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1 Summary

1 Summary

Pesticides are widely used for pest control in agriculture. Besides their intended use, their
long-term fate in real systems is not well understood. They may persist in soils, thereby altering
ecosystem functioning and ultimately affecting human health. Pesticide fate is assessed through
dissipation experiments in the laboratory or the field. While field experiments provide a close
representation of real systems, they are often costly and can be influenced by many unknown
or uncontrollable variables. Laboratory experiments, on the other hand, are cheaper and have
good control over the governing variables, but due to simplification, extrapolation of the results
to real systems can be limited. Mechanistic models are a powerful tool to connect lab and
field data and help us to improve our process understanding. Therefore, I used mechanistic,
process-based models to assess key microbial regulations of pesticide degradation. I tested my
model hypotheses with two pesticide classes: i) chlorophenoxy herbicides (MCPA (2-methyl-4-
chlorophenoxyacetic acid) and 2,4-D (2,4-Dichlorophenoxyacetic acid)), and ii) triazines (atrazine
(AT)), in an ideal scenario, where bacterial degraders and pesticides are co-localized. This thesis
explores some potential controls of pesticide degradation in soils: i) regulated gene expression,
ii) mass-transfer process across the bacterial cell membranes, iii) bioenergetic constraints, and
iv) environmental factors (soil temperature and moisture).

The first part of this thesis describes a set of gene-centric models that explicitly incorporate
gene and enzyme expression. I calibrated and validated the model variants with data from two
batch experiments of 2,4-D and MCPA pesticide degradation. I compared the performance of
the model variants against each other and a standard Monod model. Results highlight that
regulated gene expression controls 2,4-D and MCPA degradation in soils. The novel gene-centric
models predict pesticide mineralization as good as the standard Monod model, but additionally
account for pesticide-triggered gene regulation, allowing us to better capture microbial dynamics
during pesticide mineralization. This way, the gene-centric models could be used to explore the
relationship between transcription of functional genes and process rates, thereby offering an

advantage over the standard Monod model.
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The second part of this thesis extends and improves existing chemostat/retentostat models
to evaluate the role of biophysical limitations (mass transfer across the cell membrane) and
bioenergetic growth constraints of pesticide degradation, both hypothesized to be responsible
for pesticide persistence at low concentrations in real systems. The target pesticide was
atrazine, which is highly persistent. Results point out that sorption-limited bioavailability could
explain the long-term fate and persistence of the main degradation metabolite hydroxyatrazine.
However, my model overestimated the long-term biodegradation of atrazine in soils, indicating
that more processes than bioavailability are regulating atrazine degradation.

The third part of this thesis explores the role of environmental factors (soil temperature,
soil moisture, and substrate concentration) for the fate of pesticides. Through a combination
of lab experiments and modeling, MCPA degradation was investigated under different soil
temperature (10°C and 20°C) and moisture (pF 1.8 and 3.5) regimes, and substrate concentrations
(1 and 20 mgkg™?!). Results show that microbial degrader populations degrade the pesticide
even in colder and drier soils and at low substrate concentrations. By measuring and simulating
a higher carbon use efficiency (CUE), I could confirm that microbial degraders are able to cope
with such limiting conditions by allocating more carbon to their biomass as a result of potential
physiological adaptation. Therefore, extreme environmental conditions do not explain pesticide
persistence in soils.

The models presented in this thesis show that including microbial regulations improves
predictions of pesticide degradation, compared to conventional models based on Monod kinetics.
The gene-centric models achieved a better representation of microbial dynamics and enable us
to explore the relationship between functional genes and process rates, and the models that
used transition state theory to account for bioenergetic constraints improved the description
of degradation at low concentrations. However, the lack of informative data for the validation
of model processes hampered model development. Therefore, in the fourth part of this thesis,
I used atrazine with its rather complex degradation pathway to apply a prospective optimal

design method to find the optimal experimental designs to enable us identifying the degradation
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pathway present in a given environment. The optimal designs found suggest to prioritize
determining metabolites and biomass of specific degraders, which are not typically measured in
environmental fate studies. These data will lead to more robust model formulations for risk
assessment and decision-making.

With this thesis, I revealed important regulations of pesticide degradation in soils that help to
improve process understanding and model predictions. I provided simple model formulations,
for example the Hill function for gene expression and transition state theory for bioenergetic
growth constraints, which can easily be integrated into biogeochemical models. My thesis
covers initial but essential steps towards a predictive pesticide degradation model usable for risk
assessment and decision-making. I also discuss implication for further research, in particular
how mechanistic process-based modeling could be combined with new technologies like omics

and machine learning.

2 Zusammenfassung

Pestizide sind weit verbreitet in der landwirtschaftlichen Schadlingsbekdampfung. Anders als
ihre Wirkungsweise, ist ihr Langzeitverbleib in der Umwelt nicht gut verstanden. Sie gelangen
in den Boden und kénnen sich dort anreichen und die Bodenfunktionen beeintrachtigen und
letzendlich auch die menschliche Gesundheit gefidhrden. Die Ausbreitung von Pestiziden wird
anhand von Abbauversuchen in Labor- und Feldexperimenten ermittelt. Feldexperimente bieten
ein relativ genaues Abbild natiirlicher Systeme, sind jedoch meist teuer und kénnen durch
unbekannte oder nicht kontrollierbare Faktoren stark beeinflusst werden. Laborexperimente
sind in dieser Hinsicht kostengiinstiger und bieten eine gute Kontrolle der einwirkenden
Faktoren. Allerdings lassen sich die Ergebnisse nur begrenzt auf natiirliche Systeme
iibertragen. Mechanistische Modelle sind ein machtiges Werkzeug, um Labor- und Felddaten
zusammenzufithren und helfen uns dabei, die mikrobiellen Regulationsmechanismen des
Pestizidabbaus im Boden besser zu verstehen. Aus diesem Grund habe ich mechanistische,

prozess basierte Modelle eingesetzt. Ich habe meine Modellhypothesen bei zwei Pestizidgruppen
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getestet: i) Chlorphenoxyherbiziden (MCPA (2-Methyl-4-chlorphenoxyessigsdure) und 2,4-D
(2,4-Dichlorphenoxyessigsdure)) und ii) Triazinen (Atrazin (AT)), in einem Idealszenario, wo
bakterielle Abbauer und Pestizid kolokalisiert auftreten. Meine Doktorarbeit konzentriert
sich auf einige der potenziellen Kontrollmechanismen des Pestizidabbaus im Boden: i)
regulierte Genexpression, ii) Massetransferprozesse durch die Zellmembran, iii) bioenergetische
Limitierungen und iv) Umweltfaktoren (Bodentemperatur und Bodenfeuchte).

Der erste Teil dieser Doktorarbeit beschreibt eine Reihe Modelle, die explizit Gen- und
Enzymexpression beinhalten. Kalibriert und validiert habe ich die Modellvarianten mit Daten
aus zwei Batch-Experimenten iiber Pestizidabbau von 2,4-D und MCPA. Ich verglich die
Leistungsfihigkeit der Modellvarianten gegeneinander und gegeniiber einem herkémmlichen
Monod-Modell. Die Ergebnisse zeigen, dass die Genexpression den Abbau von 2,4-D und MCPA
reguliert. Die neuartigen gen-basierten Modelle sagen die Pestizidmineralisierung ebenso gut
voraus wie ein herkdmmliches Monod-Modell. Dartiber hinaus sorgt die Beriicksichtigung
einer pestizidabhiangigen Genregulierung dafiir, die mikrobielle Dynamik wahrend der
Pestizidmineralisierung besser widerzuspiegeln.

Der zweite Teil dieser Doktorarbeit erweitert und verbessert bestehende Chemostat-
/Retentostat-Modelle, um zu evaluieren, welche Rolle biophysikalische Limitierungen
(Massentransfer durch die Zellmembran) und bioenergetische Wachstumslimitierungen beim
Pestizidabbau spielen, da beide vermutet wird, dass sie fiir Pestizidpersistenz verantwortlich
zu sein. Das untersuchte Pestizid war Atrazin, das recht persisten ist. Die Ergebnisse zeigen,
dass die sorptionslimitierte Bioverfiigbarkeit das Langzeitverhalten und die Persistenz des
Hauptmetaboliten Hydroxyatrazin erklaren konnten. Jedoch iiberschitzte das Modell den
biologischen Langzeitabbau von Atrazin, was darauf hinweist, dass noch weitere Prozesse den
Atrazinabbau regulieren.

Der dritte Teil dieser Doktorarbeit untersucht die Rolle von Umweltfaktoren
(Bodentemperatur, Bodenfeuchte und Substratkonzentration) auf den Abbau von MCPA bei

verschiedenen Bodentemperatur- (10°C und 20°C) und Bodenfeuchteregimen (pF 1,8 und pF 3,5)
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und Substratkonzentrationen (1 und 20 mgkg™'). In Laborexperimenten und Simulationen
zeigte sich dass Populationen mikrobieller Abbauer auch in kélteren und trockeneren Béden und
unter geringen Substratkonzentrationen MCPA abbauen. Durch die Messung und Simulation
einer hoheren Kohlenstoffnutzungseffizienz (CUE, engl.: carbon use efficiency) konnten wir
bestitigen, dass mikrobielle Abbauer unter limitierenden Bedingungen auf Stress reagieren,
indem sie mehr Kohlenstoff in ihre Biomasse verlagern. Aus diesem Grund erkliren extreme
Umweltfaktoren nicht die Persistenz von Pestiziden im Boden.

Die in dieser Doktorarbeit vorgestellten Modelle zeigen, dass die Beriicksichtigung
mikrobieller Regulationen Vorhersagen des Pestizidabbaus verbessert, gegeniiber
herkémmlichen, auf Monod-Kinetik-basierenden Modellen. Die gen-basierten Modelle
erreichten eine bessere Représentation der mikrobiellen Dynamik und geben uns die
Méglichkeit, den Zusammenhang zwischen funktionellen Genen und Prozessraten herzustellen,
wohingegen Modelle, die die Abbaugeschwindigkeit auf Grundlage der Theorie des
Ubergangszustandes limitieren, eine genauere Konzentrationen liefern. Der Mangel an
Messdaten zur Validierung behinderte allerdings die Modellentwicklung. Daher benutzte ich ich
im vierten Teil dieser Arbeit, am Beispiel von Atrazin, mit seinem eher komplexen Abbauweg,
eine Methode des prospective optimal design, um das bestmogliche Experimentaldesign
zu finden, mit dem wir den in einer bestimmten Umgebung vorherrschenden Abbauweg
identifizieren konnen. Die gefundenen optimalen Designs weisen auf die Erfordenis hin, die
Messung von Hauptmetaboliten und Biomasse von spezifischen Abbauern zu priorisieren,
welche in Abbauversuchen typischerweise nicht gemessen werden. Die Informationen aus
diesen Daten werden zu besseren Modellformulierungen fithren, die sich fiir Risikoabschétzung
und Entscheidungsfindung nutzen lassen.

Mit dieser Doktorarbeit konnte ich fiir den Pestizidabbau im Boden wichtige
Regulationsmechanismen aufdecken, und so, unser Verstidndnis und Vorhersagen solcher
Prozesse verbessern. Ich stelle einfache Modellformulierungen bereit, beispielsweise die Hill-

Funktion fiir Genexpression und eine Implementierung der Theorie des Ubergangszustands,
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welche sich einfach in biogeochemische Modelle integrieren lassen. Meine Arbeit liefert
grundlegende und entscheidende Schritte zur Entwicklung eines Vorhersagemodells fiir den
Pestizidabbau und dessen Einsatz in Risikoabschédtzung und Entscheidungsfindung. Dariiber
hinaus gebe ich einen Ausblick auf weiterfithrende Forschungsansitze, insbesondere wie sich
mechanistische, prozess-basierte Modellansitze mit neuen Technologien wie omics und Machine

Learning verbinden lassen konnten.
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3 General Introduction

3.1 Pesticides: application and environmental concerns

The increasing pressure for food supply worldwide has led to the intensification of agriculture
and the search for ways to increase yields on limited arable land [1]. In this context, pesticides
have become a relevant component of modern agriculture aiming to enhance productivity by
reducing potential plant stressors such as pests, weeds or diseases [2-5]. Besides agriculture,
their use also extends to public health programs as a way to deal with vector-borne diseases [1,
6].

Typically, pesticides can be classified according to the target pests (fungicides, bactericides,
herbicides, acaricides), the chemical composition (organochlorines, organophosphates,
carbamates, pyrethroids, etc.), and mode of entry into the target pest (systemic, contact, stomach
poisoning, fumigants, etc.) [7]. Recently, the World Health Organization has recommended [8]
that pesticides be classified according to hazard: from unlikely hazard, to present acute hazard,
to extremely hazardous.

Over the last thirty years, pesticide application has increased [9]. Estimations show an annual
use of pesticides of about 2 million tons per year, with projections to surpass 3.5 million tons
in the coming years [10]. Moreover, high-income countries apply more pesticides, and the
predominance of China and the United States as the major pesticide users seems to validate
this statement [11]. However, the increment in application does not necessarily translate to an
increase in productivity [12], as high pesticide applications can negatively impact non-targeted
organisms [13-15], and ecosystems [16].

First signs of pesticide impact on non-target organisms were reported in the book Silent
Spring [17] published in 1962, alerting the world about potential effects of the pesticide DDT
on wildlife, especially birds and bees. Studies have also suggested negative effects on humans
ranging from endocrine [18, 19] and reproductive effects [20, 21] to even cancer [22, 23].

Therefore, pesticide use in the EU is increasingly regulated [24], and, in some cases, led to the
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removal of some pesticides from the market [25]. New movements towards a more holistic and
environmental friendly management, as well as organic farming are arising [26] as a response to
the overuse of pesticides in modern agriculture. This involves biological pest control as well as
the use of alternative natural and biodegradable pesticides [27-29]. Nevertheless, as pesticides

are still used, research focused on the effects of pesticides continues to be relevant as well.

3.2 Fate of pesticides in the environment

The environmental fate of pesticides is driven by a complex interplay of microbial and
physicochemical processes as well as physicochemical properties of the pesticides in soil and
water, influenced by environmental conditions [30]. Pesticides undergo different degradation
pathways in the environment. During their lifetime, pesticides are subject to transfer/transport
and transformation processes [31].

Transfer/transport processes (Figure 1) control the movement of pesticides through the
three main environmental compartments (air, water, and soils), and how they eventually
end up in living organisms (plants and animals) [31]. Pesticides enter the atmosphere
through volatilization [32], and go back to the surface through dry or wet deposition [33,
34]. From soil and plant surfaces, pesticides can also enter the water systems (rivers, lakes)
via surface runoff [35], or get into groundwater through leaching processes [36]. In the
pedosphere, pesticides can be sorbed onto soil particles. Finally, pesticides can enter and
further bioaccumulate in the biosphere through uptake by plant roots [37], or ingestion by

animals [38].
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Crop

Soil

Groundwater

Figure 1: Transfer/transport fate of pesticide in the environment. 1: volatilization into the air,
2: Surface and subsurface runoff, 3: Leaching into groundwater, 4: plant uptake, 5:
Sorption onto soil particles, 6: wet and dry deposition, 7: biological transformations

Transformation processes (abiotic and biotic) are responsible for the degradation of pesticides
and the formation of intermediate metabolites. Abiotic pesticide transformation includes
photolysis [39], hydrolysis [40], and redox reactions [41]. Biological transformations include
the use of the pesticide as a carbon and/or nitrogen source for growth and maintenance [42-45],
energy source [46, 47], and electron donor for redox reactions [48]. Many bacterial strains have
evolved to degrade pesticides due to long-term exposure to such substances [49]. Cometabolic
degradation [42, 50] that uses pesticide as “non-growth or fortuitous substrate” [51], as well as
plant-mediated transformations [52-54] have also been observed.

Despite the existence of different degradation pathways and the observable biodegradability
of pesticides, some pesticides can remain in soils in significant concentrations to affect human
health and soil biota [55]. According to Silva et al. [55], around 80% of the studied topsoils
across Europe contained pesticide residues and mixtures of them at very low concentrations.
The herbicide atrazine is one particular example of long-term persistence in real systems. This
herbicide can still be found in soils and groundwater even after 30 years of absence of application
due to bans [56, 57]. Many physical and biological processes have been hypothesized to limit

pesticide degradation in soils. Physical processes such as sorption onto soil particles [58], or onto
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humic substances [59] retard degradation. Spatial heterogeneity (of pesticide [60] and degrader
populations [61]) also reduces degradation rates leading to persistence. Biologically mediated
processes including active [35] and passive [62, 63] transport across the cell membrane could
represent the first step in a predominantly intracellular degradation of pesticide. Additionally,
metabolic demands surpassing the catabolic energy obtained from pesticide degradation might
stop degradation below certain threshold concentrations [64]. However, the unexpected findings
of pesticide residues in soils demonstrate that our understanding of pesticide degradation in the

environment is still incomplete.

3.3 How to assess pesticide fate in the environment

Degradation experiments are designed to investigate degradation pathways, the formation
of main metabolites, and the half-lifes of pesticides [65]. They are generally performed with
laboratory experiments (controlled conditions) and field studies (closer to natural conditions).

Laboratory experiments in soil microcosms or chemostat/retentostat reactors, provide a
simplified representation of processes in nature, and conclusions from these experiments,
therefore, cannot be simply extrapolated to real systems [66, 67]. One proof is the case of
atrazine, which is readily degradable under controlled conditions but persists in soils and
groundwater [56]. However, due to the simplicity of laboratory systems, specific processes can
be studied without the interference of uncontrolled factors [68, 69]. Field studies are closer
representations of real systems but are usually linked with high costs and the encounter of
many uncontrolled factors that can affect the target measurements [70]. Because both methods
have limitations, modeling tools can bridge the gap and connect them to real systems.

Kinetic models, representing biochemical reactions through equations [71] can be used to
describe pesticide degradation in different real systems (soil, groundwater, water bodies) for
prediction and for process understanding.

Prediction or risk assessment models for pesticide degradation are simple models generally

varing from first-order-like models to lag-phase models. The forum for the coordination of

10
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pesticide fate models and their use (FOCUS) [65] compiles different kinetic models that are
used for the assessment of new pesticides. FOCUS models evaluate pesticide persistence using
degradation endpoints (standard endpoints evaluated are DTsy and DTqg, which refers to the time
that it takes to dissipate 50% to 90% of the pesticide) of the parental compound and metabolites.
Some models additionally describe the influence of soil heterogeneity in pesticide degradation
(Gustafson and Holden model) and the role of bacterial degraders (Logistic model) [65]. Despite
their effectiveness, in some cases, endpoints are underestimated, and residual pesticides can
still be found in soils and groundwater [55, 72]. This suggests that key drivers of pesticide
degradation might be misrepresented in such models [73].

A deeper investigation of the mechanisms controlling pesticide degradation can be achieved
with biogeochemical mechanistic modeling [74, 75]. This approach can not only improve our
mechanistic understanding of reactive processes, but also produces benchmark models that can
then be simplified to be applicable to large scales. Some examples of mechanistic approaches

with the potential for modeling pesticides in soils are described as follows:

1. Metabolic flux modeling is an approach that uses genome sequences to derive the
potential biogeochemical reactions related to them. It is mainly focused on single
species but can be extended to multiple species assuming a supra-organism [76]. An
example of this approach has been applied to atrazine in contaminated soils coupled with

biostimulation strategies [77].

2. Gene-centric modeling is an approach that uses genetic information on specific
functional groups to make quantitative predictions of genes and mRNA dynamics, and
relating them to substrate dynamics [76]. One example of this approach for pesticide

degradation is the PECCAD model [43, 78].

3. Agent-based modeling is an approach that describes individuals and their interactions
with detailed process descriptions, but it can be complex and difficult to apply [76]. With

pesticides, they have mainly been used for risk assessment [79].

11
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3.4 Model data integration using omics and isotopic data

The lack of data to validate mechanistic models is currently the main limitation in the
applicability of biogeochemical modeling [73, 75]. However, modern techniques in biology
continuously extend data availability and exploit new sources of information that can be useful
for modeling different compounds and systems.

New techniques such as omics technologies (i.e., genomics, transcriptomics, proteomics,
metagenomics, metabolomics, etc.) [80] provide promising information to analyze biological
systems to far greater detail [80, 81]. For example, bacterial degraders can be represented
in models by their functional groups or genes [43, 82, 83], transcripts or mRNA [83], and
enzymes [83-85]. The explicit integration of gene abundances into mechanistic models helps
to account for ecological functions of the species that might be misrepresented due to the low
number of cultivatable microorganisms [82]. The explicit integration of enzymatic regulations
is also key to improve predictions of organic matter dynamics [85], and to describe complex
microbial communities [84]. This approach describes the microbial community as a “collective
assembly of metabolic capabilities” represented by functional enzymes that do not depend
on particular bacterial guilds. Finally, large datasets from metabolomics or transcriptomics
have been used to derive degradation rates [77] and microbiome responses to environmental
perturbations [86] through a combination of biogeochemical models and machine learning
tools.

Experiments, involving stable isotopes (defined as elements with the same properties but
different atomic masses, attributed to differences in their amount of neutrons) [87], are used
in modeling the fate of compounds in real systems and have the potential to reduce model
uncertainty and equifinality of model parameters [88, 89]. The most commonly used stable
isotopes are nitrogen, carbon, phosphorus [87], and oxygen [90]. For example, isotopes of 1*C
have been used for carbon turnover models in soils [43, 88], 2H and 20 for soil water flow
models [91], and ®N for nitrogen cycle models [92]. Recently, “compound-specific isotope

analysis (CSIA)” has been fundamental to determine the degradation pathway of atrazine
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in engineered systems, and thus the rate-limiting step of the degradation of this compound,

especially at low substrate concentrations [62, 63, 93].

3.5 Model uncertainty and sensitivity analysis

Mathematical models and models in general are always simplified representations, limited by
our understanding of how complex systems work [94, 95]. Unfortunately, the simplification [95]
introduces an error into our model formulations, called structural uncertainty [96]. On top
of that, lab and field measurements used to calibrate and validate our models usually carry
noise as a product of human error or the inability to control sources of variations that influence
the processes to be measured [96]. Finally, complex models for pesticide degradation are
typically of the mechanistic type and include many model parameters whose values cannot be
accurately identified with the available data (equifinality problem) [73], which is another source
of uncertainty.

Model uncertainty impairs the reliability of model predictions/simulations and might distort
the interpretation of model results. The quantification of model uncertainty is therefore
an important step to assess model reliability, especially when policymakers shall use model
predictions to establish management plans for pesticide use [97] or mitigation strategies against
pollution [98]. Various methods of uncertainty quantification have been established in different
research fields. Often, methods are based on Bayesian theory [99], such as the Bayesian multi-
model ensemble analysis [95]. Frequently, mechanistic models for pesticide degradation are
sloppy [73], meaning that parameters may not be identifiable. An identifiability analysis helps
to determine those parameters and thus the processes that cannot be identified with the given
data, leading to a further simplification of the model formulations [100, 101].

