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1. Setup

Static isolated general relativistic systems have been studied from a number of perspectives including
their regularity, compactification and asymptotic considerations, symmetry classifications, construction
of explicit solutions etc. They serve as models of static stars and black holes. Here, we present a new
geometric approach to the study of static isolated systems and their physical properties for which we
suggest the name geometrostatics [C1,C2).

Static space-times are Lorentzian space-times possessing a timelike Killing vector field X —1i. e. V(QX ) =
0 — that is hypersurface-orthogonal, i. e. X a VX 5] = 0. They generically possess a 3+ 1-decomposition
with vanishing shift vector. In this canonical decomposition, the canonical lapse function is time-
independent and coincides with the Lorentzian length of the time-like Killing vector field. The spacelike
time-slices orthogonal to the time-like Killing vector field are isometric and have vanishing extrinsic
curvature. Their induced Riemannian metric is time-independent. We will subsequently identify all
canonical time-slices (M3, g).

Generic static space-times (M*, ds?) can be canonically decomposed via X = 9} into

M*=Rx M? and ds°= —N?dt? + g

with induced Riemannian metric g and lapse function N = %\/ —ds?(0y, 0r) > 0.

t

Here, c is the speed of light. Outside the support of the matter variables, Einstein’s equations reduce to
the Vacuum Static Metric Equations

N 9Ric =9V?N and 9AN =0 (1)

Here, 9Ric is the Ricci curvature tensor of the metric g, 9AN is the curvilinear Laplacian and 9 V2N the
curvilinear Hessian (symmetric second covariant derivatives) of N.

2. Regularity and Asymptotics

It is useful to study the system (1) in wave-harmonic coordinates, i. e. local coordinates (z*) on
(M3, g) satistying
2 .
IOt = 0, (2)

where 95° is the d’Alembert or wave operator with respect to ds? = — N2c2dt? + g.
[n wave-harmonic coordinates, the vacuum static metric equations (1) are elliptic and therefore have
locally real analytic solutions (g;;, N) [MzH]. We consider static space-times that are asymptoti-

cally flat in the sense that the Riemannian manifold (M3, g) consists of a compact set K C M 3 and
one (or several) asymptotically flat ends £ C M3. On the end E, there are global coordinates (") such

that
1

gz'j:5ij—|—0<—) and N:1+0(1> (3)
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where 7 := /(212 + (22)? + (23)2. In other words, the Riemannian metric is asymptotically Euclidean
and the lapse function decays like in Minkowski.
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Static asymptotically flat space-times satisfying the (vacuum) static metric equations (1) automatically
asymptotically decay like the spherically symmetric Schwarzschild solutions [KM]|
mG 1 2mG 1
N—l——2—|—0<ﬁ> and gij_(1+—> 5Zj+0<_) (4)
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in wave-harmonic asymptotically flat coordinates. Here, GG is the gravitational constant, ¢ the speed of
light, and m is the ADM-mass of the slice (M3, g).

3. Pseudo-Newtonian Gravity

The asymptotic decay (4) of the lapse function N resembles the asymptotic decay of the Newtonian
potential U in the classical Newtonian theory of gravity. The similarity becomes more prominent if we
make a change of variables (which is frequently used in the literature):

v:=N?g and U:=c’logN (5)

We suggest to call these new variables pseudo-Newtonian potential U and pseudo-Newtonian
metric v, respectively [C1,C2]. The vacuum static metric equations (1) transform into the vacuum
pseudo-Newtonian equations

2
TRic = 4 dU x dU and AU = 0. (6)

c
The asymptotic decay (4) can be transformed accordingly. Comparing these equations and decay condi-
tions to the governing equation of vacuum static Newtonian Gravity, AU = 0 and the well-known decay
for the Newtonian potential, we obtain

Newtonian Gravity Pseudo-Newtonian Gravity

“Ric = 0 "Ric = ZdU x dU
NU =0 AU =0
U:—mTG+O(%> U:—mTGHo(%)
0jj = Ojj gij = 0;; +O (#)

Here, 0 denotes the flat background metric of Newtonian Gravity. As we work in three spatial dimen-
sions, the equation Ric = 0 is equivalent to 0 being the flat background metric of Newtonian physics
and can thus be added to the ordinary vacuum Newtonian equation AU = 0. In the pseudo-Newtonian
variables (v, U), static space-times thus resemble static Newtonian gravitating systems even more than
in the geometrostatic variables (g, V).

