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1 Summary

1 Summary

Pesticides are widely used for pest control in agriculture. Besides their intended use, their

long-term fate in real systems is not well understood. They may persist in soils, thereby altering

ecosystem functioning and ultimately affecting human health. Pesticide fate is assessed through

dissipation experiments in the laboratory or the field. While field experiments provide a close

representation of real systems, they are often costly and can be influenced by many unknown

or uncontrollable variables. Laboratory experiments, on the other hand, are cheaper and have

good control over the governing variables, but due to simplification, extrapolation of the results

to real systems can be limited. Mechanistic models are a powerful tool to connect lab and

field data and help us to improve our process understanding. Therefore, I used mechanistic,

process-based models to assess key microbial regulations of pesticide degradation. I tested my

model hypotheses with two pesticide classes: i) chlorophenoxy herbicides (MCPA (2-methyl-4-

chlorophenoxyacetic acid) and 2,4-D (2,4-Dichlorophenoxyacetic acid)), and ii) triazines (atrazine

(AT)), in an ideal scenario, where bacterial degraders and pesticides are co-localized. This thesis

explores some potential controls of pesticide degradation in soils: i) regulated gene expression,

ii) mass-transfer process across the bacterial cell membranes, iii) bioenergetic constraints, and

iv) environmental factors (soil temperature and moisture).

The first part of this thesis describes a set of gene-centric models that explicitly incorporate

gene and enzyme expression. I calibrated and validated the model variants with data from two

batch experiments of 2,4-D and MCPA pesticide degradation. I compared the performance of

the model variants against each other and a standard Monod model. Results highlight that

regulated gene expression controls 2,4-D and MCPA degradation in soils. The novel gene-centric

models predict pesticide mineralization as good as the standard Monod model, but additionally

account for pesticide-triggered gene regulation, allowing us to better capture microbial dynamics

during pesticide mineralization. This way, the gene-centric models could be used to explore the

relationship between transcription of functional genes and process rates, thereby offering an

advantage over the standard Monod model.
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1 Summary

The second part of this thesis extends and improves existing chemostat/retentostat models

to evaluate the role of biophysical limitations (mass transfer across the cell membrane) and

bioenergetic growth constraints of pesticide degradation, both hypothesized to be responsible

for pesticide persistence at low concentrations in real systems. The target pesticide was

atrazine, which is highly persistent. Results point out that sorption-limited bioavailability could

explain the long-term fate and persistence of the main degradation metabolite hydroxyatrazine.

However, my model overestimated the long-term biodegradation of atrazine in soils, indicating

that more processes than bioavailability are regulating atrazine degradation.

The third part of this thesis explores the role of environmental factors (soil temperature,

soil moisture, and substrate concentration) for the fate of pesticides. Through a combination

of lab experiments and modeling, MCPA degradation was investigated under different soil

temperature (10°C and 20°C) and moisture (pF 1.8 and 3.5) regimes, and substrate concentrations

(1 and 20 mg kg−1). Results show that microbial degrader populations degrade the pesticide

even in colder and drier soils and at low substrate concentrations. By measuring and simulating

a higher carbon use efficiency (CUE), I could confirm that microbial degraders are able to cope

with such limiting conditions by allocating more carbon to their biomass as a result of potential

physiological adaptation. Therefore, extreme environmental conditions do not explain pesticide

persistence in soils.

The models presented in this thesis show that including microbial regulations improves

predictions of pesticide degradation, compared to conventional models based on Monod kinetics.

The gene-centric models achieved a better representation of microbial dynamics and enable us

to explore the relationship between functional genes and process rates, and the models that

used transition state theory to account for bioenergetic constraints improved the description

of degradation at low concentrations. However, the lack of informative data for the validation

of model processes hampered model development. Therefore, in the fourth part of this thesis,

I used atrazine with its rather complex degradation pathway to apply a prospective optimal

design method to find the optimal experimental designs to enable us identifying the degradation
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2 Zusammenfassung

pathway present in a given environment. The optimal designs found suggest to prioritize

determining metabolites and biomass of specific degraders, which are not typically measured in

environmental fate studies. These data will lead to more robust model formulations for risk

assessment and decision-making.

With this thesis, I revealed important regulations of pesticide degradation in soils that help to

improve process understanding and model predictions. I provided simple model formulations,

for example the Hill function for gene expression and transition state theory for bioenergetic

growth constraints, which can easily be integrated into biogeochemical models. My thesis

covers initial but essential steps towards a predictive pesticide degradation model usable for risk

assessment and decision-making. I also discuss implication for further research, in particular

how mechanistic process-based modeling could be combined with new technologies like omics

and machine learning.

2 Zusammenfassung

Pestizide sind weit verbreitet in der landwirtschaftlichen Schädlingsbekämpfung. Anders als

ihre Wirkungsweise, ist ihr Langzeitverbleib in der Umwelt nicht gut verstanden. Sie gelangen

in den Boden und können sich dort anreichen und die Bodenfunktionen beeinträchtigen und

letzendlich auch die menschliche Gesundheit gefährden. Die Ausbreitung von Pestiziden wird

anhand von Abbauversuchen in Labor- und Feldexperimenten ermittelt. Feldexperimente bieten

ein relativ genaues Abbild natürlicher Systeme, sind jedoch meist teuer und können durch

unbekannte oder nicht kontrollierbare Faktoren stark beeinflusst werden. Laborexperimente

sind in dieser Hinsicht kostengünstiger und bieten eine gute Kontrolle der einwirkenden

Faktoren. Allerdings lassen sich die Ergebnisse nur begrenzt auf natürliche Systeme

übertragen. Mechanistische Modelle sind ein mächtiges Werkzeug, um Labor- und Felddaten

zusammenzuführen und helfen uns dabei, die mikrobiellen Regulationsmechanismen des

Pestizidabbaus im Boden besser zu verstehen. Aus diesem Grund habe ich mechanistische,

prozess basierte Modelle eingesetzt. Ich habe meine Modellhypothesen bei zwei Pestizidgruppen
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2 Zusammenfassung

getestet: i) Chlorphenoxyherbiziden (MCPA (2-Methyl-4-chlorphenoxyessigsäure) und 2,4-D

(2,4-Dichlorphenoxyessigsäure)) und ii) Triazinen (Atrazin (AT)), in einem Idealszenario, wo

bakterielle Abbauer und Pestizid kolokalisiert auftreten. Meine Doktorarbeit konzentriert

sich auf einige der potenziellen Kontrollmechanismen des Pestizidabbaus im Boden: i)

regulierte Genexpression, ii) Massetransferprozesse durch die Zellmembran, iii) bioenergetische

Limitierungen und iv) Umweltfaktoren (Bodentemperatur und Bodenfeuchte).

Der erste Teil dieser Doktorarbeit beschreibt eine Reihe Modelle, die explizit Gen- und

Enzymexpression beinhalten. Kalibriert und validiert habe ich die Modellvarianten mit Daten

aus zwei Batch-Experimenten über Pestizidabbau von 2,4-D und MCPA. Ich verglich die

Leistungsfähigkeit der Modellvarianten gegeneinander und gegenüber einem herkömmlichen

Monod-Modell. Die Ergebnisse zeigen, dass die Genexpression den Abbau von 2,4-D und MCPA

reguliert. Die neuartigen gen-basierten Modelle sagen die Pestizidmineralisierung ebenso gut

voraus wie ein herkömmliches Monod-Modell. Darüber hinaus sorgt die Berücksichtigung

einer pestizidabhängigen Genregulierung dafür, die mikrobielle Dynamik während der

Pestizidmineralisierung besser widerzuspiegeln.

Der zweite Teil dieser Doktorarbeit erweitert und verbessert bestehende Chemostat-

/Retentostat-Modelle, um zu evaluieren, welche Rolle biophysikalische Limitierungen

(Massentransfer durch die Zellmembran) und bioenergetische Wachstumslimitierungen beim

Pestizidabbau spielen, da beide vermutet wird, dass sie für Pestizidpersistenz verantwortlich

zu sein. Das untersuchte Pestizid war Atrazin, das recht persisten ist. Die Ergebnisse zeigen,

dass die sorptionslimitierte Bioverfügbarkeit das Langzeitverhalten und die Persistenz des

Hauptmetaboliten Hydroxyatrazin erklären konnten. Jedoch überschätzte das Modell den

biologischen Langzeitabbau von Atrazin, was darauf hinweist, dass noch weitere Prozesse den

Atrazinabbau regulieren.

Der dritte Teil dieser Doktorarbeit untersucht die Rolle von Umweltfaktoren

(Bodentemperatur, Bodenfeuchte und Substratkonzentration) auf den Abbau von MCPA bei

verschiedenen Bodentemperatur- (10°C und 20°C) und Bodenfeuchteregimen (pF 1,8 und pF 3,5)
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und Substratkonzentrationen (1 und 20 mg kg−1). In Laborexperimenten und Simulationen

zeigte sich dass Populationen mikrobieller Abbauer auch in kälteren und trockeneren Böden und

unter geringen Substratkonzentrationen MCPA abbauen. Durch die Messung und Simulation

einer höheren Kohlenstoffnutzungseffizienz (CUE, engl.: carbon use efficiency) konnten wir

bestätigen, dass mikrobielle Abbauer unter limitierenden Bedingungen auf Stress reagieren,

indem sie mehr Kohlenstoff in ihre Biomasse verlagern. Aus diesem Grund erklären extreme

Umweltfaktoren nicht die Persistenz von Pestiziden im Boden.

Die in dieser Doktorarbeit vorgestellten Modelle zeigen, dass die Berücksichtigung

mikrobieller Regulationen Vorhersagen des Pestizidabbaus verbessert, gegenüber

herkömmlichen, auf Monod-Kinetik-basierenden Modellen. Die gen-basierten Modelle

erreichten eine bessere Repräsentation der mikrobiellen Dynamik und geben uns die

Möglichkeit, den Zusammenhang zwischen funktionellen Genen und Prozessraten herzustellen,

wohingegen Modelle, die die Abbaugeschwindigkeit auf Grundlage der Theorie des

Übergangszustandes limitieren, eine genauere Konzentrationen liefern. Der Mangel an

Messdaten zur Validierung behinderte allerdings die Modellentwicklung. Daher benutzte ich ich

im vierten Teil dieser Arbeit, am Beispiel von Atrazin, mit seinem eher komplexen Abbauweg,

eine Methode des prospective optimal design, um das bestmögliche Experimentaldesign

zu finden, mit dem wir den in einer bestimmten Umgebung vorherrschenden Abbauweg

identifizieren können. Die gefundenen optimalen Designs weisen auf die Erfordenis hin, die

Messung von Hauptmetaboliten und Biomasse von spezifischen Abbauern zu priorisieren,

welche in Abbauversuchen typischerweise nicht gemessen werden. Die Informationen aus

diesen Daten werden zu besseren Modellformulierungen führen, die sich für Risikoabschätzung

und Entscheidungsfindung nutzen lassen.

Mit dieser Doktorarbeit konnte ich für den Pestizidabbau im Boden wichtige

Regulationsmechanismen aufdecken, und so, unser Verständnis und Vorhersagen solcher

Prozesse verbessern. Ich stelle einfache Modellformulierungen bereit, beispielsweise die Hill-

Funktion für Genexpression und eine Implementierung der Theorie des Übergangszustands,
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welche sich einfach in biogeochemische Modelle integrieren lassen. Meine Arbeit liefert

grundlegende und entscheidende Schritte zur Entwicklung eines Vorhersagemodells für den

Pestizidabbau und dessen Einsatz in Risikoabschätzung und Entscheidungsfindung. Darüber

hinaus gebe ich einen Ausblick auf weiterführende Forschungsansätze, insbesondere wie sich

mechanistische, prozess-basierte Modellansätze mit neuen Technologien wie omics und Machine

Learning verbinden lassen könnten.
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3 General Introduction

3.1 Pesticides: application and environmental concerns

The increasing pressure for food supply worldwide has led to the intensification of agriculture

and the search for ways to increase yields on limited arable land [1]. In this context, pesticides

have become a relevant component of modern agriculture aiming to enhance productivity by

reducing potential plant stressors such as pests, weeds or diseases [2–5]. Besides agriculture,

their use also extends to public health programs as a way to deal with vector-borne diseases [1,

6].

Typically, pesticides can be classified according to the target pests (fungicides, bactericides,

herbicides, acaricides), the chemical composition (organochlorines, organophosphates,

carbamates, pyrethroids, etc.), and mode of entry into the target pest (systemic, contact, stomach

poisoning, fumigants, etc.) [7]. Recently, the World Health Organization has recommended [8]

that pesticides be classified according to hazard: from unlikely hazard, to present acute hazard,

to extremely hazardous.

Over the last thirty years, pesticide application has increased [9]. Estimations show an annual

use of pesticides of about 2 million tons per year, with projections to surpass 3.5 million tons

in the coming years [10]. Moreover, high-income countries apply more pesticides, and the

predominance of China and the United States as the major pesticide users seems to validate

this statement [11]. However, the increment in application does not necessarily translate to an

increase in productivity [12], as high pesticide applications can negatively impact non-targeted

organisms [13–15], and ecosystems [16].

First signs of pesticide impact on non-target organisms were reported in the book Silent

Spring [17] published in 1962, alerting the world about potential effects of the pesticide DDT

on wildlife, especially birds and bees. Studies have also suggested negative effects on humans

ranging from endocrine [18, 19] and reproductive effects [20, 21] to even cancer [22, 23].

Therefore, pesticide use in the EU is increasingly regulated [24], and, in some cases, led to the
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removal of some pesticides from the market [25]. New movements towards a more holistic and

environmental friendly management, as well as organic farming are arising [26] as a response to

the overuse of pesticides in modern agriculture. This involves biological pest control as well as

the use of alternative natural and biodegradable pesticides [27–29]. Nevertheless, as pesticides

are still used, research focused on the effects of pesticides continues to be relevant as well.

3.2 Fate of pesticides in the environment

The environmental fate of pesticides is driven by a complex interplay of microbial and

physicochemical processes as well as physicochemical properties of the pesticides in soil and

water, influenced by environmental conditions [30]. Pesticides undergo different degradation

pathways in the environment. During their lifetime, pesticides are subject to transfer/transport

and transformation processes [31].

Transfer/transport processes (Figure 1) control the movement of pesticides through the

three main environmental compartments (air, water, and soils), and how they eventually

end up in living organisms (plants and animals) [31]. Pesticides enter the atmosphere

through volatilization [32], and go back to the surface through dry or wet deposition [33,

34]. From soil and plant surfaces, pesticides can also enter the water systems (rivers, lakes)

via surface runoff [35], or get into groundwater through leaching processes [36]. In the

pedosphere, pesticides can be sorbed onto soil particles. Finally, pesticides can enter and

further bioaccumulate in the biosphere through uptake by plant roots [37], or ingestion by

animals [38].
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Figure 1: Transfer/transport fate of pesticide in the environment. 1: volatilization into the air,
2: Surface and subsurface runoff, 3: Leaching into groundwater, 4: plant uptake, 5:
Sorption onto soil particles, 6: wet and dry deposition, 7: biological transformations

Transformation processes (abiotic and biotic) are responsible for the degradation of pesticides

and the formation of intermediate metabolites. Abiotic pesticide transformation includes

photolysis [39], hydrolysis [40], and redox reactions [41]. Biological transformations include

the use of the pesticide as a carbon and/or nitrogen source for growth and maintenance [42–45],

energy source [46, 47], and electron donor for redox reactions [48]. Many bacterial strains have

evolved to degrade pesticides due to long-term exposure to such substances [49]. Cometabolic

degradation [42, 50] that uses pesticide as “non-growth or fortuitous substrate” [51], as well as

plant-mediated transformations [52–54] have also been observed.

Despite the existence of different degradation pathways and the observable biodegradability

of pesticides, some pesticides can remain in soils in significant concentrations to affect human

health and soil biota [55]. According to Silva et al. [55], around 80% of the studied topsoils

across Europe contained pesticide residues and mixtures of them at very low concentrations.

The herbicide atrazine is one particular example of long-term persistence in real systems. This

herbicide can still be found in soils and groundwater even after 30 years of absence of application

due to bans [56, 57]. Many physical and biological processes have been hypothesized to limit

pesticide degradation in soils. Physical processes such as sorption onto soil particles [58], or onto
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humic substances [59] retard degradation. Spatial heterogeneity (of pesticide [60] and degrader

populations [61]) also reduces degradation rates leading to persistence. Biologically mediated

processes including active [35] and passive [62, 63] transport across the cell membrane could

represent the first step in a predominantly intracellular degradation of pesticide. Additionally,

metabolic demands surpassing the catabolic energy obtained from pesticide degradation might

stop degradation below certain threshold concentrations [64]. However, the unexpected findings

of pesticide residues in soils demonstrate that our understanding of pesticide degradation in the

environment is still incomplete.

3.3 How to assess pesticide fate in the environment

Degradation experiments are designed to investigate degradation pathways, the formation

of main metabolites, and the half-lifes of pesticides [65]. They are generally performed with

laboratory experiments (controlled conditions) and field studies (closer to natural conditions).

Laboratory experiments in soil microcosms or chemostat/retentostat reactors, provide a

simplified representation of processes in nature, and conclusions from these experiments,

therefore, cannot be simply extrapolated to real systems [66, 67]. One proof is the case of

atrazine, which is readily degradable under controlled conditions but persists in soils and

groundwater [56]. However, due to the simplicity of laboratory systems, specific processes can

be studied without the interference of uncontrolled factors [68, 69]. Field studies are closer

representations of real systems but are usually linked with high costs and the encounter of

many uncontrolled factors that can affect the target measurements [70]. Because both methods

have limitations, modeling tools can bridge the gap and connect them to real systems.

Kinetic models, representing biochemical reactions through equations [71] can be used to

describe pesticide degradation in different real systems (soil, groundwater, water bodies) for

prediction and for process understanding.

Prediction or risk assessment models for pesticide degradation are simple models generally

varing from first-order-like models to lag-phase models. The forum for the coordination of
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pesticide fate models and their use (FOCUS) [65] compiles different kinetic models that are

used for the assessment of new pesticides. FOCUS models evaluate pesticide persistence using

degradation endpoints (standard endpoints evaluated are DT50 and DT90, which refers to the time

that it takes to dissipate 50% to 90% of the pesticide) of the parental compound and metabolites.

Some models additionally describe the influence of soil heterogeneity in pesticide degradation

(Gustafson and Holden model) and the role of bacterial degraders (Logistic model) [65]. Despite

their effectiveness, in some cases, endpoints are underestimated, and residual pesticides can

still be found in soils and groundwater [55, 72]. This suggests that key drivers of pesticide

degradation might be misrepresented in such models [73].

A deeper investigation of the mechanisms controlling pesticide degradation can be achieved

with biogeochemical mechanistic modeling [74, 75]. This approach can not only improve our

mechanistic understanding of reactive processes, but also produces benchmark models that can

then be simplified to be applicable to large scales. Some examples of mechanistic approaches

with the potential for modeling pesticides in soils are described as follows:

1. Metabolic flux modeling is an approach that uses genome sequences to derive the

potential biogeochemical reactions related to them. It is mainly focused on single

species but can be extended to multiple species assuming a supra-organism [76]. An

example of this approach has been applied to atrazine in contaminated soils coupled with

biostimulation strategies [77].

2. Gene-centric modeling is an approach that uses genetic information on specific

functional groups to make quantitative predictions of genes and mRNA dynamics, and

relating them to substrate dynamics [76]. One example of this approach for pesticide

degradation is the PECCAD model [43, 78].

3. Agent-based modeling is an approach that describes individuals and their interactions

with detailed process descriptions, but it can be complex and difficult to apply [76]. With

pesticides, they have mainly been used for risk assessment [79].
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3.4 Model data integration using omics and isotopic data

The lack of data to validate mechanistic models is currently the main limitation in the

applicability of biogeochemical modeling [73, 75]. However, modern techniques in biology

continuously extend data availability and exploit new sources of information that can be useful

for modeling different compounds and systems.

New techniques such as omics technologies (i.e., genomics, transcriptomics, proteomics,

metagenomics, metabolomics, etc.) [80] provide promising information to analyze biological

systems to far greater detail [80, 81]. For example, bacterial degraders can be represented

in models by their functional groups or genes [43, 82, 83], transcripts or mRNA [83], and

enzymes [83–85]. The explicit integration of gene abundances into mechanistic models helps

to account for ecological functions of the species that might be misrepresented due to the low

number of cultivatable microorganisms [82]. The explicit integration of enzymatic regulations

is also key to improve predictions of organic matter dynamics [85], and to describe complex

microbial communities [84]. This approach describes the microbial community as a “collective

assembly of metabolic capabilities” represented by functional enzymes that do not depend

on particular bacterial guilds. Finally, large datasets from metabolomics or transcriptomics

have been used to derive degradation rates [77] and microbiome responses to environmental

perturbations [86] through a combination of biogeochemical models and machine learning

tools.

Experiments, involving stable isotopes (defined as elements with the same properties but

different atomic masses, attributed to differences in their amount of neutrons) [87], are used

in modeling the fate of compounds in real systems and have the potential to reduce model

uncertainty and equifinality of model parameters [88, 89]. The most commonly used stable

isotopes are nitrogen, carbon, phosphorus [87], and oxygen [90]. For example, isotopes of 13C

have been used for carbon turnover models in soils [43, 88], 2H and 18O for soil water flow

models [91], and 15N for nitrogen cycle models [92]. Recently, “compound-specific isotope

analysis (CSIA)” has been fundamental to determine the degradation pathway of atrazine
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in engineered systems, and thus the rate-limiting step of the degradation of this compound,

especially at low substrate concentrations [62, 63, 93].

3.5 Model uncertainty and sensitivity analysis

Mathematical models and models in general are always simplified representations, limited by

our understanding of how complex systems work [94, 95]. Unfortunately, the simplification [95]

introduces an error into our model formulations, called structural uncertainty [96]. On top

of that, lab and field measurements used to calibrate and validate our models usually carry

noise as a product of human error or the inability to control sources of variations that influence

the processes to be measured [96]. Finally, complex models for pesticide degradation are

typically of the mechanistic type and include many model parameters whose values cannot be

accurately identified with the available data (equifinality problem) [73], which is another source

of uncertainty.

Model uncertainty impairs the reliability of model predictions/simulations and might distort

the interpretation of model results. The quantification of model uncertainty is therefore

an important step to assess model reliability, especially when policymakers shall use model

predictions to establish management plans for pesticide use [97] or mitigation strategies against

pollution [98]. Various methods of uncertainty quantification have been established in different

research fields. Often, methods are based on Bayesian theory [99], such as the Bayesian multi-

model ensemble analysis [95]. Frequently, mechanistic models for pesticide degradation are

sloppy [73], meaning that parameters may not be identifiable. An identifiability analysis helps

to determine those parameters and thus the processes that cannot be identified with the given

data, leading to a further simplification of the model formulations [100, 101].

Sensitivity analyses provide the information on how the uncertainty of model inputs (model

parameters) impacts the uncertainty of model outputs [102, 103]. Sensitivity analyses can be

local, providing a limited picture of the parameters that the larger impact on model output [104].

Global sensitivity analysis, on the other hand, evaluates changes within the entire parameter
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space, affected by all parameters at once [105]. Techniques for global sensitivity analyses are

the Morris Method [103, 106, 107] and the variance-based “Sobol” method [103].

3.6 Model-based optimal design of experiments

In the intent to describe pesticide degradation, many distinct and competing model formulations

have been developed to account for the complexity of pesticide degradation in the environment,

our incomplete understanding of the processes that control degradation, and the lack of sufficient

data to validate model assumptions. Finding the best representation of pesticide degradation

is hence a non-trivial and challenging problem, especially if the models are later used for

predictions [108]. Model selection techniques aim to guide this selection process by finding

a trade-off between model complexity and goodness of fit against the available data [109]. If

the data used for model selection is insufficient, the original experimental setup can be refined

through a retrospective optimal design of experiments.

On the other hand, a prospective optimal design of experiments can allow for model selection

prior to the execution of the experiment [110]. Its objective is to find a single design 𝑑𝑜𝑝𝑡 from a

collection of designs 𝐷 that maximizes the information gain towards a specific goal (𝜙) [111],

which could be model discrimination. Additionally, the prospective method can be targeted to

improve model calibration and reduce uncertainty of predictions.

When working with competing models, it is important to notice that including a completely

inappropriate model can easily skew the results by indicating an easy discrimination of

that model. Therefore, it is essential to carefully select for models with the best possible

representation of the system to work with [112].

There are different methods for prospective optimal design that have been proposed in various

fields. Leube et al. [113] introduced the preDIA method (posterior data impact assessor) that

combines Monte Carlo simulations, Bayes’ theorem and Bayesian model averaging to “average

the utility of designs over all possible measurements that a given sample can produce” [113].

This method was used on steady-state simulations to evaluate the optimal design that could
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predict the long-term reduction of a pollutants’ concentrations in groundwater [113], to evaluate

the location of wells for a better determination of the groundwater divide location [111].

The main drawback of methods like preDIA is the computational effort to: i) compute the

marginal utility of the designs, and ii) produce non-biased plausible model simulations that

allow us to generalize the optimal design results. To solve the problem of computational effort,

we can use other metrics to evaluate the benefit of the proposed designs. Because designs can be

interpreted as vectors containing measurements [111], metrics utilizing the Euclidean distance

can be adapted with relatively low computational effort, for example the concepts of energy

distance [114], 𝐿2 −𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, and 𝐿2 −𝑛𝑜𝑟𝑚 [115].

Producing plausible model outputs prior to the experiment, while also expending reasonable

computational effort can be challenging, especially when the behavior of the model simulations

cannot be constrained by data. A combination of rule-based and Markov chain Monte Carlo

(MCMC) methods can provide a solution. Rules can be derived from expert knowledge of the

system (i.e., half-life of pesticide) and be used to only keep relevant system behaviors [116].

Complementary, MCMC-based methods such as the DREAM algorithm [117], or the constraint-

based search algorithm [118] are valuable to efficiently sample parameters leading to the desired

behavior.
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4 Research questions

Even though we know that bacteria and other soil organisms as well as abiotic processes have the

potential to degrade pesticides, some persist in soils for long periods [55–57]. This shows that

our understanding of the processes controlling pesticide degradation in soils is still incomplete.

Moreover, potential microbial and biophysical limitations and environmental factors such as

soil temperature and soil moisture are not fully considered into current pesticide degradation

models, or their relevance for pesticide persistence has not been fully evaluated.

To improve our process understanding of pesticide fate in soils, I explored three potential

mechanisms controlling pesticide degradation, microbial regulation, biophysical limitations, and

the influence of environmental factors (temperature and soil moisture), to answer the following

research questions.

(R1): What is the role of regulated gene expression as a microbial control of pesticide

degradation in soils, and what is the benefit of explicitly including this process into

biogeochemical models for process understanding and model predictions?

(R2): Do biophysical limitations (mass transfer across the cell membrane) and bioenergetic

growth constraints control the degradation of pesticides in soil?

(R3): How do different soil temperature and soil moisture levels affect the overall pesticide fate

in soils?

Pesticide degradation in soils can be carried out by different bacterial strains and is affected

by physicochemical processes such as sorption and abiotic degradation. These processes

requiere model formulations that differ in complexity and accuracy of the predictions. To

identify the predominant pathway of pesticide degradation in soils, and to select the most

suitable model among competing models, I investigated which data is needed to distinguish

the competing degradation pathways. To this end, I aimed to answer the following additional

research questions:
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(R4): What type of measurements should be prioritized to distinguish competing degradation

pathways of pesticides in soils?

(R5): What level of complexity is needed to represent pesticide degradation in soils?

I answered these questions with a data-model integration approach using mechanistic, process-

based models. With this thesis, I expect to improve process understanding related to pesticide

degradation in soils. Further, I provide equations/new approaches of how to model limitations

of pesticide degradation that can easily be implemented into biogeochemical models.
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5.1 Model assumptions

With my thesis, I aimed to explore the role of biokinetic processes that might explain pesticide

persistence. I assumed a so-called “optimal pesticide degradation scenario” (Figure 2), focusing

on microbial regulations to be the main drivers of pesticide degradation. Therefore, I excluded

processes that may retard or even enhance pesticide degradation, such as i) spatial soil

heterogeneity, ii) preferential water transport (advective–dispersive transport), iii) competing

carbon sources (I assume pesticides as the sole carbon and energy source).

Figure 2: “Optimal pesticide degradation” scenario. In this scenario, bacteria and pesticide
co-occur in the same spots, facilitating degradation. Water transport in soil, soil spatial
heterogeneity and additional carbon sources are not included

5.2 Model pesticides

I used two model pesticides from two classes: i) Chlorophenoxy herbicides, represented by

2,4-D and MCPA, and ii) Triazines, represented by atrazine. Based on the characteristics of

these two pesticide classes and their fate in the environment, I evaluated different hypotheses

and degradation mechanisms specific for each pesticide.

2,4-Dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid

(MCPA) are auxin active molecules that disturb tissue growth of higher plants [119, 120], and

which therefore are used as herbicides. 2,4-D and MCPA are highly soluble substances and
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prone to leaching due to their low sorption to soil particles [121]. The complete degradation

pathway of both components has been described in the literature [122–125], as well as the genes

controlling degradation. The tfdA [126–128], cadA and r/sdpA genes [129, 130] are identified

as the genes responsible for 2,4-D and MCPA degradation, with tfdA genes being the most

abundant in soils [131]. The well-studied degradation pathway at the molecular level made

these two herbicides suitable model pesticides to explore microbial regulations of pesticide

degradation.

Atrazine herbicide that despite having been banned for over thirty years in the EU, it is

still detected in relevant concentrations in soils and groundwater [56, 57]. Thus, atrazine is

a very good model pesticide to explore pesticide persistence in soils. In the environment,

atrazine undergoes different abiotic [132] and biotic [49] degradation pathways. Many

bacterial strains are involved in atrazine degradation, using it either as a carbon source [133],

nitrogen source [134], or as both carbon and nitrogen source [135]. Bacterial strains carrying

the genes atzABC, trzN–atzBC, or trzN–atzC [49, 63, 136] can grow on the side chains

of atrazine and degrade it to cyanuric acid. Strains with the genes atzDEF are able to

further reduce the intermediate metabolite cyanuric acid to CO2 under absence of alternative

nitrogen sources [137–139]. The absence of atzB or atzC genes leads to the accumulation of

hydroxyatrazine [140–142], the main metabolite of atrazine by dechlorination. Hydroxyatrazine

is also persistent in real systems [143, 144]. Additionally, cometabolic degradation pathways of

atrazine produce the metabolites deethylatrazine (DEA) and deisopropylatrazine (DIA), which

also persist in soils [145, 146]. This diversity of degradation pathways makes atrazine an

interesting model pesticide for the identification of degradation mechanisms.

5.3 Methods for model uncertainty quantification and sensitivity analysis

In this thesis, parameter uncertainty was determined using the DREAM toolbox in Matlab [117].

The DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm for model calibration

calculates parameter uncertainty in the form of a posterior parameter distribution based
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on a Bayesian approach (prior knowledge of the model parameters or uninformative prior

distributions and likelihood of the data). Identifiability analysis [100, 101] was performed to

find parsimonious model formulations. Additionally, I used both local and global sensitivity

approaches. In local sensitivity analysis, I determined the local sensitivity score [147]. In global

sensitivity analysis, I used the Morris method as inexpensive screening of important parameters

in high-dimensional problems [103, 106, 107] and the variance-based Sobol method to quantify

the contribution to the variance of model outputs coming from single parameters and the

interaction of parameters [148].