Sensitivity analyses provide the information on how the uncertainty of model inputs (model
parameters) impacts the uncertainty of model outputs [102, 103]. Sensitivity analyses can be
local, providing a limited picture of the parameters that the larger impact on model output [104].

Global sensitivity analysis, on the other hand, evaluates changes within the entire parameter

13
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space, affected by all parameters at once [105]. Techniques for global sensitivity analyses are

the Morris Method [103, 106, 107] and the variance-based “Sobol” method [103].

3.6 Model-based optimal design of experiments

In the intent to describe pesticide degradation, many distinct and competing model formulations
have been developed to account for the complexity of pesticide degradation in the environment,
our incomplete understanding of the processes that control degradation, and the lack of sufficient
data to validate model assumptions. Finding the best representation of pesticide degradation
is hence a non-trivial and challenging problem, especially if the models are later used for
predictions [108]. Model selection techniques aim to guide this selection process by finding
a trade-off between model complexity and goodness of fit against the available data [109]. If
the data used for model selection is insufficient, the original experimental setup can be refined
through a retrospective optimal design of experiments.

On the other hand, a prospective optimal design of experiments can allow for model selection
prior to the execution of the experiment [110]. Its objective is to find a single design d,; from a
collection of designs D that maximizes the information gain towards a specific goal (¢) [111],
which could be model discrimination. Additionally, the prospective method can be targeted to
improve model calibration and reduce uncertainty of predictions.

When working with competing models, it is important to notice that including a completely
inappropriate model can easily skew the results by indicating an easy discrimination of
that model. Therefore, it is essential to carefully select for models with the best possible
representation of the system to work with [112].

There are different methods for prospective optimal design that have been proposed in various
fields. Leube et al. [113] introduced the preDIA method (posterior data impact assessor) that
combines Monte Carlo simulations, Bayes’ theorem and Bayesian model averaging to “average
the utility of designs over all possible measurements that a given sample can produce” [113].

This method was used on steady-state simulations to evaluate the optimal design that could
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predict the long-term reduction of a pollutants’ concentrations in groundwater [113], to evaluate
the location of wells for a better determination of the groundwater divide location [111].

The main drawback of methods like preDIA is the computational effort to: i) compute the
marginal utility of the designs, and ii) produce non-biased plausible model simulations that
allow us to generalize the optimal design results. To solve the problem of computational effort,
we can use other metrics to evaluate the benefit of the proposed designs. Because designs can be
interpreted as vectors containing measurements [111], metrics utilizing the Euclidean distance
can be adapted with relatively low computational effort, for example the concepts of energy
distance [114], L, —distance, and L, —norm [115].

Producing plausible model outputs prior to the experiment, while also expending reasonable
computational effort can be challenging, especially when the behavior of the model simulations
cannot be constrained by data. A combination of rule-based and Markov chain Monte Carlo
(MCMC) methods can provide a solution. Rules can be derived from expert knowledge of the
system (i.e., half-life of pesticide) and be used to only keep relevant system behaviors [116].
Complementary, MCMC-based methods such as the DREAM algorithm [117], or the constraint-
based search algorithm [118] are valuable to efficiently sample parameters leading to the desired

behavior.

15



4 Research questions

4 Research questions

Even though we know that bacteria and other soil organisms as well as abiotic processes have the
potential to degrade pesticides, some persist in soils for long periods [55-57]. This shows that
our understanding of the processes controlling pesticide degradation in soils is still incomplete.
Moreover, potential microbial and biophysical limitations and environmental factors such as
soil temperature and soil moisture are not fully considered into current pesticide degradation
models, or their relevance for pesticide persistence has not been fully evaluated.

To improve our process understanding of pesticide fate in soils, I explored three potential
mechanisms controlling pesticide degradation, microbial regulation, biophysical limitations, and
the influence of environmental factors (temperature and soil moisture), to answer the following

research questions.

(R1): What is the role of regulated gene expression as a microbial control of pesticide
degradation in soils, and what is the benefit of explicitly including this process into

biogeochemical models for process understanding and model predictions?

(R2): Do biophysical limitations (mass transfer across the cell membrane) and bioenergetic

growth constraints control the degradation of pesticides in soil?

(R3): How do different soil temperature and soil moisture levels affect the overall pesticide fate

in soils?

Pesticide degradation in soils can be carried out by different bacterial strains and is affected
by physicochemical processes such as sorption and abiotic degradation. These processes
requiere model formulations that differ in complexity and accuracy of the predictions. To
identify the predominant pathway of pesticide degradation in soils, and to select the most
suitable model among competing models, I investigated which data is needed to distinguish
the competing degradation pathways. To this end, I aimed to answer the following additional

research questions:
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(R4): What type of measurements should be prioritized to distinguish competing degradation

pathways of pesticides in soils?

(R5): What level of complexity is needed to represent pesticide degradation in soils?

Ianswered these questions with a data-model integration approach using mechanistic, process-
based models. With this thesis, I expect to improve process understanding related to pesticide
degradation in soils. Further, I provide equations/new approaches of how to model limitations

of pesticide degradation that can easily be implemented into biogeochemical models.
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5 Research design

5.1 Model assumptions

With my thesis, I aimed to explore the role of biokinetic processes that might explain pesticide
persistence. I assumed a so-called “optimal pesticide degradation scenario” (Figure 2), focusing
on microbial regulations to be the main drivers of pesticide degradation. Therefore, I excluded
processes that may retard or even enhance pesticide degradation, such as i) spatial soil
heterogeneity, ii) preferential water transport (advective—dispersive transport), iii) competing

carbon sources (I assume pesticides as the sole carbon and energy source).

Pesticide .
Bacteria @@®

Figure 2: “Optimal pesticide degradation” scenario. In this scenario, bacteria and pesticide
co-occur in the same spots, facilitating degradation. Water transport in soil, soil spatial
heterogeneity and additional carbon sources are not included

5.2 Model pesticides

I used two model pesticides from two classes: i) Chlorophenoxy herbicides, represented by
2,4-D and MCPA, and ii) Triazines, represented by atrazine. Based on the characteristics of
these two pesticide classes and their fate in the environment, I evaluated different hypotheses
and degradation mechanisms specific for each pesticide.

2,4-Dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid
(MCPA) are auxin active molecules that disturb tissue growth of higher plants [119, 120], and

which therefore are used as herbicides. 2,4-D and MCPA are highly soluble substances and
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prone to leaching due to their low sorption to soil particles [121]. The complete degradation
pathway of both components has been described in the literature [122-125], as well as the genes
controlling degradation. The tfdA [126-128], cadA and r/sdpA genes [129, 130] are identified
as the genes responsible for 2,4-D and MCPA degradation, with tfdA genes being the most
abundant in soils [131]. The well-studied degradation pathway at the molecular level made
these two herbicides suitable model pesticides to explore microbial regulations of pesticide
degradation.

Atrazine herbicide that despite having been banned for over thirty years in the EU, it is
still detected in relevant concentrations in soils and groundwater [56, 57]. Thus, atrazine is
a very good model pesticide to explore pesticide persistence in soils. In the environment,
atrazine undergoes different abiotic [132] and biotic [49] degradation pathways. Many
bacterial strains are involved in atrazine degradation, using it either as a carbon source [133],
nitrogen source [134], or as both carbon and nitrogen source [135]. Bacterial strains carrying
the genes atzABC, trzN-atzBC, or trzN—atzC [49, 63, 136] can grow on the side chains
of atrazine and degrade it to cyanuric acid. Strains with the genes atzDEF are able to
further reduce the intermediate metabolite cyanuric acid to CO;, under absence of alternative
nitrogen sources [137-139]. The absence of atzB or atzC genes leads to the accumulation of
hydroxyatrazine [140-142], the main metabolite of atrazine by dechlorination. Hydroxyatrazine
is also persistent in real systems [143, 144]. Additionally, cometabolic degradation pathways of
atrazine produce the metabolites deethylatrazine (DEA) and deisopropylatrazine (DIA), which
also persist in soils [145, 146]. This diversity of degradation pathways makes atrazine an

interesting model pesticide for the identification of degradation mechanisms.

5.3 Methods for model uncertainty quantification and sensitivity analysis

In this thesis, parameter uncertainty was determined using the DREAM toolbox in Matlab [117].
The DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm for model calibration

calculates parameter uncertainty in the form of a posterior parameter distribution based
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on a Bayesian approach (prior knowledge of the model parameters or uninformative prior
distributions and likelihood of the data). Identifiability analysis [100, 101] was performed to
find parsimonious model formulations. Additionally, I used both local and global sensitivity
approaches. In local sensitivity analysis, I determined the local sensitivity score [147]. In global
sensitivity analysis, I used the Morris method as inexpensive screening of important parameters
in high-dimensional problems [103, 106, 107] and the variance-based Sobol method to quantify
the contribution to the variance of model outputs coming from single parameters and the

interaction of parameters [148].

5.4 Thesis outline

My thesis investigates microbial regulations of pesticide turnover in soil and includes four
sections corresponding to four scientific papers (sections 6 to 9). A small summary of the main
findings of each paper and their connections to the research questions of my thesis are presented
in this section:

Paper 1 (section 6) addresses research question R1 and describes a set of gene-centric models
that explicitly incorporate microbial regulation (gene expression). I calibrated and validated
these model variants with published data from two degradation experiments involving two
model pesticides, 2,4-Dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic
acid (MCPA) [128]. I compared the performance of the model variants with each other and
a standard Monod model to determine the role of gene expression in predicting pesticide
degradation in soil and a potential parsimonious model.

Paper 2 (section 7) addresses research question R2. It extends and improves existing
chemostat/retentostat models by including refined representations of mass-transfer processes
across the cell membrane as well as energetic growth constraints through transition state theory.
The target pesticide was atrazine. After calibrating the model, I used it to produce site-specific
predictions for soils and compared them to field observations of residual atrazine concentrations

from two arable topsoils in southern Germany.
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Paper 3 (section 8) addresses research question R3 through a combined lab and modeling
study of MCPA degradation under different soil temperature (10°C and 20°C) and soil moisture
regimes (pF = 1.8 and 3.5), involving two substrate concentrations (1 and 20 mg kg™!). Genes and
transcripts as well as MCPA mineralization and residual concentration in soils were measured
in a microcosm experiment of thirty days. The modeling work was based on gene-centric
approaches and included additional features hypothesized to have a substantial impact under
low substrate concentrations, such as maintenance fluxes, production of non-extractable residues
(NER), and a constitutive gene expression.

Paper 4 (section 9) addresses research questions R4 and R5. As model pesticide, I
used atrazine, as it has a rather complex degradation pathway driven by different bacterial
guilds, physicochemical and abiotic processes. Different degradation pathways of atrazine
were represented by different competing models, and, in order to identify the predominant

degradation pathway, I used prospective optimal design.
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6 Gene-centric model approaches for accurate prediction of

pesticide biodegradation in soils (Paper 1)

This chapter includes the following publications:

1. Adapted with permission from Chavez Rodriguez, L., Ingalls, B., Schwarz, E., Streck, T.,
Uksa, M., Pagel, H. (2020). Gene-Centric Model Approaches for Accurate Prediction
of Pesticide Biodegradation in Soils. Environmental Science & Technology, 54(21),
13638-13650. https://doi.org/10.1021/acs.est.0c03315. Copyright 2020 American Chemical

Society.

2. Adapted with permission from Correction to the original Paper as published in
Chavez Rodriguez, L., Ingalls, B., Schwarz, E., Streck, T., Uksa, M., & Pagel, H.
(2021). Correction to “Gene-Centric Model Approaches for Accurate Prediction of
Pesticide Biodegradation in Soils” Environmental Science Technology, 55(9), 6524.

https://doi.org/10.1021/acs.est.1c01972. Copyright 2020 American Chemical Society.
with the following modifications:

1. Correction to the original Paper as published in Chavez Rodriguez, L., Ingalls, B., Schwarz,
E., Streck, T, Uksa, M., & Pagel, H. (2021). Correction to “Gene-Centric Model Approaches
for Accurate Prediction of Pesticide Biodegradation in Soils” Environmental Science &

Technology, 55(9), 6524. https://doi.org/10.1021/acs.est.1c01972

2. Numbers of figures, tables, and equations are relative to this thesis and not to the original

publication.
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6.1 Abstract

Pesticides are widely used in agriculture despite their negative impact on ecosystems and human
health. Biogeochemical modeling facilitates the mechanistic understanding of microbial controls
on pesticide turnover in soils. We propose to inform models of coupled microbial dynamics
and pesticide turnover with measurements of the abundance and expression of functional
genes. To assess the advantages of informing models with genetic data, we developed a novel
“gene-centric” model and compared model variants of differing structural complexity against a
standard biomass-based model. The models were calibrated and validated using data from two
batch experiments in which the degradation of the pesticides dichlorophenoxyacetic acid (2,4-D)
and 2-methyl-4-chlorophenoxyacetic acid (MCPA) were observed in soil. When calibrating
against data on pesticide mineralization, the gene-centric and biomass-based models performed
equally well. However, accounting for pesticide-triggered gene regulation allows improved
performance in capturing microbial dynamics and in predicting pesticide mineralization. This
novel modeling approach also reveals a hysteretic relationship between pesticide degradation
rates and gene expression, implying that the biodegradation performance in soils cannot be
directly assessed by measuring the expression of functional genes. Our gene-centric model
provides an effective approach for exploiting molecular biology data to simulate pesticide

degradation in soils.

6.2 Introduction

Pesticides are important agrochemicals used for plant protection and yield optimization [2-5].
Despite their intended beneficial use, many of the applied active components end up in soils,
groundwater or surface water [149-151], where they are potentially harmful for living organisms
and the environment [15, 152]. Soil microorganisms (fungi and bacteria) are known to be the
main drivers of pesticide degradation in soils [43, 149]; they have evolved to use pesticides
as both carbon (C) and energy sources [49]. In this context, the most important microbial

detoxification process in soils is the enzyme-catalyzed biotic transformation of pesticides [153].

23



6 Gene-centric modeling approaches

To predict the fate of pesticides in the environment, we need to improve our understanding
of the microbial control of pesticide degradation, particularly at low concentrations [154].
Biogeochemical modeling is an established approach for testing our understanding of bioreactive
processes, as well as for quantifing and predicting the biodegradation of pesticides in soils [74,
155]. Current biogeochemical models incorporate important rate limiting factors such as
microbial dynamics (growth, metabolism, and physiology) as well as sorption-controlled
substrate availability. Recent modeling approaches seek to improve the representation of
microbial pesticide degradation by exploiting experimental assays of marker genes that encode
enzymes that catalyze specific reactions [156]. Measurements of DNA and transcript abundance
of functional genes facilitate an improved understanding of biochemical processes by providing
a direct link between specific microorganisms and biochemical functions. This quantitative gene
data should thus facilitate a more robust estimation of biokinetic parameters of biogeochemical
models [75, 82] in comparison with more traditional approaches [73].

Some biogeochemical modeling approaches in marine and groundwater systems incorporate
and simulate either functional genes and transcripts (gene-centric model [82]), or enzyme
concentration and transcripts (cybernetic or enzyme-based approach [84, 157]). Their results
highlight the potential of incorporating molecular data into modeling to improve process
understanding and model predictions [82]. Existing gene-centric models of pesticide turnover
in soil improved the representation of microbial dynamics in soil [43, 158], but misrepresent
important limiting factors of pesticide degradation [73] such as pesticide-dependent gene
expression.

In order to address this problem, we present a novel modeling approach that exploits data
on the abundance and the expression of functional genes involved in pesticide degradation
in soils. We expect that a complete description of transcription of specific genes and
translation of targeted enzymes in our modeling approach will improve the representation of the
controllers of pesticide degradation in soils. We used previously published data from laboratory

experiments [128] to calibrate and validate a suite of model formulations. These experiments
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involved observation of the degradation of the pesticides 2,4-dichlorophenoxyacetic acid (2,4-D)
and 2-methyl-4-chlorophenoxyacetic acid (MCPA). These pesticides have a similar chemical
structure and a simple degradation pathway mediated by the same functional genes, which have
been extensively studied [122-125, 127, 130, 159-162]. Therefore, they provide a straightforward
test case for our novel modeling approach.

We compare the model performance of a collection of gene-based models against a traditional
biomass-based model to test whether our extended modeling approach provides better
predictions. Finally, we used identifiability and uncertainty analysis to compare our gene-
based model variants. We identified the model variant that is best supported by the available
data, and that we can recommend as the most parsimonious tool to be used for description and

prediction of this degradation process.

6.3 Theory
6.3.1 Model Structure

The model structure is shown in Figure 3. The processes are assumed to occur in a spatially
homogeneous environment [128]. Pesticide is assumed to equilibrate rapidly between the
sorbed and solution phase concentration. The model accounts for a single microbial population,
which relies on the the pesticide as its sole carbon (C) and energy source. The microbial pool is
partitioned into three subpopulations: active cells, inactive cells (dormant bacteria), and dead
cells (relic cell pool), based on observation of typical bacterial states found in environmental
systems [163-167]. Activation/inactivation is regulated by the pesticide concentration. Active
cells respond to the presence of pesticide by expressing specific functional genes. We assume
this occurs via upregulation of transcription (formation of messenger RNA (mRNA)). Pesticide
uptake and metabolism are described as a single process, which leads to growth of active cells
and mineralization of pesticide to CO;. Active and inactive cells die at constitutive rates. Finally,
dead cells decay, releasing CO;. If not otherwise stated, all concentrations are given in mmol g

or mmol cm™ and refer to C in mass of dry soil or in volume of soil solution, respectively.
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Figure 3: Model schematic. Green boxes: independent state variables calculated directly; orange
boxes: variables related to processes in quasi-steady state; purple box: additional pool
that is modeled indirectly. Solid arrows indicate mass transfer; dashed arrows indicate
regulation.

6.3.2 Process formulations
Sorption

The total concentration of pesticide C£ [mmol cm™] in soil is partitioned into two pesticide
pools: solution phase concentration C5 [mmolcm™] and sorbed phase concentration Cp
[mmol g™ !]:

Cp=0-Cp+p-Cp (1)

where: 0 [1] is the water content in soil and p [gcm™] is soil bulk density.
We assume that C5 and Cp are related by the Freundlich isotherm C5 = Kgp - (C5)™*
(bioavailability limitation of pesticide degradation). Freundlich sorption enters the model

by the retardation factor [149, 168]:
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dct
RF := dt = 1+ b Kgp - npp - (Cﬁ)(nFP_l) (2)
, 4% g
dt

where Krp [mmol'~"?) g~ ¢cm®"*] and npp [1] are the Freundlich coefficient and exponent

respectively.

Bacterial subpopulations

Our model incorporates three bacterial subpopulations: active degrader bacteria Ci [mmol g™'],
inactive bacteria Cj; [mmol g'], and dead bacteria Cg [mmol g!]. Inactivation (dormancy) is
used by microbes as a bet-hedging strategy to cope with unfavorable conditions, including
substrate limitation [163]. We included the dead bacteria (relic bacterial population) to
avoid overestimation of active degraders [165-167] when comparing simulation results with
experimental observations. These pools are depicted in Figure 3 as active, inactive and dead

cells. The growth rate [mmol g™' d™'] of active bacteria (rgrowsn) is:
Tgrowth = Hp * Cg (3)

where pp [d™!] is the specific growth rate coefficient (Eq. 18).
Activation and inactivation rates [169, 170] depend on the concentration of pesticide through

a thresholding function. The corresponding rates [mmol g~! d™!] are defined as follows:

i
Tactivation = T°* kr : CB (4)

Tinactivation = (1 - T) ky - Clg (5)

where k, [d™'] and k4 [d™!] are the coefficients of activation/deactivation for inactive/active

cells, and 7 [1] is a switch function: [169, 170]:

-1
T= [exp (CnT__C?%> + 1} (6)
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where Cr [mmol cm™] is a pesticide concentration threshold, and n [1] modulates the steepness
of the curve [169, 170].

The rate of decay of all bacterial pools (mmol g™! d™!) is described with a first-order function:

rd

Cg . aj (7)

ecay

where j could denote active, inactive and dead bacteria, and g; is the decay rate coefficient of

the corresponding population.

Gene expression

Active bacteria respond to the presence of pesticide by transcribing and translating specific
functional genes for pesticide degradation. In the case of 2,4-D and MCPA, we described
the expression of the functional gene tfdA, which encodes for an a-ketoglutarate-dependent
dioxygenase [128, 171, 172]. This enzyme catalyzes the cleavage of the ether bond between
the phenol ring and the acetic acid side chain of 2,4-D and MCPA [130]. We assumed the first
degradation step to be the rate determining step despite the fact that more genes tfdABCDEF
are involved in the full degradation of both pesticides. This is a reasonable assumption given
the general understanding of the tfdABCDEF mediated degradation pathway [171, 173]. The
degradation of 2,4-D and MCPA involving a constitutive gene expression at low concentration
followed by a pesticide-dependent gene expression was not included as an alternative microbial
control mechanism, because this process has only been reported for one bacteria strain [126].
Alternative genes (i.e., cadA [174] and RdpA, SdpA [175]) capable of degrading 2,4-D and MCPA
following the same degradation pathway as tfdA gene were not included because of their
comparatively low abundance in soil samples [131, 173, 176].

The rate of transcription of specific genes is assumed to be pesticide-dependent, described by

a Hill function [177]:

p G (®)
r T o —
transcription max KgH N (CIIJ’)"H
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where B4y [transcripts gene ! d!] is the rate coefficient of transcription, Kg [mmol cm™] is
the half-maximal triggering concentration, and ny [1] is the Hill coefficient.

Translation follows a first order function based on the concentration of transcripts
[transcripts gene™!]:

Ttranslation = kE - mRNA (9)

where kg [mmolg transcripts™! d™1] is the rate coefficient of translation of transcripts (mRNA)
into enzymes (E) [mmolg gene™'].

Decay of transcripts (mRNA) and enzymes (E) is assumed to be first order:

'mRNA-decay = dc - mRNA (10)

Tenzyme-decay = dg - E (11)

where dg [d™'] and d [d™!] are first order decay coefficients.

