
avedge in a way that reduces the length of this long edge.

angles Finally, we use outsideangle (order, last, divided, dividedge) and angle(i,
edg, divid, maxangle) to iteratively subdivide all triangles with outer angles of a
i

size larger than 7.

All these subroutines are collected in the subroutine improve_mesh (). The resulting dumb-
bell mesh and the corresponding round sphere mesh (stemming from the mesh depicted
in figure 6.9) are depicted in figure 6.10.

Now, we apply the mesh improvement scheme again, this time with the refined surface
constructed above as starting point. As parametric domain, we use the refined round sphere
mesh constructed in improve_mesh (). The following method is controlled by nicer_mesh().
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Figure 6.10: Refined glued dumbbell — surface C, refined round sphere mesh — surface B.

First, we determine some technical neighbouring information; we need to know for each ver-
tex to which triangles it belongs. This is executed in the subroutine neighbouring(...),
the information is saved to its parameters. Then we perform the mesh improvement relying
on the conformality trick. Usually, this would mean that we construct the output dumbbell
mesh by pulling back the round sphere mesh we have started with via the parametrisation
as described above. This time, however, we construct a new discretisation of the round
sphere and pull this one back. The advantage is that we can construct a very regular mesh
on S? without respecting the structure of the mesh on the dumbbell (such as its number of
vertices etc.) so that the new mesh on the dumbbell will hopefully adapt very well to the
curvature of the dumbbell but still grep all characteristic features. The new mesh is con-
structed in the subroutine sphere(. . .), the mesh is pulled back by pullback(...). This
variant of mesh improvement is executed by the subroutine harmonicmap_nice(...). All
methods that we have described are controlled by parameter_mesh(...). A flow chart is
shown on page 138. The output “dumbbell” surface after parameter_mesh(...) is depicted
below.

Figure 6.11: After parameter mesh: new glued dumbbell.

We conclude that more specific methods need to be developed in order to improve the
mesh of a glued dumbbell. The same is true even more for glued ellipsoids. The imitated
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refinement method did not work for glued ellipsoids at all, as their mesh is very fine in
the region where the inverted ellipsoid has been inserted. We could therefore not find a
starting point from which the Newton method converged.
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Damped Newton Methods

Instead of the Newton method used by U. Clarenz and G. Dziuk, we work with a damped
Newton method as described in [Sto79,Dzi91]. We do so to secure that the scheme does not
lead “very far away” of the minimum of the energy Fj,. Instead of using the conventional
rule

2 = (@) ()
where f = (F,) and z = (X, A, p), we use the modified version

=) T ),

where t™ € (0, 1] is chosen as follows. Set o = 0.5. For m = 0,1, ... iteratively choose the
smallest number ¢ € Ny that satisfies |f(z™ — t™(f'(x™)) "L f(2™))] < (1 — at™)|f(z™)]
with ¢™ := 279", For convergence results, we refer to [Sto79,Dzi88].

6.3 Conclusions

In chapters 2 and 4 we have introduced the Willmore energy and flow. We have sketched
how the continuous setting can be transfered to a discretised scheme and have studied
the discretised Willmore energy of discrete surfaces and their behaviour under the dis-
cretised Willmore flow. In chapter 3, we have presented a glueing scheme for discrete
surfaces. We have subsequently studied the behaviour of glued surfaces under the Will-
more flow and their Willmore energies. At the end of chapter 4, we have described a mesh
degeneration phenomenon that appears in the application of the discretised Willmore
flow.

In this chapter, we have seen that discrete surfaces that are given as parametrisations over
S? are susceptible to mesh improvements with the conformality trick of U. Clarenz and G.
Dziuk. This trick relies on the theory presented in chapter 5. We have further seen that this
trick cannot be generalised straightforwardly to higher genus surfaces since two surfaces of
the same genus g > 0 need not be conformally equivalent. As we have no indication that
the Willmore flow should preserve the conformal type of a given surface, a conformality
trick would have to be established more carefully. Carsten Eilks'* has communicated to
the author that he has constructed a conformality trick for tori relying on affine linear
mappings. X. Gu and S.-T. Yau!® have taken a different approach than U. Clarenz and G.
Dziuk and were able to calculate global conformal parametrisations of surfaces of arbitrary
non-zero genera.

Finally, we have explained why the conformality trick of U. Clarenz and G. Dziuk is
difficult to apply to glued surfaces homeomorphic to S?. The reason for this was twofold.
For most glued surfaces, a suitable starting vector for the Newton method used in the
conformality trick could not be found. We have shown exemplarily how this deficiency can
be partially remedied for a glued dumbbell.

Mnstitut fiir Angewandte Mathematik, Albert-Ludwigs-Universitiit Freiburg, the work is unpublished.
15ef. [GY02, GY03)].
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