5.4 Thesis outline

My thesis investigates microbial regulations of pesticide turnover in soil and includes four

sections corresponding to four scientific papers (sections 6 to 9). A small summary of the main

findings of each paper and their connections to the research questions of my thesis are presented

in this section:

Paper 1 (section 6) addresses research question R1 and describes a set of gene-centric models

that explicitly incorporate microbial regulation (gene expression). I calibrated and validated

these model variants with published data from two degradation experiments involving two

model pesticides, 2,4-Dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic

acid (MCPA) [128]. I compared the performance of the model variants with each other and

a standard Monod model to determine the role of gene expression in predicting pesticide

degradation in soil and a potential parsimonious model.

Paper 2 (section 7) addresses research question R2. It extends and improves existing

chemostat/retentostat models by including refined representations of mass-transfer processes

across the cell membrane as well as energetic growth constraints through transition state theory.

The target pesticide was atrazine. After calibrating the model, I used it to produce site-specific

predictions for soils and compared them to field observations of residual atrazine concentrations

from two arable topsoils in southern Germany.
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Paper 3 (section 8) addresses research question R3 through a combined lab and modeling

study of MCPA degradation under different soil temperature (10°C and 20°C) and soil moisture

regimes (pF = 1.8 and 3.5), involving two substrate concentrations (1 and 20 mg kg−1). Genes and

transcripts as well as MCPA mineralization and residual concentration in soils were measured

in a microcosm experiment of thirty days. The modeling work was based on gene-centric

approaches and included additional features hypothesized to have a substantial impact under

low substrate concentrations, such as maintenance fluxes, production of non-extractable residues

(NER), and a constitutive gene expression.

Paper 4 (section 9) addresses research questions R4 and R5. As model pesticide, I

used atrazine, as it has a rather complex degradation pathway driven by different bacterial

guilds, physicochemical and abiotic processes. Different degradation pathways of atrazine

were represented by different competing models, and, in order to identify the predominant

degradation pathway, I used prospective optimal design.
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6 Gene-centric model approaches for accurate prediction of

pesticide biodegradation in soils (Paper 1)

This chapter includes the following publications:

1. Adapted with permission from Chavez Rodriguez, L., Ingalls, B., Schwarz, E., Streck, T.,

Uksa, M., Pagel, H. (2020). Gene-Centric Model Approaches for Accurate Prediction

of Pesticide Biodegradation in Soils. Environmental Science & Technology, 54(21),

13638–13650. https://doi.org/10.1021/acs.est.0c03315. Copyright 2020 American Chemical

Society.

2. Adapted with permission from Correction to the original Paper as published in

Chavez Rodriguez, L., Ingalls, B., Schwarz, E., Streck, T., Uksa, M., & Pagel, H.

(2021). Correction to “Gene-Centric Model Approaches for Accurate Prediction of

Pesticide Biodegradation in Soils.” Environmental Science Technology, 55(9), 6524.

https://doi.org/10.1021/acs.est.1c01972. Copyright 2020 American Chemical Society.

with the following modifications:

1. Correction to the original Paper as published in Chavez Rodriguez, L., Ingalls, B., Schwarz,

E., Streck, T., Uksa, M., & Pagel, H. (2021). Correction to “Gene-Centric Model Approaches

for Accurate Prediction of Pesticide Biodegradation in Soils.” Environmental Science &

Technology, 55(9), 6524. https://doi.org/10.1021/acs.est.1c01972

2. Numbers of figures, tables, and equations are relative to this thesis and not to the original

publication.
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6.1 Abstract

Pesticides are widely used in agriculture despite their negative impact on ecosystems and human

health. Biogeochemical modeling facilitates the mechanistic understanding of microbial controls

on pesticide turnover in soils. We propose to inform models of coupled microbial dynamics

and pesticide turnover with measurements of the abundance and expression of functional

genes. To assess the advantages of informing models with genetic data, we developed a novel

“gene-centric” model and compared model variants of differing structural complexity against a

standard biomass-based model. The models were calibrated and validated using data from two

batch experiments in which the degradation of the pesticides dichlorophenoxyacetic acid (2,4-D)

and 2-methyl-4-chlorophenoxyacetic acid (MCPA) were observed in soil. When calibrating

against data on pesticide mineralization, the gene-centric and biomass-based models performed

equally well. However, accounting for pesticide-triggered gene regulation allows improved

performance in capturing microbial dynamics and in predicting pesticide mineralization. This

novel modeling approach also reveals a hysteretic relationship between pesticide degradation

rates and gene expression, implying that the biodegradation performance in soils cannot be

directly assessed by measuring the expression of functional genes. Our gene-centric model

provides an effective approach for exploiting molecular biology data to simulate pesticide

degradation in soils.

6.2 Introduction

Pesticides are important agrochemicals used for plant protection and yield optimization [2–5].

Despite their intended beneficial use, many of the applied active components end up in soils,

groundwater or surface water [149–151], where they are potentially harmful for living organisms

and the environment [15, 152]. Soil microorganisms (fungi and bacteria) are known to be the

main drivers of pesticide degradation in soils [43, 149]; they have evolved to use pesticides

as both carbon (C) and energy sources [49]. In this context, the most important microbial

detoxification process in soils is the enzyme-catalyzed biotic transformation of pesticides [153].
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To predict the fate of pesticides in the environment, we need to improve our understanding

of the microbial control of pesticide degradation, particularly at low concentrations [154].

Biogeochemical modeling is an established approach for testing our understanding of bioreactive

processes, as well as for quantifing and predicting the biodegradation of pesticides in soils [74,

155]. Current biogeochemical models incorporate important rate limiting factors such as

microbial dynamics (growth, metabolism, and physiology) as well as sorption-controlled

substrate availability. Recent modeling approaches seek to improve the representation of

microbial pesticide degradation by exploiting experimental assays of marker genes that encode

enzymes that catalyze specific reactions [156]. Measurements of DNA and transcript abundance

of functional genes facilitate an improved understanding of biochemical processes by providing

a direct link between specific microorganisms and biochemical functions. This quantitative gene

data should thus facilitate a more robust estimation of biokinetic parameters of biogeochemical

models [75, 82] in comparison with more traditional approaches [73].

Some biogeochemical modeling approaches in marine and groundwater systems incorporate

and simulate either functional genes and transcripts (gene-centric model [82]), or enzyme

concentration and transcripts (cybernetic or enzyme-based approach [84, 157]). Their results

highlight the potential of incorporating molecular data into modeling to improve process

understanding and model predictions [82]. Existing gene-centric models of pesticide turnover

in soil improved the representation of microbial dynamics in soil [43, 158], but misrepresent

important limiting factors of pesticide degradation [73] such as pesticide-dependent gene

expression.

In order to address this problem, we present a novel modeling approach that exploits data

on the abundance and the expression of functional genes involved in pesticide degradation

in soils. We expect that a complete description of transcription of specific genes and

translation of targeted enzymes in our modeling approach will improve the representation of the

controllers of pesticide degradation in soils. We used previously published data from laboratory

experiments [128] to calibrate and validate a suite of model formulations. These experiments
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involved observation of the degradation of the pesticides 2,4-dichlorophenoxyacetic acid (2,4-D)

and 2-methyl-4-chlorophenoxyacetic acid (MCPA). These pesticides have a similar chemical

structure and a simple degradation pathway mediated by the same functional genes, which have

been extensively studied [122–125, 127, 130, 159–162]. Therefore, they provide a straightforward

test case for our novel modeling approach.

We compare the model performance of a collection of gene-based models against a traditional

biomass-based model to test whether our extended modeling approach provides better

predictions. Finally, we used identifiability and uncertainty analysis to compare our gene-

based model variants. We identified the model variant that is best supported by the available

data, and that we can recommend as the most parsimonious tool to be used for description and

prediction of this degradation process.

6.3 Theory

6.3.1 Model Structure

The model structure is shown in Figure 3. The processes are assumed to occur in a spatially

homogeneous environment [128]. Pesticide is assumed to equilibrate rapidly between the

sorbed and solution phase concentration. The model accounts for a single microbial population,

which relies on the the pesticide as its sole carbon (C) and energy source. The microbial pool is

partitioned into three subpopulations: active cells, inactive cells (dormant bacteria), and dead

cells (relic cell pool), based on observation of typical bacterial states found in environmental

systems [163–167]. Activation/inactivation is regulated by the pesticide concentration. Active

cells respond to the presence of pesticide by expressing specific functional genes. We assume

this occurs via upregulation of transcription (formation of messenger RNA (mRNA)). Pesticide

uptake and metabolism are described as a single process, which leads to growth of active cells

and mineralization of pesticide to CO2. Active and inactive cells die at constitutive rates. Finally,

dead cells decay, releasing CO2. If not otherwise stated, all concentrations are given in mmol g−1

or mmol cm−3 and refer to C in mass of dry soil or in volume of soil solution, respectively.
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Figure 3: Model schematic. Green boxes: independent state variables calculated directly; orange
boxes: variables related to processes in quasi-steady state; purple box: additional pool
that is modeled indirectly. Solid arrows indicate mass transfer; dashed arrows indicate
regulation.

6.3.2 Process formulations

Sorption

The total concentration of pesticide 𝐶𝑇
𝑃 [mmol cm−3] in soil is partitioned into two pesticide

pools: solution phase concentration 𝐶𝐿
𝑃 [mmol cm−3] and sorbed phase concentration 𝐶𝑆

𝑃

[mmol g−1]:

𝐶𝑇
𝑃 = 𝜃 ⋅ 𝐶𝐿

𝑃 + 𝜌 ⋅ 𝐶𝑆
𝑃 (1)

where: 𝜃 [1] is the water content in soil and 𝜌 [g cm−3] is soil bulk density.

We assume that 𝐶𝐿
𝑃 and 𝐶𝑆

𝑃 are related by the Freundlich isotherm 𝐶𝑆
𝑃 = 𝐾𝐹𝑃 ⋅ (𝐶𝐿

𝑃 )
𝑛𝐹𝑃

(bioavailability limitation of pesticide degradation). Freundlich sorption enters the model

by the retardation factor [149, 168]:
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𝑅𝐹 ∶=

𝑑𝐶𝑇
𝑃

𝑑𝑡

𝜃 ⋅
𝑑𝐶𝐿

𝑃
𝑑𝑡

= 1 +
𝜌
𝜃
⋅ 𝐾𝐹𝑃 ⋅ 𝑛𝐹𝑃 ⋅ (𝐶𝐿

𝑃 )
(𝑛𝐹𝑃−1) (2)

where 𝐾𝐹𝑃 [mmol(1–𝑛𝐹𝑃 ) g–1 cm3𝑛𝐹𝑃 ] and 𝑛𝐹𝑃 [1] are the Freundlich coefficient and exponent

respectively.

Bacterial subpopulations

Our model incorporates three bacterial subpopulations: active degrader bacteria 𝐶𝑎
𝐵 [mmol g−1],

inactive bacteria 𝐶 𝑖
𝐵 [mmol g−1], and dead bacteria 𝐶𝑑

𝐵 [mmol g−1]. Inactivation (dormancy) is

used by microbes as a bet-hedging strategy to cope with unfavorable conditions, including

substrate limitation [163]. We included the dead bacteria (relic bacterial population) to

avoid overestimation of active degraders [165–167] when comparing simulation results with

experimental observations. These pools are depicted in Figure 3 as active, inactive and dead

cells. The growth rate [mmol g−1 d−1] of active bacteria (𝑟𝑔𝑟𝑜𝑤𝑡ℎ) is:

𝑟𝑔𝑟𝑜𝑤𝑡ℎ = 𝜇𝑃 ⋅ 𝐶𝑎
𝐵 (3)

where 𝜇𝑃 [d−1] is the specific growth rate coefficient (Eq. 18).

Activation and inactivation rates [169, 170] depend on the concentration of pesticide through

a thresholding function. The corresponding rates [mmol g−1 d−1] are defined as follows:

𝑟𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝜏 ⋅ 𝑘𝑟 ⋅ 𝐶 𝑖
𝐵 (4)

𝑟𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = (1 − 𝜏) ⋅ 𝑘𝑑 ⋅ 𝐶𝑎
𝐵 (5)

where 𝑘𝑟 [d−1] and 𝑘𝑑 [d−1] are the coefficients of activation/deactivation for inactive/active

cells, and 𝜏 [1] is a switch function: [169, 170]:

𝜏 = [exp(
𝐶𝑇 − 𝐶𝐿

𝑃
𝑛 ⋅ 𝐶𝑇 ) + 1]

−1

(6)
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where 𝐶𝑇 [mmol cm−3] is a pesticide concentration threshold, and 𝑛 [1] modulates the steepness

of the curve [169, 170].

The rate of decay of all bacterial pools (mmol g−1 d−1) is described with a first-order function:

𝑟 𝑗𝑑𝑒𝑐𝑎𝑦 = 𝐶 𝑗
𝐵 ⋅ 𝑎𝑗 (7)

where 𝑗 could denote active, inactive and dead bacteria, and 𝑎𝑗 is the decay rate coefficient of

the corresponding population.

Gene expression

Active bacteria respond to the presence of pesticide by transcribing and translating specific

functional genes for pesticide degradation. In the case of 2,4-D and MCPA, we described

the expression of the functional gene tfdA, which encodes for an 𝛼-ketoglutarate-dependent

dioxygenase [128, 171, 172]. This enzyme catalyzes the cleavage of the ether bond between

the phenol ring and the acetic acid side chain of 2,4-D and MCPA [130]. We assumed the first

degradation step to be the rate determining step despite the fact that more genes tfdABCDEF

are involved in the full degradation of both pesticides. This is a reasonable assumption given

the general understanding of the tfdABCDEF mediated degradation pathway [171, 173]. The

degradation of 2,4-D and MCPA involving a constitutive gene expression at low concentration

followed by a pesticide-dependent gene expression was not included as an alternative microbial

control mechanism, because this process has only been reported for one bacteria strain [126].

Alternative genes (i.e., cadA [174] and RdpA, SdpA [175]) capable of degrading 2,4-D and MCPA

following the same degradation pathway as tfdA gene were not included because of their

comparatively low abundance in soil samples [131, 173, 176].

The rate of transcription of specific genes is assumed to be pesticide-dependent, described by

a Hill function [177]:

𝑟𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 = 𝛽𝑚𝑎𝑥 ⋅ (
(𝐶𝐿

𝑃 )
𝑛𝐻

𝐾𝑛𝐻
𝐺 + (𝐶𝐿

𝑃 )𝑛𝐻 )
(8)
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where 𝛽𝑚𝑎𝑥 [transcripts gene−1 d−1] is the rate coefficient of transcription, 𝐾𝐺 [mmol cm−3] is

the half-maximal triggering concentration, and 𝑛𝐻 [1] is the Hill coefficient.

Translation follows a first order function based on the concentration of transcripts

[transcripts gene−1]:

𝑟𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑘𝐸 ⋅ 𝑚𝑅𝑁𝐴 (9)

where 𝑘𝐸 [mmolE transcripts−1 d−1] is the rate coefficient of translation of transcripts (mRNA)

into enzymes (E) [mmolE gene−1].

Decay of transcripts (mRNA) and enzymes (E) is assumed to be first order:

𝑟𝑚𝑅𝑁𝐴−𝑑𝑒𝑐𝑎𝑦 = 𝑑𝐺 ⋅ 𝑚𝑅𝑁𝐴 (10)

𝑟𝑒𝑛𝑧𝑦𝑚𝑒−𝑑𝑒𝑐𝑎𝑦 = 𝑑𝐸 ⋅ 𝐸 (11)

where 𝑑𝐺 [d−1] and 𝑑𝐸 [d−1] are first order decay coefficients.

Experimental data on 2,4-D and MCPA degradation [128] have shown that the timescale of

pesticide mineralization and bacteria growth is days, whereas transcription and translation are

processes on the timescale of hours to seconds [178]. Therefore, we assumed quasi-steady-state

(QSS) for gene expression [177]. The QSS formulation for transcripts reads:

𝑑𝑚𝑅𝑁𝐴
𝑑𝑡

= 𝑟𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 − 𝑟𝑚𝑅𝑁𝐴−𝑑𝑒𝑐𝑎𝑦 = 0 (12)

resulting in the following formulation [transcripts gene−1]:

𝑚𝑅𝑁𝐴 =
𝛽𝑚𝑎𝑥

𝑑𝐺
⋅ (

(𝐶𝐿
𝑃 )

𝑛𝐻

𝐾𝑛𝐻
𝐺 + (𝐶𝐿

𝑃 )𝑛𝐻 )
(13)

We defined 𝑓𝑇 =
𝛽𝑚𝑎𝑥

𝑑𝐺
as the number of transcripts per gene. The parameter 𝑓𝑇 can take values

higher than 1 to express at least one gene or transcript per cell, or lower than 1 to compensate

for extraction bias of mRNA and DNA. The extraction bias was assumed constant for the soil
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used in the experiment.

The QSS formulation for enzymes reads:

𝑑𝐸
𝑑𝑡

= 𝑟𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑟𝑒𝑛𝑧𝑦𝑚𝑒−𝑑𝑒𝑐𝑎𝑦 = 0 (14)

resulting in the following formulation [mmolE gene−1]:

𝐸̂ =
𝑘𝐸 ⋅ 𝑓𝑇 ⋅ (

(𝐶𝐿
𝑃 )

𝑛𝐻

𝐾𝑛𝐻
𝐺 + (𝐶𝐿

𝑃 )𝑛𝐻 )
𝑑𝐸

(15)

Pesticide uptake

We treat pesticide uptake and biotic degradation as a single process, with a degradation rate

coefficient (𝜇𝑃 [d−1]) given by a Michaelis-Menten term:

𝜇𝑃 =
𝑘𝑣𝑚𝑎𝑥 ⋅ 𝐶𝐿

𝑃 ⋅ 𝐸̂
(𝐾𝑀 + 𝐶𝐿

𝑃 ) ⋅ 𝑓1
(16)

where 𝑘𝑣𝑚𝑎𝑥 [mmol mmol−1
E d−1] describes the rate of degradation of pesticide, 𝐾𝑀 [mmol cm−3]

is the half-maximal pesticide concentration, and 𝑓1 is a conversion factor from gene to C

[mmol gene−1]. We do not consider chemical degradation. Substituting 𝐸̂ from eq. 15 gives:

𝜇𝑃 = (
𝑘𝑣𝑚𝑎𝑥 ⋅ 𝑘𝐸 ⋅ 𝑓𝑇

𝑑𝐸 ⋅ 𝑓1 ) ⋅

⎛
⎜
⎜
⎜
⎜
⎝

(
(𝐶𝐿

𝑃 )
(𝑛𝐻+1)

𝐾𝑛𝐻
𝐺 + (𝐶𝐿

𝑃 )𝑛𝐻 )
𝐾𝑀 + 𝐶𝐿

𝑃

⎞
⎟
⎟
⎟
⎟
⎠

(17)

Finally, defining 𝜇𝑚𝑎𝑥 =
𝑘𝑣𝑚𝑎𝑥 ⋅ 𝑘𝐸 ⋅ 𝑓𝑇

𝑑𝐸 ⋅ 𝑓1
(the maximum growth rate coefficient [d−1]), we have a

concise description of growth rate as:

𝜇𝑃 = 𝜇𝑚𝑎𝑥 ⋅ (
(𝐶𝐿

𝑃 )
(𝑛𝐻+1)

𝐾𝑛𝐻
𝐺 + (𝐶𝐿

𝑃 )𝑛𝐻 )
⋅ (𝐾𝑀 + 𝐶𝐿

𝑃)
−1

(18)
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The uptake rate is dependent only on the bioavailable pesticide (RF from eq. 2) and is scaled by

the parameter 𝑌𝑃 (uptake efficiency specific for the degraders and the substrate) as follows:

𝑟𝑢𝑝𝑡𝑎𝑘𝑒 =
−𝜇𝑃 ⋅ 𝐶𝑎

𝐵 ⋅ (
1
𝑌𝑃 )

. (
𝜌
𝜃 )

𝑅𝐹
(19)

The pesticide is used as both C and energy source. The growth yield, 𝑌𝑃 , determines the relative

proportion of respiration and growth based on the total pesticide uptake [88].

𝐂𝐎𝟐 accumulation

The final product of pesticide degradation is CO2 (in mmol g−1 soil) produced by bacterial

respiration:

𝑟𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 = 𝜇𝑃 ⋅ 𝐶𝑎
𝐵 ⋅ (

1 − 𝑌𝑃
𝑌𝑃 ) (20)

A fraction of the decaying dead cells also contributes to the CO2 pool through the parameter

𝑎𝐶𝑂2 [1]:

𝑟𝑐𝑒𝑙𝑙−𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑟𝑑𝑑𝑒𝑐𝑎𝑦 ⋅ 𝑎𝐶𝑂2 (21)

This flux consists of the carbon released from decaying dead cells that have incorporated the

pesticide into their biomass. Autotrophic and heterotrophic fixation of mineralized CO2 from

2,4-D/MCPA have been shown to play a minor role [179]. Therefore, we did not explicitly

consider these processes in the model.
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The full model is described by the following ordinary differential equation (ODE) system:

𝑑𝐶𝑎
𝐵

𝑑𝑡
= 𝑟𝑔𝑟𝑜𝑤𝑡ℎ − 𝑟𝑎𝑑𝑒𝑐𝑎𝑦 + 𝑟𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 − 𝑟𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (22)

𝑑𝐶 𝑖
𝐵

𝑑𝑡
= 𝑟𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 − 𝑟𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 − 𝑟 𝑖𝑑𝑒𝑐𝑎𝑦 (23)

𝑑𝐶𝑑
𝐵

𝑑𝑡
= 𝑟𝑎𝑑𝑒𝑐𝑎𝑦 + 𝑟 𝑖𝑑𝑒𝑐𝑎𝑦 − 𝑟𝑑𝑑𝑒𝑐𝑎𝑦 (24)

𝑑𝐶𝐿
𝑃

𝑑𝑡
= 𝑟𝑢𝑝𝑡𝑎𝑘𝑒 (25)

𝑑𝐶𝑂2

𝑑𝑡
= 𝑟𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑟𝑐𝑒𝑙𝑙−𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (26)

6.4 Materials and Methods

6.4.1 Model Reduction

Starting out from the full model formulation (V0), we define three model variants considering

pesticide-dependent gene expression: V1, V2 and V3, and also one variant considering

unregulated gene expression V4 and a biomass-based model V4’:

• V1: The inactive bacteria pool is set to zero (𝐶 𝑖
𝐵 = 0).

• V2: The dead bacteria pool is set to zero (𝐶𝑑
𝐵 = 0). To account for cellular decay, a fraction

of the decaying active and inactive bacteria is set to directly contribute to the CO2 pool

as follows:

𝑟𝑐𝑒𝑙𝑙−𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = (𝐶𝑎
𝐵 ⋅ 𝑎𝑎 + 𝐶 𝑖

𝐵 ⋅ 𝑎𝑖) ⋅ 𝑎𝐶𝑂2 (27)

• V3: The inactive bacteria pool and the dead bacteria pool are set to zero (𝐶 𝑖
𝐵 = 0 and

𝐶𝑑
𝐵 = 0). The parameter 𝐾𝑀 is also set to zero (𝐾𝑀 = 0) to neglect pesticide-dependent

growth and keep pesticide-dependent gene expression. The growth rate coefficient (𝜇𝑃 ) is

calculated as follows:

𝜇𝑃 = 𝜇𝑚𝑎𝑥 ⋅ (
(𝐶𝐿

𝑃 )
𝑛𝐻

(𝐾𝐺)𝑛𝐻 + (𝐶𝐿
𝑃 )𝑛𝐻 )

(28)

To account for cellular decay, a fraction of the decaying active cells is set to directly
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contribute to the CO2 pool as follows:

𝑟𝑐𝑒𝑙𝑙−𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝐶𝑎
𝐵 ⋅ 𝑎𝑎 ⋅ 𝑎𝐶𝑂2 (29)

• V4: The inactive bacteria and the dead bacteria are set to zero (𝐶 𝑖
𝐵 = 0 and 𝐶𝑑

𝐵 = 0). The

parameter 𝐾𝐺 is also set to zero (𝐾𝐺 = 0) to account for pesticide-dependent growth

kinetics. The growth rate coefficient (𝜇𝑃 ) is calculated as follows:

𝜇𝑃 = 𝜇𝑚𝑎𝑥 ⋅ (
𝐶𝐿
𝑃

𝐾𝑀 + 𝐶𝐿
𝑃 )

(30)

This model variant considers an unregulated mRNA expression in QSS (eq. 13):

𝑚𝑅𝑁𝐴 = 𝑓𝑇 ⋅ 𝐶𝑎
𝐵 (31)

• V4’: Same structure as V4 without unregulated mRNA gene expression. This model

variant is close to the standard Monod-based model that takes gene abundances as a

proxy of bacterial biomass.

For convenience, the full description of each model can be found in Supporting Information.

6.4.2 Model calibration

Description of the experiment

We used published data from a batch degradation experiment in microcosms applying the

14C-labelled 2,4-D and MCPA to a Typic Argiudoll with a pH of 7.2, 19% clay, 18% silt, 62% sand

and 1.2% carbon [128]. The experiment consisted of one application of 20 mg kg−1 (8.8 mg kg−1

soil of 2,4-D, and 10.8 mg kg−1 soil of MCPA; pesticide in C equivalent) of the corresponding

pesticide at day 0, and a second application of 20 mg kg−1 when mineralization of the first

application stopped (at day 24 for 2,4-D and day 33 for MCPA.) The experiments ran until
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day 34 for 2,4-D and day 67 for MCPA (the sampling protocol can be found in the Supporting

Information Table S1) The dataset consisted of time series with three replicates of pesticide

mineralization (%), abundance of tfdA genes and expressed tfdA genes in soil.

Model calibration

We calibrated each model variant against the data from the 2,4-D experiment. We started

calibration with a manual exploration of the parameter space within the ranges shown in Table 1

to achieve visually acceptable fits. Nominal parameter ranges were based on literature [158,

165, 180–190]. We extended the ranges of all parameters by four orders of magnitude, which

allowed us to capture sufficient parameter variation.

Table 1: Initial parameter ranges for model calibration.

Parameters Definition Units Minimum Maximum

𝑓𝑇 Number of transcripts per gene [187] transcripts gene−1 10−4 103

𝑛𝐻 Hill coefficient [185] 1 1 10

𝐾𝐺 Half-maximal triggering concentration [188] mmol cm−3 10−10 106

𝜇𝑚𝑎𝑥 Maximum growth rate [158, 181] d−1 10−4 105

𝑓1 Conversion factor (gene to C) [183] mmol gene−1 10−14 10−8

𝐾𝑀 Half-maximal pesticide concentration [184] mmol cm−3 10−8 104

𝐶𝑇 Pesticide concentration threshold [180, 186] mmol cm−3 10−10 10−2

𝑎𝑎 Decay rate coeff. for active bacteria [158, 181] d−1 10−5 102

𝑎𝑖 Decay rate coeff. for inactive bacteria [158, 181] d−1 10−7 10−2

𝑘𝑟 Coefficient of activation [170] d−1 10−5 102

𝑘𝑑 Coefficient of deactivation [170] d−1 10−5 102

𝑎𝑑 Decay rate coeff. for dead bacteria [189] d−1 10−4 104

𝑌𝑃 Uptake efficiency [158] 1 0.1 0.9

𝑎𝐶𝑂2 Fraction of bacteria contributing to CO2 1 0.1 0.9

𝐾𝐹𝑃 Freundlich coefficient [158, 182] mmol (1–𝑛𝐹𝑃 ) g–1 cm3𝑛𝐹𝑃 10−2 1

𝑛𝐹𝑃 Freundlich exponent [158, 182] 1 0.8 1

𝑎𝑟 Initial fraction of dead bacteria [165] 1 0.1 0.9

Using the manually determined preliminary fit as the initial parametrization, we calibrated
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each model variant by minimizing the weighted sum of squared errors (SSE) following a hybrid

optimization method [191]. A hybrid method consists of an initial search using the global

optimization algorithm Simulated Annealing, followed by the local optimization fmincon

of Matlab. We defined the SSE as:

𝑆𝑆𝐸 = ∑
𝑖

(𝑦 𝑖𝑜𝑏𝑠 − 𝑦 𝑖𝑠𝑖𝑚)2

𝜎2
𝑖

(32)

where 𝑦 𝑖𝑜𝑏𝑠 are the observations, 𝑦 𝑖𝑠𝑖𝑚 the corresponding model outputs, and 𝜎𝑖 is the standard

deviation of the corresponding observations. Initial calibration attempts were unsuccessful due

to the wide ranges of variation within replicates, especially for measured expressed tfdA genes

in soil. Consequently, we set a minimum threshold of 15% as coefficient of variation for the

replicates (without which the genes and transcripts observations would have had a negligible

contribution to SSE).

The model outputs corresponding to the measured data were calculated from the state

variables as follows:

Mineralization [%] =
CO2 ⋅ 100

Initial Pesticide Concentration
(33)

Genes [copies g−1] =
𝐶𝑎
𝐵 + 𝐶 𝑖

𝐵 + 𝐶𝑑
𝐵

𝑓1
(34)

Transcripts [copies g−1] =
𝑚𝑅𝑁𝐴 ⋅ 𝐶𝑎

𝐵
𝑓1

(35)

We applied a Markov Chain Monte Carlo simulation using the Bayesian DREAM(ZS) algorithm

within the DREAM Matlab tooxbox [117] to estimate parameter and simulation uncertainty.

Uniform parameter distributions (see Table 1 for ranges) were chosen as flat/uninformative

priors for Bayesian inference using MCMC sampling. The starting values of the MCMC chains

were drawn from a multinormal distribution of the parameters in log-space with mean values

equal to the best fit from the hybrid method, arbitrary variances of 2.5, and zero covariances.
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The selected variance was set to capture sufficient variation of the parameters. Convergence

of chains was assumed for a 𝑅̂-diagnostic [192] lower than 1.2 [117]. Minimum and maximum

parameter values were taken from Table 1, and we chose the option Reflect as a boundary

handling method in DREAM(ZS). We used a Gaussian likelihood considering heteroscedastic

measurement errors as implemented in DREAM(ZS):

𝐿(𝑥|𝑌̃ ) = −
𝑛
2
⋅ log(2𝜋) −

𝑛
∑
𝑡=1

{log(𝜎𝑖)} −
1
2
⋅

𝑛
∑
𝑡=1 (

𝑦 𝑖𝑜𝑏𝑠 − 𝑦 𝑖𝑠𝑖𝑚
𝜎𝑖 )

2

(36)

where 𝜎𝑖 are the standard deviations of the observations, and 𝑦 𝑖𝑜𝑏𝑠 − 𝑦 𝑖𝑠𝑖𝑚 are the residuals.

We ran DREAM(ZS) in parallel, using three Markov chain trajectories with 100,000 and 300,000

simulations per chain, achieving convergence for all models.

The same process was followed for all model versions with the exception of V4’, for which

we only used Pesticide Mineralization (%) and tfdA genes for calibration.