Experimental data on 2,4-D and MCPA degradation [128] have shown that the timescale of
pesticide mineralization and bacteria growth is days, whereas transcription and translation are
processes on the timescale of hours to seconds [178]. Therefore, we assumed quasi-steady-state

(QSS) for gene expression [177]. The QSS formulation for transcripts reads:

dmRNA

dt = Ttranscription = Y'mRNA-decay = 0 (12)

resulting in the following formulation [transcripts gene™!]:

— T ,Bmax (Cf’l)nh’
RNA = . 13
" o\ K@ +(Chym (1)

ﬂmax

dc

higher than 1 to express at least one gene or transcript per cell, or lower than 1 to compensate

We defined fr = as the number of transcripts per gene. The parameter fr can take values

for extraction bias of mRNA and DNA. The extraction bias was assumed constant for the soil
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used in the experiment.
The QSS formulation for enzymes reads:

dE
’r = Ttranslation ~ Yenzyme-decay = 0 (14)

resulting in the following formulation [mmolg gene™']:

(cpm™ )
ke fro | —P)
2 Jr (KgH+(c}L,)nH

EA=
dp

Pesticide uptake

We treat pesticide uptake and biotic degradation as a single process, with a degradation rate

coefficient (up [d™']) given by a Michaelis-Menten term:

kvmax : C}I5 : E
pp =

= K+ Ch-f, 1e)

where kymqx [mmol mmolg! d™!] describes the rate of degradation of pesticide, K [mmol cm™]
is the half-maximal pesticide concentration, and f; is a conversion factor from gene to C

[mmol gene™!]. We do not consider chemical degradation. Substituting E from eq. 15 gives:

(C}I;)(VLH+1)
_ kvmax ' kE 'fT (KSH + (Cﬁ)nH>
Hp = de - fi Ky + Ch

(17)

kvmax . kE ’fT
dg - fi

concise description of growth rate as:

Finally, defining ppax = (the maximum growth rate coefficient [d™!]), we have a

(C}I;)(HH+1)
KZH + (CEym

HP = Hmax * ( > : (KM + C}%)_l (18)
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The uptake rate is dependent only on the bioavailable pesticide (RF from eq. 2) and is scaled by

the parameter Yp (uptake efficiency specific for the degraders and the substrate) as follows:

e (3)6)

Tuptake = RF (19)

The pesticide is used as both C and energy source. The growth yield, Yp, determines the relative

proportion of respiration and growth based on the total pesticide uptake [88].

CO, accumulation

The final product of pesticide degradation is CO, (in mmol g™! soil) produced by bacterial

respiration:

1-Yp
Trespiration = Hp Cg : (YP> (20)

A fraction of the decaying dead cells also contributes to the CO, pool through the parameter
aco, [11:

d
Yeell-decomposition = Vdecay = ACO; (21)

This flux consists of the carbon released from decaying dead cells that have incorporated the
pesticide into their biomass. Autotrophic and heterotrophic fixation of mineralized CO, from
2,4-D/MCPA have been shown to play a minor role [179]. Therefore, we did not explicitly

consider these processes in the model.
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The full model is described by the following ordinary differential equation (ODE) system:

acg a
W = Tgrowth = 'decay * Tactivation = T'deactivation (22)
dC! ;
B
dt = Tdeactivation ~ Yactivation ~ rcliecay (23)
dcg ;
B _ a i d
dt = Tdecay + Tdecay ~ Vdecay (24)
dCk
P
dr = Tuptake (25)
dCO,
dt = Trespiration t Tcell-decomposition (26)

6.4 Materials and Methods
6.4.1 Model Reduction

Starting out from the full model formulation (V0), we define three model variants considering
pesticide-dependent gene expression: V1, V2 and V3, and also one variant considering

unregulated gene expression V4 and a biomass-based model V4’:
« V1: The inactive bacteria pool is set to zero (Cj = 0).

« V2: The dead bacteria pool is set to zero (CZ = 0). To account for cellular decay, a fraction
of the decaying active and inactive bacteria is set to directly contribute to the CO; pool

as follows:

Vcell-decomposition = (Cg *dg t Ci} - a;) aco, (27)

« V3: The inactive bacteria pool and the dead bacteria pool are set to zero (C; = 0 and
Cf = 0). The parameter K is also set to zero (Kj = 0) to neglect pesticide-dependent

growth and keep pesticide-dependent gene expression. The growth rate coefficient (up) is

o (Cp)m™
Hp = fimax < Koy + ( c}%)"H> (28)

calculated as follows:

To account for cellular decay, a fraction of the decaying active cells is set to directly
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contribute to the CO; pool as follows:
Teell-decomposition = Cg * Qg * ACOo, (29)

« V4: The inactive bacteria and the dead bacteria are set to zero (Cj; = 0 and C¢ = 0). The
parameter K is also set to zero (Kg = 0) to account for pesticide-dependent growth

kinetics. The growth rate coefficient (up) is calculated as follows:

_ CIE (30)
HP = Hmax Ky + C}L)

This model variant considers an unregulated mRNA expression in QSS (eq. 13):

mRNA = fr - C& (31)

« V4’: Same structure as V4 without unregulated mRNA gene expression. This model
variant is close to the standard Monod-based model that takes gene abundances as a

proxy of bacterial biomass.

For convenience, the full description of each model can be found in Supporting Information.

6.4.2 Model calibration

Description of the experiment

We used published data from a batch degradation experiment in microcosms applying the
14C-labelled 2,4-D and MCPA to a Typic Argiudoll with a pH of 7.2, 19% clay, 18% silt, 62% sand
and 1.2% carbon [128]. The experiment consisted of one application of 20 mgkg™! (8.8 mgkg™*
soil of 2,4-D, and 10.8 mg kg™! soil of MCPA; pesticide in C equivalent) of the corresponding
pesticide at day 0, and a second application of 20 mgkg™! when mineralization of the first

application stopped (at day 24 for 2,4-D and day 33 for MCPA.) The experiments ran until
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day 34 for 2,4-D and day 67 for MCPA (the sampling protocol can be found in the Supporting

Information Table S1) The dataset consisted of time series with three replicates of pesticide

mineralization (%), abundance of tfdA genes and expressed tfdA genes in soil.

Model calibration

We calibrated each model variant against the data from the 2,4-D experiment. We started

calibration with a manual exploration of the parameter space within the ranges shown in Table 1

to achieve visually acceptable fits. Nominal parameter ranges were based on literature [158,

165, 180-190]. We extended the ranges of all parameters by four orders of magnitude, which

allowed us to capture sufficient parameter variation.

Table 1: Initial parameter ranges for model calibration.

Parameters  Definition Units Minimum  Maximum
fr Number of transcripts per gene [187] transcripts gene ™ 107 10°
ny Hill coefficient [185] 1 1 10
Ks Half-maximal triggering concentration [188] mmol cm™ 1071 10°
Hmax Maximum growth rate [158, 181] d! 1074 10°
1 onversion factor (gene to mmol gene” B -
£ C ion f: (g C) [183] lgene™! 1071 1078
Ky Half-maximal pesticide concentration [184] mmol cm™ 1078 10*
Cr Pesticide concentration threshold [180, 186] mmol cm™ 10710 1072
a, Decay rate coeff. for active bacteria [158, 181] d! 107 10?
a; Decay rate coeff. for inactive bacteria [158, 181]  d™ 1077 1072
k. Coefficient of activation [170] d! 10°° 10?
kq Coefficient of deactivation [170] d! 107° 102
ag Decay rate coeff. for dead bacteria [189] d! 107 10*
Yp Uptake efficiency [158] 1 0.1 0.9
aco, Fraction of bacteria contributing to CO, 1 0.1 0.9
Krp Freundlich coefficient [158, 182] mmol (=) g1 cmdrr 1072 1
nrp Freundlich exponent [158, 182] 1 0.8 1
a Initial fraction of dead bacteria [165] 1 0.1 0.9

Using the manually determined preliminary fit as the initial parametrization, we calibrated
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each model variant by minimizing the weighted sum of squared errors (SSE) following a hybrid
optimization method [191]. A hybrid method consists of an initial search using the global
optimization algorithm Simulated Annealing, followed by the local optimization fmincon
of Matlab. We defined the SSE as:
i iy2

SSE = Zl: (y"”s;lzym) (32)
where y!, are the observations, y!;, the corresponding model outputs, and o; is the standard
deviation of the corresponding observations. Initial calibration attempts were unsuccessful due
to the wide ranges of variation within replicates, especially for measured expressed tfdA genes
in soil. Consequently, we set a minimum threshold of 15% as coefficient of variation for the
replicates (without which the genes and transcripts observations would have had a negligible
contribution to SSE).

The model outputs corresponding to the measured data were calculated from the state

variables as follows:

CO; - 100

Mineralization [%] = — — - (33)
Initial Pesticide Concentration
Ci+ CL+C8
Genes [copiesg™!] = bt B Bl (34)
fi
RNA- C§
Transcripts [copiesg™'] = mers s (35)

fi

We applied a Markov Chain Monte Carlo simulation using the Bayesian DREAMzs) algorithm
within the DREAM Matlab tooxbox [117] to estimate parameter and simulation uncertainty.
Uniform parameter distributions (see Table 1 for ranges) were chosen as flat/uninformative
priors for Bayesian inference using MCMC sampling. The starting values of the MCMC chains
were drawn from a multinormal distribution of the parameters in log-space with mean values

equal to the best fit from the hybrid method, arbitrary variances of 2.5, and zero covariances.
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The selected variance was set to capture sufficient variation of the parameters. Convergence
of chains was assumed for a f?-diagnostic [192] lower than 1.2 [117]. Minimum and maximum
parameter values were taken from Table 1, and we chose the option Reflect as a boundary
handling method in DREAMzs). We used a Gaussian likelihood considering heteroscedastic

measurement errors as implemented in DREAMzs):

n n i\ 2
L) = -7 log(em) - Y {log(on)} - 5 (”y'") (36)
t=1

=1 0i
where o; are the standard deviations of the observations, and y., -y, are the residuals.
We ran DREAM|s) in parallel, using three Markov chain trajectories with 100,000 and 300,000
simulations per chain, achieving convergence for all models.
The same process was followed for all model versions with the exception of V4’, for which

we only used Pesticide Mineralization (%) and tfdA genes for calibration.

6.4.3 Model comparison

We chose the Akaike Information Criterion (AICc) [101, 193] and the Bayesian Information
Criterion (BIC) for the numerical evaluation of the Bayesian Model Evidence [194, 195]. The
AICc is a measure of the predictive capability of a model, and the BIC indicates the identifiability

of the parameters of a model for the given data [109]. AICc and the BIC were calculated as:

E 2-m- 1
AICc=2-m+n-ln<Ss>+m(m+) (37)
n n-m-1
SSE
BIC=n-In () + m - In(n) (38)
n

where m is the number of free parameters (including the initial conditions used as free parameters
for model calibration), n is the number of observations (this evaluation was done on 2,4-D data

with 54 observation points), and SSE is the sum of squared errors previously defined (eq. 32).
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6.4.4 Model validation

We validated the selected models against the MCPA data. We visually evaluated how well the
models captured the main trends of the measured data: mineralized MCPA (%), tfdA genes
and transcripts in soils. We compared simulated residual concentrations of 2,4-D and MCPA
(total concentration at the end of the experiment) against reported measurements in short-term

degradation experiments using these pesticides [196—198] as an additional validation procedure.

6.4.5 Local sensitivity analysis

We performed a local sensitivity analysis based on the best fit obtained for the models. The
analysis included: local parametric sensitivity coefficient [199, 200], identifiability score [100,
101], percentage error of the estimation [101], and parameter correlation matrix [101] (see
Supporting Information 11.1.3, Methods: Local and Global Sensitivity and uncertainty analysis).

We did not include the initial conditions in our analysis [101].

6.4.6 Global sensitivity analysis — Morris method

We performed a global sensitivity analysis using the Morris Method [103, 105-107, 201],
implemented in the SAFE toolbox of Matlab [202] (Supporting Information 11.1.3). We calculated
two sensitivity metrics [201]: the mean of the elementary effects (¢") and the standard deviation
of the elementary effects (o) at 20,000 points in the parameter space, corresponding to 380,000
model runs.

We ran the sensitivity analysis up to the day 24 to cover the first pesticide application of
2,4-D. The output variables considered were: maximum pesticide mineralization, maximum
abundance of genes and transcripts, maximum active genes, minimum pesticide in solution,
time of inflection point of mineralization, time to achieve the maximum mineralization rate and
maximum gene expression, and SSE (eq. 32).

Parameters for sensitivity analysis were sampled from a normal distribution with the mean

taken from the best model fit on 2,4-D data. The standard deviation was approximated so that
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the resulting normal distribution of each parameter fitted into the upper and lower boundaries
previously set in Table 1. As sampling strategy, we used the Latin hypercube sampling with
radial trajectory [73].

Because the Morris method only allows a ranked classification of the parameters according to
the values of " and o obtained per parameter per output [73, 202], we normalized by dividing
by the maximum p" and o observed for each parameter. We used the normalized y* and o to
calculate the 1, - norm (I, = \/m) of each parameter [73, 105, 107]. The high leverage

parameters [73, 105] are those with an 1; - norm higher than 0.5.

6.5 Results and discussion
6.5.1 Calibration, parameterization and model dynamics of full model (V0)

Model Calibration

We were able to visually calibrate the full model variant (V0) with respect to 2,4-D mineralization
over the entire experiment (Figure 4A, black curve) with reasonable uncertainty comparable
to the standard deviation of the data (Figure 4B, black dots with black error bars). The model,
however, failed to reproduce the peaks of gene expression (mRNA), especially after the second
pesticide application (Figure 4C, black curve).

Simulated #fdA gene abundances matched well with the observed data during the first
degradation phase (Figure 4E, black curve). However, at the end of the experiment (day
34), a clear decay of genes was shown but not captured by the simulation. In contrast, the
simulated tfdA gene abundances stabilized, indicating underestimation of bacterial decay. The
uncertainty of the simulations was low compared to the variability of the data (Figure 4F, black
dots with black error bars). The simulated behavior of the tfdA gene abundances from Figure
4E (black curve) can be understood in terms of the dynamics of the active, inactive and dead
bacterial pool (Figure 4, inset panel E). We emphasized that active bacteria did decay at the end
of the experiment, but the total DNA pool remained constant because of the slow decay rate

of inactive bacteria, which was the predominant physiological bacterial state at the end of the
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simulation.
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Figure 4: Model calibration on 2,4-D data. Time series of pesticide mineralization (A, B), tfdA
mRNA copies (transcripts) per g of soil (C, D), tfdA gene copies per g of soil (E, F).
Error bars show the standard deviation of the data and of the simulations (based
on MCMC ensembles, see Materials and Methods 6.4.2). The inset in panel E shows
calibrated model simulations of tfdA DNA, active, inactive and dead bacteria expressed
in mmolg™! (based on 95 % confidence interval of MCMC ensembles, see Materials
and Methods 6.4.2). Bold lines represent the mean value of each bacterial pool.
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Sensitivity analysis for model reduction

Table 2: Uncertainty analysis for the full model variant (V0) on 2,4-D data.

Parameter Best Fit SC IS PE MV SD
Umax 0.5 554.6 423.9 59.7 0.9 2.0
a, 0.7 94.7 10.0 1.510° 0.9 0.04
Yp 0.4 58.5 28.9 3186 0.3 0.05
ngp 0.9 55.6 46.8 2510° 0.9 0.06
f 821071 447 1.3 5234 891071 12
a, 0.1 29.6 4.0 94.1 5010 108
Kg 7.010™%  13.9 0.0 1.110* 50107 2344
fr 0.02 13.0 7.0 96.4 0.01 2.1
ny 5.6 6.6 0.5 2584 4.7 2.9
Krp 0.1 14 2810 5310 0.1 4.2
acoz 0.8 0.6 0.1 455.6 0.8 0.1
k, 2.2 0.4 11107  4410° 05 1.5
Ky 29107 0.2 20107*  1310* 25107*  16.9
as 14.7 7410% 6710° 1310* 893 17.3
a; 9310 2510% 35107 77107 2410 259
Cr 1.010° 0.0 0.0 0.0 6.010™* 25
kq 0.03 0.0 0.0 0.0 0.3 1.2

SC = Sensitivity coefficient, IS = Identifiability score, PE = Percentage Error, MV and SD = mean and standard
deviation of the estimation from DREAMzs) (See Materials and Methods 6.4.2). Parameters in yellow were

candidates to be reduced.

Local and global sensitivity analysis showed many parameters to be low-leverage and poorly
identifiable, and the percentage errors of the parameter fits were overall high (Table 2 and
Supporting Information, Figure S6). Parameters controlling the dynamics of the inactive and
dead bacteria pools (k;, k4, a;, a, and as) were poorly identifiable with low impact (Table 2
highlighted in yellow), suggesting elimination of these parameters and simplification of the

model structure. The calibrated values of Cr (the pesticide concentration threshold) ranged
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from pg L™! to mg L™! (Supporting Information, Figure S8). Cr was found to impact the inactive
bacteria pool at some point of the parameter space (Supporting Information, Figure S6), but no
impact was observed when values are in the order of ug L™! (Table 2). Threshold concentrations
for activation of pesticide degrading bacteria have not yet been reported in the literature, but
estimated threshold concentration values for activation of Escherichia coli [180, 186] are in the
order of pg L™!, similar to typical residual pesticide concentrations in soils [57, 203]. This suggests
that reasonable values of Cr may be in the order of ug L ™!, and would thus have minimal impact
on the model outputs (active, inactive and dead bacteria, pesticide concentration and COy).
The parameters K); and K (which characterize the threshold for pesticide-dependent growth
(eq. 16) and pesticide-dependent gene expression (eq. 8), respectively) had minimal impact on
model dynamics (low leverage and low identifiability with a high percentage error). Despite
being relatively low-leverage and low identifiable, sorption parameters (Krp and npp) were not
considered for reduction due to the importance of sorption of pesticide in soil [204]. Moreover,
these two parameters could be directly measured through sorption kinetic experiments [205-208]
(not performed in the current work). Additionally, the analysis suggests that parameter aco,
can be eliminated due to its low impact on model outputs. However, we determined that this
reduction results in overestimation of mineralization from dead bacteria (preliminary analysis;
data not shown). Therefore, these three parameters were not included for model reduction.
Based on these sensitivity results, we select four reduced gene-centric model variants (V1,
V2, V3 and V4) and a biomass-based model variant (V4’). In model variant V1, we eliminated
dormancy by setting the inactive bacteria pool to zero. This reduction appears to contradict
published reports that up to 60 % of bacteria are dormant in low nutrient systems [209]. This
discrepancy could be resolved by further subdividing the active population, allowing for a
’potentially active’ subpopulation [164], although we did not explore this option. In the second
model variant, we removed the dead bacteria pool (relic bacteria) by setting it to zero. Neglecting
relic bacteria in our model formulation could inflate the tfdA gene abundance simulated in

soils [165, 166], and therefore, the pesticide degradation capacity of the soil (measured in terms
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of mineralized pesticide). However, this effect was not observed in our calibration results (Figure
4A, C and E, red line for model variant V3 that exhibits the same features as model V2). In our
initial development of the third model variant V3, we removed the inactive and dead bacteria.
This, however, did not improve the sensitivity analysis results of the remaining parameters, and
the parameters K and Kj; were still low-leverage and poorly identifiable (data not shown). We
chose to set only the parameter Kj; to zero to keep a gene-centric model formulation. Because
of this, this model variant has gene-expression as the only pesticide-dependent process.

In the two additional model variants (V4 and V4’), we removed inactive and dead bacteria. We
also set the parameter K to zero and kept the parameter Kj; to consider substrate-limited growth
as the only pesticide-dependent process. Variant V4 describes a non-regulated (constitutive)
gene expression. We developed this variant to address whether this approximation could also be
a valid representation of the tfdA transcript dynamics. Variant V4’ has the same model structure
as V4, but without the non-regulated gene expression, keeping only the Monod-kinetics. Further
sensitivity analysis of these two models (Supporting Information, Table S5 and S6), revealed a
low-leverage Monod parameter Ky, suggesting a further reduction to a first-order-like model
variant. This simple model, however, could not be successfully calibrated with the given data

(not shown). Therefore, further model reduction steps were not considered.

6.5.2 Model comparison

We calibrated all model variants following the same methodology as with the full model with
the exception of V4’ that was calibrated using only pesticide mineralization and #fdA gene
abundance. We evaluated the performance of the model variants based on visual fits, SSE (eq. 79)

and the information criteria AICc (eq. 37) and BIC (eq. 38) (See Materials and Methods 6.4.2).
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Table 3: Model comparison based on the 2,4-D data.

Model FP SSE AlICc BIC

Vo 18 1929 1243 140.6
V1 14 1718 1013 1183
V2 16 189.8 1146 131.7
V3 11  189.6 96.1 111.7
V4 10 2295 1033 118.0

FP = free parameters, AICc = corrected Akaike information criterion, and BIC = Bayesian information criterion.

Despite the expected high uncertainty of parameter estimates (see marginal posterior
parameter distributions in Figures S8-S22 in the supplementary material), our predictions
exhibited only moderate uncertainty (error bars in Figure 4B, Figure 4D and Figure 4F). This
feature is typical of “sloppy” biogeochemical models [73], and in consequence allowed us to
distinguish model performance of the model variants using visual fits, SSE (eq. 79), and the
information criteria AICc (eq. 37) and BIC (eq. 38) (See Materials and Methods). By visual
inspection ( Figure 4; visual fits for model variants V1 and V2 not shown), as well as SSE and
AlICc (Figure 3), all model variants showed similar performance compared to the full model
variant V0. A reasonable compromise among the three information criteria used (SSE, AIC, BIC)

suggests that model variant V3 is the best model.

6.5.3 Model validation

We validated the models against the MCPA data, using the parameter values calibrated on 2,4-D
(see Materials and Methods 6.4.2). We applied the validation procedure to the full model version
V0, the parsimonious model version V3 and the two biomass-based models V4 and V4. In
addition, we compared simulated residual concentrations of pesticides in soils with all models

against typical measured values.
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Validation on MCPA data
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Figure 5: Model validation on MCPA data. Times series of pesticide mineralization (A, B), tfdA
mRNA copies (transcripts) per g of soil (C, D), tfdA gene copies per g of soil (E, F).
Error bars show the standard deviation of the data and of the simulations (based on
MCMC ensembles, see Materials and Methods 6.4.2).
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2,4-D and MCPA are chemically very similar with slight differences in substrate affinities [124,
210]. However, experimental measurements showed faster degradation dynamics of 2,4-D
compared to MCPA [128]. Nevertheless, we expected that the models calibrated against the
2,4-D data could be usefully validated against the MCPA degradation data. As expected, all
model variants predicted faster MCPA mineralization compared to the measurements (Figure
5A). (These time mismatches were not an artifact of the model formulation: an independent
calibration against MCPA data was successful for all measured variants, see Supporting
Information, Figure S1). Visually, the full model variant VO and variant V4’ were the best
performing models regarding mineralization along the whole experiment and closely matched
the data at the end of the first and second degradation phase (Figure 5A, black and pink line,
respectively). Model variants V3 and V4 failed to predict MCPA mineralization, showing a strong
overestimation of mineralization at the end of the experiment (day 67) (Figure 5A, red and green
line, respectively), despite the success of variant V3 on predicting the first degradation phase.
Our interpretation is that the overestimation of mineralization is linked to the underestimation
of biomass growth (Figure 5E, red and green line, respectively). This underestimation leads to
an increase of residual MCPA concentration in soil; therefore increasing total mineralization.