4. Newtonian Limit

On a formal level, the vacuum pseudo-Newtonian equations (6) converge to the vacuum Newtonian
equation(s) ORic = 0 and °AU = 0 as ¢ — co. This can be made rigorous with the help of Ehlers’ frame
theory [E]. In Ehlers’ frame theory, General Relativity and Newtonian Gravity (or rather Newton-Cartan
Theory) appear as disjoint regimes of a common framework parametrized by A := c™2or \:=0in the
Newtonian case. The Lorentzian metric ds® as well as the Newtonian potential then appear as derived
variables of two tensor fields g, h and an affine connection I'. The Newtonian limit is hence not defined
for a single relativistic system but for a whole family of systems. The choice of this family is by no
means unique as the figure below illustrates.
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Frame theory is a geometric (coordinate invariant) theory which has not yet been widely studied. We
suggest notions of Killing vectors, staticity, pseudo-Newtonian metric/potential, and asymptotic flatness
within frame theory [C1]. With these notions, we prove the following theorem in |C1].

Theorem 1. Let (M3, g(\), N()\)) be a family possessing a Newtonian limit (M?,5,Uy)
as A — 0. Then the pseudo-Newtonian variables behave such that

Yii(A) = 5(0) = 055 (7)
U\ — U(0) = Uy (8)

as ¢ — 0o in wave-harmonic/Galilean coordinates (x').

5. Mass and Center of Mass

How do physical properties behave along the Newtonian limit? Does, for example, ADM-mass converge
to Newtonian mass as A — 07 We can answer this question — and the corresponding question for the
ADM-center of mass to the affirmative [C1].

Theorem 2. Let (M3, g()\), N()\)) be a family of static spacetimes possessing a New-
tondan limit (M3,5,Ux) as A — 0. Then the ADM-mass mapy;(N) and the ADM-
center of mass ZoApyr(A) converge to the Newtonian mass mopys(0) = my and center
of mass Zopp(0) = Zny as A — 0. The latter convergence assumes the use of wave-
harmonic/Galilean coordinates. Moreover, the CMC-center of mass [HY| coincides with
the ADM-center of mass and thus converges to the Newtonian center of mass, too.

This theorem relies on our definition of pseudo-Newtonian mass and center of mass |C1]:

Definition 1. Let (Mg,% U) be a pseudo-Newtonian system. Let X2 be a closed 2-surface in M>.
Let v be the y-outer unit normal to and do is the y-surface measure on X.. We define the pseudo-
Newtonian mass and the pseudo-Newtonian center of mass of X by

1 oU . 1 oU ox
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where I is the vector of asymptotically flat wave-harmonic (or ~v-harmonic) coordinates.

By the Laplace equation in (1), both mpy and Zppy are in fact independent of ¥ if the surface ¥
encloses the support of the matter. Abbreviating z:= Z'pp;, we obtain an improvement of (4) as well as
a result on the Newtonian limit of mass and center of mass |C1].

o !
U:_mG_mGz ZE_|_O< )7 (10)
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Theorem 3. On any surface X enclosing the support of the matter, we have

mpN(E) =mapy  and  ZpN(E) =Zapym = ZoMC (11)
We have thus localized ADM-mass and center of mass in the static setting.

For more results on geometrostatic systems, for example a discussion of test body behavior and of photon
spheres, please see [C1].
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