6.4.3 Model comparison

We chose the Akaike Information Criterion (AICc) [101, 193] and the Bayesian Information

Criterion (BIC) for the numerical evaluation of the Bayesian Model Evidence [194, 195]. The

AICc is a measure of the predictive capability of a model, and the BIC indicates the identifiability

of the parameters of a model for the given data [109]. AICc and the BIC were calculated as:

AICc = 2 ⋅ 𝑚 + 𝑛 ⋅ ln(
SSE
𝑛 ) +

2 ⋅ 𝑚 ⋅ (𝑚 + 1)
𝑛 − 𝑚 − 1

(37)

BIC = 𝑛 ⋅ ln(
SSE
𝑛 ) + 𝑚 ⋅ ln(𝑛) (38)

where𝑚 is the number of free parameters (including the initial conditions used as free parameters

for model calibration), 𝑛 is the number of observations (this evaluation was done on 2,4-D data

with 54 observation points), and SSE is the sum of squared errors previously defined (eq. 32).
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6.4.4 Model validation

We validated the selected models against the MCPA data. We visually evaluated how well the

models captured the main trends of the measured data: mineralized MCPA (%), tfdA genes

and transcripts in soils. We compared simulated residual concentrations of 2,4-D and MCPA

(total concentration at the end of the experiment) against reported measurements in short-term

degradation experiments using these pesticides [196–198] as an additional validation procedure.

6.4.5 Local sensitivity analysis

We performed a local sensitivity analysis based on the best fit obtained for the models. The

analysis included: local parametric sensitivity coefficient [199, 200], identifiability score [100,

101], percentage error of the estimation [101], and parameter correlation matrix [101] (see

Supporting Information 11.1.3, Methods: Local and Global Sensitivity and uncertainty analysis).

We did not include the initial conditions in our analysis [101].

6.4.6 Global sensitivity analysis – Morris method

We performed a global sensitivity analysis using the Morris Method [103, 105–107, 201],

implemented in the SAFE toolbox of Matlab [202] (Supporting Information 11.1.3). We calculated

two sensitivity metrics [201]: the mean of the elementary effects (𝜇∗) and the standard deviation

of the elementary effects (𝜎 ) at 20,000 points in the parameter space, corresponding to 380,000

model runs.

We ran the sensitivity analysis up to the day 24 to cover the first pesticide application of

2,4-D. The output variables considered were: maximum pesticide mineralization, maximum

abundance of genes and transcripts, maximum active genes, minimum pesticide in solution,

time of inflection point of mineralization, time to achieve the maximum mineralization rate and

maximum gene expression, and SSE (eq. 32).

Parameters for sensitivity analysis were sampled from a normal distribution with the mean

taken from the best model fit on 2,4-D data. The standard deviation was approximated so that

37



6 Gene-centric modeling approaches

the resulting normal distribution of each parameter fitted into the upper and lower boundaries

previously set in Table 1. As sampling strategy, we used the Latin hypercube sampling with

radial trajectory [73].

Because the Morris method only allows a ranked classification of the parameters according to

the values of 𝜇∗ and 𝜎 obtained per parameter per output [73, 202], we normalized by dividing

by the maximum 𝜇∗ and 𝜎 observed for each parameter. We used the normalized 𝜇∗ and 𝜎 to

calculate the l2 − norm (l2 =
√
𝜇∗2 + 𝜎2) of each parameter [73, 105, 107]. The high leverage

parameters [73, 105] are those with an l2 − norm higher than 0.5.

6.5 Results and discussion

6.5.1 Calibration, parameterization and model dynamics of full model (V0)

Model Calibration

We were able to visually calibrate the full model variant (V0) with respect to 2,4-D mineralization

over the entire experiment (Figure 4A, black curve) with reasonable uncertainty comparable

to the standard deviation of the data (Figure 4B, black dots with black error bars). The model,

however, failed to reproduce the peaks of gene expression (mRNA), especially after the second

pesticide application (Figure 4C, black curve).

Simulated tfdA gene abundances matched well with the observed data during the first

degradation phase (Figure 4E, black curve). However, at the end of the experiment (day

34), a clear decay of genes was shown but not captured by the simulation. In contrast, the

simulated tfdA gene abundances stabilized, indicating underestimation of bacterial decay. The

uncertainty of the simulations was low compared to the variability of the data (Figure 4F, black

dots with black error bars). The simulated behavior of the tfdA gene abundances from Figure

4E (black curve) can be understood in terms of the dynamics of the active, inactive and dead

bacterial pool (Figure 4, inset panel E). We emphasized that active bacteria did decay at the end

of the experiment, but the total DNA pool remained constant because of the slow decay rate

of inactive bacteria, which was the predominant physiological bacterial state at the end of the
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simulation.
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Sensitivity analysis for model reduction

Table 2: Uncertainty analysis for the full model variant (V0) on 2,4-D data.

Parameter Best Fit SC IS PE MV SD

𝜇𝑚𝑎𝑥 0.5 554.6 423.9 59.7 0.9 2.0

𝑎𝑟 0.7 94.7 10.0 1.5 103 0.9 0.04

𝑌𝑃 0.4 58.5 28.9 318.6 0.3 0.05

𝑛𝐹𝑃 0.9 55.6 46.8 2.5 103 0.9 0.06

𝑓1 8.2 10−11 44.7 1.3 523.4 8.9 10−11 1.2

𝑎𝑎 0.1 29.6 4.0 94.1 5.0 10−4 10.8

𝐾𝐺 7.0 10−4 13.9 0.0 1.1 104 5.0 10−7 234.4

𝑓𝑇 0.02 13.0 7.0 96.4 0.01 2.1

𝑛𝐻 5.6 6.6 0.5 258.4 4.7 2.9

𝐾𝐹𝑃 0.1 1.4 2.8 10−6 5.3 104 0.1 4.2

𝑎𝐶𝑂2 0.8 0.6 0.1 455.6 0.8 0.1

𝑘𝑟 2.2 0.4 1.1 10−3 4.4 103 0.5 1.5

𝐾𝑀 2.9 10−5 0.2 2.0 10−4 1.3 104 2.5 10−4 16.9

𝑎𝑠 14.7 7.4 10−4 6.7 10−6 1.3 104 89.3 17.3

𝑎𝑖 9.3 10−5 2.5 10−8 3.5 10−13 7.7 107 2.4 10−5 25.9

𝐶𝑇 1.0 10−6 0.0 0.0 0.0 6.0 10−4 2.5

𝑘𝑑 0.03 0.0 0.0 0.0 0.3 1.2

SC = Sensitivity coefficient, IS = Identifiability score, PE = Percentage Error, MV and SD = mean and standard

deviation of the estimation from DREAM(ZS) (See Materials and Methods 6.4.2). Parameters in yellow were

candidates to be reduced.

Local and global sensitivity analysis showed many parameters to be low-leverage and poorly

identifiable, and the percentage errors of the parameter fits were overall high (Table 2 and

Supporting Information, Figure S6). Parameters controlling the dynamics of the inactive and

dead bacteria pools (𝑘𝑟 , 𝑘𝑑 , 𝑎𝑖 , 𝑎𝑟 and 𝑎𝑠) were poorly identifiable with low impact (Table 2

highlighted in yellow), suggesting elimination of these parameters and simplification of the

model structure. The calibrated values of 𝐶𝑇 (the pesticide concentration threshold) ranged
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from µg L−1 to mg L−1 (Supporting Information, Figure S8). 𝐶𝑇 was found to impact the inactive

bacteria pool at some point of the parameter space (Supporting Information, Figure S6), but no

impact was observed when values are in the order of µg L−1 (Table 2). Threshold concentrations

for activation of pesticide degrading bacteria have not yet been reported in the literature, but

estimated threshold concentration values for activation of Escherichia coli [180, 186] are in the

order of µg L−1, similar to typical residual pesticide concentrations in soils [57, 203]. This suggests

that reasonable values of 𝐶𝑇 may be in the order of µg L−1, and would thus have minimal impact

on the model outputs (active, inactive and dead bacteria, pesticide concentration and CO2).

The parameters 𝐾𝑀 and 𝐾𝐺 (which characterize the threshold for pesticide-dependent growth

(eq. 16) and pesticide-dependent gene expression (eq. 8), respectively) had minimal impact on

model dynamics (low leverage and low identifiability with a high percentage error). Despite

being relatively low-leverage and low identifiable, sorption parameters (𝐾𝐹𝑃 and 𝑛𝐹𝑃 ) were not

considered for reduction due to the importance of sorption of pesticide in soil [204]. Moreover,

these two parameters could be directly measured through sorption kinetic experiments [205–208]

(not performed in the current work). Additionally, the analysis suggests that parameter 𝑎𝐶𝑂2

can be eliminated due to its low impact on model outputs. However, we determined that this

reduction results in overestimation of mineralization from dead bacteria (preliminary analysis;

data not shown). Therefore, these three parameters were not included for model reduction.

Based on these sensitivity results, we select four reduced gene-centric model variants (V1,

V2, V3 and V4) and a biomass-based model variant (V4’). In model variant V1, we eliminated

dormancy by setting the inactive bacteria pool to zero. This reduction appears to contradict

published reports that up to 60 % of bacteria are dormant in low nutrient systems [209]. This

discrepancy could be resolved by further subdividing the active population, allowing for a

’potentially active’ subpopulation [164], although we did not explore this option. In the second

model variant, we removed the dead bacteria pool (relic bacteria) by setting it to zero. Neglecting

relic bacteria in our model formulation could inflate the tfdA gene abundance simulated in

soils [165, 166], and therefore, the pesticide degradation capacity of the soil (measured in terms
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of mineralized pesticide). However, this effect was not observed in our calibration results (Figure

4A, C and E, red line for model variant V3 that exhibits the same features as model V2). In our

initial development of the third model variant V3, we removed the inactive and dead bacteria.

This, however, did not improve the sensitivity analysis results of the remaining parameters, and

the parameters 𝐾𝐺 and 𝐾𝑀 were still low-leverage and poorly identifiable (data not shown). We

chose to set only the parameter 𝐾𝑀 to zero to keep a gene-centric model formulation. Because

of this, this model variant has gene-expression as the only pesticide-dependent process.

In the two additional model variants (V4 and V4’), we removed inactive and dead bacteria. We

also set the parameter𝐾𝐺 to zero and kept the parameter𝐾𝑀 to consider substrate-limited growth

as the only pesticide-dependent process. Variant V4 describes a non-regulated (constitutive)

gene expression. We developed this variant to address whether this approximation could also be

a valid representation of the tfdA transcript dynamics. Variant V4’ has the same model structure

as V4, but without the non-regulated gene expression, keeping only the Monod-kinetics. Further

sensitivity analysis of these two models (Supporting Information, Table S5 and S6), revealed a

low-leverage Monod parameter 𝐾𝑀 , suggesting a further reduction to a first-order-like model

variant. This simple model, however, could not be successfully calibrated with the given data

(not shown). Therefore, further model reduction steps were not considered.

6.5.2 Model comparison

We calibrated all model variants following the same methodology as with the full model with

the exception of V4’ that was calibrated using only pesticide mineralization and tfdA gene

abundance. We evaluated the performance of the model variants based on visual fits, SSE (eq. 79)

and the information criteria AICc (eq. 37) and BIC (eq. 38) (See Materials and Methods 6.4.2).
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Table 3: Model comparison based on the 2,4-D data.

Model FP SSE AICc BIC

V0 18 192.9 124.3 140.6

V1 14 171.8 101.3 118.3

V2 16 189.8 114.6 131.7

V3 11 189.6 96.1 111.7

V4 10 229.5 103.3 118.0

FP = free parameters, AICc = corrected Akaike information criterion, and BIC = Bayesian information criterion.

Despite the expected high uncertainty of parameter estimates (see marginal posterior

parameter distributions in Figures S8-S22 in the supplementary material), our predictions

exhibited only moderate uncertainty (error bars in Figure 4B, Figure 4D and Figure 4F). This

feature is typical of “sloppy” biogeochemical models [73], and in consequence allowed us to

distinguish model performance of the model variants using visual fits, SSE (eq. 79), and the

information criteria AICc (eq. 37) and BIC (eq. 38) (See Materials and Methods). By visual

inspection ( Figure 4; visual fits for model variants V1 and V2 not shown), as well as SSE and

AICc (Figure 3), all model variants showed similar performance compared to the full model

variant V0. A reasonable compromise among the three information criteria used (SSE, AIC, BIC)

suggests that model variant V3 is the best model.

6.5.3 Model validation

We validated the models against the MCPA data, using the parameter values calibrated on 2,4-D

(see Materials and Methods 6.4.2). We applied the validation procedure to the full model version

V0, the parsimonious model version V3 and the two biomass-based models V4 and V4’. In

addition, we compared simulated residual concentrations of pesticides in soils with all models

against typical measured values.
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2,4-D and MCPA are chemically very similar with slight differences in substrate affinities [124,

210]. However, experimental measurements showed faster degradation dynamics of 2,4-D

compared to MCPA [128]. Nevertheless, we expected that the models calibrated against the

2,4-D data could be usefully validated against the MCPA degradation data. As expected, all

model variants predicted faster MCPA mineralization compared to the measurements (Figure

5A). (These time mismatches were not an artifact of the model formulation: an independent

calibration against MCPA data was successful for all measured variants, see Supporting

Information, Figure S1). Visually, the full model variant V0 and variant V4’ were the best

performing models regarding mineralization along the whole experiment and closely matched

the data at the end of the first and second degradation phase (Figure 5A, black and pink line,

respectively). Model variants V3 and V4 failed to predict MCPA mineralization, showing a strong

overestimation of mineralization at the end of the experiment (day 67) (Figure 5A, red and green

line, respectively), despite the success of variant V3 on predicting the first degradation phase.

Our interpretation is that the overestimation of mineralization is linked to the underestimation

of biomass growth (Figure 5E, red and green line, respectively). This underestimation leads to

an increase of residual MCPA concentration in soil; therefore increasing total mineralization.

The model variants V0 and V3 captured the main trend of the expressed tfdA genes, including

the high peaks of gene expression of both degradation phases (Figure 5C, black and red line

respectively), with low uncertainty (Figure 5D). Model variant V4 failed in reproducing the

expressed gene data (Figure 5C, green line). This confirms that the expression of tfdA genes

is pesticide-regulated [78, 128], and that constitutive gene expression of tfdA is not a valid

assumption for this process.

On the other hand, model variant V0 was the only model able to accurately reproduce data

on tfdA genes (Figure 5E, black line) with low uncertainty of the simulations (Figure 5F). The

fact that V0 was able to predict tfdA genes in soil can be explained by the dynamics of the

active and inactive bacteria pools, similarly as with 2,4-D (Inset of Figure 4F). Model variants

V3, V4 and V4’ (all of which described a single bacterial subpopulation) predicted a pronounced
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decay of bacteria at the end of the first phase. This explains these models’ predictions of a slow

bacterial recovery at the beginning of the second degradation phase, which made it impossible

for their outputs to match the data (Supporting Information, Figure S3).

Validation of simulated residual pesticide concentration

Residual pesticide in soil (total concentration at the end of the experiment) was not a measured

variable in the experimental dataset we used [128]. Therefore, we used experimental data from

previous studies to evaluate models’ performance. Short-term experiments showed that both

2,4-D and MCPA are readily degradable compounds which do not persist in soil [196–198].

Some experiments have reported no 2,4-D and MCPA residues or residues below detection limit

after 1 to 5 weeks [124, 211–214].

Table 4: Simulated 2,4-D/MCPA mean residual concentration in soil in mgC kg−1 (total
concentration at the end of the experiment).

Pesticides

Model versions 2,4-D MCPA

V0 0.5 − 2.3 ≤ 0.02

V1 4.2 − 6.0 -

V2 0.1 − 1.4 -

V3 8.6 − 9.8 1.2 − 3.1

V4 3.0 − 4.8 ≤ 0.03

V4’ ≤ 0.01 ≤ 0.03

Short-Term experiments [124, 211, 213, 214] 0.02 − 0.05

Field studies [212] 0.01

In comparison to literature values, all gene-centric model variants (V0, V1, V2 and V3),

including biomass-based model variant V4 overestimated the residual pesticide concentration,

especially for 2,4-D (Table 4). The models that include an inactive bacteria pool (V0 and

V2) performed better, especially when simulating residual MCPA concentrations in soil. The

average total pesticide dissipation simulated by these models was up to 98%, including both
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pesticide mineralization and pesticide used for biomass formation and for production of non-

extractable residues NER [179, 215, 216] (not explicitly accounted for in our model formulations).

Model variants V1 and V3, which exclude inactive bacteria pool, overestimated residual

pesticide concentrations by more of a hundred times (for both pesticides), resulting in predicted

residual concentration that are even higher than residual concentrations reported for persistent

pesticides [203]. These results suggest that dormancy is an important feature which should be

accounted for.

The simple Monod-kinetics-based model variant V4’ simulated negligible residual

concentrations of both pesticides (Table 4), and thus outperformed the gene-centric model

variants.

6.5.4 Implications for biogeochemical modeling informed by genetic data

Our gene-centric models can be used to explore the relationship between transcription of

functional genes and process rates, offering an advantage over traditional models. We observed

a non-linear hysteretic relationship between gene transcripts and mineralization rate (Figure 6).

Although certain valid model parametrizations lead to a narrow hysteretic behavior close to a

linear relationship (Figure 6), the non-linear hysteretic behavior in our findings challenges the

common assumption of a simple linear relationship between functional gene transcripts and

process rates [217–219], which could also be observed in the data (see Figure 6A). In addition to

genetic data, proteomics data could be readily used. Thus, our approach provides a quantitative

framework to couple gene and enzyme dynamics with pesticide dynamics, allowing for an

estimation of reaction rates, which are difficult to measure directly.
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Gene-centered models thus provide mechanistic insights, despite being more complex than

traditional approaches. This complexity poses challenges for inverse parameter identification

from experimental data [73, 220, 221]. Achieving a robust model parametrization is hampered

by the significant uncertainty in current measurements of functional genes and transcripts.

We expect that better estimates of biokinetic parameters will be achieved with highly resolved

time-series of genetic data and further advancements of molecular methods. Gene-centric

biogeochemical modeling then provides a promising toolset to improve mechanistic simulations

of biodegradation processes in soils, especially when coupled with reactive transport models in

soil, and used for scenario simulations with other competing carbon sources and cometabolic

pathways. Moreover, our approach can be transferred to other pesticides if degradation pathways

and involved functional genes are known.
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7 Modeling bioavailability limitations of atrazine degradation in

soils (Paper 2)

This chapter includes the following publication:

Luciana Chavez Rodriguez, Brian Paul Ingalls, Jana Meierdierks, Kankana Kundu, Thilo Streck

and Holger Pagel (2021). Modeling bioavailability limitations of atrazine degradation in soils.

Front. Environ. Sci. - Biogeochemical Dynamics.

with the following modification:

1. Numbers of figures, tables, and equations are relative to this thesis and not to the original

publication.
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7.1 Abstract

Pesticide persistence in soils is a widespread environmental concern in agro-ecosystems.

One particularly persistent pesticide is atrazine, which continues to be found in soils and

groundwater in the EU despite having been banned since 2004. A range of physical and

biological barriers, such as sorption and mass-transfer into bacterial cells, might limit atrazine

degradation in soils. These effects have been observed in experiments and models working

with simplified systems. We build on that work by developing a biogeochemical model of the

degradation process. We extended existing engineered system models by including refined

representations of mass-transfer processes across the cell membrane as well as thermodynamic

growth constraints. We estimated model parameters by calibration with data on atrazine

degradation, metabolite (hydroxyatrazine) formation, biomass, and isotope fractionation from

a set of controlled retentostat/chemostat experiments. We then produced site-specific model

predictions for arable topsoil and compared them with field observations of residual atrazine

concentrations. We found that the model overestimated long-term atrazine biodegradation in

soils, indicating that this process is likely not limited by bioavailability or energetic constraints

of microbial growth. However, sorption-limited bioavailability could explain the long-term fate

and persistence of the main degradation metabolite hydroxyatrazine. Future studies should

seek alternative controls that drive the observed atrazine persistence in soil. This work helps to

bridge the gap between engineered and real systems, allowing us to use laboratory setups to

gain insight into real environmental systems.

7.2 Introduction

The worldwide intensification of agriculture is closely linked to increased use of pesticides [222].

Persistent pesticides are defined as those that remain in soils “in significant concentrations until

the next growing season” [223]. Field monitoring campaigns have demonstrated the presence

of residual pesticides across Europe [55].

Atrazine (AT) is a herbicide in common use worldwide. AT was banned in Germany in 1991
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and in the EU in 2004 [25, 224] because of its potential toxic effects on non-target organisms [13,

14, 16, 225, 226], and on human health [21, 25]. Despite the ban, AT persists in soils and

groundwater [25, 57]: AT and its degradation metabolites (hydroxyatrazine, deethylatrazine,

deisopropylatrazine) are still found in Europe at low concentrations (about 1-40 µg kg−1) in

soils [203], and (< 0.1 µg L−1) in groundwater [57]). These concentrations might still be relevant

for human and ecosystem health [25, 57, 227]. This persistence is surprising, given that studies

have confirmed (i) the frequent presence of bacterial strains able to completely degrade atrazine

(under controlled conditions) [49, 63, 135, 228]; and (ii) alternative photolytic degradation

of atrazine in soil [132, 229, 230]. The persistence of atrazine and other pesticides in the

environment demands a better understanding of degradation processes to improve long-term

monitoring and pollution mitigation strategies [98].

Pesticide degradation in the environment may be impeded by a range of physical and biological

constraints. For instance, sorption of pesticides onto soil particles limits microbial access to

pesticides, retarding degradation [58, 231, 232]. Moreover, spatial heterogeneity and separation

of microorganisms and pesticides in soil reduces biodegradation rates [233, 234]. Diffusion-

limited transport across the cell membrane has been identified as a potential limiting step of

pesticide degradation under low concentrations, based on observations made in engineered

(chemostat and retentostat) systems [63, 228, 235–238]. Likewise, under specific conditions,

the energy produced from catabolism of some pesticides may be insufficient to support cellular

energy needs, leading to pesticide persistence despite microbial accessibility [64]. To date, the

effect of these barriers has only been explored in the lab under controlled conditions [62, 63, 93,

228] or in simulation studies based on simplified systems [232, 238–240].

In this work, we apply biogeochemical modeling to investigate potential factors of long-term

pesticide persistence in soils. We extended existing chemostat/retentostat models [239] by

the (i) introduction of thermodynamic growth constraints [241, 242] (the alternative model

formulation uses a simple Monod kinetics growth [239]), (ii) a refined formulation of mass-

transfer processes across cell membranes, and (iii) calibration against isotope fractionation
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data. We then extended the model by including equilibrium sorption and leaching in soils, and

ran site-specific predictions of pesticide degradation in soil over 30 years. We compare our

model predictions with residual atrazine concentration of topsoils at two study sites (arable

soil) in Germany at which no atrazine has been applied for over 30 years. Albeit the long-term

predictions show considerable discrepancies with the field data, our analysis provides insight

into the relative contributions of model features toward long-term atrazine persistence in soils.

7.3 Material and Methods

7.3.1 Model Description

Our model (Figure 7) describes a single bacterial population (𝐶𝐵) that uses atrazine (𝐴𝑇 ) as its

sole carbon (C) and energy source. The core model (green background), describes behavior

in engineered systems (chemostat/retentostat); it incorporates intracellular and extracellular

compartments, each of which contain concentrations of both AT and hydroxyatrazine (𝐻𝑌 ).

(Hydroxyatrazine is produced by dechlorination of the side chain of AT. This is the first metabolic

step of AT degradation.) We extended the model to soil (blue background) by incorporating

equilibrium sorption and leaching for each component in the extracellular compartment.
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Figure 7: Model structure for engineered (chemostat/retentostat) systems (green) and extension
for soil (blue). The model explicitly accounts for light “l” and heavy “h” isotopologues
(12C/13C) of AT due to enzymatic transformation in the intracellular “i” and
extracellular “e” compartments, as well as in equilibrium sorption in soil “e, S”

7.3.2 Process Formulations

Atrazine and hydroxyatrazine degradation

The model describes pools of atrazine (AT) [µg L−1] and hydroxyatrazine (HY) [µg L−1] in the

intracellular and extracellular compartments: 𝐴𝑇𝑖/𝐻𝑌𝑖 and 𝐴𝑇𝑒/𝐻𝑌𝑒 , respectively. To take

advantage of available data on isotope fractionation of AT, we split the AT pools into light (𝐴𝑇 𝑙 )

and heavy (𝐴𝑇 ℎ) isotopologues (12C/13C) in each compartment.

We modelled degradation of both isotopologues of AT with Michaelis-Menten kinetics,

allowing for competition for binding sites. For the light isotopologue:

𝑟𝐴𝑇
𝑙

𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 =
𝑘𝐴𝑇 ⋅ 𝐴𝑇 𝑙

𝑖
𝐾𝐴𝑇
𝑀 + 𝐴𝑇 𝑙

𝑖 + 𝐴𝑇 ℎ
𝑖

(39)

where 𝑘𝐴𝑇 [d−1] is the maximum degradation rate of AT and 𝐾𝐴𝑇
𝑀 [µg L−1] is the half-saturation

concentration.

The slightly slower degradation of the heavy isotopologue is captured by scaling the maximal
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degradation rate by 𝛽 ⪅ 1 as follows:

𝑟𝐴𝑇
ℎ

𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 =
𝛽 ⋅ 𝑘𝐴𝑇 ⋅ 𝐴𝑇 ℎ

𝑖
𝐾𝐴𝑇
𝑀 + 𝐴𝑇 𝑙

𝑖 + 𝐴𝑇 ℎ
𝑖

(40)

We considered two separate formulations of HY degradation. Model variant M employs

standard Monod kinetics:

Variant M ∶ 𝑟𝐻𝑌
𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 =

𝑘𝐻𝑌 ⋅ 𝐻𝑌𝑖
𝐾𝐻𝑌
𝑀 + 𝐻𝑌𝑖

(41)

where 𝑘𝐻𝑌 [d−1] is the maximum degradation rate and 𝐾𝐻𝑌
𝑀 [µg L−1] is the half-saturation

concentration for HY.

Because metabolism of pesticide at low concentrations might not be energetically favorable

for bacterial growth [64], we considered a second model variant in which degradation of HY is

described by transition state theory [241, 242], using HY as the carbon and energy source.

Variant T ∶ 𝑟𝐻𝑌
𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 = 𝑘𝐻𝑌 ⋅ 𝑒

⎛
⎜
⎜
⎝
−
𝐾𝐻𝑌
𝑀

𝐻𝑌𝑖

⎞
⎟
⎟
⎠ (42)

where again 𝑘𝐻𝑌 [d−1] is the maximum degradation rate, but now 𝐾𝐻𝑌
𝑀 [µg L−1] is a reference

concentration for growth.

These two variants (Monod (M), Thermodynamic (T)) show similar behaviour at high HY

concentrations (such as in chemostat/retentostat systems), but differ considerably at low HY

concentrations (such as in soil).

Mass-transfer

We account for diffusive transport of AT and HY across the cell membrane [62, 239] by writing:

𝑟𝐴𝑇
𝑙

𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟 = 𝑟𝑒 ⋅ (𝐴𝑇 𝑙
𝑒 − 𝐴𝑇 𝑙

𝑖 ) (43)
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𝑟𝐴𝑇
ℎ

𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟 = 𝑟𝑒 ⋅ (𝐴𝑇 ℎ
𝑒 − 𝐴𝑇 ℎ

𝑖 ) (44)

𝑟𝐻𝑌
𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟 = 𝑟𝑒 ⋅ (𝐻𝑌𝑒 − 𝐻𝑌𝑖) (45)

where 𝑙 indicates the light isotopologue, and ℎ the heavy isotopologue, and 𝑟𝑒 [L d−1 µg−1] is

the mass-transfer rate coefficient assumed to be the same for both compounds.

Maintenance

We incorporate metabolic maintenance requirements following the Pirt model [239, 243]:

𝑟𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 = 𝑚 ⋅ 𝑌 ⋅ 𝐶𝐵 (46)

where 𝑚 [d−1] is the maintenance coefficient.

Input and washout of AT, HY, biomass

For engineered systems (chemostat/rententostat), we include a constant input of AT as:

𝑟𝐴𝑇
𝑙

𝑖𝑛𝑝𝑢𝑡 = 𝑟𝐷 ⋅ 𝐴𝑇 𝑙
𝐼 (47)

𝑟𝐴𝑇
ℎ

𝑖𝑛𝑝𝑢𝑡 = 𝑟𝐷 ⋅ 𝐴𝑇 ℎ
𝐼 (48)

where 𝑟𝐷 [d−1] is the dilution rate. Additionally, we define washout terms for biomass, and AT

and HY:

𝑟𝑐𝑒𝑙𝑙−𝑤𝑎𝑠ℎ𝑜𝑢𝑡 = 𝑟𝐷 ⋅ 𝛼 ⋅ 𝐶𝐵 (49)

𝑟𝐴𝑇
𝑙
𝑒

𝑤𝑎𝑠ℎ𝑜𝑢𝑡 = 𝑟𝐷 ⋅ 𝐴𝑇 𝑙
𝑒 (50)
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𝑟𝐴𝑇
ℎ
𝑒

𝑤𝑎𝑠ℎ𝑜𝑢𝑡 = 𝑟𝐷 ⋅ 𝐴𝑇 ℎ
𝑒 (51)

𝑟𝐻𝑌𝑒
𝑤𝑎𝑠ℎ𝑜𝑢𝑡 = 𝑟𝐷 ⋅ 𝐻𝑌𝑒 (52)

where 𝛼 [-] is 1 for a chemostat (from which biomass is washed out) and 0 for a retentostat

system (where biomass is retained).

The core model is described by the following system of ordinary differential equations (ODE):

𝑑𝐶𝐵

𝑑𝑡
= 𝑟𝐻𝑌

𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 ⋅ 𝑌 − 𝑟𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 − 𝑟𝑐𝑒𝑙𝑙−𝑤𝑎𝑠ℎ𝑜𝑢𝑡 (53)

𝑑𝐴𝑇 𝑙
𝑖

𝑑𝑡
= 𝑟𝐴𝑇

𝑙

𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟 ⋅
𝑓𝑐𝑒𝑙𝑙
𝑉𝑢

− 𝑟𝐴𝑇
𝑙

𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 ⋅
𝑓𝑐𝑒𝑙𝑙
𝑉𝑢

−
𝐴𝑇 𝑙

𝑖
𝐶𝐵

⋅
𝑑𝐶𝐵

𝑑𝑡
(54)

𝑑𝐴𝑇 ℎ
𝑖

𝑑𝑡
= 𝑟𝐴𝑇

ℎ

𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟 ⋅
𝑓𝑐𝑒𝑙𝑙
𝑉𝑢

− 𝑟𝐴𝑇
ℎ

𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 ⋅
𝑓𝑐𝑒𝑙𝑙
𝑉𝑢

−
𝐴𝑇 ℎ

𝑖
𝐶𝐵

⋅
𝑑𝐶𝐵

𝑑𝑡
(55)

𝑑𝐴𝑇 𝑙
𝑒

𝑑𝑡
= 𝑟𝐴𝑇

𝑙

𝑖𝑛𝑝𝑢𝑡 − 𝑟𝐴𝑇
𝑙
𝑒

𝑤𝑎𝑠ℎ𝑜𝑢𝑡 − 𝑟𝐴𝑇
𝑙

𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟 ⋅ 𝐶𝐵 (56)

𝑑𝐴𝑇 ℎ
𝑒

𝑑𝑡
= 𝑟𝐴𝑇

ℎ

𝑖𝑛𝑝𝑢𝑡 − 𝑟𝐴𝑇
ℎ
𝑒

𝑤𝑎𝑠ℎ𝑜𝑢𝑡 − 𝑟𝐴𝑇
ℎ

𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟 ⋅ 𝐶𝐵 (57)

𝑑𝐻𝑌𝑖
𝑑𝑡

= (𝑟𝐻𝑌
𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟 + 𝑟𝐴𝑇

𝑙

𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 + 𝑟𝐴𝑇
ℎ

𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 − 𝑟𝐻𝑌
𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛) ⋅

𝑓𝑐𝑒𝑙𝑙
𝑉𝑢

−
𝐻𝑌𝑖
𝐶𝐵

⋅
𝑑𝐶𝐵

𝑑𝑡
(58)

𝑑𝐻𝑌𝑒
𝑑𝑡

= −𝑟𝐻𝑌
𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟 ⋅ 𝐶𝐵 − 𝑟𝐻𝑌𝑒

𝑤𝑎𝑠ℎ𝑜𝑢𝑡 (59)

where 𝑓𝑐𝑒𝑙𝑙 [µg cell−1] is a conversion factor from cells to carbon, and 𝑉𝑢 [L] is the volume of a

single bacterium, set to 1 ⋅ 10−15 [63] (full details in the Supplementary Section 11.2.2). The last

terms in eqs. 54, 55 and 58 account for changes in inner cell concentrations as the total bacterial

volume changes due to growth and decay.