The model variants V0 and V3 captured the main trend of the expressed tfdA genes, including
the high peaks of gene expression of both degradation phases (Figure 5C, black and red line
respectively), with low uncertainty (Figure 5D). Model variant V4 failed in reproducing the
expressed gene data (Figure 5C, green line). This confirms that the expression of tfdA genes
is pesticide-regulated [78, 128], and that constitutive gene expression of #fdA is not a valid
assumption for this process.

On the other hand, model variant VO was the only model able to accurately reproduce data
on tfdA genes (Figure 5E, black line) with low uncertainty of the simulations (Figure 5F). The
fact that VO was able to predict tfdA genes in soil can be explained by the dynamics of the
active and inactive bacteria pools, similarly as with 2,4-D (Inset of Figure 4F). Model variants

V3, V4 and V4’ (all of which described a single bacterial subpopulation) predicted a pronounced

46



6 Gene-centric modeling approaches

decay of bacteria at the end of the first phase. This explains these models’ predictions of a slow
bacterial recovery at the beginning of the second degradation phase, which made it impossible

for their outputs to match the data (Supporting Information, Figure S3).

Validation of simulated residual pesticide concentration

Residual pesticide in soil (total concentration at the end of the experiment) was not a measured
variable in the experimental dataset we used [128]. Therefore, we used experimental data from
previous studies to evaluate models’ performance. Short-term experiments showed that both
2,4-D and MCPA are readily degradable compounds which do not persist in soil [196-198].
Some experiments have reported no 2,4-D and MCPA residues or residues below detection limit

after 1 to 5 weeks [124, 211-214].

Table 4: Simulated 2,4-D/MCPA mean residual concentration in soil in mgckg™ (total
concentration at the end of the experiment).

Pesticides

Model versions 2,4-D MCPA

Vo 0.5-23 < 0.02

Vi 4.2-6.0 -

V2 0.1-14 -

V3 8.6-9.8 | 1.2-3.1

V4 3.0-4.38 < 0.03

V4 < 0.01 < 0.03
Short-Term experiments [124, 211, 213, 214] 0.02 - 0.05

Field studies [212] 0.01

In comparison to literature values, all gene-centric model variants (V0, V1, V2 and V3),
including biomass-based model variant V4 overestimated the residual pesticide concentration,
especially for 2,4-D (Table 4). The models that include an inactive bacteria pool (VO and
V2) performed better, especially when simulating residual MCPA concentrations in soil. The

average total pesticide dissipation simulated by these models was up to 98%, including both
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pesticide mineralization and pesticide used for biomass formation and for production of non-
extractable residues NER [179, 215, 216] (not explicitly accounted for in our model formulations).
Model variants V1 and V3, which exclude inactive bacteria pool, overestimated residual
pesticide concentrations by more of a hundred times (for both pesticides), resulting in predicted
residual concentration that are even higher than residual concentrations reported for persistent
pesticides [203]. These results suggest that dormancy is an important feature which should be
accounted for.

The simple Monod-kinetics-based model variant V4’ simulated negligible residual
concentrations of both pesticides (Table 4), and thus outperformed the gene-centric model

variants.

6.5.4 Implications for biogeochemical modeling informed by genetic data

Our gene-centric models can be used to explore the relationship between transcription of
functional genes and process rates, offering an advantage over traditional models. We observed
a non-linear hysteretic relationship between gene transcripts and mineralization rate (Figure 6).
Although certain valid model parametrizations lead to a narrow hysteretic behavior close to a
linear relationship (Figure 6), the non-linear hysteretic behavior in our findings challenges the
common assumption of a simple linear relationship between functional gene transcripts and
process rates [217-219], which could also be observed in the data (see Figure 6A). In addition to
genetic data, proteomics data could be readily used. Thus, our approach provides a quantitative
framework to couple gene and enzyme dynamics with pesticide dynamics, allowing for an

estimation of reaction rates, which are difficult to measure directly.
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Figure 6: tfdA mRNA vs. rate of mineralization. Panel A shows reconstructed mineralization
rates determined as the first derivatives of the “3/2-exp” and “3/2-lin” models in Beelum
et al. 2008 [128] (with parameters as in Table 1 of that reference), and measured
tfdA mRNA after 2,4-D application. Two arbitrarily selected relationships from the
MCMC ensembles are plotted for full model version V1 (B, C) and parsimonious model
version V3 (D, E), showing hysteresis and linear relationships between these two
variables. Blue lines indicate the first application of 2,4-D, and the red lines the second
application. Black arrows in panels A and B show the direction of the hysteretic curve.

Gene-centered models thus provide mechanistic insights, despite being more complex than
traditional approaches. This complexity poses challenges for inverse parameter identification
from experimental data [73, 220, 221]. Achieving a robust model parametrization is hampered
by the significant uncertainty in current measurements of functional genes and transcripts.
We expect that better estimates of biokinetic parameters will be achieved with highly resolved
time-series of genetic data and further advancements of molecular methods. Gene-centric
biogeochemical modeling then provides a promising toolset to improve mechanistic simulations
of biodegradation processes in soils, especially when coupled with reactive transport models in
soil, and used for scenario simulations with other competing carbon sources and cometabolic
pathways. Moreover, our approach can be transferred to other pesticides if degradation pathways

and involved functional genes are known.
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7 Modeling bioavailability limitations of atrazine degradation in
soils (Paper 2)

This chapter includes the following publication:

Luciana Chavez Rodriguez, Brian Paul Ingalls, Jana Meierdierks, Kankana Kundu, Thilo Streck
and Holger Pagel (2021). Modeling bioavailability limitations of atrazine degradation in soils.
Front. Environ. Sci. - Biogeochemical Dynamics.

with the following modification:

1. Numbers of figures, tables, and equations are relative to this thesis and not to the original

publication.

50



7 Modeling bioavailability limitations in soils

7.1 Abstract

Pesticide persistence in soils is a widespread environmental concern in agro-ecosystems.
One particularly persistent pesticide is atrazine, which continues to be found in soils and
groundwater in the EU despite having been banned since 2004. A range of physical and
biological barriers, such as sorption and mass-transfer into bacterial cells, might limit atrazine
degradation in soils. These effects have been observed in experiments and models working
with simplified systems. We build on that work by developing a biogeochemical model of the
degradation process. We extended existing engineered system models by including refined
representations of mass-transfer processes across the cell membrane as well as thermodynamic
growth constraints. We estimated model parameters by calibration with data on atrazine
degradation, metabolite (hydroxyatrazine) formation, biomass, and isotope fractionation from
a set of controlled retentostat/chemostat experiments. We then produced site-specific model
predictions for arable topsoil and compared them with field observations of residual atrazine
concentrations. We found that the model overestimated long-term atrazine biodegradation in
soils, indicating that this process is likely not limited by bioavailability or energetic constraints
of microbial growth. However, sorption-limited bioavailability could explain the long-term fate
and persistence of the main degradation metabolite hydroxyatrazine. Future studies should
seek alternative controls that drive the observed atrazine persistence in soil. This work helps to
bridge the gap between engineered and real systems, allowing us to use laboratory setups to

gain insight into real environmental systems.

7.2 Introduction

The worldwide intensification of agriculture is closely linked to increased use of pesticides [222].
Persistent pesticides are defined as those that remain in soils “in significant concentrations until
the next growing season” [223]. Field monitoring campaigns have demonstrated the presence
of residual pesticides across Europe [55].

Atrazine (AT) is a herbicide in common use worldwide. AT was banned in Germany in 1991
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and in the EU in 2004 [25, 224] because of its potential toxic effects on non-target organisms [13,
14, 16, 225, 226], and on human health [21, 25]. Despite the ban, AT persists in soils and
groundwater [25, 57]: AT and its degradation metabolites (hydroxyatrazine, deethylatrazine,
deisopropylatrazine) are still found in Europe at low concentrations (about 1-40 pgkg™!) in
soils [203], and (< 0.1 pg L") in groundwater [57]). These concentrations might still be relevant
for human and ecosystem health [25, 57, 227]. This persistence is surprising, given that studies
have confirmed (i) the frequent presence of bacterial strains able to completely degrade atrazine
(under controlled conditions) [49, 63, 135, 228]; and (ii) alternative photolytic degradation
of atrazine in soil [132, 229, 230]. The persistence of atrazine and other pesticides in the
environment demands a better understanding of degradation processes to improve long-term
monitoring and pollution mitigation strategies [98].

Pesticide degradation in the environment may be impeded by a range of physical and biological
constraints. For instance, sorption of pesticides onto soil particles limits microbial access to
pesticides, retarding degradation [58, 231, 232]. Moreover, spatial heterogeneity and separation
of microorganisms and pesticides in soil reduces biodegradation rates [233, 234]. Diffusion-
limited transport across the cell membrane has been identified as a potential limiting step of
pesticide degradation under low concentrations, based on observations made in engineered
(chemostat and retentostat) systems [63, 228, 235-238]. Likewise, under specific conditions,
the energy produced from catabolism of some pesticides may be insufficient to support cellular
energy needs, leading to pesticide persistence despite microbial accessibility [64]. To date, the
effect of these barriers has only been explored in the lab under controlled conditions [62, 63, 93,
228] or in simulation studies based on simplified systems [232, 238-240].

In this work, we apply biogeochemical modeling to investigate potential factors of long-term
pesticide persistence in soils. We extended existing chemostat/retentostat models [239] by
the (i) introduction of thermodynamic growth constraints [241, 242] (the alternative model
formulation uses a simple Monod kinetics growth [239]), (ii) a refined formulation of mass-

transfer processes across cell membranes, and (iii) calibration against isotope fractionation
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data. We then extended the model by including equilibrium sorption and leaching in soils, and
ran site-specific predictions of pesticide degradation in soil over 30 years. We compare our
model predictions with residual atrazine concentration of topsoils at two study sites (arable
soil) in Germany at which no atrazine has been applied for over 30 years. Albeit the long-term
predictions show considerable discrepancies with the field data, our analysis provides insight

into the relative contributions of model features toward long-term atrazine persistence in soils.

7.3 Material and Methods
7.3.1 Model Description

Our model (Figure 7) describes a single bacterial population (Cp) that uses atrazine (AT) as its
sole carbon (C) and energy source. The core model (green background), describes behavior
in engineered systems (chemostat/retentostat); it incorporates intracellular and extracellular
compartments, each of which contain concentrations of both AT and hydroxyatrazine (HY).
(Hydroxyatrazine is produced by dechlorination of the side chain of AT. This is the first metabolic
step of AT degradation.) We extended the model to soil (blue background) by incorporating

equilibrium sorption and leaching for each component in the extracellular compartment.
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Figure 7: Model structure for engineered (chemostat/retentostat) systems (green) and extension
for soil (blue). The model explicitly accounts for light “” and heavy “h” isotopologues
(*2C/B3C) of AT due to enzymatic transformation in the intracellular “i” and
extracellular “e” compartments, as well as in equilibrium sorption in soil “e, S”

7.3.2 Process Formulations
Atrazine and hydroxyatrazine degradation

The model describes pools of atrazine (AT) [ug L™!] and hydroxyatrazine (HY) [ugL™!] in the
intracellular and extracellular compartments: AT;/HY; and AT,/HY,, respectively. To take
advantage of available data on isotope fractionation of AT, we split the AT pools into light (AT?)
and heavy (AT") isotopologues (**C/'*C) in each compartment.

We modelled degradation of both isotopologues of AT with Michaelis-Menten kinetics,
allowing for competition for binding sites. For the light isotopologue:

rdegradation = K[CIT +ATl~l +ATl~h (39)

where ka7 [d!] is the maximum degradation rate of AT and KA“,}T [ugL™!] is the half-saturation
concentration.

The slightly slower degradation of the heavy isotopologue is captured by scaling the maximal
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degradation rate by < 1 as follows:

AT _ Pkar- ATih (40)
degradation ~— K]\IL/XIT + AT+ AT
i i

We considered two separate formulations of HY degradation. Model variant M employs

standard Monod kinetics:

kgy - HY;
VariantM : riY - o — (41)
egradation KA[}I(Y +HY,'

where kyy [d7!] is the maximum degradation rate and K{I¥ [ugL™'] is the half-saturation
concentration for HY.

Because metabolism of pesticide at low concentrations might not be energetically favorable
for bacterial growth [64], we considered a second model variant in which degradation of HY is
described by transition state theory [241, 242], using HY as the carbon and energy source.

K
"HY;

HY

Variant T : rdegradation

= kHY - e (42)

where again kyy [d™'] is the maximum degradation rate, but now K¥ [ugL™!] is a reference
concentration for growth.

These two variants (Monod (M), Thermodynamic (T)) show similar behaviour at high HY
concentrations (such as in chemostat/retentostat systems), but differ considerably at low HY

concentrations (such as in soil).

Mass-transfer

We account for diffusive transport of AT and HY across the cell membrane [62, 239] by writing:

raT. = r, - (AT! - AT)) (43)

mass—transfer
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pAT" = 1, - (AT" - AT]) (44)

mass—transfer

riY =r.-(HY, - HY;) (45)

mass-transfer

where [ indicates the light isotopologue, and h the heavy isotopologue, and r, [Ld™* pg™'] is

the mass-transfer rate coefficient assumed to be the same for both compounds.

Maintenance

We incorporate metabolic maintenance requirements following the Pirt model [239, 243]:
Tmaintenance = M- Y - Cp (46)

where m [d™!] is the maintenance coefficient.

Input and washout of AT, HY, biomass

For engineered systems (chemostat/rententostat), we include a constant input of AT as:

AT! I
Tinput = 1D ATy (47)

h
r{flgut =rp- ATIh (48)

where rp [d!] is the dilution rate. Additionally, we define washout terms for biomass, and AT

and HY:
Yeell-washout = D * @+ Cp (49)
AT!
waghout =D ATel (50)
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AT} h
Twashout = 1D~ AT, (51)
HY, _

washout — 1D * HY, (52)

where « [-] is 1 for a chemostat (from which biomass is washed out) and 0 for a retentostat

system (where biomass is retained).

The core model is described by the following system of ordinary differential equations (ODE):

dC B
dt
dAT!
dt
dAT!
dt
dAT!
dt
dAT!

dt
dHY;

dt
dHY,
dt

HY
rdegradation Y = Fmaintenance = Tcell-washout (53)
l
rATI . fcell _ rATl 'fcell _ AT; . dCp (54)
mass—transfer v, degradation v, Cs dt
h
rATh . fcell _ rATh 'fcell _ AT; . dCpg (55)
mass—transfer v, degradation Vv, Cs dt
ATt _ AT} AT
input — Fwashout ~ Vmass—transfer * Cg (56)
ATh _ AT! AT
ri"Puf - rwa;hout - rmass—transfer - Cp (57)
HY AT! AT HY Jeeu HY;i dCp 58
(rmass—transfer + Vdegradation + Ydegradation ~ rdegradation) ’ v - Cs ’ dt ( )
u
HY HY,
“Tmass—transfer * Cp - Twashout (59)

where f..;; [ug cell '] is a conversion factor from cells to carbon, and V,, [L] is the volume of a

single bacterium, set to 1 - 107! [63] (full details in the Supplementary Section 11.2.2). The last

terms in eqs. 54, 55 and 58 account for changes in inner cell concentrations as the total bacterial

volume changes due to growth and decay.

Extension for soil

As shown in Figure 7, we extend the core model by including equilibrium sorption and transport.

We partition the extracellular concentrations of both AT isotopologues, as well as HY, into
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solution phase and sorbed phase concentrations:
cl=0.cl+p.-C° (60)

where CT [pug L™!] is the total extracellular concentration (AT and HY), C [ug L™!] is the solution
phase concentration (AT, AT", HY,), C° [ugkg™!] is the sorbed phase concentration (ATel,S,
ATE}TS, HY,s), 0 [] is the water content in soils, and p [kg L™'] is the soil bulk density.

We relate C! and C® by the Freundlich isotherm:
C% = Kp - (CH)™, (61)

implemented in the model via the retardation factor:

92

dC
=1+ P Kr - ng - (CL)(”F*D (62)

RF :=1
"9 dct 0

I

where Kr (Kat and Kyy for AT and HY respectively) [,ug(l‘“F)kg‘anF] is the Freundlich coefficient
and nr (nar and ngy for AT and HY respectively) [-] is the Freundlich exponent.

Additionally, Arthrobacter aurescens TC1 and other AT degraders utilize other organic
substances as C and energy source. We, therefore, assume that a minimum AT degrader
biomass is maintained in soil [244]):

r =m-Y -(Cg-M) (63)

maintenance

where M [ug L™!] is the minimum bacterial biomass in soil.

Transport is restricted to convective flow:

AT! Uy

i

l
rleaching = 0 ATe (64)
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ATF Uy h

Vleaching = ? - AT, (65)
HY; _ Uy

rleaching - ? HY, (66)

where v, [d7!] is the water flow per soil volume in the plough layer.
We did not include abiotic degradation of AT [132, 229, 230], which has been observed to
have a relatively small contribution compared to biotic degradation [237].

The full model for soil is described by the following system of ODEs

dCp HY; /
dt = rdeglradation * L' = Tmaintenance (67)
dATil _ rATl . fcell B rATil ) fcell B ATiI . dCp (68)
dt mass—transfer v, degradation v, Cs dt
dATzh _ rATh . fcell _ rATih ) fcell B ATih . dCp (69)
dt mass—transfer v, degradation v, Cp dt
AT! AT}
dAT! _ rmass—transfer Cp + rleaching (70)
dt RF
ATh AT}
dAT:l _ rmass—transfer - Cp+ rleaching (71)
dt RF
dHY; py AT AT HY: fe HY; dCp .,
dt - (rmass—transfer + rdegradation + rdegradation - rdegradation) ’ V. - Cy : dt ( )
u
HY HY,
dHY, _ "mass-transfer * Cp + rleaching (73)
dt RF

7.3.3 Model calibration

Engineered systems: experimental details

We calibrated two model variants (M: employing Monod-kinetics for HY degradation; T:
employing thermodynamic HY biodegradation constraints) against published data from
chemostat and retentostat experiments (with two replicates per experiment). Atrazine was

provided as the sole C and energy source for the bacterial strain Arthrobacter aurescens TC1 [63,
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228]. Both engineered systems were fed with an AT solution (30 mg L™!), with dilution rates,
for the chemostat, of 0.023, 0.032, 0.048, 0.056, 0.068 d™!, and, for the retentostat, of 0.02 d°!.
For each system at each dilution rate, concentrations of AT [pgL™'], HY [pugL™'], and living
biomass [cell L™!] were reported at steady-state (details in the Supplementary Section 11.2.3).
Additionally, the isotope fractionation coefficient (¢) was measured at the outlet of the first

dilution rate of the chemostat (-5.4%., only at the lowest dilution rate), and retentostat (-0.45%o)

Calibration strategy

Our initial intent was to estimate a single set of model parameters for both engineered systems.
This was not possible, however, most likely due to differences in bacterial physiology [238, 245].
In our next attempt, we introduced a switch function [169, 170], allowing for environmental-
specific transition between the two conditions (chemostat and retenostat) (Supplementary
Section 11.2.10). This model, despite its high complexity and many degrees of freedom, was
still unable to simulate both engineered systems together (Supplementary Section 11.2.10).
Therefore, we exhaustively investigated (using fits for both systems and sensitivity analysis)
subsets of parameters that could be kept fixed at the chemostat fit while still capturing bacterial
behaviour in the retentostat in a two-step calibration process, as follows.

STEP 1 - pre-calibration step: We started by using the five steady-states (one with each

dilution rate) measured in the chemostat, and the isotope fractionation of the lowest dilution
rate (16 data points). We considered the parameter ranges shown in Table 5. The nominal values

were taken from literature (Table 5). Ranges were selected as to capture parameter variation.
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Table 5: Model Parameters

Param Description Units Nominal Minimum  Maximum
kar Maximum degradation rate of AT d! 0.10(a) 1-107* 1-10*
KjT Half saturation concentration for AT degradation pgL™ 237(b) 1-107° 1-10*

kay Maximum degradation rate of HY d! 0.10(a) 1-107° 300

K Reference/half-saturation concentration pgL™ 0.05(c) 1-107™ 1-10*

Y Growth yield - 0.04(b) 0.01 0.15

m Maintenance coefficient d! 0.10(b) 1-107* 1-10*

feell Conversion factor cell to C pgeell'!  26-10°%d) 4-107° 51077

re Mass-transfer rate coefficient Ld'ug™ 0.003(b) 1-10™* 1-108

Highlighted parameters were estimated for the retentostat system. References: (a) [246], (b) [239], (c) [241], (d) [183].

We used the global optimization algorithm Simulated Annealing [simannealbnd] of MATLAB

to minimize the weighted sum of squared errors (SSE) :

n

i )2
SSE=Y" lops = Ysim)” J sim) (74)
i=1 0

where y!, and y!;, are the mean values per observation type and dilution rate, and the
corresponding model output for the i data point from n total data points. ¢? is the recalculated
standard deviation per observation type and dilution rate (details are given in Supplementary
Section 11.2.3, Table S7).

We then calibrated the retentostat system at the steady-state (4 data points) using Simulated
Annealing again. An acceptable description could be reached by fixing four parameters and
allowing the other four to vary: kar, K&Y, f..;;, and r, (highlighted yellow in Table 5). Details

are given in the Discussion.
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The model outputs corresponding to the measurements were:

AT Concentration [pgL™] = AT!+ AT! (75)
HY Concentration [pgL™] = HY, (76)
Biomass [cellL™!] = Cs (77)
fcell
Isotope fractionation was determined as:
€ = Sinler = Soutlet (78)

where &, is the isotope ratio of the heavy and the light isotopologues of AT at the inlet, given

as -29%o [62, 228], and 8,,:1.; was determined as

AT!
AT!
5outlet = R - 1 . 1000 (79)

where R is the reference '*C/!*C isotopoe ratio of Vienna Pee Dee Belemnite [147]. The parameter
B (eq. 40) can be directly derived from the enzymatic fractionation coefficient of AT (& = -5.4%0)

measured for a particular bacterial strain [228, 239]:

e=p-1 (80)

STEP 2 - Full calibration: For both systems, a full calibration step, including parameter and

output uncertainty were determined with the Markov Chain Monte Carlo (MCMC) algorithm
of the DREAM MATLAB toolbox [117]. We fitted the 8 chemostat system parameters and the 4
differing retentostat system parameters simultaneously (marked in yellow in Table 5) in one
optimization run. We chose a flat and uninformative prior distribution for the MCMC. The

starting values of the MCMC chains were drawn from a normal distribution of the parameters
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in log-space (mean value equal to the best fit of the Simulated Annealing (step 1), an arbitrary
variance of 1, and zero covariance between the parameters). Minimum and maximum parameter
values were taken from Table 5, and the option “reflect” was selected as a method for handling
parameter boundaries. The ﬁ—diagnostic [192] lower than 1.2 [117] was used as convergence
diagnostics. We used a Gaussian likelihood considering heteroscedastic measurement errors as

implemented in DREAM:

Oi

i=1

n n i i \?2
L(xlff)=—g-log(ZH)—Z{log(m)}—é' (ym y“’") (81)
i=1

7.3.4 Soil measurements
Soil sampling

Topsoil was sampled from the plough layer (0-30 cm) of two agricultural fields (Poltringen and
Tailfingen) in the vicinity of Tiibingen, Germany. The soils were classifed as Vertic Cambisol
on gypsum keuper (Poltringen), and eroded Luvisol (siltic) on loess (Tailfingen). To obtain
representative samples, 20 individual samples were drilled by hand down to 30 cm depth and
combined in the field to one composite sample. In the lab, samples were thoroughly mixed
(using a sample-splitter; Retsch GmbH, Germany), freeze-dried, and ground before further

processing (exhaustive extraction and sorption test).

Exhaustive soil extraction

Pesticides (atrazine and hydroxyatrazine) were extracted from soil with an accelerated Solvent
Extractor (ASE 300 Dionex, Thermo Scientific) at 80°C and 150 bar, using acetone as the main
solvent (parameters in Table 6). To ensure a homogeneous flow through the extraction cells,
soil samples were mixed with 80% (mass) clean quartz sand before extraction. To control for
potential losses of pesticide during the processing (enrichment and clean-up) of the extracts, 10
ng of Isoproturon-D6 were added to each extract. Subsequently, the extracts were reduced with

a rotational evaporator until acetone was evaporated completely. The residual aqueous sample
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was filtered through 0.25 pm PTFE syringe filters (Agilent, Waldbronn Germany) and 10% (Vol.)
of MeOH was added before the measurement at the liquid chromatography-mass spectrometry
(HPLC-MS/MS). The target compounds were separated with an Agilent 1290 Infinity HPLC
(Agilent, Waldbronn, Germany) using a reversed phase column (Agilent Poroshell 12 EC-C18, 2.7
pm, 2.1 x 100 mm). The quantification of the target compounds was done based on an external
calibration using 10 standards with concentrations between 0.02 and 10 pg L™'. As control for a
potential shift during the measurement, every 15 samples, one external standard was monitored,
with a concentration of 2.5 pg L™! (Measurements are shown in Supplementary Section 11.2.4,

Table S7)

Table 6: Details of accelerated solvent extraction method

Parameter Settings
Solvent Acetone:MilliQ(9:1)
Temperature [°C] 80
Pressure [psi] 1500
Heat [min] 5
Static time [min] 10
Flush vol. [%] 70
Purge [s] 100
Static cycles 2

Sorption test

Six initial concentrations of atrazine (0.06, 0.4, 4, 36, 420 and 2060 ug L™!) were prepared from a
stock solution of atrazine in MilliQ water (using a pure, analytical standard from Sigma Aldrich).
The solutions were spiked with CaCl, (0.5 gL™!) and NaNj3 (0.25 g L™!) to provide a stable ionic
strength and minimize bacterial activity. The sorption test was conducted in triplicates in 50
mL glass vials (with teflon-lined caps), containing 15 g of soil and 30 mL of spiking solution.
The vials were kept on a horizontal shaker (150 rpm) for 10 days in the dark and at 20°C. To

separate soil solids from water, the vials were kept standing for three days until all fine particles
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were settled. A small test with filtering the aqueous phase had confirmed this approach as valid.
Subsequently, the aqueous phase was transferred into clean vials using glass pipettes.

After separating soil solids from water, 20 ng of atrazine-D6 was added as an internal standard
to the aqueous phase. Processing of the aqueous samples varied for the different concentrations:
Samples with lowest concentrations were enriched via solid phase extraction (Waters OASIS
HLB). Samples with expected concentrations between 0.2 and 10 pug L™! were filtered through
0.25 pm PTFE syringe filters and 2% (Vol.) of acetonitrile was added. For concentrations above
10 pg L1, the samples were filtered and then diluted with MilliQ:acetronitrile (98:2) before
LC-MS/MS measurements. As quality control, blanks with ultra-pure water, leaching blanks
with ultrapure-water and soil, and controls with spiking solution without soil were analysed in
triplicates confirming no relevant loss of atrazine or contamination (Supplementary Section
11.2.4, Table S38).

We determined the Freundlich sorption parameters (Kat and nar) for atrazine at both sites
by regressing the sorbed concentration on the solution concentration (eq. 61, and 62). We used
the Nonlinear regression function [nlinfit] of Matlab (Supplementary Section 11.2.4, Figure S30
and Table S9). The sorption coefficient of hydroxyatrazine (Ky) was calculated by dividing the
normalized sorption coefficient of atrazine K),; (sorption coefficient K47 divided by the water
solubility of atrazine Sa7) by the water solubility of hydroxyatrazine (Syy) at the power of nar
(eq. 82) [247, 248]. The sorption exponent for hydroxyatrazine was assumed to be equal to
atrazine because the Freundlich exponent is rather soil- than compound- specific:
Kar

Ky = (Sry)(nar)

7.3.5 Soil predictions

We ran simulations in soils using both sets of calibrated parameters (chemostat and retentostat)
for four different model configurations: i) with Monod-kinetics and without leaching (Variant

M-NL), ii) with thermodynamic growth constraint and without leaching (Variant T-NL), iii) with
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Monod-kinetics and leaching (Variant M-L), iv) with thermodynamic growth constraint and
leaching (Variant T-L). We fixed the equilibrium sorption parameters (Kr and nr) to the means
of sorption parameters at the sites Poltringen and Tailfingen (Supplementary Section 11.2.4,
Table S9). We fixed the minimum bacterial biomass in soil M according to Klier et al. [244]. We
derived the water flow (v,) from the mean daily water flux of both sites (0.56 mm d™!) divided

by the ploughing depth of 30 cm. The values of the soil parameters are shown in Table 7:

Table 7: Soil Parameters

Param. Description Units Value
Kar Sorption coefficient for AT pgl kg LT 32

nar Sorption exponent for AT - 0.85
Kuy Sorption coefficient for HY pgl-mmkg-lLmy 174
Ny Sorption exponent for HY - 0.85

Uy Water flow per soil volume in the plough layer d! 0.00188
M Minimum bacterial biomass per volume of soil solution —pgL™? 0.03

To compare with the field monitoring data from the sites Poltringen and Tailfingen, we ran
simulations with all four variants of the soil model, assuming an initial application of 1,000

pg kg™t [249, 250] and predicting residual concentrations after 30 years.

7.3.6 Global sensitivity analysis

We determined the Morris and Sobol indices [103, 106, 107, 202] for the two core model variants
(M and T), using the SAFE toolbox of MATLAB [202, 251]. We calculated the mean of the
elementary effects () and the standard deviation of the elementary effects (o) for the Morris
Method, as well as main and total effects for Sobol indices with a total of 15,000 sample inputs
in both cases.

We sampled parameters from a uniform distribution taken from the posterior distribution of
the fitted parameters against the chemostat and retentostat data combined (Table 8 from the

Results section 7.4). We used a latin hypercube sampling strategy [73]. Additionally for the
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Morris Method, we calculated the 1, norm (I, = \W) of each parameter [73, 105, 107] and
considered parameters with l;-norm higher than 0.5 as high leverage.

We selected the following outputs: steady state biomass, AT, and HY (extracellular and
intracellular), and isotope fractionation ¢ (eq. 78). We ran the model for 200 d to guarantee

steady-state in the simulations.

7.3.7 Local sensitivity analysis

We performed a local parametric sensitivity analysis [199, 200] for the four soil model variants
as described above, based on the best fit against the chemostat and retentostat observations.
The target outputs were the residual concentration of AT and HY after 30 years. We addressed

all kinetics (Table 5) and soil parameters (Table 7), as well as the initial AT application.

7.4 Results
7.4.1 Calibration to chemostat and retentostat data

The two core model variants behave equally in engineered environments, and so we present
the results only for Variant T. (Results corresponding to Variant M are presented in the
Supplementary Section 11.2.6, Figures S32 and S33, and Table S10). Following a two-step
approach, we calibrated the 8 chemostat system parameters and the 4 differing retentostat

system parameters simultaneously.

Concentrations:

Our simulations were in good agreement with observed data for the chemostat (Figure 8 A-C).
After the partial re-calibration, we found acceptable agreement for the retentostat system, but
with a slightly higher model output uncertainty for the biomass (this was not unexpected, given

the relative lack of data for calibration).
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Fractionation:

Simulations showed agreement with the observed isotope fractionation for both systems, with
slightly higher uncertainty for the retenostat (Figure 8D). Isotope fractionation of AT occurs
when enzymatic transformation is the rate-limiting step. In this case, the enzymatic fractionation
coefficient of AT (¢) lies close to -5.4%o. (chemostat). At low AT concentrations, the mass transfer
across the cell membrane becomes rate-limiting, and no isotope fractionation is observed (e of

just -0.45%.; retentostat) [63, 228, 239].
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Figure 8: Simulations (boxplots) of model variant T (thermodynamic growth constraints) and
measured data (blank diamonds + estimated standard deviation). A-C. Steady-state
concentrations for the chemostat (five dilution rates: C1-C5: 0.023, 0.032, 0.048,
0.056, 0.068 h™!, respectively) and the retentostat (dilution rate: R: 0.020 h™!). The
middle line in the boxplot is the median of the ensemble outputs from the MCMC
simulation ensemble (see M&M 7.4); boxes represent 25% and 75% percentiles; whiskers
corresponds to +/- 1.5 x IQR (interquartile range). D. Enrichment factors (¢) were
reported only for the lowest dilution rate of the chemostat (C1) and the retentostat
(R), but simulated for C2-C5.
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Parameter estimates and uncertainty:

Kinetic parameters related to AT and HY degradation (chemostat: k7, K A‘}T, kgy, K ﬁ Y
retentostat: kar, Kii¥) appear to be well-informed by the data, showing relatively well-
constrained posterior distributions (Figure 9 A, B, C, D, 1, J), low standard deviations (Table
8), and considerable impact on model outputs according to the Sobol analyses (especially kar
and K{iT, Supplementary Figure S35). The maintenance parameter m was interestingly well
constrained by the chemostat data (Figure 9 E, Table 8); the global sensitivity analysis confirmed
this parameter to be low leverage (Supplementary Figure S33 and S34). The mass-transfer rate
parameter r, was not well-constrained for the chemostat data (Figure 9 H), but fitted relatively
well to the retentostat data (Figure 9 L), especially with the model variant M (Section 11.2.6,
Figures S33). This parameter showed a considerable impact on model outputs (Supplementary
Figure S34 and S35). The yield parameter Y and conversion parameter f..;; were highly uncertain
and not well-constrained for either system, probably due to the high correlation with other
parameters like kinetic parameters kst and kpy (Supplementary Tables S11 and S12 for model
variant M).
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Figure 9: Posterior distributions for calibrations with chemostat (8 parameters) and retentostat
(4 parameters) data. All parameters are expressed in log scale with the exception of
the growth yield Y.
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Comparison of parameter estimates between the chemostat and retentostat:

Comparing the mean and MAP calibrated parameter values in Table 8, we see that the per-cell
AT degradation rate (kar) is estimated to be higher for cells living in the low nutrient retentostat
system. Conjectured physiological adaptations [238] in the retentostat environment may be
responsible for the difference in the estimated value of f..;; compared to the chemostat, reflecting
changes in cell volume. However, this estimate is highly uncertain and highly correlated to
other parameters’ values. Physiological adaptations might also be responsible for a reduced
value of parameter Ki1' in the retentostat system, possibly reflecting a change in nutrient
demand. The estimate of r, was higher in the chemostat than in the retentostat, indicating
a change in membrane properties leading to strong mass transfer limitations across the cell
membrane. The estimates of the parameters kar, K AP,[I Y andr, using model variant M show the
same tendencies, but exhibit stronger changes (increase/decrease) from chemostat to retentostat
(Supplementary Section 11.2.6, Table S10). The main difference is in parameter f..;;, which

shows a clear reduction in the retentostat, strongly supporting the findings of Kundu et al. [238].

7.4.2 Predictions of atrazine and hydroxyatrazine fate in soils and comparison

against field data

We simulated the fate of AT and HY in soil for 30 years, assuming a single initial AT input
of 1,000 pg kg™! [249, 250]. For this, we used the full posterior parameter estimates from the
chemostat and retentostat systems for four model variants (Figure 10). All model variants
predicted very low residual AT concentrations, considerably underestimating the observed
concentrations of 0.3 and 0.6 pgkg™! in the top soil of both field sites (Poltringen and Taiflingen
respectively) (Figure 10 A, B).

In contrast, predictions of residual HY mainly overestimated the observed HY concentration
at both study sites (around 2 pg kg™! in both sites) (Figure 10 C, D). Predictions using retentostat
fitted parameters in combination with thermodynamically constrained growth and leaching

(Figure 10 D) predicted long term persistence of HY, with mean values around 36 pgkg™'.

70



7 Modeling bioavailability limitations in soils

01S 9[qel ‘9'z' 1T uor}oas Arejuswarddng oy} ur umoys are |y
JUBLIRA [9pOW JO s1ajowrered pajeIqi[e]) SuIalsAs paIaaursus 1yjoq 103 S[qUIdSUa JINIIN Y} Jo 9SueI pue (piS) UOTJRIASD pIepue)s ‘UBdW ‘(JYIN) 110119)s0d-8 WNWIXBIN

[To-100] 02 ¥0°0 $0°0 [-1x
[sz-00] o€ 70 01 [,-p]u
6662 - L'L1] 0 z6L ccs [;-p] Ay
[zLs1-682]  T1 YT 980T | [-18M] Ay
[ST-¢01-9.] 62 10 20 [0T-0T-6T] 2TL ,0I-8F LYS | [81 . pT]
[LOT-06-,0T-0%7] 6T 0069 400-8C | [(01-98-¢0T-6%] 0T 400-1C 4O01-6T1 | [,_[o08r]1f
[6ss-%91] 21 6'1¢ 692 [L90g-66ST]  T1 ¥'502 6661 [-187] I
[01-2€-€€] 0F z9LT 7’652 [c682-%91] o0%¢ 6'L9 I'1L [i-p] ¥y
J3uey piS UBIN dVIN JSuey  pis ueIN dVIN sIojoweIe

Je1S0JUd}Y JeIsowa)

SJ1J 181S0JUR}Y PUE JBISOUIAY) J0] A[qUIdSUD DDA Ue UO Paseq I, JUBLIBA [9POW Y} JO sanfea J1jourered pajeiqie)) :g d[qeL,

71



7 Modeling bioavailability limitations in soils

However, model variants with Monod kinetics (M-NL(R) and M-L(R)) performed better and
predicted residual HY concentrations much closer to the measurements (9 and 20 pg kg™!, Figure
10 D).

As expected, simulations of this simple model over 30 years are highly uncertain. Based
on our local sensitivity analysis (Supplementary Section 11.2.9, Table S13 and S14), the
sorption exponent of both chemicals (n41 and nyy) showed the highest impact on the residual
concentrations of AT and HY after 30 years, revealing a strong dependency on sorption
characteristics of the soils. Surprisingly, the initial application of AT only impacted the residual
concentration of AT in model variants incorporating thermodynamic growth constraints. Water
flow (v,) and minimum bacterial biomass (M) had low impact on the residual concentrations,
despite their role to improve model predictions (our best model predictions include leaching;
recall that parameter M accounts for alternative carbon sources for soil bacterial biomass). As
to be expected, the kinetic parameters, in contrast to the sorption parameters, had a negligible

impact on the target outputs.
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Figure 10: Simulated residual concentrations of atrazine AT (A,B) and hydroxyatrazine HY (C,D)
in topsoils (0-30 cm), and observations (grey background) in topsoils of two field
sites Poltringen (P) and Taifingen (T) after 30 years. (C) represent simulations using
chemostat fitted parameters, and (R) simulations using retentostat fitted parameters.
The middle line of boxplots is the median of the ensemble outputs from the MCMC
simulation ensemble (see M&M 7.4); boxes represent 25% and 75% percentiles;
whiskers corresponds to +/- 1.5 x IQR (interquartile range).

7.5 Discussion
7.5.1 Bacterial adaption to low nutrient availability affects model parameterization

Due to the apparent similarities between the chemostat and retentostat systems, our initial
intent was to achieve a joint fit for both systems. In particular, by including a flexible formulation
of the mass-transfer rate, as well as a thermodynamically constrained growth rate instead of a
Monod formulation, we aimed to represent systems with or without mass-transfer limitations
across the cell membrane by one model. However, we found that goal unattainable. Recent
publications [238, 245] show evidence of a phenotypic differentiation of a single population
into separate growing and non-growing (i.e. energy used only for maintenance) bacterial

subpopulations [238]. Thus, we focused on the key parameters that have to be re-calibrated
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between the two systems using two model variants that exhibit equivalent behavior over the
range of inputs in the engineered systems (Table 8).

After fitting model parameters to the chemostat data, we systematically tested which
parameters had to be re-calibrated to capture the retentostat behavior. We were guided by
sensitivity analyses, as well as our understanding of the role of the parameters in our model.
We fixed the maximum degradation rate of HY (kyy), the growth yield (Y), the half-saturation
concentration for AT degradation (K;}') and the maintenance parameter (m) because of their low
impact on model output (Supplementary Information, Figure S33 and S34). Similar sensitivities
were previously reported in the literature [239]. Summing up, the parameters that had to be
re-calibrated to capture the retentostat behavior are: kur, Kﬂ Y. feenr, and r,. We justify the
requirement of these needed adjustments in the following,.

The parameters kar (maximum degradation rate of AT), and K1Y (reference/half-saturation
concentration) represent physiological features that can be expected to change under starvation
conditions [238, 252]. Relative to the chemostat conditions, in the low-HY retentostat
environment, we estimate a higher values of k41 and lower values of K AZI Y (Table 8), indicating
faster AT transformation to HY, and physiological adaptation of microorganisms to use of
HY, respectively. While the fitted value of kar was about twice the value of kyy (maximum
degradation rate coefficient of HY) in the retentostat, both parameters (k41 and kg y) were similar
in the chemostats (Table 8). This difference in the parameterization of both systems shows that
the physiological adaption of microorganisms to low concentrations affects the regulation of
the AT degradation reaction network such that HY transformation becomes rate-limiting for
microbial growth.

We found that re-calibration of the parameter f,.;; is an efficient way to capture specific
bacterial differentiation for low nutrient systems [63]. The parameter f,.;; is a scaling factor
used to convert cells to C [183] and might suggest morphological changes (shape and volume)
observed in Arthrobacter aurescens to cope with stressful starvation conditions [136, 252]. Due

to the high uncertainty in parameter estimation, more experiments are needed to identify the
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underlying mechanism.

Changes in the value of r, (mass-transfer rate coefficient) between chemostat and retentostat
system could reflect morphological/physiological changes in the cell membrane (Table 8). The
relatively lower value of r, in the retentostat suggests a strong mass-transfer limitation across

the cell membrane in that case.

7.5.2 Pesticide persistence in soil

The main objective of our work was to accurately represent Atrazine (AT) degradation in
soils, and especially to capture the long-term persistence of AT and its main metabolite
Hydroxyatrazine (HY).

Despite the related uncertainty for long-term predictions, persistence of HY even after
30 years was consistently predicted by model variant M-L calibrated with retentostat data
(Figure 10 D). In general, retentostat concentrations are closer to the soil environement, so
that more accurate predictions are to be expected (biomass retention, low nutrient levels).
Additionally, incorporation of leaching gave a better representation of the pesticide losses over
time. Simulation with a simple model incorporating only leaching over the 30 years leads to a
residual concentration of AT of about 2 pgkg™!. This value is close to the measured residual
concentrations indicating that only low AT degradation might have occurred at the field sites
(Figure 10). Standard Monod model variants predicted HY concentrations after 30 years better
than thermodynamic models. Therefore, energetic constraints of microbial growth likely do not
limit HY degradation in soils. In contrast, all model configurations predicted a nearly complete
consumption of AT after 30 years, a behavior not observed in field surveys [25, 57], including
the field measurements of this study (Figure 10 A).

A range of biological and physical processes in soil have been hypothesized as potential
mechanisms of pesticide persistence in real systems. These include physicochemical control
mechanisms limiting bioavailability, such as chemisorption onto humic substances [59],

physical stabilization in soil microaggregates [253], or the spatial encounter of substrates
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and degraders [60]. Including these additional mechanisms by applying better sorption
and stabilization model formulations [153, 254-258] and spatially resolved modeling
approaches [259-262] might further improve predicting the persistence of AT and other
pesticides in soil. Our study investigated to what extent mass-transfer limitations and
bioenergetic constraints can explain the long-term fate of atrazine and its major metabolite
hydroxyatrazine in soils. We found evidence against the hypothesis that passive diffusion across
the cell membrane of bacterial degraders limits atrazine degradation in the long term. Atrazine
is not degraded to HY for the energy gain by microorganisms and our results suggest that
sorption-limited bioavailabilty and not energetic growth constraints control the persistence
of hydroxyatrazine. Hence, standard Monod kinetics for bacterial growth can predict the
long-term fate of organic chemicals if soil microorganisms directly utilize them as an energy
source. Further research should prioritize the analysis of energetic costs of biogeochemical

transformations without a direct microbial energy gain (atrazine dechlorination).
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8 Temperature and soil moisture change microbial allocation of

pesticide-derived carbon (Paper 3)

This chapter includes the following publication submitted as:

Johannes Wirsching, Luciana Chavez Rodriguez, Franziska Ditterich, Holger Pagel, Rushan
He, Christian Zwiener, Marie Uksa, Ellen Kandeler, Christian Poll (2021). Temperature and soil
moisture change microbial allocation of pesticide-derived carbon. Environmental Science &

Technology.

with the following modification:

1. Numbers of figures, tables, and equations are relative to this thesis and not to the original

publication.
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8 Environmental factors and pesticide degradation

8.1 Abstract

The influence of temperature and soil moisture on the mineralization of pesticides has been
studied extensively, indicating, in most cases, longer half-live times (DTs) in soils with lower
temperature and moisture. However, how the underlying metabolic processes of specific
degrader microorganisms change under altered environmental conditions (temperature and
soil moisture) is yet unknown. This study aimed to link changes in carbon (C) use efficiency
(CUE) under optimal (20°C, pF 1.8) and limiting conditions (10°C, pF 3.5) to the activities
(tfdA mRNA) and abundances (tfdA DNA) of pesticide degraders during *C-labeled 2-methyl-
4-chlorophenoxyacetic acid (MCPA) degradation. We performed a laboratory incubation
experiment at two MCPA concentrations (1 and 20 mgkg™') and used a mechanistic gene-
based biodegradation model to support data interpretation. After four weeks, mineralization
reached almost 70% under optimal conditions but less than 25% under limiting conditions.
Estimated CUE and measured tfdA genes suggest a metabolism that favors anabolic processes
under limiting conditions and reallocation of MCPA-C from growth to tolerance mechanisms.
Our work suggests that, at low initial concentrations, the derivation of DTsy values should not
be based on mineralization kinetics alone, since they fail to account for the contribution of more

efficient carbon utilization, leading to overestimation of the residence time.