Extension for soil

As shown in Figure 7, we extend the core model by including equilibrium sorption and transport.

We partition the extracellular concentrations of both AT isotopologues, as well as HY, into
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solution phase and sorbed phase concentrations:

𝐶𝑇 = 𝜃 ⋅ 𝐶𝐿 + 𝜌 ⋅ 𝐶𝑆 (60)

where𝐶𝑇 [µg L−1] is the total extracellular concentration (AT and HY),𝐶𝐿 [µg L−1] is the solution

phase concentration (𝐴𝑇 𝑙
𝑒 , 𝐴𝑇 ℎ

𝑒 , 𝐻𝑌𝑒), 𝐶𝑆 [µg kg−1] is the sorbed phase concentration (𝐴𝑇 𝑙
𝑒,𝑆 ,

𝐴𝑇 ℎ
𝑒,𝑆 , 𝐻𝑌𝑒,𝑆), 𝜃 [-] is the water content in soils, and 𝜌 [kg L−1] is the soil bulk density.

We relate 𝐶𝐿 and 𝐶𝑆 by the Freundlich isotherm:

𝐶𝑆 = 𝐾𝐹 ⋅ (𝐶𝐿)𝑛𝐹 , (61)

implemented in the model via the retardation factor:

𝑅𝐹 ∶= 1 +
𝜌
𝜃
⋅
𝑑𝐶𝑆

𝑑𝐶𝐿 = 1 +
𝜌
𝜃
⋅ 𝐾𝐹 ⋅ 𝑛𝐹 ⋅ (𝐶𝐿)(𝑛𝐹−1) (62)

whereKF (KAT andKHY for AT and HY respectively) [𝜇g(1−nF)kg−1LnF] is the Freundlich coefficient

and nF (nAT and nHY for AT and HY respectively) [-] is the Freundlich exponent.

Additionally, Arthrobacter aurescens TC1 and other AT degraders utilize other organic

substances as C and energy source. We, therefore, assume that a minimum AT degrader

biomass is maintained in soil [244]):

𝑟 ′𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 = 𝑚 ⋅ 𝑌 ⋅ (𝐶𝐵 − 𝑀) (63)

where M [µg L−1] is the minimum bacterial biomass in soil.

Transport is restricted to convective flow:

𝑟𝐴𝑇
𝑙
𝑖

𝑙𝑒𝑎𝑐ℎ𝑖𝑛𝑔 =
𝑣𝑣
𝜃

⋅ 𝐴𝑇 𝑙
𝑒 (64)
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𝑟𝐴𝑇
ℎ
𝑖

𝑙𝑒𝑎𝑐ℎ𝑖𝑛𝑔 =
𝑣𝑣
𝜃

⋅ 𝐴𝑇 ℎ
𝑒 (65)

𝑟𝐻𝑌𝑖
𝑙𝑒𝑎𝑐ℎ𝑖𝑛𝑔 =

𝑣𝑣
𝜃

⋅ 𝐻𝑌𝑒 (66)

where 𝑣𝑣 [d−1] is the water flow per soil volume in the plough layer.

We did not include abiotic degradation of AT [132, 229, 230], which has been observed to

have a relatively small contribution compared to biotic degradation [237].

The full model for soil is described by the following system of ODEs

𝑑𝐶𝐵

𝑑𝑡
= 𝑟𝐻𝑌𝑖

𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 ⋅ 𝑌 − 𝑟 ′𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 (67)

𝑑𝐴𝑇 𝑙
𝑖

𝑑𝑡
= 𝑟𝐴𝑇

𝑙

𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟 ⋅
𝑓𝑐𝑒𝑙𝑙
𝑉𝑢

− 𝑟𝐴𝑇
𝑙
𝑖

𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 ⋅
𝑓𝑐𝑒𝑙𝑙
𝑉𝑢

−
𝐴𝑇 𝑙

𝑖
𝐶𝐵

⋅
𝑑𝐶𝐵

𝑑𝑡
(68)

𝑑𝐴𝑇 ℎ
𝑖

𝑑𝑡
= 𝑟𝐴𝑇

ℎ

𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟 ⋅
𝑓𝑐𝑒𝑙𝑙
𝑉𝑢

− 𝑟𝐴𝑇
ℎ
𝑖

𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 ⋅
𝑓𝑐𝑒𝑙𝑙
𝑉𝑢

−
𝐴𝑇 ℎ

𝑖
𝐶𝐵

⋅
𝑑𝐶𝐵

𝑑𝑡
(69)

𝑑𝐴𝑇 𝑙
𝑒

𝑑𝑡
= −

𝑟𝐴𝑇 𝑙

𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟 ⋅ 𝐶𝐵 + 𝑟𝐴𝑇
𝑙
𝑒

𝑙𝑒𝑎𝑐ℎ𝑖𝑛𝑔

𝑅𝐹
(70)

𝑑𝐴𝑇 ℎ
𝑒

𝑑𝑡
= −

𝑟𝐴𝑇 ℎ

𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟 ⋅ 𝐶𝐵 + 𝑟𝐴𝑇
ℎ
𝑒

𝑙𝑒𝑎𝑐ℎ𝑖𝑛𝑔

𝑅𝐹
(71)

𝑑𝐻𝑌𝑖
𝑑𝑡

= (𝑟𝐻𝑌
𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟 + 𝑟𝐴𝑇

𝑙
𝑖

𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 + 𝑟𝐴𝑇
ℎ
𝑖

𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 − 𝑟𝐻𝑌𝑖
𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛) ⋅

𝑓𝑐𝑒𝑙𝑙
𝑉𝑢

−
𝐻𝑌𝑖
𝐶𝐵

⋅
𝑑𝐶𝐵

𝑑𝑡
(72)

𝑑𝐻𝑌𝑒
𝑑𝑡

= −
𝑟𝐻𝑌
𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟 ⋅ 𝐶𝐵 + 𝑟𝐻𝑌𝑒

𝑙𝑒𝑎𝑐ℎ𝑖𝑛𝑔

𝑅𝐹
(73)

7.3.3 Model calibration

Engineered systems: experimental details

We calibrated two model variants (M: employing Monod-kinetics for HY degradation; T:

employing thermodynamic HY biodegradation constraints) against published data from

chemostat and retentostat experiments (with two replicates per experiment). Atrazine was

provided as the sole C and energy source for the bacterial strain Arthrobacter aurescens TC1 [63,
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228]. Both engineered systems were fed with an AT solution (30 mg L−1), with dilution rates,

for the chemostat, of 0.023, 0.032, 0.048, 0.056, 0.068 d−1, and, for the retentostat, of 0.02 d−1.

For each system at each dilution rate, concentrations of AT [µg L−1], HY [µg L−1], and living

biomass [cell L−1] were reported at steady-state (details in the Supplementary Section 11.2.3).

Additionally, the isotope fractionation coefficient (𝜀) was measured at the outlet of the first

dilution rate of the chemostat (-5.4‰, only at the lowest dilution rate), and retentostat (-0.45‰)

Calibration strategy

Our initial intent was to estimate a single set of model parameters for both engineered systems.

This was not possible, however, most likely due to differences in bacterial physiology [238, 245].

In our next attempt, we introduced a switch function [169, 170], allowing for environmental-

specific transition between the two conditions (chemostat and retenostat) (Supplementary

Section 11.2.10). This model, despite its high complexity and many degrees of freedom, was

still unable to simulate both engineered systems together (Supplementary Section 11.2.10).

Therefore, we exhaustively investigated (using fits for both systems and sensitivity analysis)

subsets of parameters that could be kept fixed at the chemostat fit while still capturing bacterial

behaviour in the retentostat in a two-step calibration process, as follows.

STEP 1 - pre-calibration step: We started by using the five steady-states (one with each

dilution rate) measured in the chemostat, and the isotope fractionation of the lowest dilution

rate (16 data points). We considered the parameter ranges shown in Table 5. The nominal values

were taken from literature (Table 5). Ranges were selected as to capture parameter variation.

60



7 Modeling bioavailability limitations in soils

Table 5: Model Parameters

Param Description Units Nominal Minimum Maximum

𝑘𝐴𝑇 Maximum degradation rate of AT d−1 0.10(a) 1 ⋅ 10−4 1 ⋅ 104

𝐾𝐴𝑇
𝑀 Half saturation concentration for AT degradation µg L−1 237(b) 1 ⋅ 10−5 1 ⋅ 104

𝑘𝐻𝑌 Maximum degradation rate of HY d−1 0.10(a) 1 ⋅ 10−5 300

𝐾𝐻𝑌
𝑀 Reference/half-saturation concentration µg L−1 0.05(c) 1 ⋅ 10−4 1 ⋅ 104

𝑌 Growth yield − 0.04(b) 0.01 0.15

𝑚 Maintenance coefficient d−1 0.10(b) 1 ⋅ 10−4 1 ⋅ 104

𝑓𝑐𝑒𝑙𝑙 Conversion factor cell to C µg cell−1 2.6 ⋅ 10−8(d) 4 ⋅ 10−9 5 ⋅ 10−7

𝑟𝑒 Mass-transfer rate coefficient L d−1 µg−1 0.003(b) 1 ⋅ 10−4 1 ⋅ 108

Highlighted parameters were estimated for the retentostat system. References: (a) [246], (b) [239], (c) [241], (d) [183].

We used the global optimization algorithm Simulated Annealing [simannealbnd] of MATLAB

to minimize the weighted sum of squared errors (SSE) :

𝑆𝑆𝐸 =
𝑛
∑
𝑖=1

(𝑦 𝑖𝑜𝑏𝑠 − 𝑦 𝑖𝑠𝑖𝑚)2

𝜎2
𝑖

(74)

where 𝑦 𝑖𝑜𝑏𝑠 and 𝑦 𝑖𝑠𝑖𝑚 are the mean values per observation type and dilution rate, and the

corresponding model output for the 𝑖𝑡ℎ data point from 𝑛 total data points. 𝜎2
𝑖 is the recalculated

standard deviation per observation type and dilution rate (details are given in Supplementary

Section 11.2.3, Table S7).

We then calibrated the retentostat system at the steady-state (4 data points) using Simulated

Annealing again. An acceptable description could be reached by fixing four parameters and

allowing the other four to vary: 𝑘𝐴𝑇 , 𝐾𝐻𝑌
𝑀 , 𝑓𝑐𝑒𝑙𝑙 , and 𝑟𝑒 (highlighted yellow in Table 5). Details

are given in the Discussion.
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The model outputs corresponding to the measurements were:

AT Concentration [µg L−1] = 𝐴𝑇 𝑙
𝑒 + 𝐴𝑇 ℎ

𝑒 (75)

HY Concentration [µg L−1] = 𝐻𝑌𝑒 (76)

Biomass [cell L−1] =
𝐶𝐵

𝑓𝑐𝑒𝑙𝑙
(77)

Isotope fractionation was determined as:

𝜀 = 𝛿𝑖𝑛𝑙𝑒𝑡 − 𝛿𝑜𝑢𝑡𝑙𝑒𝑡 (78)

where 𝛿𝑖𝑛𝑙𝑒𝑡 is the isotope ratio of the heavy and the light isotopologues of AT at the inlet, given

as -29‰ [62, 228], and 𝛿𝑜𝑢𝑡𝑙𝑒𝑡 was determined as

𝛿𝑜𝑢𝑡𝑙𝑒𝑡 =
⎛
⎜
⎜
⎝

𝐴𝑇 ℎ
𝑒

𝐴𝑇 𝑙
𝑒

𝑅
− 1

⎞
⎟
⎟
⎠
⋅ 1000 (79)

where 𝑅 is the reference 13C/12C isotopoe ratio of Vienna Pee Dee Belemnite [147]. The parameter

𝛽 (eq. 40) can be directly derived from the enzymatic fractionation coefficient of AT (𝜀 = -5.4‰)

measured for a particular bacterial strain [228, 239]:

𝜀 = 𝛽 − 1 (80)

STEP 2 - Full calibration: For both systems, a full calibration step, including parameter and

output uncertainty were determined with the Markov Chain Monte Carlo (MCMC) algorithm

of the DREAM MATLAB toolbox [117]. We fitted the 8 chemostat system parameters and the 4

differing retentostat system parameters simultaneously (marked in yellow in Table 5) in one

optimization run. We chose a flat and uninformative prior distribution for the MCMC. The

starting values of the MCMC chains were drawn from a normal distribution of the parameters
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in log-space (mean value equal to the best fit of the Simulated Annealing (step 1), an arbitrary

variance of 1, and zero covariance between the parameters). Minimum and maximum parameter

values were taken from Table 5, and the option “reflect” was selected as a method for handling

parameter boundaries. The 𝑅̂-diagnostic [192] lower than 1.2 [117] was used as convergence

diagnostics. We used a Gaussian likelihood considering heteroscedastic measurement errors as

implemented in DREAM:

𝐿(𝑥|𝑌̃ ) = −
𝑛
2
⋅ log(2𝜋) −

𝑛
∑
𝑖=1

{log(𝜎𝑖)} −
1
2
⋅

𝑛
∑
𝑖=1 (

𝑦 𝑖𝑜𝑏𝑠 − 𝑦 𝑖𝑠𝑖𝑚
𝜎𝑖 )

2

(81)

7.3.4 Soil measurements

Soil sampling

Topsoil was sampled from the plough layer (0-30 cm) of two agricultural fields (Poltringen and

Tailfingen) in the vicinity of Tübingen, Germany. The soils were classifed as Vertic Cambisol

on gypsum keuper (Poltringen), and eroded Luvisol (siltic) on loess (Tailfingen). To obtain

representative samples, 20 individual samples were drilled by hand down to 30 cm depth and

combined in the field to one composite sample. In the lab, samples were thoroughly mixed

(using a sample-splitter; Retsch GmbH, Germany), freeze-dried, and ground before further

processing (exhaustive extraction and sorption test).

Exhaustive soil extraction

Pesticides (atrazine and hydroxyatrazine) were extracted from soil with an accelerated Solvent

Extractor (ASE 300 Dionex, Thermo Scientific) at 80°C and 150 bar, using acetone as the main

solvent (parameters in Table 6). To ensure a homogeneous flow through the extraction cells,

soil samples were mixed with 80% (mass) clean quartz sand before extraction. To control for

potential losses of pesticide during the processing (enrichment and clean-up) of the extracts, 10

ng of Isoproturon-D6 were added to each extract. Subsequently, the extracts were reduced with

a rotational evaporator until acetone was evaporated completely. The residual aqueous sample
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was filtered through 0.25 µm PTFE syringe filters (Agilent, Waldbronn Germany) and 10% (Vol.)

of MeOH was added before the measurement at the liquid chromatography–mass spectrometry

(HPLC-MS/MS). The target compounds were separated with an Agilent 1290 Infinity HPLC

(Agilent, Waldbronn, Germany) using a reversed phase column (Agilent Poroshell 12 EC-C18, 2.7

µm, 2.1 x 100 mm). The quantification of the target compounds was done based on an external

calibration using 10 standards with concentrations between 0.02 and 10 µg L−1. As control for a

potential shift during the measurement, every 15 samples, one external standard was monitored,

with a concentration of 2.5 µg L−1 (Measurements are shown in Supplementary Section 11.2.4,

Table S7)

Table 6: Details of accelerated solvent extraction method

Parameter Settings

Solvent Acetone:MilliQ(9:1)

Temperature [°C] 80

Pressure [psi] 1500

Heat [min] 5

Static time [min] 10

Flush vol. [%] 70

Purge [s] 100

Static cycles 2

Sorption test

Six initial concentrations of atrazine (0.06, 0.4, 4, 36, 420 and 2060 µg L−1) were prepared from a

stock solution of atrazine in MilliQ water (using a pure, analytical standard from Sigma Aldrich).

The solutions were spiked with CaCl2 (0.5 g L−1) and NaN3 (0.25 g L−1) to provide a stable ionic

strength and minimize bacterial activity. The sorption test was conducted in triplicates in 50

mL glass vials (with teflon-lined caps), containing 15 g of soil and 30 mL of spiking solution.

The vials were kept on a horizontal shaker (150 rpm) for 10 days in the dark and at 20°C. To

separate soil solids from water, the vials were kept standing for three days until all fine particles
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were settled. A small test with filtering the aqueous phase had confirmed this approach as valid.

Subsequently, the aqueous phase was transferred into clean vials using glass pipettes.

After separating soil solids from water, 20 ng of atrazine-D6 was added as an internal standard

to the aqueous phase. Processing of the aqueous samples varied for the different concentrations:

Samples with lowest concentrations were enriched via solid phase extraction (Waters OASIS

HLB). Samples with expected concentrations between 0.2 and 10 µg L−1 were filtered through

0.25 µm PTFE syringe filters and 2% (Vol.) of acetonitrile was added. For concentrations above

10 µg L−1, the samples were filtered and then diluted with MilliQ:acetronitrile (98:2) before

LC-MS/MS measurements. As quality control, blanks with ultra-pure water, leaching blanks

with ultrapure-water and soil, and controls with spiking solution without soil were analysed in

triplicates confirming no relevant loss of atrazine or contamination (Supplementary Section

11.2.4, Table S8).

We determined the Freundlich sorption parameters (KAT and nAT) for atrazine at both sites

by regressing the sorbed concentration on the solution concentration (eq. 61, and 62). We used

the Nonlinear regression function [nlinfit] of Matlab (Supplementary Section 11.2.4, Figure S30

and Table S9). The sorption coefficient of hydroxyatrazine (𝐾𝐻𝑌 ) was calculated by dividing the

normalized sorption coefficient of atrazine 𝐾 ∗
𝐴𝑇 (sorption coefficient 𝐾𝐴𝑇 divided by the water

solubility of atrazine 𝑆𝐴𝑇 ) by the water solubility of hydroxyatrazine (𝑆𝐻𝑌 ) at the power of 𝑛𝐴𝑇

(eq. 82) [247, 248]. The sorption exponent for hydroxyatrazine was assumed to be equal to

atrazine because the Freundlich exponent is rather soil- than compound- specific:

𝐾𝐻𝑌 =
𝐾 ∗
𝐴𝑇

(𝑆𝐻𝑌 )(𝑛𝐴𝑇 )
(82)

7.3.5 Soil predictions

We ran simulations in soils using both sets of calibrated parameters (chemostat and retentostat)

for four different model configurations: i) with Monod-kinetics and without leaching (Variant

M-NL), ii) with thermodynamic growth constraint and without leaching (Variant T-NL), iii) with
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Monod-kinetics and leaching (Variant M-L), iv) with thermodynamic growth constraint and

leaching (Variant T-L). We fixed the equilibrium sorption parameters (𝐾𝐹 and 𝑛𝐹 ) to the means

of sorption parameters at the sites Poltringen and Tailfingen (Supplementary Section 11.2.4,

Table S9). We fixed the minimum bacterial biomass in soil 𝑀 according to Klier et al. [244]. We

derived the water flow (𝑣𝑣) from the mean daily water flux of both sites (0.56 mm d−1) divided

by the ploughing depth of 30 cm. The values of the soil parameters are shown in Table 7:

Table 7: Soil Parameters

Param. Description Units Value

𝐾𝐴𝑇 Sorption coefficient for AT µg(1−nAT)kg−1LnAT 3.2

𝑛𝐴𝑇 Sorption exponent for AT − 0.85

𝐾𝐻𝑌 Sorption coefficient for HY µg(1−nHY)kg−1LnHY 17.4

𝑛𝐻𝑌 Sorption exponent for HY − 0.85

𝑣𝑣 Water flow per soil volume in the plough layer d−1 0.00188

𝑀 Minimum bacterial biomass per volume of soil solution µg L−1 0.03

To compare with the field monitoring data from the sites Poltringen and Tailfingen, we ran

simulations with all four variants of the soil model, assuming an initial application of 1,000

µg kg−1 [249, 250] and predicting residual concentrations after 30 years.

7.3.6 Global sensitivity analysis

We determined the Morris and Sobol indices [103, 106, 107, 202] for the two core model variants

(M and T), using the SAFE toolbox of MATLAB [202, 251]. We calculated the mean of the

elementary effects (𝜇∗) and the standard deviation of the elementary effects (𝜎 ) for the Morris

Method, as well as main and total effects for Sobol indices with a total of 15,000 sample inputs

in both cases.

We sampled parameters from a uniform distribution taken from the posterior distribution of

the fitted parameters against the chemostat and retentostat data combined (Table 8 from the

Results section 7.4). We used a latin hypercube sampling strategy [73]. Additionally for the
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Morris Method, we calculated the l2 norm (l2 =
√
𝜇∗2 + 𝜎2) of each parameter [73, 105, 107] and

considered parameters with l2-norm higher than 0.5 as high leverage.

We selected the following outputs: steady state biomass, AT, and HY (extracellular and

intracellular), and isotope fractionation 𝜀 (eq. 78). We ran the model for 200 d to guarantee

steady-state in the simulations.

7.3.7 Local sensitivity analysis

We performed a local parametric sensitivity analysis [199, 200] for the four soil model variants

as described above, based on the best fit against the chemostat and retentostat observations.

The target outputs were the residual concentration of AT and HY after 30 years. We addressed

all kinetics (Table 5) and soil parameters (Table 7), as well as the initial AT application.

7.4 Results

7.4.1 Calibration to chemostat and retentostat data

The two core model variants behave equally in engineered environments, and so we present

the results only for Variant T. (Results corresponding to Variant M are presented in the

Supplementary Section 11.2.6, Figures S32 and S33, and Table S10). Following a two-step

approach, we calibrated the 8 chemostat system parameters and the 4 differing retentostat

system parameters simultaneously.

Concentrations:

Our simulations were in good agreement with observed data for the chemostat (Figure 8 A-C).

After the partial re-calibration, we found acceptable agreement for the retentostat system, but

with a slightly higher model output uncertainty for the biomass (this was not unexpected, given

the relative lack of data for calibration).
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Fractionation:

Simulations showed agreement with the observed isotope fractionation for both systems, with

slightly higher uncertainty for the retenostat (Figure 8D). Isotope fractionation of AT occurs

when enzymatic transformation is the rate-limiting step. In this case, the enzymatic fractionation

coefficient of AT (𝜀) lies close to -5.4‰ (chemostat). At low AT concentrations, the mass transfer

across the cell membrane becomes rate-limiting, and no isotope fractionation is observed (𝜀 of

just -0.45‰; retentostat) [63, 228, 239].

Experiments
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Figure 8: Simulations (boxplots) of model variant T (thermodynamic growth constraints) and
measured data (blank diamonds + estimated standard deviation). A-C. Steady-state
concentrations for the chemostat (five dilution rates: C1-C5: 0.023, 0.032, 0.048,
0.056, 0.068 h−1, respectively) and the retentostat (dilution rate: R: 0.020 h−1). The
middle line in the boxplot is the median of the ensemble outputs from the MCMC
simulation ensemble (see M&M 7.4); boxes represent 25% and 75% percentiles; whiskers
corresponds to +/- 1.5 x IQR (interquartile range). D. Enrichment factors (𝜀) were
reported only for the lowest dilution rate of the chemostat (C1) and the retentostat
(R), but simulated for C2-C5.
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Parameter estimates and uncertainty:

Kinetic parameters related to AT and HY degradation (chemostat: 𝑘𝐴𝑇 , 𝐾𝐴𝑇
𝑀 , 𝑘𝐻𝑌 , 𝐾𝐻𝑌

𝑀 ,

retentostat: 𝑘𝐴𝑇 , 𝐾𝐻𝑌
𝑀 ) appear to be well-informed by the data, showing relatively well-

constrained posterior distributions (Figure 9 A, B, C, D, I, J), low standard deviations (Table

8), and considerable impact on model outputs according to the Sobol analyses (especially 𝑘𝐴𝑇

and 𝐾𝐴𝑇
𝑀 , Supplementary Figure S35). The maintenance parameter 𝑚 was interestingly well

constrained by the chemostat data (Figure 9 E, Table 8); the global sensitivity analysis confirmed

this parameter to be low leverage (Supplementary Figure S33 and S34). The mass-transfer rate

parameter 𝑟𝑒 was not well-constrained for the chemostat data (Figure 9 H), but fitted relatively

well to the retentostat data (Figure 9 L), especially with the model variant M (Section 11.2.6,

Figures S33). This parameter showed a considerable impact on model outputs (Supplementary

Figure S34 and S35). The yield parameter 𝑌 and conversion parameter 𝑓𝑐𝑒𝑙𝑙 were highly uncertain

and not well-constrained for either system, probably due to the high correlation with other

parameters like kinetic parameters 𝑘𝐴𝑇 and 𝑘𝐻𝑌 (Supplementary Tables S11 and S12 for model

variant M).
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Comparison of parameter estimates between the chemostat and retentostat:

Comparing the mean and MAP calibrated parameter values in Table 8, we see that the per-cell

AT degradation rate (𝑘𝐴𝑇 ) is estimated to be higher for cells living in the low nutrient retentostat

system. Conjectured physiological adaptations [238] in the retentostat environment may be

responsible for the difference in the estimated value of 𝑓𝑐𝑒𝑙𝑙 compared to the chemostat, reflecting

changes in cell volume. However, this estimate is highly uncertain and highly correlated to

other parameters’ values. Physiological adaptations might also be responsible for a reduced

value of parameter 𝐾𝐻𝑌
𝑀 in the retentostat system, possibly reflecting a change in nutrient

demand. The estimate of 𝑟𝑒 was higher in the chemostat than in the retentostat, indicating

a change in membrane properties leading to strong mass transfer limitations across the cell

membrane. The estimates of the parameters 𝑘𝐴𝑇 , 𝐾𝐻𝑌
𝑀 and 𝑟𝑒 using model variant M show the

same tendencies, but exhibit stronger changes (increase/decrease) from chemostat to retentostat

(Supplementary Section 11.2.6, Table S10). The main difference is in parameter 𝑓𝑐𝑒𝑙𝑙 , which

shows a clear reduction in the retentostat, strongly supporting the findings of Kundu et al. [238].

7.4.2 Predictions of atrazine and hydroxyatrazine fate in soils and comparison

against field data

We simulated the fate of AT and HY in soil for 30 years, assuming a single initial AT input

of 1,000 µg kg−1 [249, 250]. For this, we used the full posterior parameter estimates from the

chemostat and retentostat systems for four model variants (Figure 10). All model variants

predicted very low residual AT concentrations, considerably underestimating the observed

concentrations of 0.3 and 0.6 µg kg−1 in the top soil of both field sites (Poltringen and Taiflingen

respectively) (Figure 10 A, B).

In contrast, predictions of residual HY mainly overestimated the observed HY concentration

at both study sites (around 2 µg kg−1 in both sites) (Figure 10 C, D). Predictions using retentostat

fitted parameters in combination with thermodynamically constrained growth and leaching

(Figure 10 D) predicted long term persistence of HY, with mean values around 36 µg kg−1.
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7 Modeling bioavailability limitations in soils

However, model variants with Monod kinetics (M-NL(R) and M-L(R)) performed better and

predicted residual HY concentrations much closer to the measurements (9 and 20 µg kg−1, Figure

10 D).

As expected, simulations of this simple model over 30 years are highly uncertain. Based

on our local sensitivity analysis (Supplementary Section 11.2.9, Table S13 and S14), the

sorption exponent of both chemicals (𝑛𝐴𝑇 and 𝑛𝐻𝑌 ) showed the highest impact on the residual

concentrations of AT and HY after 30 years, revealing a strong dependency on sorption

characteristics of the soils. Surprisingly, the initial application of AT only impacted the residual

concentration of AT in model variants incorporating thermodynamic growth constraints. Water

flow (𝑣𝑣) and minimum bacterial biomass (𝑀) had low impact on the residual concentrations,

despite their role to improve model predictions (our best model predictions include leaching;

recall that parameter 𝑀 accounts for alternative carbon sources for soil bacterial biomass). As

to be expected, the kinetic parameters, in contrast to the sorption parameters, had a negligible

impact on the target outputs.

72



7 Modeling bioavailability limitations in soils

Figure 10: Simulated residual concentrations of atrazine AT (A,B) and hydroxyatrazine HY (C,D)
in topsoils (0-30 cm), and observations (grey background) in topsoils of two field
sites Poltringen (P) and Taifingen (T) after 30 years. (C) represent simulations using
chemostat fitted parameters, and (R) simulations using retentostat fitted parameters.
The middle line of boxplots is the median of the ensemble outputs from the MCMC
simulation ensemble (see M&M 7.4); boxes represent 25% and 75% percentiles;
whiskers corresponds to +/- 1.5 x IQR (interquartile range).

7.5 Discussion

7.5.1 Bacterial adaption to low nutrient availability affects model parameterization

Due to the apparent similarities between the chemostat and retentostat systems, our initial

intent was to achieve a joint fit for both systems. In particular, by including a flexible formulation

of the mass-transfer rate, as well as a thermodynamically constrained growth rate instead of a

Monod formulation, we aimed to represent systems with or without mass-transfer limitations

across the cell membrane by one model. However, we found that goal unattainable. Recent

publications [238, 245] show evidence of a phenotypic differentiation of a single population

into separate growing and non-growing (i.e. energy used only for maintenance) bacterial

subpopulations [238]. Thus, we focused on the key parameters that have to be re-calibrated
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7 Modeling bioavailability limitations in soils

between the two systems using two model variants that exhibit equivalent behavior over the

range of inputs in the engineered systems (Table 8).

After fitting model parameters to the chemostat data, we systematically tested which

parameters had to be re-calibrated to capture the retentostat behavior. We were guided by

sensitivity analyses, as well as our understanding of the role of the parameters in our model.

We fixed the maximum degradation rate of HY (𝑘𝐻𝑌 ), the growth yield (𝑌 ), the half-saturation

concentration for AT degradation (𝐾𝐴𝑇
𝑀 ) and the maintenance parameter (𝑚) because of their low

impact on model output (Supplementary Information, Figure S33 and S34). Similar sensitivities

were previously reported in the literature [239]. Summing up, the parameters that had to be

re-calibrated to capture the retentostat behavior are: 𝑘𝐴𝑇 , 𝐾𝐻𝑌
𝑀 , 𝑓𝑐𝑒𝑙𝑙 , and 𝑟𝑒 . We justify the

requirement of these needed adjustments in the following.

The parameters 𝑘𝐴𝑇 (maximum degradation rate of AT), and 𝐾𝐻𝑌
𝑀 (reference/half-saturation

concentration) represent physiological features that can be expected to change under starvation

conditions [238, 252]. Relative to the chemostat conditions, in the low-HY retentostat

environment, we estimate a higher values of 𝑘𝐴𝑇 and lower values of 𝐾𝐻𝑌
𝑀 (Table 8), indicating

faster AT transformation to HY, and physiological adaptation of microorganisms to use of

HY, respectively. While the fitted value of 𝑘𝐴𝑇 was about twice the value of 𝑘𝐻𝑌 (maximum

degradation rate coefficient of HY) in the retentostat, both parameters (𝑘𝐴𝑇 and 𝑘𝐻𝑌 ) were similar

in the chemostats (Table 8). This difference in the parameterization of both systems shows that

the physiological adaption of microorganisms to low concentrations affects the regulation of

the AT degradation reaction network such that HY transformation becomes rate-limiting for

microbial growth.

We found that re-calibration of the parameter 𝑓𝑐𝑒𝑙𝑙 is an efficient way to capture specific

bacterial differentiation for low nutrient systems [63]. The parameter 𝑓𝑐𝑒𝑙𝑙 is a scaling factor

used to convert cells to C [183] and might suggest morphological changes (shape and volume)

observed in Arthrobacter aurescens to cope with stressful starvation conditions [136, 252]. Due

to the high uncertainty in parameter estimation, more experiments are needed to identify the
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7 Modeling bioavailability limitations in soils

underlying mechanism.

Changes in the value of 𝑟𝑒 (mass-transfer rate coefficient) between chemostat and retentostat

system could reflect morphological/physiological changes in the cell membrane (Table 8). The

relatively lower value of 𝑟𝑒 in the retentostat suggests a strong mass-transfer limitation across

the cell membrane in that case.

7.5.2 Pesticide persistence in soil

The main objective of our work was to accurately represent Atrazine (AT) degradation in

soils, and especially to capture the long-term persistence of AT and its main metabolite

Hydroxyatrazine (HY).

Despite the related uncertainty for long-term predictions, persistence of HY even after

30 years was consistently predicted by model variant M-L calibrated with retentostat data

(Figure 10 D). In general, retentostat concentrations are closer to the soil environement, so

that more accurate predictions are to be expected (biomass retention, low nutrient levels).

Additionally, incorporation of leaching gave a better representation of the pesticide losses over

time. Simulation with a simple model incorporating only leaching over the 30 years leads to a

residual concentration of AT of about 2 µg kg−1. This value is close to the measured residual

concentrations indicating that only low AT degradation might have occurred at the field sites

(Figure 10). Standard Monod model variants predicted HY concentrations after 30 years better

than thermodynamic models. Therefore, energetic constraints of microbial growth likely do not

limit HY degradation in soils. In contrast, all model configurations predicted a nearly complete

consumption of AT after 30 years, a behavior not observed in field surveys [25, 57], including

the field measurements of this study (Figure 10 A).

A range of biological and physical processes in soil have been hypothesized as potential

mechanisms of pesticide persistence in real systems. These include physicochemical control

mechanisms limiting bioavailability, such as chemisorption onto humic substances [59],

physical stabilization in soil microaggregates [253], or the spatial encounter of substrates
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and degraders [60]. Including these additional mechanisms by applying better sorption

and stabilization model formulations [153, 254–258] and spatially resolved modeling

approaches [259–262] might further improve predicting the persistence of AT and other

pesticides in soil. Our study investigated to what extent mass-transfer limitations and

bioenergetic constraints can explain the long-term fate of atrazine and its major metabolite

hydroxyatrazine in soils. We found evidence against the hypothesis that passive diffusion across

the cell membrane of bacterial degraders limits atrazine degradation in the long term. Atrazine

is not degraded to HY for the energy gain by microorganisms and our results suggest that

sorption-limited bioavailabilty and not energetic growth constraints control the persistence

of hydroxyatrazine. Hence, standard Monod kinetics for bacterial growth can predict the

long-term fate of organic chemicals if soil microorganisms directly utilize them as an energy

source. Further research should prioritize the analysis of energetic costs of biogeochemical

transformations without a direct microbial energy gain (atrazine dechlorination).
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8 Temperature and soil moisture change microbial allocation of

pesticide-derived carbon (Paper 3)

This chapter includes the following publication submitted as:

Johannes Wirsching, Luciana Chavez Rodriguez, Franziska Ditterich, Holger Pagel, Rushan

He, Christian Zwiener, Marie Uksa, Ellen Kandeler, Christian Poll (2021). Temperature and soil

moisture change microbial allocation of pesticide-derived carbon. Environmental Science &

Technology.

with the following modification:

1. Numbers of figures, tables, and equations are relative to this thesis and not to the original

publication.
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8 Environmental factors and pesticide degradation

8.1 Abstract

The influence of temperature and soil moisture on the mineralization of pesticides has been

studied extensively, indicating, in most cases, longer half-live times (DT50) in soils with lower

temperature and moisture. However, how the underlying metabolic processes of specific

degrader microorganisms change under altered environmental conditions (temperature and

soil moisture) is yet unknown. This study aimed to link changes in carbon (C) use efficiency

(𝐶𝑈𝐸) under optimal (20°C, pF 1.8) and limiting conditions (10°C, pF 3.5) to the activities

(tfdA mRNA) and abundances (tfdA DNA) of pesticide degraders during 14C-labeled 2-methyl-

4-chlorophenoxyacetic acid (MCPA) degradation. We performed a laboratory incubation

experiment at two MCPA concentrations (1 and 20 mg kg−1) and used a mechanistic gene-

based biodegradation model to support data interpretation. After four weeks, mineralization

reached almost 70% under optimal conditions but less than 25% under limiting conditions.

Estimated 𝐶𝑈𝐸 and measured tfdA genes suggest a metabolism that favors anabolic processes

under limiting conditions and reallocation of MCPA-C from growth to tolerance mechanisms.

Our work suggests that, at low initial concentrations, the derivation of DT50 values should not

be based on mineralization kinetics alone, since they fail to account for the contribution of more

efficient carbon utilization, leading to overestimation of the residence time.

8.2 Introduction

Over 80% of 317 topsoils tested in the European Union contained pesticide residues that,

in some cases, exceeded predicted environmental concentrations [55]. The persistence of

pesticides in soil depends, amongst other processes, on its biodegradation under varying

environmental conditions. Degradation rates are often determined from mineralization of 14C-

labeled pesticides [211, 263–265]. However, the problem with assessing pesticide persistence

based on 14C mineralization is that it neglects shifts in microbial C-allocation depending on

temperature and soil water content, which may result in an overestimation of the half-life

(DT50).
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Carbon use efficiency (CUE) describes microbial C-allocation into either CO2 respiration

or microbial biomass. Generally, CUE increases with declining temperature, indicating an

increase in relative allocation of assimilated C to growth [266]. Given this understanding, and

despite information in the literature that a temperature increase of 10°C can accelerate pesticide

mineralization by a factor of almost 2 [211, 267–269], lower temperatures might not always

lead to significantly decreased degradation; they may instead indicate a C redistribution within

the microbial cell where less CO2 is emitted, as more of it is used to build additional living

biomass [266].

Muskus et al. [270] found that a temperature drop from 20°C to 10°C resulted in less

mineralization of labeled 13C15N-glyphosate, but promoted the formation of 13C non-extractable

residues (NER; proteins + other remaining biomass residues (bioNER) + sorbed and sequestered

starting compounds (xenoNER)). However, if BioNERs are determined at the end of an

experiment, after the death of the microorganisms, information on C uptake dynamics during

pesticide turnover is lost. In such a case, uptake of pesticide-derived C is only considered as

an additional C reservoir and not as a driver of decomposition. The dynamics of CUE, i.e.,

the proportion of the substrate that, over time, immediately goes into the microbial biomass

in relation to the C lost as CO2 [271], could be an important addition to the conventional

mineralization-based approach and provide a more accurate assessment of pesticide degradation

at different temperatures.

Soil moisture content is one of the most important factors regulating biological activities in

soils [264] and serves as a solubilizer for the movement and distribution of pesticides [272].

According to Pinheiro et al. [273], below the centimeter scale, the fate of pesticides in soils

depends on the spatial distribution of pesticide and degrader microorganisms. In unsaturated

soils, where the contact between pesticide and microorganisms is established only by diffusion

or mass flow [274] due to the heterogeneous soil matrix [275], molecular diffusion represents

the dominant mode of transport at the smallest spatial scale. Furthermore, the diffusion of

dissolved substances, e.g., pesticides, is limited by the proportion of water-filled pores [276]
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and tortuosity; determination of water content makes it possible to compare microbial reaction

rates between diffusion- and non-diffusion-limited systems [264].

Most of the relevant literature reports that increasing water content, within a soil water

potential range of -1.5 to -0.015 MPa [264, 277], intensifies the degradation of pesticides [211,

278]. For example, MCPA persists ten times longer in dry soils than in moist soils [279] due to the

moisture-sensitive exponential growth of microbes [211]. As aridity increases, microorganisms

must invest more energy [280] to overcome the suction holding the water in the soil [281].

As energy requirements in drier soils may therefore increase, it is conceivable that the way

microbes allocate C will have a profound impact on pesticide mineralization rates. This may

mean that, due to physiological trade-offs between C-assimilation and dissimilation under

drought conditions [282], 14CO2 mineralization may not be linearly related to total pesticide

turnover [283].

Specifically, drought-tolerant microbes invest heavily in the formation of extracellular

enzymes to maintain carbon uptake for the synthesis of stress response compounds such

as osmolytes, cryoprotectants, and chaperones [282] to stabilize cell pressure [284]. This would

imply that pesticide mineralization is not synonymous with microbial pesticide degradation since

microbial C utilization plays a decisive role. This mechanism has already been demonstrated

for soil turnover by Zeglin et al. [283], in which soil C sequestration was higher under dry

conditions.

Degradation rate and C allocation are affected not only by environmental conditions, but also

by initial pesticide concentration [285, 286]. Pesticide degradation at low concentrations usually

follows a first order kinetics and is often astonishingly fast [287, 288]. In contrast, pesticide

degradation at high concentrations is slower and accompanied by a simultaneous increase in

degradation activity and genetic degradation potential [131]. With respect to C-allocation,

in a previous study we [289] demonstrated that the predominantly catabolic use of MCPA at

concentrations ≤ 1 mg kg−1 shifted towards an gradually increasing anabolic metabolism at

concentration ≥ 5 mg kg−1. If initial pesticide concentration determines C use by microbial
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pesticide degraders, the impacts of temperature and moisture on C allocation may also depend

on pesticide concentration.

The objective of this study was to examine the impact of environmental factors (temperature

and soil moisture) on pesticide degradation and derived carbon use efficiency, and to link them

to the associated abundances and activities of degraders. Specifically, we were interested in the

deviations in half lifes derived from actual concentration decrease and mineralization kinetics.

To address these questions, we used 14C-labeled MCPA, a weakly adsorbed pesticide [290]

that is readily soluble in water [291] and highly biodegradable [292]. An additional advantage

of using MCPA is that the entire degradation pathway and the functional genes involved

have been characterized [128]. We hypothesized that increased 𝐶𝑈𝐸 at lower temperatures

and soil moisture i) leads to increased 14C content in the microbial biomass, and ii) could

demonstrate a significant overestimation of pesticide half-life time when derived only from

14C mineralization curves. We expected iii) that the effect size will be more pronounced

at higher initial concentration. To address these hypotheses, we determined the temporal

relationship between mineralization (14CO2) and biomass (14Cmic) formation in distinct phases,

𝐶𝑈𝐸, alteration of MCPA degradation activity (expressed genes), MCPA-degrading genetic

potential (functional genes), and the half-life of MCPA under optimal and limiting environmental

conditions. In addition to the experimentally-based 𝐶𝑈𝐸, we applied a gene-centric model with

the experimental data and calculated two model-based carbon use efficiencies for interpretation

of pesticide-derived C utilization of the specific pesticide degraders.

8.3 Materials and Methods

8.3.1 Soil origin and sampling

The study site was in the central region of the Ammer catchment in southwest Germany

(48°33’24.664", 8°52’31.259"). Soil samples were taken in March 2019 from an Ap-horizon (0-5

cm) of a silty Luvisol (World Reference Basis for Soil Resources). According to the farmer’s

records of their cultivation and spraying programs, MCPA was never applied to the agricultural
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field. The main pesticides applied were chloridazone and metamitron. After sampling, the soil

was sieved (<2 mm), homogenized, and stored at -20 °C ( -80 °C for mRNA samples) to prevent

further biological reactions. The main characteristics of the soil are shown in Table S15.

8.3.2 Experimental Design

The experimental set-up consisted of two temperatures (10 and 20°C), two water treatments (pF

1.8 and 3.5), and three concentrations of ring 14C-labeled MCPA (0, 1, and 20 mg kg−1 soil). In this

study, we defined 10°C, pF 3.5 and the two lowest MCPA concentrations as limiting conditions,

and 20°C, pF 1.8 and the highest MCPA concentrations as optimal conditions. The experimental

set-up consisted of 36 total samples, with three replicates for each treatment. At three time

points (5, 15 and 28 days) representing specific phases of MCPA mineralization, i.e., initial

lag phase, phase of exponential growth, and final saturation phase, we sampled independent

sets of microcosms. MCPA solution with a 14C activity of 15 kBq (99% purity, specific activity

50-60 mCi mmol−1; BIOTREND Chemikalien GmbH, Germany) was uniformly applied to adjust

gravimetric soil water content to 39.6% (pF 1.8) and 29.1% (pF 3.5). Subsequently, after thoroughly

mixing the soil with the MCPA solution, cylinders (diameter = 5.6 cm, height = 4 cm) were

filled with 100 g of soil and compacted to a bulk density of 1.2 g cm−3 (height of the soil core

was 3 cm). In addition, there was one set of 36 microcosms that contained unlabeled MCPA

(analytical MCPA purity 99.2%, Sigma-Aldrich, Germany), from which a series of subsamples

(on every second day) for 14C-free RNA/DNA co-extraction and MCPA quantification was taken

and stored at -20°C until the analyses.

8.3.3 MCPA analysis in soil

A soil suspension of two g soil mixed with 10mL methanol/water (1:1) was homogenized on a

horizontal shaker at 200 rev min−1 for 10 min, then heated in a water bath for 60 min at 50 °C.

After shaking again at 200 rev min−1 for 10 min, the mixture was centrifuged at 2500 g for 10

min, and 2 mL of the supernatant was removed and filtered (0.45 µm pore size). The extraction
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recovery of MCPA was >98%. Before the HPLC-MS/MS analysis, the extracts were sonicated and

homogenized for 5 min by vortexing. On a 1260-Infinity system from Agilent Technologies, one

µL of the sample was injected onto a reversed-phase column (Agilent Poroshell 120 C18, 2.1 mm

internal diameter, 100 mm length, 2.7 µL particle size) at a temperature of 40°C. MCPA was eluted

isocratically within 5 min using 50% water and acetonitrile (both acidified with 0.1% formic

acid) at a flow rate of 0.4 mL min−1. After chromatographic separation, MCPA was detected by

tandem mass spectrometry using an Agilent 6490 iFunnel Triple Quadrupole (QqQ) instrument.

The analyte was ionized using negative electrospray ionization (ESI-) by applying 12 L min−1

sheath gas (N2) at 400°C, 16 L min−1 drying gas (N2) at 150°C, 30 psi nebulizer pressure, 4.2 kV

capillary voltage, and 1.2 kV nozzle voltage. MS/MS experiments were conducted by MRM

(Multi Reaction Monitoring), using N2 as collision gas and collision energy (CE) dependent

mass transitions (MCPA: quantifier 198.9/140.9 at 10 eV, qualifier: 198.9/34.9 at 45 eV). The limit

of quantification (LOQ) was defined as 13 µg kg−1 MCPA in soil.

8.3.4 MCPA mineralization (14CO2)

The 14CO2 evolution from the microcosms was determined via titration (DIN EN ISO 16072:2011-

09). First, a 0.5 mL aliquot was taken from a CO2 trap containing 2 mL 1M NaOH which was

set up in the microcosm. The actual respiration measurement was carried out by adding 0.5

mL of 1 M BaCl2 and two drops of phenolphthalein. In the following titration with 0.1 M HCl,

the end point of the neutralization reaction was indicated by a color change to transparency.

To determine the 14CO2 content, an aliquot of 1 mL was taken from the same 14CO2 trap and

mixed with 4 ml scintillation liquid (Rotiszint Eco Plus, Carl Roth GmbH + Co. KG) in a 5 mL

scintillation vial (LDPE). The decay rate in Bequerel (Bq) was measured using a scintillation

counter (Wallac 1411, liquid scintillation counter, USA). To account for interfering substances, a

quenching adjustment with 14C aqueous standards was used to improve the accuracy of the

actual counts per second (cps) for the entire energy band.

The half-lifes (DT50MIN) derived from the cumulative mineralization curves were calculated

83



8 Environmental factors and pesticide degradation

from the estimated parameters of the fitted eqs.83 and 84 (see also Duo-Sen and Shui-Ming [293]

and Wirsching et al. [289]):

𝐶 = 𝐶0 ⋅ (1 −
1

(1 − 𝑓𝑘) ⋅ 𝑒𝑘1⋅𝑡 + 𝑓𝑘)
(83)

DT50MIN =
1
𝑘1

⋅ ln [
1

1 − 𝑓𝑘
+ 1] (84)

Where C is the MCPA-derived 14CO2 (% of MCPA initially applied), 𝐶0 is the total mineralizable

MCPA that was not immediately incorporated into the microbial biomass or bound to the soil

organic matter after application (% of MCPA initially applied), 𝑘1 (d−1) is the rate constant of

MCPA degradation per day, and 𝑓𝑘 is a dimensionless parameter constrained between 0 and

1 [289].

8.3.5 Microbial biomass (Cmic)

Microbial biomass was estimated using the chloroform fumigation extraction method (CFE)

developed by Vance et al. [294], adapted by Poll et al. [295] for additional 14C determination.

Prior to extraction, 10 g soil was first weighed to ensure the release of the microbially bound

C after a 24-hour fumigation with ethanol-free chloroform. After removal of the chloroform,

40 mL of 0.5 M K2SO4 solution was added, shaken on a horizontal shaker at 250 rev min−1 for

30 min and centrifuged at 4420 g for 30 min. The clear supernatant was then passed through

a 20 µm filter, diluted 1:4 with deionized water to avoid high salinity during detection, and

measured with a Multi-N/C 2100S TOC-TNb analyzer (AnalytikJena, Jena, Germany). A second

subsample of 10 g soil was not fumigated with chloroform to determine only the amount of

extractable organic carbon. C content of the contro (non-fumigated) samples was subtracted

from the C content of the fumigated samples to determine Cmic content. The kEC factor of

0.45 was used to estimate the extractable portion of microbial biomass C [296]. To obtain the

14C content in Cmic, 1 mL of the CFE supernatant was mixed with 4 mL scintillation liquid
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(Rotiszint Eco Plus, Carl Roth GmbH+Co. KG) in a 5 mL scintillation vial (LDPE). Calculation of

the incorporated 14C was performed as described for the Cmic content, here using the activity

difference between the fumigated and non-fumigated samples. For the non-fumigated samples,

the undiluted supernatant was used. Total 14C utilization was estimated by adding the 14CO2

mineralization and 14C incorporation on days 5, 15 and 28.

8.3.6 MCPA degrader abundance and activity

DNA/RNA co-extraction

For RNA and DNA extraction, 2 g frozen soil was weighed into 15 mL bead-beating tubes and

extracted using the RNAeasy PowerSoil Total RNA Kit for soil (Qiagen, Germany) and the

RNAeasy PowerSoil DNA Elution Kit (Qiagen, Germany) in a co-extraction method following

the user manual. After extraction, the RNA and DNA samples were aliquoted and stored at -80°C

(RNA samples) or at -20°C (DNA samples) for further use. The DNA and RNA concentrations

were measured using a fluorescent dye and microplate reader (Synergy HTX Multi-Mode

Reader, Bio-Tek Instruments Inc., Germany). For DNA and RNA quantification, the Quant-iT™

PicoGreen™ dsDNA Assay Kit and the Quant-iT™ RNA Assay Kit (Thermo Fisher Scientific,

Germany), respectively were used following the user manuals. Before using the RNA-samples

for Real-Time quantitative PCR (qPCR), possible remaining DNA in the RNA samples was

digested using the TURBO DNA-free™ Kit (Invitrogen, Thermo Fisher Scientific, Germany)

following the manufacturer´s protocol (Table S1). After digestion, RNA samples were divided

in two subsamples of 11 µL each and labeled as + and - subsamples. For the following revere

transcription, the SuperScript™ III Reverse Transcriptase Kit with Random Primers and RNase

(Invitrogen, Thermo Fisher Scientific, Germany), and dNTPs (10mM; Genaxxon, Germany) were

used. The reaction was carried out according to the user manual of SuperScript™ III Reverse

Transcriptase from Invitrogen. Reaction conditions and temperature program are described in

Table S16. The + subsamples served as cDNA, whereas the - subsample served as a negative

control for the remaining DNA after digestion (Table S17).

85



8 Environmental factors and pesticide degradation

Real-Time quantitative PCR (qPCR)

For gene quantification (bacterial 16S rRNA and functional genes), qPCR assays were applied

using an ABI Prism 7500 Fast system (Applied Biosystems, Germany) with SYBR Green detection.

The primer and qPCR conditions used are listed in Table S18. Each SYBR Green reaction

contained 7.5 µL of Power SYBR® Green PCR master mix (Applied Biosystems, Germany),

0.75.µL of each primer (5 µM), 0.375 µL of T4gp32 (MP Biomedicals, Germany), 3.625 µL water

and 2 µL diluted template DNA or cDNA (3 ng µL−1) for functional genes (tfdA and cadA). For

16S rRNA, 1 µL diluted template DNA or cDNA (3 ng µL−1) and 4.625 µL of water was used.

For quantification, standard plasmid DNA was used with a dilution series from 108 to 101

copies µL−1 according to Ditterich et al. [131].CadA showed no response to MCPA addition and

was therefore not discussed further in the course of the study.

8.3.7 Gene-centric modeling of MCPA biodegradation

We used a recently developed modeling approach (ref. to Chavez Rodriguez et al. [297]) to

simulate MCPA mineralization (𝐶𝑃 [mmol g−1]), tfdA genes (proxy for active bacterial biomass

𝐶𝐵 [mmol g−1]) and transcripts, and CUE. The original modeling approach was extended to

account for constitutive gene expression and to include a temperature response function.

Model description

We assumed gene expression to be in quasi-steady state described by the Hill function, including

constitutive gene expression that is potentially important at low concentrations:

𝑚𝑅𝑁𝐴 = 𝑓𝑇 ⋅ (
(𝐶𝐿

𝑃 )
𝑛𝐻

(𝐶𝐿
𝑃 )𝑛𝐻 + (𝐾𝐺)𝑛𝐻

+
𝛼
𝑓𝑇 )

(85)

where 𝑓𝑇 represents the number of transcripts per gene, 𝑛𝐻 [-] and 𝐾𝐺 [mmol cm−3] are the

Hill exponent and constant respectively, 𝛼 is the constitutive gene expression coefficient set to

1.2 ⋅ 10−5 transcripts per gene [126], and 𝐶𝐿
𝑃 [mmol cm−3] is the solution phase concentration of
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MCPA.

Microbial growth is regulated in three ways (Eq. 98) by: i) MCPA-dependent tfdA gene

transcription (mRNA, Eq. 85), ii) MCPA-dependent reaction kinetics (Monod term in Eq. 98),

and iii) a 𝑄10 temperature response function (Eq. 87).

𝑟𝑔𝑟𝑜𝑤𝑡ℎ = 𝜇𝑚𝑎𝑥 ⋅ 𝐶𝐵 ⋅ (
(𝐶𝐿

𝑃 )
𝑛𝐻

(𝐶𝐿
𝑃 )𝑛𝐻 + (𝐾𝐺)𝑛𝐻

+
𝛼
𝑓𝑇 )

⋅ (
𝐶𝐿
𝑃

𝐶𝐿
𝑃 + 𝐾𝑀 ) ⋅ 𝑓𝑅(𝑇 ) (86)

where 𝜇𝑚𝑎𝑥 [d−1] is the maximum growth rate coefficient, 𝐾𝑀 [mmol cm−3] is the Monod

constant, and 𝑓𝑅(𝑇 ) [-] is the temperature response function.

The temperature response function 𝑓𝑅(𝑇 ) from Sierra et. al. [298] influences not only microbial

growth, but also the decay rate (Eq. 88), maintenance rate (exogenous (Eq. 89) and endogenous

(Eq. 90)), and decay rate of non-extractable residues (Eq. 91), and is defined as:

𝑓𝑅(𝑇 ) = (𝑄10)(
𝑇 − 10°𝐶
10°𝐶 ) (87)

where 𝑄10 [-] is the temperature function constant, and T is the temperature in °C.

The decay rate is defined as:

𝑟𝑑𝑒𝑎𝑡ℎ = 𝐶𝐵 ⋅ 𝑎𝑎 ⋅ 𝑓𝑅(𝑇 ) (88)

where 𝑎𝑎 [d−1] is the decay rate coefficient.

The total maintenance rate is partitioned into two different maintenance fluxes: exogenous

and endogenous [299]. The exogenous flux describes the fraction of the total maintenance

demand that can be met with the available MCPA in the system. We modeled this flux using a

simple Michaelis Menten expression [261]:

𝑟𝑚−𝑒𝑥𝑜𝑔𝑒𝑛𝑜𝑢𝑠 = (
𝑚 ⋅ 𝐶𝐿

𝑃
𝐶𝐿
𝑃 + 𝐾𝑀 ) ⋅ 𝐶𝐵 ⋅ (

𝜌
𝜃 )

⋅ 𝑓𝑅(𝑇 ) (89)
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where 𝑚 [d−1] is the maintenance rate coefficient.

The endogenous maintenance flux describes the fraction of the demand that is met by the

biomass under insufficient MCPA levels in the system [299], and it is modeled by subtracting

the exogenous maintenance flux from the total maintenance demand.

𝑟𝑚−𝑒𝑛𝑑𝑜𝑔𝑒𝑛𝑜𝑢𝑠 = 𝐶𝐵 ⋅ 𝑚 ⋅ (1 −
𝐶𝐿
𝑃

𝐶𝐿
𝑃 + 𝐾𝑀 ) ⋅ 𝑓𝑅(𝑇 ) (90)

We introduced a non-extractable residues pool to account for the delayed release of 𝐶𝑂2

coming from the decaying biomass:

𝑟𝑁𝐸𝑅
𝑑𝑒𝑐𝑎𝑦 = 𝐶𝑁𝐸𝑅

𝐵 ⋅ 𝑎𝐶𝑂2 ⋅ 𝑓𝑅(𝑇 ) (91)

where: 𝐶𝑁𝐸𝑅
𝐵 [mmol cm−3] is the non-extractable residues pool, and 𝑎𝐶𝑂2 [d−1] is the decay rate

coefficient of the 𝐶𝑁𝐸𝑅
𝐵 .

To describe the 14C dynamics, we incorporated a 14C pool, which accounts for only the 14C

portion of labeled MCPA. Processes described for the 14C pool are: growth, maintenance, and

respiration. Additionally, the 𝐶𝑁𝐸𝑅
𝐵 pool traces only the 14C-𝐶𝑁𝐸𝑅

𝐵 formed. We calculated each

14C flux by multiplying the corresponding total flux by the current mass fraction (𝛼14) of the

source pool [43]. The 𝛼14 was in turn derived from the total activity of 14C per g of soil (𝐴𝑆 =

15 kBq per 100 g of soils) and the mean specific activity of MCPA (𝛼𝑀𝐶𝑃𝐴= 55 mCi mmol−1) in

relation to the initial MCPA (𝐶0
𝑀𝐶𝑃𝐴) applied (either 1 or 20 mg kg−1).
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The full ODE equations used are:

𝑑𝐶𝐵

𝑑𝑡
= 𝑟𝑔𝑟𝑜𝑤𝑡ℎ − 𝑟𝑚−𝑒𝑛𝑑𝑜𝑔𝑒𝑛𝑜𝑢𝑠 − 𝑟𝑑𝑒𝑐𝑎𝑦 (92)

𝑑14𝐶𝐵

𝑑𝑡
= 𝑟14𝑔𝑟𝑜𝑤𝑡ℎ − 𝑟14𝑚−𝑒𝑛𝑑𝑜𝑔𝑒𝑛𝑜𝑢𝑠 − 𝑟14𝑑𝑒𝑐𝑎𝑦 (93)

𝑑𝐶𝑁𝐸𝑅
𝐵
𝑑𝑡

= 𝑟14𝑑𝑒𝑐𝑎𝑦 − 𝑟𝑁𝐸𝑅
𝑑𝑒𝑐𝑎𝑦 (94)

𝑑𝐶𝐿
𝑃

𝑑𝑡
= −

𝑟𝑢𝑝𝑡𝑎𝑘𝑒 + 𝑟𝑚−𝑒𝑥𝑜𝑔𝑒𝑛𝑜𝑢𝑠

𝑅𝐹
(95)

𝑑14𝐶𝑂2

𝑑𝑡
= 𝑟14𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑟14𝑚−𝑒𝑛𝑑𝑜𝑔𝑒𝑛𝑜𝑢𝑠 + 𝑟14𝑚−𝑒𝑥𝑜𝑔𝑒𝑛𝑜𝑢𝑠 + 𝑟𝑁𝐸𝑅

𝑑𝑒𝑐𝑎𝑦 (96)

𝑅𝐹 is the retardation factor (ref. to Chavez Rodriguez et al. [297]) introduced to account for

nonlinear equilibrium sorption using the Freundlich isotherm:

𝑅𝐹 ∶= 1 +
𝜌
𝜃
⋅ 𝐾𝑃 ⋅ 𝑛𝑃 ⋅ (𝐶𝐿

𝑃 )
(𝑛𝑃−1) (97)

where 𝐾𝑃 [mmol(1−nP)g−1cm(3nP)] and 𝑛𝑃 [-] are the Freundlich coefficient and exponent fixed to

0.09 and 0.8576 (adapted from Gawlik et al. [300]), 𝜃 [cm3 cm−3] is the soil water content, and 𝜌

[g cm−3] is the soil bulk density.

The uptake rate 𝑟𝑢𝑝𝑡𝑎𝑘𝑒 (ref. to Chavez Rodriguez et al. [297]) depends on the bioavailable

fraction of pesticide as follows:

𝑟𝑢𝑝𝑡𝑎𝑘𝑒 = 𝜇𝑚𝑎𝑥 ⋅ 𝐶𝐵 ⋅ (
𝜌
𝜃 )

⋅ (
(𝐶𝐿

𝑃 )
𝑛𝐻

(𝐶𝐿
𝑃 )𝑛𝐻 + (𝐾𝐺)𝑛𝐻

+
𝛼
𝑓𝑇 )

⋅ (
𝐶𝐿
𝑃

𝐶𝐿
𝑃 + 𝐾𝑀 ) ⋅ (

1
𝑌𝑃 )

⋅ 𝑓𝑅(𝑇 ) (98)

Model calibration

We performed a hierarchical model calibration using the parameter ranges from Table S5 and

minimized the sum of squared error (𝑆𝑆𝐸) with the optimization algorithm Simulated Annealing

from MATLAB:

𝑆𝑆𝐸 =
𝑛
∑
𝑖=1

(𝑦 𝑖𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑦 𝑖𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 )
2

𝜎2
𝑖

(99)
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where 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 is the mean value of the 𝑖𝑡ℎ observation, 𝑦𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 is the corresponding 𝑖𝑡ℎ

simulated value, and 𝜎2 is the standard deviation of the corresponding observations.