8.2 Introduction

Over 80% of 317 topsoils tested in the European Union contained pesticide residues that,
in some cases, exceeded predicted environmental concentrations [55]. The persistence of
pesticides in soil depends, amongst other processes, on its biodegradation under varying
environmental conditions. Degradation rates are often determined from mineralization of *C-
labeled pesticides [211, 263-265]. However, the problem with assessing pesticide persistence
based on *C mineralization is that it neglects shifts in microbial C-allocation depending on
temperature and soil water content, which may result in an overestimation of the half-life

(DTs).
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Carbon use efficiency (CUE) describes microbial C-allocation into either CO, respiration
or microbial biomass. Generally, CUE increases with declining temperature, indicating an
increase in relative allocation of assimilated C to growth [266]. Given this understanding, and
despite information in the literature that a temperature increase of 10°C can accelerate pesticide
mineralization by a factor of almost 2 [211, 267-269], lower temperatures might not always
lead to significantly decreased degradation; they may instead indicate a C redistribution within
the microbial cell where less CO, is emitted, as more of it is used to build additional living
biomass [266].

Muskus et al. [270] found that a temperature drop from 20°C to 10°C resulted in less
mineralization of labeled '*C°N-glyphosate, but promoted the formation of *C non-extractable
residues (NER; proteins + other remaining biomass residues (bioNER) + sorbed and sequestered
starting compounds (xenoNER)). However, if BioNERs are determined at the end of an
experiment, after the death of the microorganisms, information on C uptake dynamics during
pesticide turnover is lost. In such a case, uptake of pesticide-derived C is only considered as
an additional C reservoir and not as a driver of decomposition. The dynamics of CUE, i.e,,
the proportion of the substrate that, over time, immediately goes into the microbial biomass
in relation to the C lost as CO, [271], could be an important addition to the conventional
mineralization-based approach and provide a more accurate assessment of pesticide degradation
at different temperatures.

Soil moisture content is one of the most important factors regulating biological activities in
soils [264] and serves as a solubilizer for the movement and distribution of pesticides [272].
According to Pinheiro et al. [273], below the centimeter scale, the fate of pesticides in soils
depends on the spatial distribution of pesticide and degrader microorganisms. In unsaturated
soils, where the contact between pesticide and microorganisms is established only by diffusion
or mass flow [274] due to the heterogeneous soil matrix [275], molecular diffusion represents
the dominant mode of transport at the smallest spatial scale. Furthermore, the diffusion of

dissolved substances, e.g., pesticides, is limited by the proportion of water-filled pores [276]
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and tortuosity; determination of water content makes it possible to compare microbial reaction
rates between diffusion- and non-diffusion-limited systems [264].

Most of the relevant literature reports that increasing water content, within a soil water
potential range of -1.5 to -0.015 MPa [264, 277], intensifies the degradation of pesticides [211,
278]. For example, MCPA persists ten times longer in dry soils than in moist soils [279] due to the
moisture-sensitive exponential growth of microbes [211]. As aridity increases, microorganisms
must invest more energy [280] to overcome the suction holding the water in the soil [281].
As energy requirements in drier soils may therefore increase, it is conceivable that the way
microbes allocate C will have a profound impact on pesticide mineralization rates. This may
mean that, due to physiological trade-offs between C-assimilation and dissimilation under
drought conditions [282], 1*CO, mineralization may not be linearly related to total pesticide
turnover [283].

Specifically, drought-tolerant microbes invest heavily in the formation of extracellular
enzymes to maintain carbon uptake for the synthesis of stress response compounds such
as osmolytes, cryoprotectants, and chaperones [282] to stabilize cell pressure [284]. This would
imply that pesticide mineralization is not synonymous with microbial pesticide degradation since
microbial C utilization plays a decisive role. This mechanism has already been demonstrated
for soil turnover by Zeglin et al. [283], in which soil C sequestration was higher under dry
conditions.

Degradation rate and C allocation are affected not only by environmental conditions, but also
by initial pesticide concentration [285, 286]. Pesticide degradation at low concentrations usually
follows a first order kinetics and is often astonishingly fast [287, 288]. In contrast, pesticide
degradation at high concentrations is slower and accompanied by a simultaneous increase in
degradation activity and genetic degradation potential [131]. With respect to C-allocation,
in a previous study we [289] demonstrated that the predominantly catabolic use of MCPA at
concentrations < 1 mgkg™' shifted towards an gradually increasing anabolic metabolism at

concentration = 5 mgkg™!. If initial pesticide concentration determines C use by microbial
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pesticide degraders, the impacts of temperature and moisture on C allocation may also depend
on pesticide concentration.

The objective of this study was to examine the impact of environmental factors (temperature
and soil moisture) on pesticide degradation and derived carbon use efficiency, and to link them
to the associated abundances and activities of degraders. Specifically, we were interested in the
deviations in half lifes derived from actual concentration decrease and mineralization kinetics.
To address these questions, we used *C-labeled MCPA, a weakly adsorbed pesticide [290]
that is readily soluble in water [291] and highly biodegradable [292]. An additional advantage
of using MCPA is that the entire degradation pathway and the functional genes involved
have been characterized [128]. We hypothesized that increased CUE at lower temperatures
and soil moisture i) leads to increased !*C content in the microbial biomass, and ii) could
demonstrate a significant overestimation of pesticide half-life time when derived only from
14C mineralization curves. We expected iii) that the effect size will be more pronounced
at higher initial concentration. To address these hypotheses, we determined the temporal
relationship between mineralization (1*CO,) and biomass (**Cpy;) formation in distinct phases,
CUE, alteration of MCPA degradation activity (expressed genes), MCPA-degrading genetic
potential (functional genes), and the half-life of MCPA under optimal and limiting environmental
conditions. In addition to the experimentally-based CUE, we applied a gene-centric model with
the experimental data and calculated two model-based carbon use efficiencies for interpretation

of pesticide-derived C utilization of the specific pesticide degraders.
8.3 Materials and Methods

8.3.1 Soil origin and sampling

The study site was in the central region of the Ammer catchment in southwest Germany
(48°33°24.664", 8°52’31.259"). Soil samples were taken in March 2019 from an Ap-horizon (0-5
cm) of a silty Luvisol (World Reference Basis for Soil Resources). According to the farmer’s

records of their cultivation and spraying programs, MCPA was never applied to the agricultural
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field. The main pesticides applied were chloridazone and metamitron. After sampling, the soil
was sieved (<2 mm), homogenized, and stored at -20 °C ( -80 °C for mRNA samples) to prevent

further biological reactions. The main characteristics of the soil are shown in Table S15.

8.3.2 Experimental Design

The experimental set-up consisted of two temperatures (10 and 20°C), two water treatments (pF
1.8 and 3.5), and three concentrations of ring *C-labeled MCPA (0, 1, and 20 mg kg ™! soil). In this
study, we defined 10°C, pF 3.5 and the two lowest MCPA concentrations as limiting conditions,
and 20°C, pF 1.8 and the highest MCPA concentrations as optimal conditions. The experimental
set-up consisted of 36 total samples, with three replicates for each treatment. At three time
points (5, 15 and 28 days) representing specific phases of MCPA mineralization, i.e., initial
lag phase, phase of exponential growth, and final saturation phase, we sampled independent
sets of microcosms. MCPA solution with a C activity of 15 kBq (99% purity, specific activity
50-60 mCi mmol™!; BIOTREND Chemikalien GmbH, Germany) was uniformly applied to adjust
gravimetric soil water content to 39.6% (pF 1.8) and 29.1% (pF 3.5). Subsequently, after thoroughly
mixing the soil with the MCPA solution, cylinders (diameter = 5.6 cm, height = 4 cm) were
filled with 100 g of soil and compacted to a bulk density of 1.2 gcm™ (height of the soil core
was 3 cm). In addition, there was one set of 36 microcosms that contained unlabeled MCPA
(analytical MCPA purity 99.2%, Sigma-Aldrich, Germany), from which a series of subsamples
(on every second day) for 1*C-free RNA/DNA co-extraction and MCPA quantification was taken

and stored at -20°C until the analyses.

8.3.3 MCPA analysis in soil

A soil suspension of two g soil mixed with 10mL methanol/water (1:1) was homogenized on a
horizontal shaker at 200 rev min~! for 10 min, then heated in a water bath for 60 min at 50 °C.
After shaking again at 200 rev min~! for 10 min, the mixture was centrifuged at 2500 g for 10

min, and 2 mL of the supernatant was removed and filtered (0.45 um pore size). The extraction
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recovery of MCPA was >98%. Before the HPLC-MS/MS analysis, the extracts were sonicated and
homogenized for 5 min by vortexing. On a 1260-Infinity system from Agilent Technologies, one
pL of the sample was injected onto a reversed-phase column (Agilent Poroshell 120 C18, 2.1 mm
internal diameter, 100 mm length, 2.7 pL particle size) at a temperature of 40°C. MCPA was eluted
isocratically within 5 min using 50% water and acetonitrile (both acidified with 0.1% formic
acid) at a flow rate of 0.4 mLmin~!. After chromatographic separation, MCPA was detected by
tandem mass spectrometry using an Agilent 6490 iFunnel Triple Quadrupole (QqQ) instrument.
The analyte was ionized using negative electrospray ionization (ESI-) by applying 12 L min~!
sheath gas (N) at 400°C, 16 L min™! drying gas (N) at 150°C, 30 psi nebulizer pressure, 4.2 kV
capillary voltage, and 1.2 kV nozzle voltage. MS/MS experiments were conducted by MRM
(Multi Reaction Monitoring), using N; as collision gas and collision energy (CE) dependent

mass transitions (MCPA: quantifier 198.9/140.9 at 10 eV, qualifier: 198.9/34.9 at 45 eV). The limit

of quantification (LOQ) was defined as 13 ugkg™! MCPA in soil.

8.3.4 MCPA mineralization (1*CO,)

The *CO; evolution from the microcosms was determined via titration (DIN EN ISO 16072:2011-
09). First, a 0.5 mL aliquot was taken from a CO; trap containing 2 mL 1M NaOH which was
set up in the microcosm. The actual respiration measurement was carried out by adding 0.5
mL of 1 M BaCl, and two drops of phenolphthalein. In the following titration with 0.1 M HCI,
the end point of the neutralization reaction was indicated by a color change to transparency.
To determine the *CO, content, an aliquot of 1 mL was taken from the same *CO, trap and
mixed with 4 ml scintillation liquid (Rotiszint Eco Plus, Carl Roth GmbH + Co. KG) in a 5 mL
scintillation vial (LDPE). The decay rate in Bequerel (Bq) was measured using a scintillation
counter (Wallac 1411, liquid scintillation counter, USA). To account for interfering substances, a
quenching adjustment with 1*C aqueous standards was used to improve the accuracy of the
actual counts per second (cps) for the entire energy band.

The half-lifes (DT5opn) derived from the cumulative mineralization curves were calculated
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from the estimated parameters of the fitted eqs.83 and 84 (see also Duo-Sen and Shui-Ming [293]

and Wirsching et al. [289]):

1

(83)

C:C0.<1_(1—fk)'ekl't+fk>

1 1
DT50M1N = ? . ln |:1 fk + 1] (84)
1 -

Where C is the MCPA-derived *CO, (% of MCPA initially applied), G is the total mineralizable
MCPA that was not immediately incorporated into the microbial biomass or bound to the soil
organic matter after application (% of MCPA initially applied), k; (d7!) is the rate constant of
MCPA degradation per day, and f is a dimensionless parameter constrained between 0 and

1 [289].

8.3.5 Microbial biomass (Cy;c)

Microbial biomass was estimated using the chloroform fumigation extraction method (CFE)
developed by Vance et al. [294], adapted by Poll et al. [295] for additional *C determination.
Prior to extraction, 10 g soil was first weighed to ensure the release of the microbially bound
C after a 24-hour fumigation with ethanol-free chloroform. After removal of the chloroform,
40 mL of 0.5 M K,SO, solution was added, shaken on a horizontal shaker at 250 rev min~! for
30 min and centrifuged at 4420 g for 30 min. The clear supernatant was then passed through
a 20 pm filter, diluted 1:4 with deionized water to avoid high salinity during detection, and
measured with a Multi-N/C 2100S TOC-TNb analyzer (AnalytikJena, Jena, Germany). A second
subsample of 10 g soil was not fumigated with chloroform to determine only the amount of
extractable organic carbon. C content of the contro (non-fumigated) samples was subtracted
from the C content of the fumigated samples to determine Cp;. content. The kgc factor of
0.45 was used to estimate the extractable portion of microbial biomass C [296]. To obtain the

14C content in Cye, 1 mL of the CFE supernatant was mixed with 4 mL scintillation liquid
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(Rotiszint Eco Plus, Carl Roth GmbH+Co. KG) in a 5 mL scintillation vial (LDPE). Calculation of
the incorporated *C was performed as described for the Cpy;c content, here using the activity
difference between the fumigated and non-fumigated samples. For the non-fumigated samples,
the undiluted supernatant was used. Total “C utilization was estimated by adding the *CO,

mineralization and '*C incorporation on days 5, 15 and 28.

8.3.6 MCPA degrader abundance and activity

DNA/RNA co-extraction

For RNA and DNA extraction, 2 g frozen soil was weighed into 15 mL bead-beating tubes and
extracted using the RNAeasy PowerSoil Total RNA Kit for soil (Qiagen, Germany) and the
RNAeasy PowerSoil DNA Elution Kit (Qiagen, Germany) in a co-extraction method following
the user manual. After extraction, the RNA and DNA samples were aliquoted and stored at -80°C
(RNA samples) or at -20°C (DNA samples) for further use. The DNA and RNA concentrations
were measured using a fluorescent dye and microplate reader (Synergy HTX Multi-Mode
Reader, Bio-Tek Instruments Inc., Germany). For DNA and RNA quantification, the Quant-iT™
PicoGreen™ dsDNA Assay Kit and the Quant-iT™ RNA Assay Kit (Thermo Fisher Scientific,
Germany), respectively were used following the user manuals. Before using the RNA-samples
for Real-Time quantitative PCR (qPCR), possible remaining DNA in the RNA samples was
digested using the TURBO DNA-free™ Kit (Invitrogen, Thermo Fisher Scientific, Germany)
following the manufacturer ‘s protocol (Table S1). After digestion, RNA samples were divided
in two subsamples of 11 pL each and labeled as + and - subsamples. For the following revere
transcription, the SuperScript™ III Reverse Transcriptase Kit with Random Primers and RNase
(Invitrogen, Thermo Fisher Scientific, Germany), and dNTPs (10mM; Genaxxon, Germany) were
used. The reaction was carried out according to the user manual of SuperScript™ III Reverse
Transcriptase from Invitrogen. Reaction conditions and temperature program are described in
Table S16. The + subsamples served as cDNA, whereas the - subsample served as a negative

control for the remaining DNA after digestion (Table S17).
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Real-Time quantitative PCR (qPCR)

For gene quantification (bacterial 16S rRNA and functional genes), QPCR assays were applied
using an ABI Prism 7500 Fast system (Applied Biosystems, Germany) with SYBR Green detection.
The primer and qPCR conditions used are listed in Table S18. Each SYBR Green reaction
contained 7.5 pL of Power SYBR® Green PCR master mix (Applied Biosystems, Germany),
0.75.uL of each primer (5 pM), 0.375 pL of T4gp32 (MP Biomedicals, Germany), 3.625 pL water
and 2 pL diluted template DNA or cDNA (3 ng puL!) for functional genes (tfdA and cadA). For
16S rRNA, 1 pL diluted template DNA or cDNA (3 ng uL™!) and 4.625 pL of water was used.
For quantification, standard plasmid DNA was used with a dilution series from 10 to 10!
copies puL. ™! according to Ditterich et al. [131].CadA showed no response to MCPA addition and

was therefore not discussed further in the course of the study.

8.3.7 Gene-centric modeling of MCPA biodegradation

We used a recently developed modeling approach (ref. to Chavez Rodriguez et al. [297]) to
simulate MCPA mineralization (Cp [mmol g™!]), tfdA genes (proxy for active bacterial biomass
Cp [mmol g™']) and transcripts, and CUE. The original modeling approach was extended to

account for constitutive gene expression and to include a temperature response function.

Model description

We assumed gene expression to be in quasi-steady state described by the Hill function, including

constitutive gene expression that is potentially important at low concentrations:

mRNA = fy - ( (Cp)™ a )

(Chy + (Ke)™  fr 9

where fr represents the number of transcripts per gene, ny [-] and Kg [mmol cm™] are the
Hill exponent and constant respectively, « is the constitutive gene expression coeflicient set to

1.2 - 1075 transcripts per gene [126], and C5 [mmol cm™?] is the solution phase concentration of
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MCPA.

Microbial growth is regulated in three ways (Eq. 98) by: i) MCPA-dependent tfdA gene
transcription (mRNA, Eq. 85), ii) MCPA-dependent reaction kinetics (Monod term in Eq. 98),
and iii) a Qjy temperature response function (Eq. 87).

O B ) A Cﬁ) .
Ygrowth = Hmax Cs ((C};)"H + (Kg)™ fT> (C}% + Ky fr(T) (86)

where fimay [d7!] is the maximum growth rate coefficient, Kj; [mmol cm™] is the Monod
constant, and fr(T) [-] is the temperature response function.

The temperature response function fz(T) from Sierra et. al. [298] influences not only microbial
growth, but also the decay rate (Eq. 83), maintenance rate (exogenous (Eq. 89) and endogenous

(Eqg. 90)), and decay rate of non-extractable residues (Eq. 91), and is defined as:

( T-10°C >
(D) = (Qu)\ 10°C (87)
where Qg [-] is the temperature function constant, and T is the temperature in °C.
The decay rate is defined as:
Tdeath = CB - aq fR(T) (88)

where a, [d7!] is the decay rate coefficient.

The total maintenance rate is partitioned into two different maintenance fluxes: exogenous
and endogenous [299]. The exogenous flux describes the fraction of the total maintenance
demand that can be met with the available MCPA in the system. We modeled this flux using a
simple Michaelis Menten expression [261]:

_(.m G P
T'm-exogenous = <C}L,+KM> -Cg - <5> 'fR(T) (89)
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where m [d™!] is the maintenance rate coefficient.

The endogenous maintenance flux describes the fraction of the demand that is met by the
biomass under insufficient MCPA levels in the system [299], and it is modeled by subtracting
the exogenous maintenance flux from the total maintenance demand.

G
C£+KM

> - fr(T) (90)

Tm-endogenous = Cg-m- <1 -

We introduced a non-extractable residues pool to account for the delayed release of CO,

coming from the decaying biomass:
NER NER
Tdecay = “B 1 aco, fR(T) (91)

where: C} ER [mmol cm™] is the non-extractable residues pool, and aco, [d™!] is the decay rate
coefficient of the CYER.

To describe the *C dynamics, we incorporated a *C pool, which accounts for only the *C
portion of labeled MCPA. Processes described for the *C pool are: growth, maintenance, and
respiration. Additionally, the CYER pool traces only the *C-Ch'ER formed. We calculated each
14C flux by multiplying the corresponding total flux by the current mass fraction (a4) of the
source pool [43]. The a;4 was in turn derived from the total activity of *C per g of soil (As =

15 kBq per 100 g of soils) and the mean specific activity of MCPA (aycpa= 55 mCi mmol™!) in

relation to the initial MCPA (Cj;cp4) applied (either 1 or 20 mgkg™).
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The full ODE equations used are:

dCp
dr = Tgrowth = Ym-endogenous ~ Tdecay (92)
14
d*Cp _ 14 _ 14 14 (93)
dt - rgrowth rm—endogenous rdecay
NER
dCB _ 14 _ NER (94)
dt - rdecay rdecay
dc}% _ Tuptake ¥ 'm-exogenous (95)
dt Rr
d"Co,
14 14 14 NER
dt - rrespiration + rm—endogenous + rm—exogenous + rdecay (96)

Rr is the retardation factor (ref. to Chavez Rodriguez et al. [297]) introduced to account for
nonlinear equilibrium sorption using the Freundlich isotherm:

RF :=1+ g -Kp - np - (CE)m=D) (97)

where Kp [mmol' ™" g~1cm®?)] and np [-] are the Freundlich coefficient and exponent fixed to
0.09 and 0.8576 (adapted from Gawlik et al. [300]), 6 [cm® cm™®] is the soil water content, and p
[g cm™] is the soil bulk density.

The uptake rate r,pqke (ref. to Chavez Rodriguez et al. [297]) depends on the bioavailable

fraction of pesticide as follows:

e G (2) (G @) (G5 ) (L))
ronse =& (§) (e ) (o) () 50 o9

Model calibration

We performed a hierarchical model calibration using the parameter ranges from Table S5 and
minimized the sum of squared error (SSE) with the optimization algorithm Simulated Annealing

from MATLAB:

n

SSE = Z (yrineasured ;Zysiimulated)2 (99)
i=1 i
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where Vpeasured is the mean value of the i’ observation, ysimulateq is the corresponding it
simulated value, and o2 is the standard deviation of the corresponding observations.

The hierarchy of parameter groups was formed by assuming: i) different bacterial
subpopulations under the two different initial concentrations of MCPA applied (C), ii) possible
physiological and morphological bacterial changes under different moisture levels (W), not well
captured by literature moisture functions, and iii) biological and physicochemical properties of
soil (S). Thus, parameters for calibration were grouped according to the proposed hierarchy
(Table S19):

Model outputs corresponding to the measured data are:

14C0, - 100%

Mineralization [%] IO (100)
Chicpa
C
Genes [copiesg™!] = -5 (101)
h
RNA-C
Transcripts [copiesg™'] = % (102)
1
- -1 L 0 L\ 1P
Residual MCPA [mgkg™] = Cp-—+Kp- (CP) (103)
p
DTsores [d'] = Time[(Residual MCPA = 0.5 - Cy;cpa)] (104)

where f; [mmol gene™!] is the conversion factor cell to carbon. Incorporation of '*C into the

microbial biomass (Cp,;.) as well as CUE were not used for model calibration

8.3.8 Carbon use efficiency (CUE)

We derived CUE both experimentally and model-based CUEs:

1. CUEy: experiment-based CUE used for labeled substances [301].

14Cmic

CUEy = ——F—
M 14Cmic + Rcum

(105)
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where: C,;. is the C uptake in microbial biomass, and R, is the cumulative respiration

rate.
2. CUEg: environmental model-based CUE adapted from Geyer et al., [302].