The hierarchy of parameter groups was formed by assuming: i) different bacterial

subpopulations under the two different initial concentrations of MCPA applied (C), ii) possible

physiological and morphological bacterial changes under different moisture levels (W), not well

captured by literature moisture functions, and iii) biological and physicochemical properties of

soil (S). Thus, parameters for calibration were grouped according to the proposed hierarchy

(Table S19):

Model outputs corresponding to the measured data are:

Mineralization [%] =
14CO2 ⋅ 100%

14𝐶0
𝑀𝐶𝑃𝐴

(100)

Genes [copies g−1] =
𝐶𝐵

𝑓1
(101)

Transcripts [copies g−1] =
𝑚𝑅𝑁𝐴 ⋅ 𝐶𝐵

𝑓1
(102)

Residual MCPA [mg kg−1] = 𝐶𝐿
𝑃 ⋅

𝜃
𝜌
+ 𝐾𝑃 ⋅ (𝐶𝐿

𝑃)
𝑛𝑃 (103)

DT50RES [d−1] = 𝑇 𝑖𝑚𝑒[(Residual MCPA = 0.5 ⋅ 𝐶0
𝑀𝐶𝑃𝐴)] (104)

where 𝑓1 [mmol gene−1] is the conversion factor cell to carbon. Incorporation of 14C into the

microbial biomass (Cmic) as well as CUE were not used for model calibration

8.3.8 Carbon use efficiency (CUE)

We derived 𝐶𝑈𝐸 both experimentally and model-based 𝐶𝑈𝐸𝑆 :

1. 𝐶𝑈𝐸𝑀 : experiment-based 𝐶𝑈𝐸 used for labeled substances [301].

𝐶𝑈𝐸𝑀 =
14𝐶𝑚𝑖𝑐

14𝐶𝑚𝑖𝑐 + 𝑅𝑐𝑢𝑚
(105)
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8 Environmental factors and pesticide degradation

where: 14𝐶𝑚𝑖𝑐 is the C uptake in microbial biomass, and 𝑅𝑐𝑢𝑚 is the cumulative respiration

rate.

2. 𝐶𝑈𝐸𝐸 : environmental model-based 𝐶𝑈𝐸 adapted from Geyer et al., [302].

𝐶𝑈𝐸𝐸 =
14𝐶𝐵

14𝐶𝐵 +14 𝐶𝑂2
(106)

3. 𝐶𝑈𝐸𝐶 : community model-based 𝐶𝑈𝐸 adapted from Geyer et al. [302] and Manzoni et

al. [303].

𝐶𝑈𝐸𝐶 = 1 −
𝑟14𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑟14𝑚−𝑒𝑛𝑑𝑜𝑔𝑒𝑛𝑜𝑢𝑠 + 𝑟14𝑚−𝑒𝑥𝑜𝑔𝑒𝑛𝑜𝑢𝑠 + 𝑟𝑁𝐸𝑅

𝑑𝑒𝑐𝑎𝑦

𝑟14𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑟14𝑔𝑟𝑜𝑤𝑡ℎ + 𝑟14𝑚−𝑒𝑥𝑜𝑔𝑒𝑛𝑜𝑢𝑠
(107)

8.3.9 Statistical analyses

A linear model with mixed effects as part of the "nlme" package using the lme function [304]

implemented in R version 3.5.2 was applied, specifying concentration, soil moisture content

and interand temperature and their interactions as fixed effects, and microcosms as random

effects. To investigate the influences of temperature, soil moisture content and concentration

on the 14CO2 mineralization rate, we compared the attained 14CO2 level on day 28 among all

treatments. To illustrate the differences in 𝐶𝑈𝐸, we compared all treatment levels. To test

the assumption that a temperature reduction to 10°C leads to a significant increase in 14C

uptake, we compared 14C uptake at increased and reduced temperatures, at each concentration,

and each soil moisture level. The probability that the measurements for a given experimental

unit would be temporally correlated also had to be considered. In this case, corAR1 (time)

was used to indicate a temporal autocorrelation structure of order one. Since the ANOVA

requires a normal distribution and variance homogeneity within the data, an assumption check

for the mineralization, incorporation and 𝐶𝑈𝐸 was run to ensure that the prerequisites for

reliable calculations were met. For specification of contrasts between the influencing factors

relevant for the verification of our hypothesis, a post-hoc comparison was conducted using the

91

https://www.r-project.org/


8 Environmental factors and pesticide degradation

package “emmeans” [305]. With this package, the estimated marginal means were calculated,

and interaction plots were made by using the “emmip” function to display the interactions

between the variables soil moisture, temperature, and concentration. The influences of the

variables were compared pairwise with the Tukey method, and the standard error (SE) and

p-value for each result was simultaneously computed.

8.4 Results and discussion

Pesticide degradation studies often neglect the possibility that the efficiency of microbial C

utilization can shift in response to environmental factors [266, 306]. Our study, therefore,

analyzed microbial utilization of the pesticide MCPA in response to changes in soil moisture

and temperature. In addition to estimating the mineralization of 14C-labeled MCPA and the

dynamics of specific degraders, we calculated the 𝐶𝑈𝐸 of MCPA turnover to evaluate microbial

C allocation to catabolic and anabolic processes.

8.4.1 Enhanced MCPA mineralization by elevated temperature and moisture

Mineralization of MCPA in soil was quantified as that of the accumulated 14CO2 at the end

of the incubation (Figure 11 A, B, C, D). Under optimal soil conditions (20°C, pF 1.8) and 20

mg kg−1, nearly 70% of the initially applied 14C-labeled MCPA was mineralized to 14CO2. Under

limiting conditions (10°C, pF 3.5) and 1 mg kg−1, mineralization was significantly reduced and

peaked at only 23%. These results were confirmed by our model simulations, which accurately

depicted the measured mineralization (Figure 11 A, B, C, D).

As a single factor, a temperature increase from 10 to 20°C resulted in an increase in 14CO2

mineralization of 10.5% (F1,16 = 73.9, p < 0.01). However, the effect was significantly more

pronounced at high MCPA concentrations (+17.7%) than at low MCPA concentrations (+3.4%,

F1,16 = 35.2, p<0.001; Figure 1 A, B, C, D). Comparable temperature-dependent increases in

mineralization were demonstrated in studies by Nowak et al. [307] and Muskus et al. [269]

for glyphosate, Helweg [263] for mecoprop (MCPP), and Bouseba et al. [265] for 2,4-D. These
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increases in 14C mineralization appeared to be independent of the chemical properties and

associated behaviours of those pesticides in soils. In our experiment, an explanation could be

found in the temperature sensitivity of the enzyme-catalyzed reactions of MCPA degradation,

which are associated with inherent kinetic properties (intrinsic temperature sensitivity) and a

concentration-dependent response of mineralization rates to temperature (apparent temperature

sensitivity) [308].

Additionally, we evaluated the effect of water content as a sole factor, in which a reduction

from pF 1.8 to 3.5 resulted in the strongest decrease in 14CO2 mineralization (-16.2 % F1,16 =

136, p< 0.01). This effect was most pronounced at the high MCPA concentration (F1,16 = 17.9,

p<0.001), where total mineralization was 21.3% higher at pF 1.8 as compared to pF 3.5 (Figure 11

A,B). At the low MCPA concentrations, this increase was only 11.0% (Figure 11 C, D). Generally,

microbial activity decreases with increasing osmotic potential, as demonstrated by Sparling

et al. [309]. According to Ilstedt et al. [310], the reason why a reduction in water content

also reduces the maximum mineralizable 14C fraction of MCPA is related to the limitation

on substrate diffusion due to reduced thickness of the water film on the soil particles as the

water content declines [311]. Schroll et al. [264] determined an optimal osmotic potential for

aerobically degradable chemicals of -0.015 MPa, which corresponds to a pF value of about 2.2.

Evaluation of MCPA residues (Figure 11 E-H) indicated almost complete degradation,

especially in the 1 mg kg−1 treatment at 20°C, where MCPA was no longer detectable after

10 to 15 days. Only under the treatment combination of 20 mg kg−1, 10°C and pF 1.8, 10% of

the initial applied MCPA remained in the soil. In the treatment combination pF 3.5 and 20°C,

no MCPA could be extracted after 20 days. If the incubation took place at 10°C, MCPA was no

longer detectable after 25 days. Similar detection times for MCPA were reported by Bælum et

al. [312], Hiller et al. [313], and Peña et al. [314].

93



8 Environmental factors and pesticide degradation

8.4.2 Invariable microbial dynamics under limiting temperature and moisture

The tfdA gene abundance responded only to the 20 mg kg−1 and 20°C treatment (Figure 11 I, J).

The abundance of tfdA genes reached a maximum 10 days after MCPA application; with higher

copy numbers in soils at pF 3.5 than in soils at pF 1.8 (concentration:day:temp:pF; F8,96 = 2.05, p

= 0.048). After the peak, a slow decline followed until day 28, after which the initial level of

104 copies g−1 was reached again. Similar results were obtained by Vieublé Gonod [315] and

Baelum et al. [128], where an initial "lag" period (0 - 8d) with minor mineralization indicated

limited microbial pesticide turnover. In a second phase characterized by a sharp increase

in mineralization (after day eight), Baelum et al. [128] were able to detect a proliferation of

degraders based on tfdA copy number to 3.0 ⋅ 106 per gram of soil, resulting in an approximate

sigmoid shape of the mineralization curve after saturation of 14CO2 release was attained,

consistent with our results. We could associate a maximum increase in tfdA copy number to

4.3 ⋅ 106 per gram soil with comparable mineralization kinetics. The response of tfdA transcripts

to temperature mirrored the patterns of tfdA gene abundance (concentration:day:temp; F8,96

= 30.01, p<0.001), but transcripts returned after day 15 to the initial level of 103 copies g−1 dw

(Figure 11 M,N,O,P). Soil moisture did not affect gene transcription.

The observed patterns of tfdA gene and transcript dynamics were well captured by simulations

using gene-based mechanistic model. According to Gözdellier et al. [316], different degrader

subpopulations are adapted to different MCPA concentrations. Therefore, we allowed the

parameters 𝑓1 (conversion factor cell to carbon), 𝑚 (maintenance coefficient), and 𝑌𝑃 (yield

coefficient) to take different values at 1 and 20 mg kg−1. Calibrated parameters (Table

S20) suggested populations with bigger cells, higher maintenance demands and lower yield

efficiencies at 20 mg kg−1 than at 1 mg kg−1, which is in accordance with Gözdellier et al. [316].

Additionally, within each concentration level, slightly smaller cells with low maintenance

demands and high yield efficiencies might be expected at pF 3.5.
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Figure 11: Measured (dots) and simulated (lines) of cumulative 14CO2 mineralization at two
MCPA concentrations as a function of temperature and soil moisture over time
(A, B, C, D), Residual MCPA expressed as mg kg−1 over time (E, F, G, H), tfdA
genes during the MCPA biodegradation experiment expressed as gene copies g−1

dry weight (I, J, K, L), tfdA transcripts quantities during MCPA degradation expressed
as transcripts copies g−1 dry weight (M, N, O, P). tfdA genes and transcripts are
expressed at log-scale. Error bars represent standard errors of the mean values for
soil triplicates (see M&M).

8.4.3 CUE dependency on temperature, moisture, and MCPA concentration

We determined 𝐶𝑈𝐸𝑀 based on measured 14C incorporation into microbial biomass [301].

Additionally, and taking advantage of our mechanistic gene-centric model, we derived two

model-based carbon use efficiencies - 𝐶𝑈𝐸𝐸 and 𝐶𝑈𝐸𝐶 . While 𝐶𝑈𝐸𝑀 accounts for pesticide-
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derived C incorporation into the whole microbial community, the two model-based carbon use

efficiencies exclusively consider C utilization by specific pesticide degraders. 𝐶𝑈𝐸𝑀 and 𝐶𝑈𝐸𝐸

measure effects of pesticide-C stabilization on carbon utilization over a longer period, taking

into account the effects of biomass turnover, substrate recycling, and potential cross-feeding

[302]. 𝐶𝑈𝐸𝐶 is calculated from simulated process rates and measures the immediate carbon

utilization after MCPA uptake.

The prerequisite for 𝐶𝑈𝐸𝑀 assessment is quantification of 14C incorporation into the biomass

(14𝐶𝑚𝑖𝑐). Soil moisture did not affect 14𝐶𝑚𝑖𝑐 (Table S27). In contrast, a temperature reduction

to 10°C significantly increased 14𝐶𝑚𝑖𝑐 during the first five days after MCPA application by 3

percentage points to 10% (F1,16 = 4.9, p<0.05), compared to the 20°C treatment. Microbial uptake

of MCPA can occur very quickly, according to Nowak et al. [179], who found a peak in 2,4-D

derived 13C after only two days. They identified bacteria as the main degraders of 2,4-D in the

soil. However, an initial high 14𝐶𝑚𝑖𝑐 is followed by 14C losses, since the 14C is assimilated to

form precursor compounds (PreC) for further biosynthesis or is dissimilated for maintenance

respiration [302].

This short-term metabolic reaction of degraders is represented by 𝐶𝑈𝐸𝐶 (Figure S40). On

average, 𝐶𝑈𝐸𝐶 increased by 0.2 at 1 mg kg−1 compared to 20 mg kg−1. 𝐶𝑈𝐸𝐶 in relation to

the remaining MCPA concentration reached zero at 1 mg kg−1 after about 99% of the initially

applied MCPA was degraded in contrast to the 20 mg kg−1 treatment, where this point was

reached earlier (90%). These findings indicate a more efficient utilization of MCPA-derived C at

low initial concentrations and a longer-lasting gross production. Gross production is defined as

total pesticide uptake minus pesticide-C that is mineralized and used for further biosynthesis

processes [302]. Therefore, in contradiction to the constant metabolic flux analysis of Geyer et

al. [317], in which no change in the biochemical processes was detected during the incubation of

different glucose concentrations, we can confirm a decrease of 𝐶𝑈𝐸𝐶 for MCPA at 20 mg kg−1.

The lower 𝐶𝑈𝐸𝐶 under the higher MCPA concentration is most likely explained by the two

different fitted values of growth yield parameters for each initial MCPA concentration (Table
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S20). This finding supports the inherent model assumption made in accordance with Gözdellier

et al. [316] that two subpopulations of pesticide degraders with different physiologies trigger

concentration-dependent shifts in pesticide-C metabolism. Metabolic regulations leading to

increased nutrient-mobilizing extracellular enzymes or carbon-wasting respiratory mechanisms

under nutrient limitations could also be responsible for lower 𝐶𝑈𝐸𝐶 [318]. However, these

processes can be ruled out because in fertilized soils, nutrient limitations are not expected.

Short term differences in 𝐶𝑈𝐸𝐶 should affect the long-term fate of the MCPA-C, as measured

by 𝐶𝑈𝐸𝑀 and 𝐶𝑈𝐸𝐸 . 𝐶𝑈𝐸𝑀 was significantly higher during the MCPA degradation at 20

mg kg−1 compared to 1 mg kg−1 (+ 0.06; F1,16 = 5.8, p < 0.05) during the first 15 days (Figure

12 A, B, C, D). 𝐶𝑈𝐸𝑀 can only be statistically evaluated by comparison at each time point.

But, comparing 𝐶𝑈𝐸𝑀 over time is misleading, as different states of degradation dynamics are

being compared. To eliminate this deviation, 𝐶𝑈𝐸𝐸 was considered as a function of the relative

decrease in MCPA concentration (Figure 12 E, F, G, H). The simulated 𝐶𝑈𝐸𝐸 is about 0.2 higher

at low concentrations than at high concentrations, indicating greater carbon stabilization at the

ecosystem level at low concentrations. For 𝐶𝑈𝐸𝑀 , this effect was only evident at the end of the

incubation (𝐶𝑈𝐸 = 0.21; F1,16 = 4.3, p = 0.05).

We observed an increase in 𝐶𝑈𝐸𝑀 with decreasing temperature (Figure 12 A, B, C, D),

which also has previously been reported [319–321], and is associated with higher growth

efficiencies [320, 322] and lower energy costs to maintain existing biomass [301, 316]. An

additional temperature effect is that increased microbial activity at 20°C leads to increased MCPA

turnover especially at 20 mg kg−1, which is in agreement with the Arrhenius equation [323].

The substrate concentration was therefore present longer at 10°C and as a result, maintained a

higher 𝐶𝑈𝐸𝑀 for a longer time (Figure 12 E, F, G, H). The simulated carbon use efficiencies did

not indicate the temperature effect (Figure 12 E, F, G, H). This is because the model assumptions

for 𝐶𝑈𝐸𝐸 and 𝐶𝑈𝐸𝐶 assigns the same temperature sensitivity to microbial growth, maintenance

and turnover (see Eq. 98, 88, 89, 90, 91).

In addition to concentration and temperature, 𝐶𝑈𝐸𝑀 was increased by the reduction of soil
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water content (+ 0.15; F1,16 = 40.3, p < 0.01), especially at the first time point (fifth day). Similarly,

𝐶𝑈𝐸𝐸 and 𝐶𝑈𝐸𝐶 were 0.25 higher at pF 3.5 (Figure 12). Consistent with this finding, Jones

et al. [324] found an upward trend in microbial CUE under the following levels: hyper-dry >

dry > semi-dry, with the subsequent finding that even under hyper-dry conditions, very low

microbial activity and C turnover occurred with altered C allocation. The reason given was a

reduced catalytic activity related to a decline in motility of organisms and enzymes across a

water film that loses thickness as drought increases.

Interestingly, increased 𝐶𝑈𝐸 with reduced temperature and water content was not

accompanied by any response of tfdA transcript and gene copy numbers in our study. This

imbalance may be explained by the fact that microbial use of the substrate is more complex

than simply converting it to biomass [271]. Rather, bacterial degraders synthesize a variety

of products, e.g., to maintain basic functions, such as extracellular enzymes, extracellular

polysaccharides, cell wall polymers, but also stress response compounds, such as osmolytes, to

survive under dry conditions [282]. This formation of stress compounds could explain a slight

increase in carbon use efficiencies during MCPA degradation under drier conditions compared

to the near optimal water content at pF 1.8.
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Figure 12: 𝐶𝑈𝐸 vs. time (d) shown in panels A to D, and 𝐶𝑈𝐸 vs normalized residual MCPA
concentration in soil shown in panels E to H. 𝐶𝑈𝐸𝑀 (Eq. 105) is presented as points
and 𝐶𝑈𝐸𝐸 (Eq. 106) as lines

8.4.4 Effect of temperature and soil moisture on pesticide DT50

Differences in MCPA mineralization were also reflected in DT50-values, describing the time

required to mineralize 50% of the applied MCPA (Table 9). We determined two different

DT50-values; i) a DT50MIN derived from the mineralization kinetics and typically calculated

in dissipation experiments of pesticides, and ii) a DT50RES derived from the residual MCPA

concentration. Under limiting conditions, we observed longer DT50RES as well as DT50MIN-

values, with temperature exerting a stronger influence than soil moisture.

We observed that lowering the temperature to 10°C at 1 mg kg−1 and pF 3.5 increased the

residence time of MCPA by a factor of 1.9 based on mineralization kinetics (Table 9). In

contrast, the DT50RES-value differed only by a factor of 1.4. This may be explained by an altered

temperature-dependent C allocation, namely a disproportionate increase in 14C incorporation

at 10°C versus an increase in mineralization at 20°C. Consequently, this resulted in almost equal

MCPA-utilization rates [325]. It is, therefore, important to consider total MCPA turnover, as
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DT50RES theoretically includes the dynamics of 14C incorporation and mineralization, whereas

DT50MIN captures only the contribution of mineralization. At pF 1.8, both DT50 values were

identical (Table 9). However, at pF 1.8 the 𝐶𝑈𝐸𝐶 and 𝐶𝑈𝐸𝐸 was on average 0.2 lower than at

pF 3.5 (Figure 12, Eqs. 107 and 106) reflecting a reduced contribution of 14C incorporation to

MCPA-derived C turnover.

Compared to the concentration of 1 mg kg−1, the effect of a temperature reduction at 20

mg kg−1 was independent of soil moisture and the DT50 approach, and increased half lifes

by a factor of 2 (Table 9). In this case, degradation is initially limited by the number of

microorganisms, in contrast to degradation at 1 mg kg−1, where the degradation potential is

already provided by the autochthonous microbial abundance and rapid first-order degradation

can be initiated immediately [171, 289]. According to Babey et al. [259], degradation of 2,4-D is

most efficient when the ratio of degraders to instantaneous pesticide concentrations favors of

degraders. This was the case for the treatment at 20°C and high initial pesticide concentration

after relatively lower mineralization was observed in the first phase of the experiment (0-5d).

In the absence of growth at 10°C, as indicated by the lack of increase in tfdA copy number,

the degradation efficiency was significantly reduced, as reflected in the increased DT50 values

(Table 9).

Table 9: Half-life DT50RES derived from the residual MCPA concentration in soils and DT50MIN
derived from mineralization kinetics as a function of soil water content, concentration,
and temperature

DT50RES DT50MIN

pF 1.8 pF 3.5 pF 1.8 pF 3.5

10°C 20°C 10°C/20°C 10°C 20°C 10°C/20°C 10°C 20°C 10°C/20°C 10°C 20°C 10°C/20°C

20 mg kg−1 18.9 9.3 2.0 15.6 7.6 2.1 18.5 9.9 1.9 17.6 8.8 2.0

1 mg kg−1 9.2 6 1.5 7.5 5.2 1.4 10.3 6.7 1.5 12.2 6.3 1.9

Our results partially refuted previous findings [265, 326–328], stating that the decrease in

temperature and soil moisture during biodegradation of MCPA is always accompanied by a

significant increase in half-life. The extent to which the residence time of MCPA was affected
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by a change in temperature and soil moisture content depended on initial concentration and

associated degradation dynamics. In the present study, we demonstrated that 14C incorporation

is not necessarily proportional to mineralization, confirming our hypothesis that under limiting

conditions assimilation can be enhanced to support biosynthesis rates. Dissimilation including

non-growth maintenance activities [302] increased with temperature, as energy costs became

more important to regulate motility or molecular turnover of proteins [329]. As a result, the

MCPA-derived carbon will be used more efficiently by microorganisms at low temperatures

and reduced soil moisture content. Applying this principle to pesticide degradation, estimating

DT50-values from cumulative mineralization curves alone could, under certain circumstances,

imply a systematic overestimation of persistence time.
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9 Optimal design of experiments for effective modeling of

atrazine degradation in soils (Paper 4)

This chapter includes the following paper in preparation for publication as:

Luciana Chavez Rodriguez, Ana Gonzalez-Nicolas, Brian Ingalls, Sinan Xiao, Wolfgang

Nowak, Thilo Streck, Holger Pagel (2021). Optimal design of experiments for effective modeling

of atrazine degradation in soils.

with the following modification:

1. Numbers of figures, tables, and equations are relative to this thesis and not to the original

publication.
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9.1 Abstract

The natural degradation pathways of the herbicide atrazine (AT) are highly complex. These

pathways involve the metabolic activity of several bacterial guilds (that use AT as a source

of carbon, nitrogen, or both) and abiotic degradation mechanisms. The co-occurrence of

multiple degradation pathways, combined with challenges in quantifying bacterial guilds and

relevant intermediate metabolites, could be represented by competing model formulations,

which all might represent valid descriptions of the fate of AT. A proper understanding of the

fate of this complex compound is needed to develop effective management and mitigation

strategies. Here, we propose a model discrimination process in combination with a prospective

optimal design of experiments. We simulated experimental data using a first-order model

that reflects a simple reaction chain of complete AT degradation and a set of Monod-based

model variants that consider different bacterial guilds. We used a Bayesian statistical analysis

of simulated ensembles to investigate virtual degradation experiments and chemical analysis

strategies, thus obtaining predictions on the utility of experiments to deliver conclusive data

for model and pathway discrimination. We considered a range of experimental protocols

addressing: i) the metabolites or chemicals to measure (AT, metabolites, and 𝐶𝑂2), ii) sampling

frequency (daily, every two days, or every four days), and iii) features typically not measured

(specific bacterial guilds). As a statistical metric for model discrimination we used the energy

distance. Our results show that simulated AT degradation pathways following first-order

reaction chains can be clearly distinguished from simulations using Monod-based models.

Within the Monod-based models, we detected two clusters of models that differ in the

number of bacterial guilds involved in AT degradation. Based on our prospective analysis,

experimental designs considering the sink cyanuric acid (CA) provided the most informative

data to discriminate models. As expected, the inclusion of measurements of specific bacterial

guilds improved model discrimination. Our study highlights that environmental fate studies

should prioritize measuring metabolites to elucidate active AT degradation pathways in

soil and identify robust model formulations supporting risk assessment and mitigation strategies.
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Keywords: atrazine degradation, monod-kinetics, first-order kinetics, equifinality, model

discrimination, optimal design of experiments, energy distance.

9.2 Introduction

Pesticides are important chemicals used globally in agriculture to manage plant stressors such

as pests, weeds, and diseases [5]. Due to their potential negative effects on ecosystems [226]

and human health [21], some pesticides have been banned or otherwise restricted. The pesticide

atrazine (AT) was banned in Europe in 2004. However, AT and its metabolites are still found in

soils and groundwater in potentially harmful concentrations [57, 203, 330]. In the environment,

AT undergoes abiotic [132] and biotic [49] degradation. Several bacterial guilds have been

observed to metabolize AT (as carbon source [62, 63], nitrogen source [10] or both [49]), leading

to an accumulation of intermediate metabolites, most commonly: hydroxyatrazine (HY) [141,

142, 330], deisopropylatrazine (DIA), and deethylatrazine (DEA) [331–333]. The co-occurrence

of multiple AT degradation pathways that can lead to the formation of identical metabolites

poses a challenge to determining the fate of AT. This issue confounds our ability to understand

why AT persists in real systems, thus hampering future mitigation strategies [98].

Mathematical modeling approaches are valuable tools for the investigation of complex

degradation pathways such as AT degradation, allowing for combining the current

understanding of AT degradation with mathematical formulations and validating them with

real measurement data such as AT and metabolite concentrations and biomass [334]. In the

particular case of AT degradation, the limitation of which intermediate metabolites and bacterial

guilds involved are measured could lead to distinct mathematical models representing the same

system with equivalent accuracy (equifinality problem) [115]. Distinguishing among these

competing models can help us to determine which AT degradation pathways are active in a

particular environment. When addressing competing models, two cases arise. If all model

formulations predict similar behavior for all system elements (AT degradation, metabolite

104



9 Optimal design of experiments

dissipation, and biomass formation), then the simplest (most parsimonious) model formulation

is usually accepted as the best (most valid) representation. Otherwise, it is important to know

what observations might provide the most useful information to distinguish the models: to

facilitate model discrimination [115, 335, 336]. By identifying relative differences between models,

we can reduce the number of competing models by clustering together those that are most

similar and facilitate model invalidation [115, 336].

Optimal Design (OD) of experiments is a promising tool for addressing the equifinality

problem. OD aims to maximize the benefit obtained from experiments [112]. If it is done prior

to the execution of the experiment, it is called prospective OD [110, 112]. In our case, we use

OD to identify experimental designs that maximize the observed difference between competing

models of AT degradation [115]. Among multiple metrics used to distinguish models [115, 335,

336], the concept of energy distance (ED) [114] is a computational efficient and robust model-

distance metric. In this context the design that produces data from which one can maximize

total pair-wise (model to model) ED is considered the optimal design for model discrimination.

This work aims to determine the measurements needed to distinguish the active AT

degradation pathway in a particular environment, represented by mathematical models. At the

same time, we aimed to find the level of model complexity needed to describe AT degradation

in soils through model invalidation. For this purpose, we developed a set of mechanistic Monod-

based models, representing different degradation pathways of AT in soils and a first-order decay

model, typically used to describe degradation at field scale [337]. Later, we applied a prospective

OD, using ED for model discrimination, to the set of models, and explored the advantages of

including not yet quantified pools in model discrimination.
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9.3 Material and Methods

9.3.1 Atrazine degradation models

Conceptual model

We consider a set of hierarchical, nested models for degradation of atrazine (AT) in soils

(Figure 13), including biotic and abiotic degradation, representing common degradation

pathways of AT. These models vary in complexity from a complete Monod-model version

(M1) to a simple first-order decay model (M6) (which is commonly used to model degradation

at field scale) [337].

We assume that degradation processes occur in a well-mixed soil environment that contains

a colection of bacterial guilds: labelled A, B, C, and D (see Section Bacterial guids description).

Members of each guild are able to fully or partially metabolize bioavailable AT and its

intermediate metabolites as sole carbon and energy sources [139, 338, 339] ( Figure 13). Nitrogen

use is not considered. The members of each guild are partitioned into two subpools with

different physiological states: active and dormant. Activation and deactivation rates are driven

by carbon availability in the system. We explicitly account for a dissolved organic carbon pool

(DOC) that serves as a collector of dead cells. The last metabolite of the AT transformation is

cyanuric acid (CA) [340]. The transformation of CA to carbon dioxide (CO2) is regulated by

nitrogen availaibility. At high nitrogen concentrations, CA transformation is strongly inhibited

by all guilds [137].
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Figure 13: Atrazine (AT) degradation in soils: model framework, describing AT, its intermediate
metabolites (in blue), sink pools (in grey), and the bacterial guilds involved in the
degradation process. Arrow colors indicate activity of the bacterial guilds. Black
arrows represent abiotic processes: degradation of AT and nitrogen-dependent
degradation of CA. Dashed line represents the unintended HY leaked out of the
degradation carried out by guild A [62, 63]. Dashed-dot line shows a degradation
step uncoupled from growth (carried out by guild B); 𝑓𝐷 represented the proportion
of DIA formed during AT degradation carried out by guild D

Bacterial guilds

We defined the four guilds based on genetic information regarding known AT degraders:

1. Guild A is able to use the side chains of AT as carbon source, degrading it to cyanuric

acid (CA) [137, 139]. Additionally, this guild can use as carbon sources, the metabolites

HY, NE, NI and the products of the dealkylation of AT (DIA and DEA) [146]. Members

of this guild constitutively express a range of gene combinations: atzABC, trzN-atzBC

and/or trzN-atzC [49, 340]. Examples of members of this guild are: Arthrobacter aurescens

TC1 [62, 63], and Ensifer sp [341].

2. Guild B is able to dechlorinate AT to hydroxyatrazine (HY) without gaining either carbon

or energy through the activity of genes atzA [142] or trzN [141]. Additionally, they

degrade HY to N-ethylammelide (NE) [141] (via uncharacterize enzymes), or degrade the

metabolite N-isopropylammelide (NI) to CA, via the gene atzC. Example of members this
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guild: Nocardia sp [141].

3. Guild C uses HY and NI as main carbon and energy sources by harboring the genes atzB

and atzC, yielding CA [141, 142]. The atzC gene also allows for metabolism of NE as

carbon source [342]. Examples members of this guild: Rhizobium sp [141].

4. Guild D dealkylates AT to the metabolites deethylatrazine (DEA) and deisopropylatrazine

(DIA) in a fixed proportion 𝑓𝐷 [343] (Figure 13). Specific genes for this pathway have not

been identified; it is believed that this degradation is a cometabolic process [152, 344]

mediated by the cytochrome P450 [332]. Examples members of this guild: Rhodococcus

sp [332].