14 CB

CUEE = 56, 7% co,

(106)

3. CUE¢: community model-based CUE adapted from Geyer et al. [302] and Manzoni et

al. [303].
14 14 14 NER
CUE~ = 1 rrespiration + rm—endogenous + rm—exogenous + rdecay (107)
c= 14 ST +rla
respiration growth m-exogenous

8.3.9 Statistical analyses

A linear model with mixed effects as part of the "nlme" package using the Ime function [304]
implemented in R version 3.5.2 was applied, specifying concentration, soil moisture content
and interand temperature and their interactions as fixed effects, and microcosms as random
effects. To investigate the influences of temperature, soil moisture content and concentration
on the *CO; mineralization rate, we compared the attained '*CO; level on day 28 among all
treatments. To illustrate the differences in CUE, we compared all treatment levels. To test
the assumption that a temperature reduction to 10°C leads to a significant increase in *C
uptake, we compared *C uptake at increased and reduced temperatures, at each concentration,
and each soil moisture level. The probability that the measurements for a given experimental
unit would be temporally correlated also had to be considered. In this case, corAR1 (time)
was used to indicate a temporal autocorrelation structure of order one. Since the ANOVA
requires a normal distribution and variance homogeneity within the data, an assumption check
for the mineralization, incorporation and CUE was run to ensure that the prerequisites for
reliable calculations were met. For specification of contrasts between the influencing factors

relevant for the verification of our hypothesis, a post-hoc comparison was conducted using the
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package “emmeans” [305]. With this package, the estimated marginal means were calculated,
and interaction plots were made by using the “emmip” function to display the interactions
between the variables soil moisture, temperature, and concentration. The influences of the
variables were compared pairwise with the Tukey method, and the standard error (SE) and

p-value for each result was simultaneously computed.

8.4 Results and discussion

Pesticide degradation studies often neglect the possibility that the efficiency of microbial C
utilization can shift in response to environmental factors [266, 306]. Our study, therefore,
analyzed microbial utilization of the pesticide MCPA in response to changes in soil moisture
and temperature. In addition to estimating the mineralization of *C-labeled MCPA and the
dynamics of specific degraders, we calculated the CUE of MCPA turnover to evaluate microbial

C allocation to catabolic and anabolic processes.

8.4.1 Enhanced MCPA mineralization by elevated temperature and moisture

Mineralization of MCPA in soil was quantified as that of the accumulated *CO, at the end
of the incubation (Figure 11 A, B, C, D). Under optimal soil conditions (20°C, pF 1.8) and 20
mg kg1, nearly 70% of the initially applied *C-labeled MCPA was mineralized to 1*CO,. Under
limiting conditions (10°C, pF 3.5) and 1 mgkg™!, mineralization was significantly reduced and
peaked at only 23%. These results were confirmed by our model simulations, which accurately
depicted the measured mineralization (Figure 11 A, B, C, D).

As a single factor, a temperature increase from 10 to 20°C resulted in an increase in *CO,
mineralization of 10.5% (Fy 16 = 73.9, p < 0.01). However, the effect was significantly more
pronounced at high MCPA concentrations (+17.7%) than at low MCPA concentrations (+3.4%,
F116 = 35.2, p<0.001; Figure 1 A, B, C, D). Comparable temperature-dependent increases in
mineralization were demonstrated in studies by Nowak et al. [307] and Muskus et al. [269]

for glyphosate, Helweg [263] for mecoprop (MCPP), and Bouseba et al. [265] for 2,4-D. These
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increases in *C mineralization appeared to be independent of the chemical properties and
associated behaviours of those pesticides in soils. In our experiment, an explanation could be
found in the temperature sensitivity of the enzyme-catalyzed reactions of MCPA degradation,
which are associated with inherent kinetic properties (intrinsic temperature sensitivity) and a
concentration-dependent response of mineralization rates to temperature (apparent temperature
sensitivity) [308].

Additionally, we evaluated the effect of water content as a sole factor, in which a reduction
from pF 1.8 to 3.5 resulted in the strongest decrease in *CO, mineralization (-16.2 % Fy ;6 =
136, p< 0.01). This effect was most pronounced at the high MCPA concentration (Fy 16 = 17.9,
p<0.001), where total mineralization was 21.3% higher at pF 1.8 as compared to pF 3.5 (Figure 11
AB). At the low MCPA concentrations, this increase was only 11.0% (Figure 11 C, D). Generally,
microbial activity decreases with increasing osmotic potential, as demonstrated by Sparling
et al. [309]. According to Ilstedt et al. [310], the reason why a reduction in water content
also reduces the maximum mineralizable *C fraction of MCPA is related to the limitation
on substrate diffusion due to reduced thickness of the water film on the soil particles as the
water content declines [311]. Schroll et al. [264] determined an optimal osmotic potential for
aerobically degradable chemicals of -0.015 MPa, which corresponds to a pF value of about 2.2.

Evaluation of MCPA residues (Figure 11 E-H) indicated almost complete degradation,
especially in the 1 mgkg™! treatment at 20°C, where MCPA was no longer detectable after
10 to 15 days. Only under the treatment combination of 20 mgkg™', 10°C and pF 1.8, 10% of
the initial applied MCPA remained in the soil. In the treatment combination pF 3.5 and 20°C,
no MCPA could be extracted after 20 days. If the incubation took place at 10°C, MCPA was no
longer detectable after 25 days. Similar detection times for MCPA were reported by Beelum et

al. [312], Hiller et al. [313], and Pefa et al. [314].
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8.4.2 Invariable microbial dynamics under limiting temperature and moisture

The tfdA gene abundance responded only to the 20 mg kg™ and 20°C treatment (Figure 111, J).
The abundance of #fdA genes reached a maximum 10 days after MCPA application; with higher
copy numbers in soils at pF 3.5 than in soils at pF 1.8 (concentration:day:temp:pF; Fg o6 = 2.05, p
= 0.048). After the peak, a slow decline followed until day 28, after which the initial level of
10* copies g”! was reached again. Similar results were obtained by Vieublé Gonod [315] and
Baelum et al. [128], where an initial "lag" period (0 - 8d) with minor mineralization indicated
limited microbial pesticide turnover. In a second phase characterized by a sharp increase
in mineralization (after day eight), Baelum et al. [128] were able to detect a proliferation of
degraders based on tfdA copy number to 3.0 - 10° per gram of soil, resulting in an approximate
sigmoid shape of the mineralization curve after saturation of *CO; release was attained,
consistent with our results. We could associate a maximum increase in tfdA copy number to
4.3 - 10° per gram soil with comparable mineralization kinetics. The response of tfdA transcripts
to temperature mirrored the patterns of {fdA gene abundance (concentration:day:temp; Fg 96
=30.01, p<0.001), but transcripts returned after day 15 to the initial level of 10* copies g™} dw
(Figure 11 M,N,O,P). Soil moisture did not affect gene transcription.

The observed patterns of tfdA gene and transcript dynamics were well captured by simulations
using gene-based mechanistic model. According to Gozdellier et al. [316], different degrader
subpopulations are adapted to different MCPA concentrations. Therefore, we allowed the
parameters fi (conversion factor cell to carbon), m (maintenance coefficient), and Yp (yield
coefficient) to take different values at 1 and 20 mgkg™!. Calibrated parameters (Table
S20) suggested populations with bigger cells, higher maintenance demands and lower yield
efficiencies at 20 mgkg™! than at 1 mgkg™!, which is in accordance with Gézdellier et al. [316].
Additionally, within each concentration level, slightly smaller cells with low maintenance

demands and high yield efficiencies might be expected at pF 3.5.
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Figure 11: Measured (dots) and simulated (lines) of cumulative *CO, mineralization at two
MCPA concentrations as a function of temperature and soil moisture over time
(A, B, C, D), Residual MCPA expressed as mgkg™! over time (E, F, G, H), tfdA
genes during the MCPA biodegradation experiment expressed as gene copies g~}
dry weight (I, J, K, L), tfdA transcripts quantities during MCPA degradation expressed
as transcripts copiesg™! dry weight (M, N, O, P). tfdA genes and transcripts are
expressed at log-scale. Error bars represent standard errors of the mean values for
soil triplicates (see M&M).

8.4.3 CUE dependency on temperature, moisture, and MCPA concentration

We determined CUE); based on measured *C incorporation into microbial biomass [301].
Additionally, and taking advantage of our mechanistic gene-centric model, we derived two

model-based carbon use efficiencies - CUEE and CUE. While CUE); accounts for pesticide-
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derived C incorporation into the whole microbial community, the two model-based carbon use
efficiencies exclusively consider C utilization by specific pesticide degraders. CUEy; and CUEg
measure effects of pesticide-C stabilization on carbon utilization over a longer period, taking
into account the effects of biomass turnover, substrate recycling, and potential cross-feeding
[302]. CUE is calculated from simulated process rates and measures the immediate carbon
utilization after MCPA uptake.

The prerequisite for CUE,; assessment is quantification of '*C incorporation into the biomass
(**Cpic)- Soil moisture did not affect *Cp,;. (Table S27). In contrast, a temperature reduction
to 10°C significantly increased '*Cp,;. during the first five days after MCPA application by 3
percentage points to 10% (Fy 16 = 4.9, p<0.05), compared to the 20°C treatment. Microbial uptake
of MCPA can occur very quickly, according to Nowak et al. [179], who found a peak in 2,4-D
derived !3C after only two days. They identified bacteria as the main degraders of 2,4-D in the
soil. However, an initial high *C,,;. is followed by *C losses, since the *C is assimilated to
form precursor compounds (PreC) for further biosynthesis or is dissimilated for maintenance
respiration [302].

This short-term metabolic reaction of degraders is represented by CUE¢ (Figure S40). On
average, CUEc increased by 0.2 at 1 mgkg™' compared to 20 mgkg™. CUE( in relation to
the remaining MCPA concentration reached zero at 1 mgkg™! after about 99% of the initially
applied MCPA was degraded in contrast to the 20 mgkg™' treatment, where this point was
reached earlier (90%). These findings indicate a more efficient utilization of MCPA-derived C at
low initial concentrations and a longer-lasting gross production. Gross production is defined as
total pesticide uptake minus pesticide-C that is mineralized and used for further biosynthesis
processes [302]. Therefore, in contradiction to the constant metabolic flux analysis of Geyer et
al. [317], in which no change in the biochemical processes was detected during the incubation of
different glucose concentrations, we can confirm a decrease of CUE for MCPA at 20 mgkg™'.
The lower CUE under the higher MCPA concentration is most likely explained by the two

different fitted values of growth yield parameters for each initial MCPA concentration (Table
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S20). This finding supports the inherent model assumption made in accordance with Gozdellier
et al. [316] that two subpopulations of pesticide degraders with different physiologies trigger
concentration-dependent shifts in pesticide-C metabolism. Metabolic regulations leading to
increased nutrient-mobilizing extracellular enzymes or carbon-wasting respiratory mechanisms
under nutrient limitations could also be responsible for lower CUE- [318]. However, these
processes can be ruled out because in fertilized soils, nutrient limitations are not expected.

Short term differences in CUE should affect the long-term fate of the MCPA-C, as measured
by CUE) and CUEg. CUEy; was significantly higher during the MCPA degradation at 20
mgkg™! compared to 1 mgkg™! (+ 0.06; Fy 14 = 5.8, p < 0.05) during the first 15 days (Figure
12 A, B, C, D). CUE); can only be statistically evaluated by comparison at each time point.
But, comparing CUEy over time is misleading, as different states of degradation dynamics are
being compared. To eliminate this deviation, CUEr was considered as a function of the relative
decrease in MCPA concentration (Figure 12 E, F, G, H). The simulated CUEp is about 0.2 higher
at low concentrations than at high concentrations, indicating greater carbon stabilization at the
ecosystem level at low concentrations. For CUE),, this effect was only evident at the end of the
incubation (CUE = 0.21; F; 16 = 4.3, p = 0.05).

We observed an increase in CUE); with decreasing temperature (Figure 12 A, B, C, D),
which also has previously been reported [319-321], and is associated with higher growth
efficiencies [320, 322] and lower energy costs to maintain existing biomass [301, 316]. An
additional temperature effect is that increased microbial activity at 20°C leads to increased MCPA
turnover especially at 20 mgkg™', which is in agreement with the Arrhenius equation [323].
The substrate concentration was therefore present longer at 10°C and as a result, maintained a
higher CUE), for a longer time (Figure 12 E, F, G, H). The simulated carbon use efficiencies did
not indicate the temperature effect (Figure 12 E, F, G, H). This is because the model assumptions
for CUEE and CUE( assigns the same temperature sensitivity to microbial growth, maintenance
and turnover (see Eq. 98, 88, 89, 90, 91).

In addition to concentration and temperature, CUE); was increased by the reduction of soil
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water content (+ 0.15; Fy 1 = 40.3, p < 0.01), especially at the first time point (fifth day). Similarly,
CUEE and CUE¢ were 0.25 higher at pF 3.5 (Figure 12). Consistent with this finding, Jones
et al. [324] found an upward trend in microbial CUE under the following levels: hyper-dry >
dry > semi-dry, with the subsequent finding that even under hyper-dry conditions, very low
microbial activity and C turnover occurred with altered C allocation. The reason given was a
reduced catalytic activity related to a decline in motility of organisms and enzymes across a
water film that loses thickness as drought increases.

Interestingly, increased CUE with reduced temperature and water content was not
accompanied by any response of #fdA transcript and gene copy numbers in our study. This
imbalance may be explained by the fact that microbial use of the substrate is more complex
than simply converting it to biomass [271]. Rather, bacterial degraders synthesize a variety
of products, e.g., to maintain basic functions, such as extracellular enzymes, extracellular
polysaccharides, cell wall polymers, but also stress response compounds, such as osmolytes, to
survive under dry conditions [282]. This formation of stress compounds could explain a slight
increase in carbon use efficiencies during MCPA degradation under drier conditions compared

to the near optimal water content at pF 1.8.
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Figure 12: CUE vs. time (d) shown in panels A to D, and CUE vs normalized residual MCPA
concentration in soil shown in panels E to H. CUE) (Eq. 105) is presented as points
and CUEg (Eq. 106) as lines

8.4.4 Effect of temperature and soil moisture on pesticide DTs,

Differences in MCPA mineralization were also reflected in DTsg-values, describing the time
required to mineralize 50% of the applied MCPA (Table 9). We determined two different
DT;sp-values; i) a DTsopmn derived from the mineralization kinetics and typically calculated
in dissipation experiments of pesticides, and ii) a DTsrgs derived from the residual MCPA
concentration. Under limiting conditions, we observed longer DTsorgs as well as DTsqpn-
values, with temperature exerting a stronger influence than soil moisture.

We observed that lowering the temperature to 10°C at 1 mgkg™! and pF 3.5 increased the
residence time of MCPA by a factor of 1.9 based on mineralization kinetics (Table 9). In
contrast, the DTsorgs-value differed only by a factor of 1.4. This may be explained by an altered
temperature-dependent C allocation, namely a disproportionate increase in *C incorporation
at 10°C versus an increase in mineralization at 20°C. Consequently, this resulted in almost equal

MCPA-utilization rates [325]. It is, therefore, important to consider total MCPA turnover, as
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DTsogres theoretically includes the dynamics of 1*C incorporation and mineralization, whereas
DTsomiv captures only the contribution of mineralization. At pF 1.8, both DTsy values were
identical (Table 9). However, at pF 1.8 the CUE¢ and CUEE was on average 0.2 lower than at
pF 3.5 (Figure 12, Eqs. 107 and 106) reflecting a reduced contribution of *C incorporation to
MCPA-derived C turnover.

Compared to the concentration of 1 mgkg™!, the effect of a temperature reduction at 20
mgkg™! was independent of soil moisture and the DTs, approach, and increased half lifes
by a factor of 2 (Table 9). In this case, degradation is initially limited by the number of
microorganisms, in contrast to degradation at 1 mgkg™!, where the degradation potential is
already provided by the autochthonous microbial abundance and rapid first-order degradation
can be initiated immediately [171, 289]. According to Babey et al. [259], degradation of 2,4-D is
most efficient when the ratio of degraders to instantaneous pesticide concentrations favors of
degraders. This was the case for the treatment at 20°C and high initial pesticide concentration
after relatively lower mineralization was observed in the first phase of the experiment (0-5d).

In the absence of growth at 10°C, as indicated by the lack of increase in tfdA copy number,
the degradation efficiency was significantly reduced, as reflected in the increased DTs values

(Table 9).

Table 9: Half-life DTsggrgs derived from the residual MCPA concentration in soils and DTsgpyy
derived from mineralization kinetics as a function of soil water content, concentration,
and temperature

DTsores DTsomiN

pF 1.8 pF3.5 pF 1.8 pF3.5

10°C ~ 20°C  10°C/20°C ~ 10°C ~ 20°C  10°C/20°C | 10°C  20°C  10°C/20°C  10°C  20°C  10°C/20°C

20mgkg™ | 189 93 2.0 156 76 2.1 185 99 19 176 88 2.0

1mg kg’l 9.2 6 1.5 7.5 5.2 1.4 10.3 6.7 1.5 12.2 6.3 1.9

Our results partially refuted previous findings [265, 326—-328], stating that the decrease in
temperature and soil moisture during biodegradation of MCPA is always accompanied by a

significant increase in half-life. The extent to which the residence time of MCPA was affected
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by a change in temperature and soil moisture content depended on initial concentration and
associated degradation dynamics. In the present study, we demonstrated that *C incorporation
is not necessarily proportional to mineralization, confirming our hypothesis that under limiting
conditions assimilation can be enhanced to support biosynthesis rates. Dissimilation including
non-growth maintenance activities [302] increased with temperature, as energy costs became
more important to regulate motility or molecular turnover of proteins [329]. As a result, the
MCPA-derived carbon will be used more efficiently by microorganisms at low temperatures
and reduced soil moisture content. Applying this principle to pesticide degradation, estimating
DT;5p-values from cumulative mineralization curves alone could, under certain circumstances,

imply a systematic overestimation of persistence time.
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9 Optimal design of experiments for effective modeling of

atrazine degradation in soils (Paper 4)

This chapter includes the following paper in preparation for publication as:
Luciana Chavez Rodriguez, Ana Gonzalez-Nicolas, Brian Ingalls, Sinan Xiao, Wolfgang
Nowak, Thilo Streck, Holger Pagel (2021). Optimal design of experiments for effective modeling

of atrazine degradation in soils.

with the following modification:

1. Numbers of figures, tables, and equations are relative to this thesis and not to the original

publication.
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9.1 Abstract

The natural degradation pathways of the herbicide atrazine (AT) are highly complex. These
pathways involve the metabolic activity of several bacterial guilds (that use AT as a source
of carbon, nitrogen, or both) and abiotic degradation mechanisms. The co-occurrence of
multiple degradation pathways, combined with challenges in quantifying bacterial guilds and
relevant intermediate metabolites, could be represented by competing model formulations,
which all might represent valid descriptions of the fate of AT. A proper understanding of the
fate of this complex compound is needed to develop effective management and mitigation
strategies. Here, we propose a model discrimination process in combination with a prospective
optimal design of experiments. We simulated experimental data using a first-order model
that reflects a simple reaction chain of complete AT degradation and a set of Monod-based
model variants that consider different bacterial guilds. We used a Bayesian statistical analysis
of simulated ensembles to investigate virtual degradation experiments and chemical analysis
strategies, thus obtaining predictions on the utility of experiments to deliver conclusive data
for model and pathway discrimination. We considered a range of experimental protocols
addressing: i) the metabolites or chemicals to measure (AT, metabolites, and CO,), ii) sampling
frequency (daily, every two days, or every four days), and iii) features typically not measured
(specific bacterial guilds). As a statistical metric for model discrimination we used the energy
distance. Our results show that simulated AT degradation pathways following first-order
reaction chains can be clearly distinguished from simulations using Monod-based models.
Within the Monod-based models, we detected two clusters of models that differ in the
number of bacterial guilds involved in AT degradation. Based on our prospective analysis,
experimental designs considering the sink cyanuric acid (CA) provided the most informative
data to discriminate models. As expected, the inclusion of measurements of specific bacterial
guilds improved model discrimination. Our study highlights that environmental fate studies
should prioritize measuring metabolites to elucidate active AT degradation pathways in

soil and identify robust model formulations supporting risk assessment and mitigation strategies.
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Keywords: atrazine degradation, monod-kinetics, first-order kinetics, equifinality, model

discrimination, optimal design of experiments, energy distance.

9.2 Introduction

Pesticides are important chemicals used globally in agriculture to manage plant stressors such
as pests, weeds, and diseases [5]. Due to their potential negative effects on ecosystems [226]
and human health [21], some pesticides have been banned or otherwise restricted. The pesticide
atrazine (AT) was banned in Europe in 2004. However, AT and its metabolites are still found in
soils and groundwater in potentially harmful concentrations [57, 203, 330]. In the environment,
AT undergoes abiotic [132] and biotic [49] degradation. Several bacterial guilds have been
observed to metabolize AT (as carbon source [62, 63], nitrogen source [10] or both [49]), leading
to an accumulation of intermediate metabolites, most commonly: hydroxyatrazine (HY) [141,
142, 330], deisopropylatrazine (DIA), and deethylatrazine (DEA) [331-333]. The co-occurrence
of multiple AT degradation pathways that can lead to the formation of identical metabolites
poses a challenge to determining the fate of AT. This issue confounds our ability to understand
why AT persists in real systems, thus hampering future mitigation strategies [98].
Mathematical modeling approaches are valuable tools for the investigation of complex
degradation pathways such as AT degradation, allowing for combining the current
understanding of AT degradation with mathematical formulations and validating them with
real measurement data such as AT and metabolite concentrations and biomass [334]. In the
particular case of AT degradation, the limitation of which intermediate metabolites and bacterial
guilds involved are measured could lead to distinct mathematical models representing the same
system with equivalent accuracy (equifinality problem) [115]. Distinguishing among these
competing models can help us to determine which AT degradation pathways are active in a
particular environment. When addressing competing models, two cases arise. If all model

formulations predict similar behavior for all system elements (AT degradation, metabolite
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dissipation, and biomass formation), then the simplest (most parsimonious) model formulation
is usually accepted as the best (most valid) representation. Otherwise, it is important to know
what observations might provide the most useful information to distinguish the models: to
facilitate model discrimination [115, 335, 336]. By identifying relative differences between models,
we can reduce the number of competing models by clustering together those that are most
similar and facilitate model invalidation [115, 336].