Process formulations

1. AT and metabolite dynamics 𝑁 ): AT and the intermediate metabolites HY, DEA, DIA, NI

and NE (generically referred to by the label 𝑁 (for nutrient) below, are each represented

by a total concentration 𝑁 𝑇 [mg cm−3] segregated into a bioavailable pool (concentration

𝑁 𝐿 [mg cm−3]), and a sorbed pool (concentration 𝑁 𝑆 [mg g−1]):

𝑁 𝑇 = 𝜃 ⋅ 𝑁 𝐿 + 𝜌 ⋅ 𝑁 𝑆 (108)

where 𝜃 [cm3 cm−3] and 𝜌 [mg cm−3] are the soil water content and bulk density

respectively.

These two pools are related by the Freundlich isotherm with retardation factor (𝑅𝐹 ):

𝑅𝐹 = 1 +
𝜌
𝜃
⋅ 𝐾𝑁

𝐹𝑃 ⋅ 𝑛
𝑁
𝐹𝑃 ⋅ (𝑁

𝐿)(𝑛
𝑁
𝐹𝑃−1) (109)

where 𝐾𝑁
𝐹𝑃 [mg(1−nN)g−1LnN] is the Freundlich coefficient and 𝑛𝑁𝐹𝑃 [-] is the Freundlich

exponent.

Bioavailable carbon sources (𝑁 𝐿) are taken up and degraded biotically by active guild
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populations 𝐵𝑎𝑘 . We account for two possible fates for consumed nutrients (metabolite

formation and bacterial metabolism). A fraction 1 − 𝑓𝑁 of the carbon in nutrient 𝑁 is

converted converted to the downstream metabolite:

𝑟𝑘,𝑁𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒−𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 =
𝜇𝑘,𝑁 ⋅ 𝐵𝑎𝑘 ⋅ (1 − 𝑓𝑁 ) ⋅

𝜌
𝜃

𝑅𝐹
(110)

where 𝜇𝑘,𝑁 is the growth coefficient (eq. 118).

The remaining fraction 𝑓𝑁 contributes to biomass accumulation and to respiration, with

yield factor 𝑌𝑘,𝑁 [-]:

𝑟𝑘,𝑁𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡−𝑢𝑠𝑒 =
𝜇𝑘,𝑁 ⋅ 𝐵𝑎𝑘 ⋅ (

𝑓𝑁
𝑌𝑘,𝑁 ) ⋅

𝜌
𝜃

𝑅𝐹
(111)

Together, these give an overall uptake rate:

𝑟𝑘,𝑁𝑢𝑝𝑡𝑎𝑘𝑒 =
𝜇𝑘,𝑁 ⋅ 𝐵𝑎𝑘 ⋅ (

𝑓𝑁
𝑌𝑘

+ (1 − 𝑓𝑁 )) ⋅
𝜌
𝜃

𝑅𝐹
(112)

Specific degradation processes that do not involve biomass accumulation and respiration

are described as follows:

• abiotic transformation of AT to HY (photodegradation) has been observed [230].

We model this process (black arrow in Figure 13 by first-order decay):

𝑟𝐴𝑇𝑎𝑏𝑖𝑜𝑡𝑖𝑐−𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 =
𝐾𝑜 ⋅ 𝐴𝑇 𝐿

𝑅𝐹
(113)

where 𝐾𝑜 [d−1] is the constant degradation rate.

• It has been observed HY leaks out of members of guild A by passive diffusion [62,

63] to the soil system. We modelled this leak flux as a constant fraction of the AT
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that has been uptaken by guild AT:

𝑟𝐴𝑇−𝐻𝑌
𝑙𝑒𝑎𝑘 =

𝑟𝐴,𝐴𝑇𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒−𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 ⋅ 𝑓𝐻
𝑅𝐹

(114)

where: 𝑓𝐻 [-] fraction of the of the uptake AT flux that leaks out.

• Guild B dechlorinates AT to HY without gaining carbon or energy [63]. We modelled

this process with Michaelis-Menten kinetics because this step is not coupled to

growth (Dashed-point line in Figure 13):

𝑟𝐵𝑑𝑒𝑐ℎ𝑙𝑜𝑟𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =

𝑘𝐴𝑇−𝐻𝑌 ⋅ 𝐴𝑇 𝐿 ⋅ 𝐵𝑎𝐵
𝐾𝐴𝑇−𝐻𝑌 + 𝐴𝑇 𝐿

𝑅𝐹
(115)

where 𝑘𝐴𝑇−𝐻𝑌 [d−1] is the dechlorination rate for Guild B, and 𝐾𝐴𝑇−𝐻𝑌 [mg cm−3] is

the half-saturation concentration.

• Guild D metabolizes AT to DIA and to DEA simultaneously [332]. A fraction 𝑓𝐷 of

the converted AT is in the form of DIA, while the remaining fraction (1 − 𝑓𝐷) is in

the form of DEA (Figure 13).

2. CA degradation: CA is the final metabolite of AT transformation considered in the

model because the further breakdown of CA is typically fast, without accumulation

of intermediate metabolites [340, 345]. The model reflects CA degradation as inhibitory

first-order decay:

𝑟𝐶𝐴−𝐶𝑂2 =
𝐶𝐴𝐿 ⋅ 𝑑𝐶𝐴−𝐶𝑂2 ⋅

𝐾𝑖𝑛

𝑁𝑂3 + 𝐾𝑖𝑛
𝑅𝐹

(116)

where the 𝑑𝐶𝐴−𝐶𝑂2 [d−1] is the rate of degradation of CA to CO2, 𝐾𝑖𝑛 [mg cm−3] is the

inhibition factor, and NO3 [mg cm−3] is the nitrogen concentration in the system taken

as a model parameter.

3. Bacterial dynamics and physiology: We describe two subpopulations of each 𝑘 bacterial
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guilds (𝑘 = 𝐴, 𝐵, 𝐶, 𝐷) according to their physiological state: active 𝐵𝑎𝑘 or dormant 𝐵𝑑𝑘

[mg g−1]. For each guild 𝑘, the active population grows at rate 𝑟𝑘𝑔𝑟𝑜𝑤𝑡ℎ [mg g−1 d−1] on

multiple carbon sources modelled with a Monod-kinetics allowing for competition for

binding sites [78]:

𝑟𝑘,𝑁𝑔𝑟𝑜𝑤𝑡ℎ =
(

∑
𝑁∈N𝑘

𝜇𝑘,𝑁 ⋅ 𝑓𝑁)
⋅ 𝐵𝑎𝑘 (117)

where N𝐴 = {AT, HY, DEA, DIA, NE, NI}, N𝐵 = {AT, HY, NI}, N𝐶 = {HY, NE, NI}, N𝐷 =

{AT} and 𝜇𝑘,𝑁 is the growth coefficient defined as:

𝜇𝑘,𝑁 =
𝜇𝑘,𝑁𝑚𝑎𝑥 ⋅ 𝑁 𝐿

𝜇𝑘,𝑁𝑚𝑎𝑥 + 𝜇N𝑘

(118)

where: 𝜇k,Nmax [d−1] is the maximum growth rate for the guild 𝑘 on the available fraction of

the carbon source 𝑁 𝐿. Function 𝜇N𝑘 is defined as:

𝜇N𝑘 =
𝑖

∑
𝑁=1

(𝑁 𝐿 + 𝐾𝑘,𝑁 ) (119)

where 𝑖 is the number of carbon sources that each guild 𝑘 can utilize, and 𝐾𝑘,𝑁 [mg cm−3]

is the half-saturation concentration of each guild 𝑘 on each carbon source 𝑁 𝐿.

Dormant populations do not grow. Transitions between dormant and active states are

described by a switch-like function proposed by Stolpovsky et al. [169]:

𝑟𝑘𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝜏𝑘 ⋅ 𝑘𝑎𝑘 ⋅ 𝐵
𝑑
𝑘 (120)

𝑟𝑘𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = (1 − 𝜏𝑘) ⋅ 𝑘𝑑𝑘 ⋅ 𝐵𝑎𝑘 (121)

where 𝑘𝑎𝑘 and 𝑘𝑑𝑘 [d−1] are the activation and deactivation coefficients for guild 𝑘. Function

𝜏k is defined as:
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𝜏𝑘 =
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⎢
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where 𝑁 𝑘
𝑡ℎ [mg cm−3] is the threshold concentration for the guild 𝑘, and n [-] is the

steepness parameter set to 0.1 [170].

Both active and dormant subpopulations are subject to linear decay at rate:

𝑟 𝑗,𝑘𝑑𝑒𝑐𝑎𝑦 = 𝑎𝑗,𝑘 ⋅ 𝐵
𝑗
𝑘 (123)

where 𝑎𝑗,𝑘 [d−1] is the decay rate coefficient for the guild n and index 𝑗 represents active

or dormant bacterial state.

4. DOC formation and bacterial respiration: We included two different sink pools:

a) Dissolved organic carbon pool (DOC) which collected dead cells from all guilds

(𝑟 𝑗,𝑘𝑑𝑒𝑐𝑎𝑦 ). A fraction 𝑓𝑅 of the DOC contributes to the CO2 pool:

𝑟𝐷𝑂𝐶−𝐶𝑂2 = 𝑟 𝑗,𝑘𝑑𝑒𝑐𝑎𝑦 ⋅ 𝑓𝑅 (124)

b) CO2 [mg g−1] accumulates due to bacterial respiration at rate:

𝑟𝑘𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 = 𝜇𝑘,𝑃 ⋅ 𝐵𝑎𝑘 ⋅ 𝑓𝑁 ⋅ (
1 − 𝑌𝑘
𝑌𝑘 ) (125)

Scenario models

AT is commonly found in soils together with three principal intermediate metabolites HY, DIA,

and DEA [346–348]. Additional intermediate metabolites NE and NI are also part of some

reported degradation pathways [141, 142], but their accumulation has rarely been reported

in soils [49]. Therefore, we set six model scenarios based on the presence or absence of the
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main bacterial guilds involved in AT degradation so that the metabolites HY, DIA, and DEA,

are always present (Figure 13 and Table 10). Additionally, we added a simple first-order decay

model M6, which only includes the chemical pools AT, HY, DIA, DEA, and CA and CO2. Specific

degradation pathways mediated by fungi [349] were not considered. Full ODE equations for

each scenario model are presented in the Supplementary information, Section 11.4.1.

Table 10: Scenario models of AT degradation in soils

Model variants Bacterial guilds Resulting chemical pools (𝑁 )

M1 A, B, C, D AT, HY, DIA, DEA, NI, NE

M2 B, C, D AT, HY, DIA, DEA, NI, NE

M3 A, C, D AT, HY, DIA, DEA, NI

M4 A, B, D AT, HY, DIA, DEA, NE

M5 A, D AT, HY, DIA, DEA

M6 - AT, HY, DIA, DEA

9.3.2 Prospective optimal design of experiments (OD)

Model outputs and generation of simulated data

As candidate model outputs, we considered AT and the metabolites HY, DIA, DEA, NI, NE, and

sinks CA, and CO2, as well as the biomass of the bacterial guild D, (the only guild present in all

Monod-based model variants), and the total biomass (of all guilds present in the given system

formulation).

Our prospective optimal design analysis is based on simulated data. We chose an initial

concentration of AT of 100 mg kg−1 [350] and an initial total biomass of 0.001 mg kg−1 for model

simulations, equally divided among the guilds present in the system formulation. We set all

bacterial guilds to be dormant and all intermediate metabolites to zero at the beginning of the

experiment. To restrict to plausible simulations, we defined a set of parameter and process

constraints that the model parameters and outputs should satisfy based on expert knowledge

and soil observations, as follows.
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The parameter constraints (𝑃𝑐) are:

1. For each guild, the maximum growth rate coefficient (𝜇𝑘,𝐶𝑚𝑎𝑥 ) must be higher than death

rate coefficient of active bacteria (𝑎𝑎,𝑘)

2. The Freundlich sorption coefficient of HY (𝐾𝐻𝑌
𝐹𝑃 ) must be higher than the Freundlich

sorption coefficient of AT, DIA, DEA, CA, NI, and NE [351]

3. The Freundlich sorption coefficient of AT (𝐾𝐴𝑇
𝐹𝑃 ) must be higher than Freundlich sorption

coefficient of AT, DEA, CA, NE [351]

The process constraints (𝑃𝐶) are:

1. DT50 (time that takes to dissipate 50% of the pesticide [65]) of AT between 5 and 25

days [49, 352]

2. AT concentration must be at least 10−8 mg mL−1 [57] at the end of the experiment

3. Mineralization of initially added AT between 20-80% at the end of the experiment

4. DT50 of HY, DIA and DEA between 2-30 days.

The high-dimensional parameter space of the scenario models of AT biodegradation (between

20 and 70 parameters depending on the scenario) implies that the behavioral parameter space

satisfying all constraints (viable space [353]) is very small, making simple Monte-Carlo

parameter sampling computationally much too expensive. We adopted a constraint-based search

(CBS) method [118] and modified it to randomly select parameter sets from the behavioral

parameter space. The CBS method is based on an iterative algorithm that successively applies

stricter process constraints by increasing the minimum number of process constraints to be

satisfied in each iteration. We replaced the original parameter sampling procedure of Gharari et

al. [118] with a Metropolis-Hastings algorithm, using a Markov Chain Monte Carlo (MCMC)

sampler. As a result, with this new CBS-MCMC method, we achieved reproducible and unbiased

sampling of behavioral parameter sets.
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The CBS-MCMC method used in our work consists of the following steps:

1. Define a number of parameter constraints (𝑃𝑐) (here, 𝑃𝑐 = 3).

2. Define the minimum number of process constraints (𝑃𝐶) for the initial sampling (here,

𝑃𝐶 = 2).

3. Perform an initial Latin hypercube sampling to draw𝑀 random parameter sets (𝑀=500,000

in this study) using uniform marginal parameter distributions (see Table 11 for ranges).

4. Identify the candidate parameter sets (𝐱𝐜) that satisfy all given parameter constraints (𝑃𝑐).

5. Run the scenario model with the candidate parameter sets 𝐱𝐜 and evaluate the number of

satisfied process constraints (𝑃𝐶′).

6. Accept only the behavioral parameter sets (𝐱′𝐜) resulting in model runs where 𝑃𝐶′ ≥ 𝑃𝐶

and reject all other parameter sets in 𝐱𝐜.

7. Increase 𝑃𝐶 by one, and use 𝑀𝑀𝐶 randomly chosen parameter sets from 𝐱′𝐜 as starting

parameter values (𝐱𝐬) for MCMC sampling.

8. Apply the Metropolis-Hastings algorithm with 𝑀𝑀𝐶 parallel Markov chains (𝑀𝑀𝐶 = 40

in this study):

a) Generate new candidate parameter sets 𝐱𝐜 using a Gaussian jumping distribution

centered at the parameter values in 𝐱𝐬 with the standard deviation determined from

all corresponding parameter values of 𝐱𝐬. Verify if the parameter constraints (𝑃𝑐)

are satisfied. We designed the algorithm to repeatedly draw individual parameter

sets until all parameter constraints are satisfied. When the generated parameter

values are located outside the defined lower and upper bounds (Table 11), they are

reflected back into the search space at the respective boundary [117].

b) Run the scenario model with 𝐱𝐜 and evaluate 𝑃𝐶′.
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c) Accept 𝐱𝐜 as behavioral if 𝑃𝐶′ ≥ 𝑃𝐶 , otherwise reject 𝐱𝐜 and keep 𝑥𝑠 . Update 𝐱′𝐜

correspondingly.

9. Repeat steps 6 and 7 until all process contraints are satisfied 𝑃𝐶′ = 𝑃𝐶 .

As long as 𝑃𝐶′ ≥ 𝑃𝐶 , the length of individual Markov chains (𝐿𝑀 ) in Step 7 is set to 1,000

draws of candidate parameter sets. If less than 𝑀𝑀𝐶 new candidates were accepted, MCMC

sampling in Step 7 is repeated, keeping the current value of 𝑃𝐶 while successively increasing

𝐿𝑀 by 5,000 until at least 𝑀𝑀𝐶 new candidate parameter sets were accepted. As a pre-step to

the last iteration of the CBS-MCMC method (𝑃𝐶′ = 𝑃𝐶), repeated MCMC runs were performed

to optimally adapt the jumping rate of the Metropolis-Hastings algorithm (Step 7) to achieve an

acceptance rate of approximately 0.2 to 0.5 for the final MCMC runs. This way, we generated

30,000 unique model outputs (𝑛𝑚𝑐) for further analysis.
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Table 11: Model Parameters for Monod and first-order kinetic models

Parameter Description Units Parameter Value

Min. Max.

Monod Parameters

𝜇𝑛,𝑃𝑚𝑎𝑥 Maximal specific growth rate of pesticide degraders [d−1] 10−3 103

𝐾𝑛,𝑃 Growth substrate affinity coefficient of pesticide degraders [mg cm−3] 10−3 105

𝑘𝑎𝑛 Coefficient rate of activation [d−1] 10−5 100

𝑘𝑑𝑛 Coefficient rate of deactivation [d−1] 10−5 100

𝐶𝑑
𝑇 Threshold concentration [mg cm−3] 10−6 104

𝑎𝑎,𝑛 Specific death rate of active bacteria [d−1] 10−3 104

𝑎𝑖,𝑛 Specific death rate of inactive bacteria [d−1] 10−6 10−2

𝑌𝑛 Yield parameter [-] 0.1 1

𝑘𝐴𝑇−𝐻𝑌 Dechlorination rate [d−1] 10−4 103

𝐾𝐴𝑇−𝐻𝑌 Saturation concentration [mg cm−3] 10−5 104

Sorption Parameters

𝐾 𝑃
𝐹𝑃 Freundlich coefficient [mg(1−nPFP)g−1cm(3nPFP)] 0.5 10

𝑛𝑃𝐹𝑃 Freundlich exponent [−] 0.6 1

First Order Decay Parameters

𝐾𝑜 Abiotic transformation of Atrazine to HY [d−1] 10−4 105

𝐾𝐼 Inhibition factor [mg cm−3] 10−4 103

𝑁𝑂3 Nitrogen concentration [mg cm−3] 10−3 103

𝑑𝐴𝑇−𝐻𝑌 Decay rate of AT to HY [d−1] 10−4 103

𝑑𝐴𝑇−𝐷𝐷 Decay rate of AT to DD [d−1] 10−4 103

𝑑𝐻𝑌−𝐶𝐴 Decay rate of HY to CA [d−1] 10−4 103

𝑑𝐷𝐼𝐴−𝐶𝐴 Decay rate of DIA to CA [d−1] 10−4 103

𝑑𝐷𝐸𝐴−𝐶𝐴 Decay rate of DEA to CA [d−1] 10−4 103

𝑑𝐶𝐴−𝐶𝑂2 Decay rate of CA to CO2 [d−1] 10−4 103

Constant Rate Parameters

𝑓𝑅 Fraction of dead bacteria which goes to DOC [−] 0.01 1

𝑓𝐻 Leak flux constant [−] 0.01 1

𝑓𝐷 Fraction of AT used for DEA formation used by guild D [−] 0.25 0.75

Next, for each simulation, we generated a relative error 𝐸𝑟𝑒𝑙 (𝑡) to normalize the output
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channels: AT, metabolites (HY, DIA, DEA, NE, NI), and sinks (CA, CO2) for all the models at

each time, 𝑦(𝑡)𝑚,𝑙 . For this purpose, we applied a relative error tied to the mean observed at

each time for the whole ensemble of each metabolite and models (30,000 sampled outputs). This

way, observations with larger magnitudes will have larger 𝐸𝑟𝑒𝑙 (𝑡).

𝐸𝑟𝑒𝑙 (𝑡) = 𝑓 𝑟𝑎𝑐 ⋅

√

(
1

𝑛𝑚𝑜𝑑
⋅
𝑛𝑚𝑜𝑑

∑
𝑚=1

1
𝑛𝑚𝑐

⋅
𝑛𝑚𝑐

∑
𝑙=1

𝑦(𝑡)𝑚,𝑙)

2

(126)

𝑦𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 (𝑡)𝑚,𝑙 =
𝑦(𝑡)𝑚,𝑙

𝐸𝑟𝑒𝑙 (𝑡)
(127)

where 𝑓 𝑟𝑎𝑐 is 10%, 𝑛𝑚𝑜𝑑 is the number of models (𝑛𝑚𝑜𝑑 = 6 for analysis including chemicals, 𝑛𝑚𝑜𝑑

= 5 for analysis including biomass, and 𝑛𝑚𝑜𝑑 = 3 for analyses including NI and NE metabolites),

and 𝑛𝑚𝑐 is the number of realizations (30,000).

Measuring model separation: Energy distance (ED) for OD

We use energy distance (ED) as a measure of distance between models; more specifically,

between normalized model outputs 𝑦𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 (𝑡)𝑚,𝑙 (eq. 127). Generically, ED provides a

measure of distance between distributions [114]. For our analysis, we generate distributions

of normalized model outputs based on particular experimental designs. The energy distance

measure accounts for variance by discounting the distance between model outputs by the

within-model variance [114]. Because of the normalization of the model outputs (eq. 127),

the scale of energy distance will result “in units of error of standard deviations”, making the

distances interpretable.

𝐸𝐷(𝑋 , 𝑌 ) =
√
2 ⋅ 𝐸‖𝑋 − 𝑌 ‖ − 𝐸‖𝑋 − 𝑋 ′‖ − 𝐸‖𝑌 − 𝑌 ′‖ (128)

where X and Y are output distributions from two model instances, respectively, and X′ and

Y′ are separate realizations of the models, respectively. The term E‖X − Y‖ is the expected
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Euclidian distance between these distributions, while E‖X − X′‖ and E‖Y − Y′‖ are their expected

within-model variances. Discounting by the within-model ensures that noisy outputs that do

not differ much between models contribute minimally (or even detract from) the ED measure of

model separation.

The goal of our prospective optimal design method was to determine the design that provides

the most informative data for model discrimination [112]:

𝑑𝑜𝑝𝑡 = argmax(Objective)
𝑑∈𝐷

(129)

where (D) is the set of candidate designs and the objectives are pairwise energy distances (ED)

between the set of models under consideration (specified in the Results section).

To make reliable statements about the ED, we chose a subsample size of 10,000 out of the

30,000 simulated data outputs per model variant because this sample size showed a stable ED

throughout the candidate designs (Figure S58). We normalized the ED scores by the maximum

ED of the candidate designs and applied a multi-objective Pareto optimization (MATLAB’s

“prtp” function [354]) to determine the non-dominated designs [355] (𝑑𝑜𝑝𝑡 ). These are presented

as spider plots [356] and were produced in Matlab.

9.4 Results and Discussion

9.4.1 Can we distinguish active AT degradation pathways based on

observations of metabolite concentrations?

To determine the active AT pathway in a particular environment, we explored whether the

six proposed models (M1-M6), representing conceptual AT degradation pathways, can be

differentiated based on the observation of metabolites and CA and CO2 (sinks) concentrations.

Because AT, the main metabolites (HY, DIA, DEA), and the sink pools (CA and CO2) are

common to all six model variants (see Figure 13), for candidate experimental designs, we

consider measurement of subsets of these, with different sampling strategies, giving 63 possible
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combinations of chemical output channels. We do not impose any resource costs for each

measurement channel, and so one might expect that the optimal design is to measure all

candidate channels to maximize the information gathered. However, the energy distance metric

accounts for a trade-off between noise and comparison: the inclusion of noisy, information-poor

channels will result in a drop in the energy distance between two models (as demonstrated

below), incorporating these output channels into the design ‘muddies the waters’; that is

the information contained in these measurements makes the model discrimination task more

difficult.

With the 63 possible combinations of chemical output channels, we consider three sampling

frequencies: 1) every day until day 25, 2) every two days until day 50, 3) every three days until

day 100, giving 63×3 = 189 designs in total. Figure 14 shows pair-wise model energy distance

scores for every candidate design.

Based on a minimum threshold of energy distance of two for model discrimination (horizontal

dashed line in panels A to F in Figure 14), the models fell into three groups: i) M1, M2, M3 and

M4 (henceforth M|1-4); ii) M5; and iii) the first-order decay model M6. We selected a minimum

ED of two because and similarly to standard deviations, a two standard deviation distance would

correspond to being outside of the 95% confidence interval.
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Figure 14: Pairwise energy distances (expressed in standard deviation units) over the candidate
designs. A. Model M1 against other models; B. Model M2 against other models;
C. Model M3 against other models; D. Model M4 against other models; E. Model
M5 against other models; F. Model M6 against other models.Vertical lines represent
transition from one sampling frequency/duration to another: left is daily over 25
days; middle is every second day over 50; right is every four days over 100. The
horizontal line represents the selected minimum energy distance threshold for model
discrimination (distance of two standard deviations)

As expected the simplest, first-order decay model (M6) can be clearly distinguished from the

Monod-based models (M1-M5) with all experimental designs, except when only measuring AT

(first design in each time-related group) regardless of the sampling frequency.

Likewise, M5 clustered separately. In M5, the complete AT degradation and dealkylation
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of AT is mediated by bacterial guilds A and D. There is no formation of NI and NE because

the microbial guilds B and C are missing. The absence of these two guilds leads to reduced

biodegradation of HY. Additionally, the main source of HY in the soil solution is the leak out of

guild A [62, 63] or abiotically produced HY [230, 357].

Models M1, M3 and M4 clustered within a joint group (M|1-4). These three models account

for AT dealkylation and dechlorination by guilds A and D, and either guild B or C is present.

Interestingly, M2 clusters within the M1-4 group, too, despite the absence of the full degradation

pathway of AT carried out by guild A. The absence of guild A eliminates any degradation of

the chlorinated AT metabolites DIA, and DEA [152, 358], leading to the accumulation of both

compounds. However, the accumulation of DIA and DEA occurred largely at concentrations

below detection and the overall dynamics of AT and its metabolites was comparable to the

other models within this group. Models within this group are not distinguishable based on

AT, metabolite observations (HY, DIA, and DEA, CA), and CO2. Because each model variant

within M|1-4 represents a specific variant of potentially active AT degradation pathways,

additional measurements of microbial biomass might improve model discrimination and thus

allow identification of the corresponding active AT degradation pathways, as we discuss below

9.4.3.

9.4.2 Which experimental designs provide the most informative data for model

discrimination?

We analyzed the discrimination of the three identified model groups in detail by calculating EDs

between i) M|1-4 and M6, ii) M5, and M6, iii) M|1-4 and M5. In this analysis, comparison between

M5 and M6 with group M|1-4 was done by treating the group M|1-4 as a single model by adding

up the individual EDs from models M1 to M4 (group M|1-4) to M5 and M6 and normalizing it

by the maximum added ED of the candidate designs. We performed a multi-objective Pareto

analysis (see M&M) to determine the designs that maximize group discrimination, i.e., those

experimental designs which lead to a maximum ED of one objective, while simultaneously
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minimizing the ED decrease of the objectives (non-dominated Pareto optimal solutions).

Optimal designs and measured pools:

From the Pareto analysis, six experimental designs out of 189 were identified as optimal (Figure

15): (i) measurement of DEA, DIA, and CA with short length, (ii) measurement of CA in mid

length, (iii) measurement of DEA, DIA, and CA with mid length, (iv) measurement of CA in

long length, (v) measurement of DIA and CA with long length, and (vi) measurement of DEA,

DIA, and CA with long length.
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Figure 15: Optimal designs from the Pareto front based only on AT, metabolite (HY, DEA, DIA)
and sinks (CA,CO2) measurements (Y = measured, N = not measured). Time column´s
values are: (1) short-term, every day sampling until day 25, (2) middle-term, every
two days sampling until day 50, (3) long-term, every four days sampling until day 100

None of the 6 optimal designs include measurements of AT, HY or CO2. Thus, these chemical

pools do not provide informative data for model discrimination (related to the similarities of their

simulated time-series for all model versions in Figures S52-S57). Including these measurements

incorporates noise into the ED measure, confounding model discrimination. For example, as

shown in Table 12, addition of the AT output channel increases the noise terms with negligible

increase in the comparison term of the energy distance. We can, therefore, conclude that

to understand the fate of AT in real systems, one should prioritize information about the
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intermediate metabolites (DEA, DIA, CA). Unfortunately, most experiments on AT to date have

mainly measured AT [359, 360].

Table 12: Single elements of the energy distance (ED) between model M1 (X) and M6 (Y)

Design AT HY DEA DIA CA CO2 Time 2 ⋅ E‖X − Y‖ - E‖X − X′‖ - E‖Y − Y′‖
√
ED(X, Y)

38 N N Y Y Y N 1 339.1 8.0 171.9 12.6

48 Y N Y Y Y N 1 341.5 19.6 173.1 12.2

131 N N N N Y N 3 198.6 13.8 35.6 12.2

136 Y N N N Y N 3 211.6 38.9 45.5 11.3

Non-dominated designs (38, 131) and equivalent designs, including AT (48, 136). As expected, by including AT

measurements, the increase in noise outweighs the increase in comparison, so that in total, the value of ED

decreases.

CA seems to provide the most informative data among the intermediate metabolites because

it is mainly accumulated in all selected optimal designs (principal end product of AT degradation

in our simulations). This well resembles field observations, where further degradation of CA to

CO2 occurs only under low concentrations of nitrogen (N) in soils [137, 139]. Additionally, DIA

and DEA, products of the dealkylation of AT [146, 344], occur in four of six non-dominated

designs. The power of these two pools to enhance model discrimination is expected due to

the different DIA and DEA dynamics simulated by the models. For example, DIA and DEA

are hardly produced (under the detection limit of 10−7 mg cm−3) by models in Group M1-4. In

contrast, M6 and M5 simulate detectable DIA and DEA concentrations (Figure S52-S57), leading

to differences in the ED.

Optimal designs and sampling frequencies:

In our proposed designs, we incorporated short-, middle- and long-term experiments with

a total of 25 equally-spaced samples. The non-dominated designs (Figure 15) include short-,

middle- and long-term experiments. The first-order decay model can better be distinguished

from the other clusters in short-term designs (Design 38 in Figure 15). This could be related to

the tendency of these models to quickly reach steady-state in the simulations. In contrast, the

124



9 Optimal design of experiments

Monod-based models are better distinguishable in middle- and long-term experiments, probably

because these clusters produce distinctive endpoints of the metabolites that differ according to

the associated pathway.

9.4.3 Can measuring pools not commonly measured improve model discrimination?

In the analysis in sections 3.1 and 3.2, we considered experimental designs that involve

measurements of AT, the metabolites (HY, DIA, and DEA), and the sink pools CA and CO2.

These correspond to measurements that could be collected in lab dissipation experiments [346].

Next, we examine the potential of less typical measurements: biomass and the NI and NE

metabolite pools. We begin by defining three new sets of candidate designs incorporating along

with the previous set of candidates (Section 9.4.1) i) measurements of total biomass and/or

biomass of guild D (255 possible combinations of chemicals and biomass and three sampling

frequencies giving 765 designs), ii) the metabolite NI (127 possible combinations of chemicals

and three sampling frequencies giving 381 designs), and iii) the metabolite NE (127 possible

combinations of chemicals and three sampling frequencies giving 381 designs). Because M6

and M5 can already be differentiated based on the chemical measurements, we focused only on

distinguishing models within Group M1-4.