Optimal Design (OD) of experiments is a promising tool for addressing the equifinality
problem. OD aims to maximize the benefit obtained from experiments [112]. If it is done prior
to the execution of the experiment, it is called prospective OD [110, 112]. In our case, we use
OD to identify experimental designs that maximize the observed difference between competing
models of AT degradation [115]. Among multiple metrics used to distinguish models [115, 335,
336], the concept of energy distance (ED) [114] is a computational efficient and robust model-
distance metric. In this context the design that produces data from which one can maximize
total pair-wise (model to model) ED is considered the optimal design for model discrimination.

This work aims to determine the measurements needed to distinguish the active AT
degradation pathway in a particular environment, represented by mathematical models. At the
same time, we aimed to find the level of model complexity needed to describe AT degradation
in soils through model invalidation. For this purpose, we developed a set of mechanistic Monod-
based models, representing different degradation pathways of AT in soils and a first-order decay
model, typically used to describe degradation at field scale [337]. Later, we applied a prospective
OD, using ED for model discrimination, to the set of models, and explored the advantages of

including not yet quantified pools in model discrimination.
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9.3 Material and Methods
9.3.1 Atrazine degradation models

Conceptual model

We consider a set of hierarchical, nested models for degradation of atrazine (AT) in soils
(Figure 13), including biotic and abiotic degradation, representing common degradation
pathways of AT. These models vary in complexity from a complete Monod-model version
(M1) to a simple first-order decay model (M6) (which is commonly used to model degradation
at field scale) [337].

We assume that degradation processes occur in a well-mixed soil environment that contains
a colection of bacterial guilds: labelled A, B, C, and D (see Section Bacterial guids description).
Members of each guild are able to fully or partially metabolize bioavailable AT and its
intermediate metabolites as sole carbon and energy sources [139, 338, 339] ( Figure 13). Nitrogen
use is not considered. The members of each guild are partitioned into two subpools with
different physiological states: active and dormant. Activation and deactivation rates are driven
by carbon availability in the system. We explicitly account for a dissolved organic carbon pool
(DOC) that serves as a collector of dead cells. The last metabolite of the AT transformation is
cyanuric acid (CA) [340]. The transformation of CA to carbon dioxide (CO,) is regulated by
nitrogen availaibility. At high nitrogen concentrations, CA transformation is strongly inhibited

by all guilds [137].

106



9 Optimal design of experiments

CYANURIC

ATRAZINE I ANUS oo,
1 1 X ,
: I
! I
| I N-ETHYL-AMMELIDE
: NE _
' n = Guild A
I _ . _,| HYDROXYATRAZINE
(HY)
| N-ISOPROPYL n Guild B
AMMELIDE (NI)
DEETHYLATRAZINE .
1- (DEA) Guild C
DEISOPROPYLATRAZINE GuldD
fo (DIA)

Figure 13: Atrazine (AT) degradation in soils: model framework, describing AT, its intermediate
metabolites (in blue), sink pools (in grey), and the bacterial guilds involved in the
degradation process. Arrow colors indicate activity of the bacterial guilds. Black
arrows represent abiotic processes: degradation of AT and nitrogen-dependent
degradation of CA. Dashed line represents the unintended HY leaked out of the
degradation carried out by guild A [62, 63]. Dashed-dot line shows a degradation
step uncoupled from growth (carried out by guild B); fp represented the proportion
of DIA formed during AT degradation carried out by guild D

Bacterial guilds

We defined the four guilds based on genetic information regarding known AT degraders:

1. Guild A is able to use the side chains of AT as carbon source, degrading it to cyanuric
acid (CA) [137, 139]. Additionally, this guild can use as carbon sources, the metabolites
HY, NE, NI and the products of the dealkylation of AT (DIA and DEA) [146]. Members
of this guild constitutively express a range of gene combinations: atzABC, trzN-atzBC
and/or trzN-atzC [49, 340]. Examples of members of this guild are: Arthrobacter aurescens

TC1 [62, 63], and Ensifer sp [341].

2. Guild B is able to dechlorinate AT to hydroxyatrazine (HY) without gaining either carbon
or energy through the activity of genes atzA [142] or trzN [141]. Additionally, they
degrade HY to N-ethylammelide (NE) [141] (via uncharacterize enzymes), or degrade the

metabolite N-isopropylammelide (NI) to CA, via the gene atzC. Example of members this

107



9 Optimal design of experiments

guild: Nocardia sp [141].

3. Guild C uses HY and NI as main carbon and energy sources by harboring the genes atzB
and atzC, yielding CA [141, 142]. The atzC gene also allows for metabolism of NE as

carbon source [342]. Examples members of this guild: Rhizobium sp [141].

4. Guild D dealkylates AT to the metabolites deethylatrazine (DEA) and deisopropylatrazine
(DIA) in a fixed proportion fp [343] (Figure 13). Specific genes for this pathway have not
been identified; it is believed that this degradation is a cometabolic process [152, 344]
mediated by the cytochrome P450 [332]. Examples members of this guild: Rhodococcus

sp [332].

Process formulations

1. AT and metabolite dynamics N ). AT and the intermediate metabolites HY, DEA, DIA, NI
and NE (generically referred to by the label N (for nutrient) below, are each represented
by a total concentration NT [mg cm™] segregated into a bioavailable pool (concentration

NI [mg cm™]), and a sorbed pool (concentration N [mgg™!]):

NT=9.Nt+p-N* (108)

where 0 [cm®cm™] and p [mgcm™] are the soil water content and bulk density

respectively.

These two pools are related by the Freundlich isotherm with retardation factor (RF):

RF=1+ % KN, n, - (NEyeReD (109)

where K, [mg™™)g=1L™] is the Freundlich coefficient and nl, [-] is the Freundlich

exponent.

Bioavailable carbon sources (N¥) are taken up and degraded biotically by active guild
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populations Bf. We account for two possible fates for consumed nutrients (metabolite
formation and bacterial metabolism). A fraction 1 — fy of the carbon in nutrient N is

converted converted to the downstream metabolite:

Hin - B (1= fn) -

kN _
rmetabolite—formation - RF (110)

DI

where pi v is the growth coefficient (eq. 118).

The remaining fraction fy contributes to biomass accumulation and to respiration, with

yield factor Yy n [-]:

N
Uk N BZ . <f> . %
N Y (111)
nutrient-use RF
Together, these give an overall uptake rate:
N
HieN - BE - L*’(l_fN) 2
N Yy 0
PN o (112)
uptake RF

Specific degradation processes that do not involve biomass accumulation and respiration

are described as follows:

« abiotic transformation of AT to HY (photodegradation) has been observed [230].

We model this process (black arrow in Figure 13 by first-order decay):

AT KO * ATL

Vabiotic-degradation = RF (113)

where K, [d™!] is the constant degradation rate.

« It has been observed HY leaks out of members of guild A by passive diffusion [62,

63] to the soil system. We modelled this leak flux as a constant fraction of the AT
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that has been uptaken by guild AT:

AAT f
AT-HY _ rmetabolite—formation H

rleak - RF

(114)

where: fy [-] fraction of the of the uptake AT flux that leaks out.

+ Guild B dechlorinates AT to HY without gaining carbon or energy [63]. We modelled
this process with Michaelis-Menten kinetics because this step is not coupled to
growth (Dashed-point line in Figure 13):

kar-my - ATE - BS

Kar-gy + ATE

B
Ydechlorination = RF (115)

where kar_gy [d7!] is the dechlorination rate for Guild B, and Kar_gy [mgcm™] is

the half-saturation concentration.

+ Guild D metabolizes AT to DIA and to DEA simultaneously [332]. A fraction fp of
the converted AT is in the form of DIA, while the remaining fraction (1 - fp) is in

the form of DEA (Figure 13).

2. CA degradation: CA is the final metabolite of AT transformation considered in the
model because the further breakdown of CA is typically fast, without accumulation
of intermediate metabolites [340, 345]. The model reflects CA degradation as inhibitory

first-order decay:
K;

CA - dewco 5,1 &,
3 in

rca-co, = (116)

RF

where the dca-co, [d7!] is the rate of degradation of CA to CO,, K;, [mg cm™] is the
inhibition factor, and NO3; [mg cm™] is the nitrogen concentration in the system taken

as a model parameter.

3. Bacterial dynamics and physiology: We describe two subpopulations of each k bacterial
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guilds (k = A, B, C, D) according to their physiological state: active Bf or dormant B,‘f

rk

growth [mg g_l d_l] on

[mgg™!]. For each guild k, the active population grows at rate
multiple carbon sources modelled with a Monod-kinetics allowing for competition for

binding sites [78]:

K,
rgr](:[wth = < > e ’fN) - Bg (117)

NeNy

where N4 = {AT, HY, DEA, DIA, NE, NI}, N = {AT, HY, NI}, N = {HY, NE, NI}, Np =

{AT} and py n is the growth coefficient defined as:

kN AL
s . N
HkN = 7”,;”,3" (118)
Hmax + IN
where: &N [d™!] is the maximum growth rate for the guild k on the available fraction of

the carbon source NL. Function py, is defined as:

i
g, = Y (NF+ Kin) (119)
N=1

where i is the number of carbon sources that each guild k can utilize, and Ky 5 [mgcm™]

is the half-saturation concentration of each guild k on each carbon source N*.

Dormant populations do not grow. Transitions between dormant and active states are

described by a switch-like function proposed by Stolpovsky et al. [169]:

k d
Tactivation = Tk * k¢ - By (120)

d
Fdeactivation = (1 - Tk) : kk : B]z (121)

where kj and k,‘ci [d™!] are the activation and deactivation coefficients for guild k. Function

i is defined as:
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-1

i
k L
NE-Y N
Tk = |exp # +1 (122)
th

where Ntljl [mgcm™] is the threshold concentration for the guild k, and n [-] is the

steepness parameter set to 0.1 [170].

Both active and dormant subpopulations are subject to linear decay at rate:

rj,k

— j
decay — ik - Bk (123)

where a; [d7'] is the decay rate coefficient for the guild n and index j represents active

or dormant bacterial state.

4. DOC formation and bacterial respiration: We included two different sink pools:
a) Dissolved organic carbon pool (DOC) which collected dead cells from all guilds

(e

decay)' A fraction fg of the DOC contributes to the CO; pool:

i,k
TDOC-CO, = Tioeay " IR (124)
b) CO, [mgg™!'] accumulates due to bacterial respiration at rate:
1-Y,
k k
Yrespiration = Hk.P " BZ “In <Yk> (125)

Scenario models

AT is commonly found in soils together with three principal intermediate metabolites HY, DIA,
and DEA [346-348]. Additional intermediate metabolites NE and NI are also part of some
reported degradation pathways [141, 142], but their accumulation has rarely been reported

in soils [49]. Therefore, we set six model scenarios based on the presence or absence of the

112



9 Optimal design of experiments

main bacterial guilds involved in AT degradation so that the metabolites HY, DIA, and DEA,
are always present (Figure 13 and Table 10). Additionally, we added a simple first-order decay
model M6, which only includes the chemical pools AT, HY, DIA, DEA, and CA and CO;. Specific
degradation pathways mediated by fungi [349] were not considered. Full ODE equations for

each scenario model are presented in the Supplementary information, Section 11.4.1.

Table 10: Scenario models of AT degradation in soils

Model variants  Bacterial guilds  Resulting chemical pools (N)

Mi A B CD AT, HY, DIA, DEA, NI, NE
M2 B,C,D AT, HY, DIA, DEA, NI, NE
M3 A CD AT, HY, DIA, DEA, NI

M4 A B, D AT, HY, DIA, DEA, NE
M5 A,D AT, HY, DIA, DEA

Mo - AT, HY, DIA, DEA

9.3.2 Prospective optimal design of experiments (OD)

Model outputs and generation of simulated data

As candidate model outputs, we considered AT and the metabolites HY, DIA, DEA, NI, NE, and
sinks CA, and CO,, as well as the biomass of the bacterial guild D, (the only guild present in all
Monod-based model variants), and the total biomass (of all guilds present in the given system
formulation).

Our prospective optimal design analysis is based on simulated data. We chose an initial
concentration of AT of 100 mg kg™! [350] and an initial total biomass of 0.001 mg kg™! for model
simulations, equally divided among the guilds present in the system formulation. We set all
bacterial guilds to be dormant and all intermediate metabolites to zero at the beginning of the
experiment. To restrict to plausible simulations, we defined a set of parameter and process
constraints that the model parameters and outputs should satisfy based on expert knowledge

and soil observations, as follows.
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The parameter constraints (Pc) are:

1. For each guild, the maximum growth rate coefficient (15:C ) must be higher than death

rate coeflicient of active bacteria (a, )

2. The Freundlich sorption coefficient of HY (KLY) must be higher than the Freundlich

sorption coefficient of AT, DIA, DEA, CA, NI, and NE [351]

3. The Freundlich sorption coefficient of AT (K7} ) must be higher than Freundlich sorption

coefficient of AT, DEA, CA, NE [351]
The process constraints (PC) are:

1. DTs (time that takes to dissipate 50% of the pesticide [65]) of AT between 5 and 25

days [49, 352]
2. AT concentration must be at least 107 mg mL™! [57] at the end of the experiment
3. Mineralization of initially added AT between 20-80% at the end of the experiment
4. DTsy of HY, DIA and DEA between 2-30 days.

The high-dimensional parameter space of the scenario models of AT biodegradation (between
20 and 70 parameters depending on the scenario) implies that the behavioral parameter space
satisfying all constraints (viable space [353]) is very small, making simple Monte-Carlo
parameter sampling computationally much too expensive. We adopted a constraint-based search
(CBS) method [118] and modified it to randomly select parameter sets from the behavioral
parameter space. The CBS method is based on an iterative algorithm that successively applies
stricter process constraints by increasing the minimum number of process constraints to be
satisfied in each iteration. We replaced the original parameter sampling procedure of Gharari et
al. [118] with a Metropolis-Hastings algorithm, using a Markov Chain Monte Carlo (MCMC)
sampler. As a result, with this new CBS-MCMC method, we achieved reproducible and unbiased

sampling of behavioral parameter sets.
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The CBS-MCMC method used in our work consists of the following steps:
1. Define a number of parameter constraints (Pc) (here, Pc = 3).

2. Define the minimum number of process constraints (PC) for the initial sampling (here,

PC =2).

3. Perform an initial Latin hypercube sampling to draw M random parameter sets (M=500,000

in this study) using uniform marginal parameter distributions (see Table 11 for ranges).
4. Identify the candidate parameter sets (x.) that satisfy all given parameter constraints (Pc).

5. Run the scenario model with the candidate parameter sets x, and evaluate the number of

satisfied process constraints (PC’).

6. Accept only the behavioral parameter sets (x.) resulting in model runs where PC’ = PC

and reject all other parameter sets in x.

7. Increase PC by one, and use My;c randomly chosen parameter sets from x/, as starting

parameter values (x5) for MCMC sampling.

8. Apply the Metropolis-Hastings algorithm with Mjy;c parallel Markov chains (Mysc = 40

in this study):

a) Generate new candidate parameter sets x. using a Gaussian jumping distribution
centered at the parameter values in xg with the standard deviation determined from
all corresponding parameter values of xs. Verify if the parameter constraints (Pc)
are satisfied. We designed the algorithm to repeatedly draw individual parameter
sets until all parameter constraints are satisfied. When the generated parameter
values are located outside the defined lower and upper bounds (Table 11), they are

reflected back into the search space at the respective boundary [117].

b) Run the scenario model with x. and evaluate PC’.
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¢) Accept x. as behavioral if PC’ > PC, otherwise reject x. and keep x;. Update x_.

correspondingly.
9. Repeat steps 6 and 7 until all process contraints are satisfied PC’ = PC.

As long as PC’ = PC, the length of individual Markov chains (Ly) in Step 7 is set to 1,000
draws of candidate parameter sets. If less than Mjy;c new candidates were accepted, MCMC
sampling in Step 7 is repeated, keeping the current value of PC while successively increasing
Ly by 5,000 until at least My;c new candidate parameter sets were accepted. As a pre-step to
the last iteration of the CBS-MCMC method (PC’ = PC), repeated MCMC runs were performed
to optimally adapt the jumping rate of the Metropolis-Hastings algorithm (Step 7) to achieve an
acceptance rate of approximately 0.2 to 0.5 for the final MCMC runs. This way, we generated

30,000 unique model outputs (n,,.) for further analysis.
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Table 11: Model Parameters for Monod and first-order kinetic models

Parameter  Description Units Parameter Value
Min. Max.
Monod Parameters
i Maximal specific growth rate of pesticide degraders [d™M] 10°  10°
K.p Growth substrate affinity coefficient of pesticide degraders  [mg cm™] 102 10°
ki Coeflicient rate of activation [d1] 10 100
k¢ Coefficient rate of deactivation [d1] 10 100
o Threshold concentration [mg cm™] 10 10*
Aun Specific death rate of active bacteria [d™M] 107 10t
ai, Specific death rate of inactive bacteria [d™M 107 107
Y, Yield parameter [-] 0.1 1
kar-ny Dechlorination rate [d1] 107*  10°
Kar_ny Saturation concentration [mg cm™] 107 10*

Sorption Parameters

K& Freundlich coefficient [mg g lem®i»)] 0.5 10
nkp Freundlich exponent [-] 0.6 1
First Order Decay Parameters

K, Abiotic transformation of Atrazine to HY [d1] 1074 10°
K; Inhibition factor [mg cm™] 107*  10°
NO, Nitrogen concentration [mg cm™] 10°  10°
dar-ny Decay rate of AT to HY [d1] 10 10°
dat-pD Decay rate of AT to DD [d1] 107*  10°
dry-ca Decay rate of HY to CA [d1] 107*  10°
dpra-ca Decay rate of DIA to CA [d1] 107*  10°
dpea-ca Decay rate of DEA to CA [d1] 107*  10°
dca-co, Decay rate of CA to CO, [d™M] 10 10°
Constant Rate Parameters

fr Fraction of dead bacteria which goes to DOC [-] 0.01 1
fu Leak flux constant [-] 0.01 1
fo Fraction of AT used for DEA formation used by guild D [-] 0.25  0.75

Next, for each simulation, we generated a relative error E,;(¢) to normalize the output
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channels: AT, metabolites (HY, DIA, DEA, NE, NI), and sinks (CA, CO,) for all the models at
each time, y(t),,;. For this purpose, we applied a relative error tied to the mean observed at
each time for the whole ensemble of each metabolite and models (30,000 sampled outputs). This

way, observations with larger magnitudes will have larger E,.(t).

Nmod 721 Mme 14

Eral(t) = frac- < - -szyu)m,l) (126)

y(t)m,l

Erel(t) (127)

)/normalized(t) mil =

where fracis 10%, npoq is the number of models (1,04 = 6 for analysis including chemicals, 1,04
= 5 for analysis including biomass, and np,,, = 3 for analyses including NI and NE metabolites),

and np, is the number of realizations (30,000).

Measuring model separation: Energy distance (ED) for OD

We use energy distance (ED) as a measure of distance between models; more specifically,
between normalized model outputs Vyormatized(t)m,1 (€q. 127). Generically, ED provides a
measure of distance between distributions [114]. For our analysis, we generate distributions
of normalized model outputs based on particular experimental designs. The energy distance
measure accounts for variance by discounting the distance between model outputs by the
within-model variance [114]. Because of the normalization of the model outputs (eq. 127),
the scale of energy distance will result “in units of error of standard deviations”, making the

distances interpretable.

ED(X.Y) = \J2- E|X - Y] - E|X - X'[ - E]Y - /| (128)

where X and Y are output distributions from two model instances, respectively, and X’ and

Y’ are separate realizations of the models, respectively. The term E|X - Y| is the expected
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Euclidian distance between these distributions, while E|X - X’| and E[Y - Y/| are their expected
within-model variances. Discounting by the within-model ensures that noisy outputs that do
not differ much between models contribute minimally (or even detract from) the ED measure of
model separation.

The goal of our prospective optimal design method was to determine the design that provides

the most informative data for model discrimination [112]:

dop: = argmax(Objective) (129)
deD

where (D) is the set of candidate designs and the objectives are pairwise energy distances (ED)
between the set of models under consideration (specified in the Results section).

To make reliable statements about the ED, we chose a subsample size of 10,000 out of the
30,000 simulated data outputs per model variant because this sample size showed a stable ED
throughout the candidate designs (Figure S58). We normalized the ED scores by the maximum
ED of the candidate designs and applied a multi-objective Pareto optimization (MATLAB’s
“prtp” function [354]) to determine the non-dominated designs [355] (dop:). These are presented

as spider plots [356] and were produced in Matlab.

9.4 Results and Discussion

9.4.1 Can we distinguish active AT degradation pathways based on

observations of metabolite concentrations?

To determine the active AT pathway in a particular environment, we explored whether the
six proposed models (M1-M6), representing conceptual AT degradation pathways, can be
differentiated based on the observation of metabolites and CA and CO, (sinks) concentrations.
Because AT, the main metabolites (HY, DIA, DEA), and the sink pools (CA and CO,) are
common to all six model variants (see Figure 13), for candidate experimental designs, we

consider measurement of subsets of these, with different sampling strategies, giving 63 possible
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combinations of chemical output channels. We do not impose any resource costs for each
measurement channel, and so one might expect that the optimal design is to measure all
candidate channels to maximize the information gathered. However, the energy distance metric
accounts for a trade-off between noise and comparison: the inclusion of noisy, information-poor
channels will result in a drop in the energy distance between two models (as demonstrated
below), incorporating these output channels into the design ‘muddies the waters’; that is
the information contained in these measurements makes the model discrimination task more
difficult.

With the 63 possible combinations of chemical output channels, we consider three sampling
frequencies: 1) every day until day 25, 2) every two days until day 50, 3) every three days until
day 100, giving 63x3 = 189 designs in total. Figure 14 shows pair-wise model energy distance
scores for every candidate design.

Based on a minimum threshold of energy distance of two for model discrimination (horizontal
dashed line in panels A to F in Figure 14), the models fell into three groups: i) M1, M2, M3 and
M4 (henceforth M|1-4); ii) M5; and iii) the first-order decay model M6. We selected a minimum
ED of two because and similarly to standard deviations, a two standard deviation distance would

correspond to being outside of the 95% confidence interval.
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Figure 14: Pairwise energy distances (expressed in standard deviation units) over the candidate
designs. A. Model M1 against other models; B. Model M2 against other models;
C. Model M3 against other models; D. Model M4 against other models; E. Model
M5 against other models; F. Model M6 against other models.Vertical lines represent
transition from one sampling frequency/duration to another: left is daily over 25
days; middle is every second day over 50; right is every four days over 100. The
horizontal line represents the selected minimum energy distance threshold for model
discrimination (distance of two standard deviations)

As expected the simplest, first-order decay model (M6) can be clearly distinguished from the

Monod-based models (M1-M5) with all experimental designs, except when only measuring AT

(first design in each time-related group) regardless of 