Role of biomass measurements

We observed that by adding the biomass information, the energy distances increased, allowing

model discrimination (Figure 16) of all models within Group M1-4. These results highlight the

importance of biomass measurements to identify the active AT degradation pathway in soil.
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Figure 16: Pairwise energy distances (expressed in standard deviation units) over the candidate
designs including biomass measurements. A. Model M1 against other models; B.
Model M3 against other models; C. Model M2 against other models; D. Model
M4 against other models. Vertical lines represent transition from one sampling
frequency/duration to another: left is daily over 25 days; middle is every second
day over 50; right is every four days over 100. The horizontal line represents the
selected minimum energy distance threshold for model discrimination (distance of
two standard deviations)

Next, we applied a Pareto analysis to the 765 biomass-including designs based on the new

goal to maximize the distance between models in Groups M|1-4. As objectives we chose energy

distance maximization between: i) M4 vs. M1, ii) M4 vs. M2, iii) M4 vs M3, iv) M3 vs. M1, v) M3 vs.

M2, vi) M2 vs M1. We identified 15 out of the 765 designs as optimal [non-dominated] (Figure 17).

The optimal designs showed that measurements of total biomass do not to contribute to model

discrimination. However, not surprisingly, measurement of guild D biomass helps to distinguish

among the Monod models. Unfortunately, distinguishing specific guilds is challenging. Guild

membership could be estimated from specific genes responsible for AT degradation, as done

by Pagel et al. [43] for the herbicide MCPA. However, some degraders contain genes from

multiple guilds, leading to an overestimation of the degrader biomass. Therefore, total biomass
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is commonly prioritized over the biomass of specific degraders. We expect that advances in

molecular biology will provide the tools to make a more accurate quantitative identification of

particular degraders, and thus, pathway identification possible.
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Figure 17: Optimal designs including biomass measurements (Biomass of guild D and total
Biomass). Y = measured, N = not measured. Time column´s values are: (1) short-
term, every day sampling until day 25, (2) middle-term, every two days sampling
until day 50, (3) long-term, every four days sampling until day 100

9.4.4 Role of NI-NE measurements:

NI and NE metabolites appear only in models M1, M2, M3 and M1, M2 and M4, respectively.

From Figure 18 (A, B, C), it becomes clear that NI measurements can only help to distinguish

model M3 from models M1 and M2, especially in designs that include middle and longer sampling

frequencies. Likewise, including NE measurements can only help to differentiate M4 from M1

and M2 (Figure 18 D, E, F).
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Figure 18: Pairwise energy distances (expressed in standard deviation units) over the candidate
designs including i) NI: A. Model M1 against other models; B. Model M2 against other
models; C. Model M3 against other models; and ii) NE: D. Model M1 against other
models; E. Model M2 against other models; F. M4 against other models. Vertical lines
represent transition from one sampling frequency/duration to another: left is daily
over 25 days; middle is every second day over 50; right is every four days over 100.
The horizontal line represents the selected minimum energy distance threshold for
model discrimination (distance of two standard deviations)

Because adding NI and NE metabolites observations does not contribute to model

discrimination between model M1 and M2, when applying the multi-objective Pareto analysis

to NI- and NE-containing designs, we set objectives to maximize the difference i) M3 vs. M1,

ii) M3 vs. M2, for the designs including NI; and i) M4 vs. M1, ii) M4 vs. M2 for the designs
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including NE (381 in each case). Two designs were determined as the non-dominated designs

for each analysis, and therefore, instead of in spiderplots, the results are presented in Table 13.

These designs include NI and NE observation. These two metabolites are rarely found in

soils [361], probably because of their faster degradation rates mediated by the gene atzC [342].

Regarding sampling frequencies and duration of experiments, long-term experiments proved

more helpful for model discrimination when including NI and NE measurements.

Table 13: Optimal designs after multiobjetive pareto analysis of candidate designs including NI
and NE in addition to AT, metabolites (HY, DIA, DEA) and sinks (CA, CO2)

Design AT HY DEA DIA CA CO2 NI Time

310 N N Y Y N N Y 3

349 N N Y Y Y N Y 3

Design AT HY DEA DIA CA CO2 NE Time

315 N N N Y Y N Y 3

349 N N Y Y Y N Y 3

Time column´s values is: (3) long-term, every four days sampling until day 100

9.4.5 Implications for biogeochemical modeling and data integration

In this work, we applied a prospective optimal design (OD) of experiments to find experimental

sampling strategies that allow for discrimination among competing atrazine (AT) degradation

models and the corresponding degradation pathways. Our method is reliable (Figure S58),

and it can be performed prior to the execution of the experiment. Applying the Bayesian

constrained-based parameter search algorithm (CBS-MCMC) for efficiently sampling the viable

parameter set dramatically reduced the computational demand. The CBS-MCMC method is

widely applicable to other biogeochemical models and provides a powerful tool to leverage

expert knowledge for constructing robust prior parameter distributions for model sensitivity

analysis or calibration.

In our study, we observed that the five proposed Monod models could be reduced to two

groups, according to their predominant features. On the other hand, the first-order decay
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model could only replace complex model formulations when looking at the AT degradation

dynamics. However, considering the intermediate metabolites (DIA and DEA), and especially

the sink pool CA is an integral part of understanding the complete degradation pathway of

AT and of adequate model selection as well. This non-intuitive result is the consequence of

the OD objective, which is, in our case, model discrimination. Furthermore, information on

particular pesticide degraders showed potential to improve model and pathway identification.

Thus, experimental measurements of specific guilds should be prioritized in the future.

For a practical application of our results towards the identification of the active AT degradation

pathway in the system, we recommend using the following protocol:

1. include, but not limit to, the optimal design setup in the sampling strategy for the planned

experiment. For better model discrimination, the best design should include measurements

of specific biomass degraders (examples in Figure 17)

2. carry out model calibration for all available models or model groups against the collected

data and the optimal design data

3. the best model for any particular case should best fit the data, and the differences among

models or model clusters should become more predominant at the OD data points

4. the models or model groups that deviate the most from the data can be rejected (model

invalidation) [336] as they are not valid representations of the system to be studied

The application of prospective OD of experiments requires that models use correct process

descriptions. Therefore, the candidate model formulations must be carefully selected to ensure

that the best possible representation is used [112]. As long as such valid process models are

available - as in this study for atrazine degradation - model-based prospective OD will maximize

the knowledge gain on soil systems from laboratory and field experiments.
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10 General Discussion

Considering that many biodegradable pesticides can persist in soils [55], the objective of my

thesis is to elucidate some of the key processes that control pesticide degradation, especially at

low concentrations. I analyzed biological processes that can limit degradation, assuming an

ideal scenario in which bacterial degraders and the specific pesticide are colocalized (Figure 2).

This simplification helped me to:

(i) evaluate complex bacterial processes (genetic and biophysical constraints) without

the influence of soil heterogeneity [362], water transport processes [234] (dispersion,

advection), or competing carbon sources [43, 363], all known to also affect degradation

rates.

(ii) easily validate model assumptions with data from lab experiments.

I used three pesticides as model pesticides (MCPA/2,4-D and atrazine) belonging to two

pesticide classes (Chlorophenoxy herbicides and triazines, respectively) to explore different

degradation mechanisms that could be transferable to other pesticides with similar properties.

In section 5.2, I explained the characteristics of these pesticides and their role in my thesis. In

the following subsections, I will discuss the main outcomes of my thesis and provide some

insights for future directions of research in the field.

10.1 Improving process understanding and prediction of

pesticide degradation in soils

I used a mechanistic, process-based modeling approach to evaluate pesticide degradation in

soils. Among the different processes explored in my thesis, I could derive some mechanisms

that control pesticide degradation and drive pesticide persistence in soils:

1. Regulated gene expression (Research Question R1): In the first study (Paper 1), and

based on the need to improve the description of bacteria-driven pesticide degradation
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in mechanistic models. [73], I explicitly incorporated regulated gene expression. This

improved the description of the MCPA/2,4-D degradation in soils showing that regulated

gene expression is a control for pesticide degradation.

2. Mass-transfer across the membrane (Research Question R2): In the second study

(Paper 2), comparable to Sun et al. [364], I could confirm that mass-transfer limits

degradation in the retentostat system, where low concentrations that lead to starvation

are common [63]. However, by looking at long-term predictions, I found evidence that

mass-transfer is unlikely to control pesticide persistence because the model simulations

including mass-transfer led to complete degradation of atrazine, which is often not

observed in the field. Contrasting results were found in water systems by Sun et al. [364],

where mass-transfer of 2,6-dichlorobenzamide (BAM) across the cell membrane limits its

degradation below 600 µg L−1.

3. Bioenergetic constraints (Research Question R2): According to LaRowe & Van

Cappellen [64], the energy produced from catabolism of some pesticides might be

insufficient to satisfy the metabolic needs of degraders. To validate this statement, I

used transition state theory [242, 365] to model bacterial growth based on the use of

pesticides as the sole carbon and energy source. Applying this concept to the degradation

of atrazine, I found evidence that bioenergetic mechanisms are unlikely to control the

persistence of hydroxyatrazine (the first metabolite of atrazine degradation). Additionally

and, when the pesticide is degraded through mechanisms without energy gain, transition

state theory is not sufficient to explain pesticide persistence. Hence, further research

should prioritize energetic demands of biological transformations that do not involve

energy gain, like atrazine degradation to hydroxyatrazine.

4. Environmental factors: temperature and soil moisture (Research Question R3):

Pesticide dissipation experiments pointed out that low temperatures in combination with

dry soil conditions, increase pesticide persistence in soils [366–368]. In the third study
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(Paper 3), I assessed these findings through a mechanistic gene-centric model for MCPA

degradation to evaluate a laboratory experiment. Although temperature, soil moisture,

and pesticide concentration do play a role in the overall fate of the pesticide in soil, I found

evidence that they mainly influence pesticide-derived carbon allocation. This conclusion

is based on the increased incorporation of pesticide-derived C into the biomass, reflected

by higher carbon use efficiencies under limiting conditions of temperature, soil moisture,

and substrate concentration (10°C, pF 3.5 and 1 mg kg−1). Interestingly, model simulation

results, as well as the observations, pointed to stress-induced mechanisms to survival.

Under the evaluated limiting conditions, growth is not prioritized, and the higher C

incorporation into the biomass might be related to the formation of substances to cope

with stress [369]. Therefore, I could conclude that environmental factors play a role in

pesticide-derived C allocation but are unlikely to control pesticide persistence. Even

under limiting conditions, degradation of pesticides occurs. To confirm these findings,

different and more persistent pesticides than atrazine should be prioritized in further

studies.

With my models, I was able to identify some key processes relevant for pesticide degradation.

Incorporating them into biogeochemical models improved predictions of pesticide degradation.

The full gene-centric model developed in the first study (Paper 1), although performing equally

well as traditional Monod-kinetics models, showed to better represent bacterial dynamics in soil

(gene and transcript data). This way, the gene-centric models allow us to study the relationship

between process rates and functional genes. This relationship is typically assumed to be

linear [128, 219], but my results challenge this assumption by showing a hysteretic relationship

between these two variables. In conclusion, process rates cannot be directly derived from gene

transcripts. Similar results were found by Störiko et al. [370] for bacterial denitrification in water

systems. Additionally, using a gene-centric model capable of describing bacterial dynamics more

accurately allowed me to derive better process descriptions of pesticide degradation, such as

carbon allocation of pesticides in Paper 3. Despite the high model uncertainty, I could verify that
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long-term predictions of hydroxyatrazine degradation after 30 years are better described with

traditional Monod-kinetics in combination with retentostat data and leaching measurements.

It is important to keep in mind that working with complex, mechanistic models poses several

challenges: the limited availability of data to validate model assumptions [75], the task of finding

the most suitable model representation for our problem (“true model”) [109], and of model

equifinality [73]. Section 10.2 will shed light on these challenges and outline possible solutions.

10.2 Challenges in mechanistic model development and how to overcome

them

“Essentially, all models are wrong, but some are useful” [371]. In my opinion, and based on

my own experiences throughout my Ph.D., this expression is valid for probably all model

applications. By working with mechanistic models, I found two main obstacles to model

development: i) the nature of mechanistic models and ii) the complexity of the systems to model.

This led me to explore the possibilities to overcome such obstacles.

1. Nature of mechanistic models: Marschmann et al. [73] thoroughly discussed the

sloppiness of biogeochemical models, stating that “most model parameters cannot be

derived from data”, making the models difficult to use for predictions or understanding

systems behavior. Therefore, Marschmann et al. [73] applied a sophisticated data-driven

method to derive less complex formulations (parsimonious model), whose parameters

can finally be inferred from data. As an alternative to Marschmann et al. [73], I used

a data-driven model reduction based on local sensitivity and identifiability scores in

combination with information criterion indices [101] to find a potential parsimonious

model formulation. Despite the advantages and disadvantages of both methods, they

are suitable to obtain parsimonious model formulations and reveal structural model

weaknesses. Currently, the main drawback is that experimental techniques cannot produce

sufficient informative data for comprehensive model reduction procedures, which are

necessary for further model development [75].
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2. Complexity of the systems to model: In addition to the sloppy nature of most

mechanistic models, our inability to comprehend complex systems directly translates to

limitations in model development. This limited knowledge and understanding of all the

processes involved in a particular problem [112], stems from our inability to measure all

elements connected to it [372, 373]. For example, for atrazine degradation, many bacterial

guilds are involved, but only a few have been identified. This leads to competing model

formulations, each representing valid degradation pathways, making the selection of the

“true model”, representing the active degradation pathway, a non-trivial problem [109].

This problem can only be tackled with more and better data; therefore, determining what

quality and quantity of data are needed plays an important role in developing more robust

models. In my thesis, I performed a prospective optimal design of experiments (before

the possible execution of the experiments) to determine the most informative data to

discriminate competing models of atrazine degradation in soil (Paper 4). Assuming that the

“true model” is in our set of models, optimal design becomes a powerful tool to overcome

equifinality, which arises when there are different valid model parametrizations for a

single model or several competing model formulations for a single problem. Additionally,

optimal design can be used to generate informative data to reduce uncertainty in model

predictions [111, 112], and to strengthen model calibration (through better parameter

identification).

10.3 Towards a predictive model: applicability and further extensions of the

work

The model formulations presented in this thesis are highly detailed in their formulation and

impractical to be used on large scale [374]. It is important to consider that one of the aims

of modeling development is to end up with a “predictive model”, a model with the predictive

capabilities for practical applications, such as environmental fate modeling.

As the name suggests, predictive models are tools used to predict the behavior of chemicals,
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such as pesticides, in all compartments of the environment (soil, water, air, and organisms) [374].

Guided by the principle of parsimony [374], a predictive model should provide a simple but still

accurate description of the studied system, with modest dataset requirements for its functioning

and a low computational effort to produce the simulations [375]. Such simple predictive models

are then used to estimate the degradation endpoints of parent compounds [65], supporting

environmental risk assessment [375] and decision-making [374, 376]. In the EU, predictive

models are commonly based on first-order decay, ranging from simple first-order models to

bi-phasic models (Gustafson and Holden model), that are able to incorporate the effects of soil

heterogeneity into degradation dynamics.

Based on my work, I briefly recall the structure of my model development, as shown in

Figure 19, including potential steps towards develop a predictive model. I suggest that a

mechanistic process-based model can also provide the basis for developing a predictive model.

The process to reveal the relevant mechanisms for a predictive model includes several, non-

trivial steps and starts with the conceptualization of a theoretical model (Step 1 in Figure 19),

which is formulated from literature and expert knowledge. The individual model assumptions

of the theoretical model need to be validated against experimental data (Step 2 Figure 19), which

requires laboratory data. For further model development (Step 3 Figure 19), Steps 2 and 3 create

a feedback loop of data integration modeling, in which the theoretical model, through optimal

design of experiments, can be used to identify the type of experiments needed to maximize data

gain [112]. With better data, each iteration of calibration, validation, model reduction, and model

selection further refines the model. After assembling the mechanistic process-based model, an

upscaling process is necessary for the final development of a predictive model (Figure 19, Step

4).
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Figure 19: Modeling microbial regulation of pesticide turnover. Pipeline to develop a predictive
model. Steps included in this thesis are marked with red circles

A good starting point of assembling and upscaling a mechanistic process-based model for

pesticide degradation could be to improve the mechanistic PECCAD [43, 78] model. The

mechanisms identified in my thesis to control pesticide degradation, especially under low

concentrations (Section 10.1, Papers 1 to 3), can easily and directly be integrated in the PECCAD

model, complementing its descriptions of pesticide degradation in soils. For example, the

twofold regulation of microbial growth, as described in Papers 1 and 3 by the Hill function (for

regulated gene expression) and Monod kinetics (for the substrate dependency), can be easily

used to describe bacterial growth in the PECCAD model. Depending on the pesticide class,

Monod kinetics could be used to represent substrate dependency of growth because we found

that it can better describe pesticide persistence. Finally, the temperature function used in Paper

3 to account for the effect of temperature on pesticide degradation can be coupled to all relevant

processes (growth, maintenance, death rates). Thus, the updated PECCAD model would offer

a comprehensive representation of the processes relevant for pesticide degradation in soils,

and at the same time, serve as a benchmark to compare simulations produced by simplified

expressions with.

Literature offers several upscaling methods that could be utilized for pesticide degradation
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models. When upscaling the updated PECCAD model, it should be possible to simulate effects of

microbial and pesticide heterogeneities, variability of soil properties, and other environmental

conditions on pesticide degradation in soils, all variable in time and space [377],. Chakrawal

et al., [378] distinguished three approaches for the “upscaling of decomposition kinetics for

carbon cycling models”, all of them applicable to pesticide degradation models: i) numerical

spatial averaging, which divides the domain into grids and solves the mechanistic model for

each grid. It is a computationally expensive method with a high demand of input data [379],

ii) the effective parameter approach, which consists in deriving “effective parameters” to link

degradation rates across different scales [380], and iii) analytical upscaling, which relies on a

spatial averaging of the kinetic equations of small scales. However, the lack of the so-called

“closure term for integration” [378] makes the method still dependent on small scales, and

numerical integration similar to numerical spatial averaging is still needed. Out of the three, the

analytical upscaling could have the greatest potential for a successful upscaling of small-scale

pesticide degradation models if the closure integration problem could be solved.

10.4 Research perspectives: Deep neural networks

Machine learning techniques, represented by deep neural networks (DNN), have recently

begun to be explored as an alternative approach to develop predictive models [381] and

have the potential for pesticide degradation modeling. Machine learning can detect statistical

relationships between input and output along multiple spatial and time scales [381]. These

tools are currently used just for predictions, as done by Sigmund et al. [251], who predicted

Freundlich isotherm sorption parameters for carbonaceous substances with a deep neural

network. However, I believe deep neural networks could be combined with mechanistic modeling

approaches [381], for example, to assist in the identification of the processes responsible for

pesticide degradation. Also considering the advances in molecular biology, DNNs could be

applied to large omics datasets. A systematic analysis of omics information (metagenomics,

metatranscriptomics, metaproteomics, and metabolomics) could help to elucidate the “structure
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and function of microbial communities” [382] involved in pesticide degradation in soils. A

first idea of how this combination could look in a model development process is presented in

Figure 20.

Adapted from Baker et al. [381], a DNN could be used with omics datasets to extract patterns

from omics data that will help us to reduce complexity in the development of a predictive model.

For example, microorganisms that use similar carbon sources or carry out similar degradation

processes in soils could be grouped as a single super bacteria. However, machine learning can

be prone to overfitting, which would result in a low predictive capability of the neural network.

To avoid that, the mechanistic model would serve as a surrogate model that could capture

known relationships and provide them to the DNN [383]. In a next step, the DNN could even

be used to extract model parameters [251] or approximate the analytical solution of biokinetic

equations [384]. For that, a training step of the DNN should be performed, combining the

original data with the insights learned from the mechanistic model. After the validation, the

neural network could be used for predictions. With such a modeling approach, the DNN could

potentially bridge the gap between different scales, providing us with a promising direction for

future research in the modeling of (microbial) regulation of pesticide turnover in soils.

Figure 20: Theoretical pipeline to derive large scale predictions combining machine learning
techniques and mechanistic modeling approaches. Adapted from Baker et al. [381].
Further information on Kbase tools can be found in the Kbase website

139

https://www.kbase.us/research/


11 Appendices

11 Appendices

11.1 Supplementary Information for Chapter 6 (Paper 1)

11.1.1 Model Formulations for reduced Models

The full version of the governing differential equations for our proposed models are the

following:

V1 :

𝑑𝐶𝑎
𝐵

𝑑𝑡
= 𝜇𝑃 ⋅ 𝐶𝑎

𝐵⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑟𝑔𝑟𝑜𝑤𝑡ℎ

− 𝐶𝑎
𝐵 ⋅ 𝑎𝑎⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑟𝑑𝑒𝑐𝑎𝑦−𝐴𝑐𝑡𝑖𝑣𝑒

(1)

𝑑𝐶𝑑
𝐵

𝑑𝑡
= 𝐶𝑎

𝐵 ⋅ 𝑎𝑎⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑟𝑑𝑒𝑐𝑎𝑦−𝐴𝑐𝑡𝑖𝑣𝑒

− 𝐶𝑑
𝐵 ⋅ 𝑎𝑑⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑟𝑑𝑒𝑐𝑎𝑦−𝐷𝑒𝑎𝑑

(2)

𝑑𝐶𝐿
𝑃

𝑑𝑡
=

−𝜇𝑃 ⋅ 𝐶𝑎
𝐵 ⋅ (

1
𝑌𝑃 )(

𝜌
𝜃 )

(1 +
𝜌
𝜃
⋅ 𝐾𝐹𝑃 ⋅ 𝑛𝐹𝑃 ⋅ (𝐶𝐿

𝑃 )
(𝑛𝐹𝑃−1)

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑟𝑢𝑝𝑡𝑎𝑘𝑒

(3)

𝑑𝐶𝑂2

𝑑𝑡
= 𝜇𝑃 ⋅ 𝐶𝑎

𝐵 ⋅ (
1 − 𝑌𝑃
𝑌𝑃 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑟𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛

+𝐶𝑑
𝐵 ⋅ 𝑎𝑑 ⋅ 𝑎𝐶𝑂2⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑟𝑐𝑒𝑙𝑙−𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

(4)

𝑚𝑅𝑁𝐴 = 𝑓𝑇 ⋅ (
(𝐶𝐿

𝑃 )
𝑛𝐻

(𝐾𝐺)𝑛𝐻 + (𝐶𝐿
𝑃 )𝑛𝐻 )

⋅ 𝐶𝑎
𝐵

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑟𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛

(5)

Where the degradation rate coefficient 𝜇𝑃 is:

𝜇𝑃 = 𝜇𝑚𝑎𝑥 ⋅

⎛
⎜
⎜
⎜
⎜
⎝

(
(𝐶𝐿

𝑃 )
(𝑛𝐻+1)

(𝐾𝐺)𝑛𝐻 + (𝐶𝐿
𝑃 )𝑛𝐻 )

𝐾𝑀 + 𝐶𝐿
𝑃

⎞
⎟
⎟
⎟
⎟
⎠

(6)
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V2 :

𝑑𝐶𝑎
𝐵

𝑑𝑡
= 𝜇𝑃 ⋅ 𝐶𝑎

𝐵⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑟𝑔𝑟𝑜𝑤𝑡ℎ

− 𝐶𝑎
𝐵 ⋅ 𝑎𝑎⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑟𝑑𝑒𝑐𝑎𝑦−𝐴𝑐𝑡𝑖𝑣𝑒

+ 𝜏 ⋅ 𝑘𝑟 ⋅ 𝐶 𝑖
𝐵⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑟𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

− (1 − 𝜏) ⋅ 𝑘𝑑 ⋅ 𝐶𝑎
𝐵⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑟𝑢𝑝𝑡𝑎𝑘𝑒

(7)

𝑑𝐶 𝑖
𝐵

𝑑𝑡
= (1 − 𝜏) ⋅ 𝑘𝑑 ⋅ 𝐶𝑎

𝐵⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑟𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

− 𝜏 ⋅ 𝑘𝑟 ⋅ 𝐶 𝑖
𝐵⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑟𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

− 𝐶 𝑖
𝐵 ⋅ 𝑎𝑖⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑟𝑑𝑒𝑐𝑎𝑦−𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒

(8)

𝑑𝐶𝐿
𝑃

𝑑𝑡
=

−𝜇𝑃 ⋅ 𝐶𝑎
𝐵 ⋅ (

1
𝑌𝑃 )(

𝜌
𝜃 )

(1 +
𝜌
𝜃
⋅ 𝐾𝐹𝑃 ⋅ 𝑛𝐹𝑃 ⋅ (𝐶𝐿

𝑃 )
(𝑛𝐹𝑃−1)

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑟𝑢𝑝𝑡𝑎𝑘𝑒

(9)

𝑑𝐶𝑂2

𝑑𝑡
= 𝜇𝑃 ⋅ 𝐶𝑎

𝐵 ⋅ (
1 − 𝑌𝑃
𝑌𝑃 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑟𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛

+ (𝐶𝑎
𝐵 ⋅ 𝑎𝑎 + 𝐶 𝑖

𝐵 ⋅ 𝑎𝑖) ⋅ 𝑎𝐶𝑂2⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑟𝑐𝑒𝑙𝑙−𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

(10)

𝑚𝑅𝑁𝐴 = 𝑓𝑇 ⋅ (
(𝐶𝐿

𝑃 )
𝑛𝐻

(𝐾𝐺)𝑛𝐻 + (𝐶𝐿
𝑃 )𝑛𝐻 )

⋅ 𝐶𝑎
𝐵

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑟𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛

(11)

Where the degradation rate coefficient 𝜇𝑃 is:

𝜇𝑃 = 𝜇𝑚𝑎𝑥 ⋅

⎛
⎜
⎜
⎜
⎜
⎝

(
(𝐶𝐿

𝑃 )
(𝑛𝐻+1)

(𝐾𝐺)𝑛𝐻 + (𝐶𝐿
𝑃 )𝑛𝐻 )

𝐾𝑀 + 𝐶𝐿
𝑃

⎞
⎟
⎟
⎟
⎟
⎠

(12)

And the switch function 𝜏 is:

𝜏 =
1

exp(
𝐶𝑇 − 𝐶𝐿

𝑃
𝑛 ⋅ 𝐶𝑇 ) + 1

(13)
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V3 :

𝑑𝐶𝑎
𝐵

𝑑𝑡
= 𝜇𝑃 ⋅ 𝐶𝑎

𝐵⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑟𝑔𝑟𝑜𝑤𝑡ℎ

− 𝐶𝑎
𝐵 ⋅ 𝑎𝑎⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑟𝑑𝑒𝑐𝑎𝑦−𝐴𝑐𝑡𝑖𝑣𝑒

(14)

𝑑𝐶𝐿
𝑃

𝑑𝑡
=

−𝜇𝑃 ⋅ 𝐶𝑎
𝐵 ⋅ (

1
𝑌𝑃 )(

𝜌
𝜃 )

(1 +
𝜌
𝜃
⋅ 𝐾𝐹𝑃 ⋅ 𝑛𝐹𝑃 ⋅ (𝐶𝐿

𝑃 )
(𝑛𝐹𝑃−1)

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑟𝑢𝑝𝑡𝑎𝑘𝑒

(15)

𝑑𝐶𝑂2

𝑑𝑡
= 𝜇𝑃 ⋅ 𝐶𝑎

𝐵 ⋅ (
1 − 𝑌𝑃
𝑌𝑃 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑟𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛

+𝐶𝑎
𝐵 ⋅ 𝑎𝑎 ⋅ 𝑎𝐶𝑂2⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑟𝑐𝑒𝑙𝑙−𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

(16)

𝑚𝑅𝑁𝐴 = 𝑓𝑇 ⋅ (
(𝐶𝐿

𝑃 )
𝑛𝐻

(𝐾𝐺)𝑛𝐻 + (𝐶𝐿
𝑃 )𝑛𝐻 )

⋅ 𝐶𝑎
𝐵

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑟𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛

(17)

Where the degradation rate coefficient 𝜇𝑃 is:

𝜇𝑃 = 𝜇𝑚𝑎𝑥 ⋅ (
(𝐶𝐿

𝑃 )
𝑛𝐻

(𝐾𝐺)𝑛𝐻 + (𝐶𝐿
𝑃 )𝑛𝐻 )

(18)

V4 :

𝑑𝐶𝑎
𝐵

𝑑𝑡
= 𝜇𝑃 ⋅ 𝐶𝑎

𝐵⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑟𝑔𝑟𝑜𝑤𝑡ℎ

− 𝐶𝑎
𝐵 ⋅ 𝑎𝑎⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑟𝑑𝑒𝑐𝑎𝑦−𝐴𝑐𝑡𝑖𝑣𝑒

(19)

𝑑𝐶𝐿
𝑃

𝑑𝑡
=

−𝜇𝑃 ⋅ 𝐶𝑎
𝐵 ⋅ (

1
𝑌𝑃 )(

𝜌
𝜃 )

(1 +
𝜌
𝜃
⋅ 𝐾𝐹𝑃 ⋅ 𝑛𝐹𝑃 ⋅ (𝐶𝐿

𝑃 )
(𝑛𝐹𝑃−1)

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑟𝑢𝑝𝑡𝑎𝑘𝑒

(20)

𝑑𝐶𝑂2

𝑑𝑡
= 𝜇𝑃 ⋅ 𝐶𝑎

𝐵 ⋅ (
1 − 𝑌𝑃
𝑌𝑃 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑟𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛

+𝐶𝑎
𝐵 ⋅ 𝑎𝑎 ⋅ 𝑎𝐶𝑂2⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑟𝑐𝑒𝑙𝑙−𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

(21)

𝑚𝑅𝑁𝐴 = 𝑓𝑇 ⋅ 𝐶𝑎
𝐵⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑟𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛

(22)
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Where the degradation rate coefficient 𝜇𝑃 is:

𝜇𝑃 = 𝜇𝑚𝑎𝑥 ⋅ (
𝐶𝐿
𝑃

𝐾𝑀 + 𝐶𝐿
𝑃 )

(23)

V4’ :

𝑑𝐶𝑎
𝐵

𝑑𝑡
= 𝜇𝑃 ⋅ 𝐶𝑎

𝐵⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑟𝑔𝑟𝑜𝑤𝑡ℎ

− 𝐶𝑎
𝐵 ⋅ 𝑎𝑎⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑟𝑑𝑒𝑐𝑎𝑦−𝐴𝑐𝑡𝑖𝑣𝑒

(24)

𝑑𝐶𝐿
𝑃

𝑑𝑡
=

−𝜇𝑃 ⋅ 𝐶𝑎
𝐵 ⋅ (

1
𝑌𝑃 )(

𝜌
𝜃 )

(1 +
𝜌
𝜃
⋅ 𝐾𝐹𝑃 ⋅ 𝑛𝐹𝑃 ⋅ (𝐶𝐿

𝑃 )
(𝑛𝐹𝑃−1)

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑟𝑢𝑝𝑡𝑎𝑘𝑒

(25)

𝑑𝐶𝑂2

𝑑𝑡
= 𝜇𝑃 ⋅ 𝐶𝑎

𝐵 ⋅ (
1 − 𝑌𝑃
𝑌𝑃 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑟𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛

+𝐶𝑎
𝐵 ⋅ 𝑎𝑎 ⋅ 𝑎𝐶𝑂2⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑟𝑐𝑒𝑙𝑙−𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

(26)

Where the degradation rate coefficient 𝜇𝑃 is:

𝜇𝑃 = 𝜇𝑚𝑎𝑥 ⋅ (
𝐶𝐿
𝑃

𝐾𝑀 + 𝐶𝐿
𝑃 )

(27)
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11.1.2 Methods: Sampling data points

Table S1: List of sampling points batch degradation experiments

2,4-D MCPA

Days Mineralization tfdA transcripts tfdA genes Days Mineralization tfdA transcripts tfdA genes

2 X X X 1 X X

6 X 4 X

8 X X X 7 X X X

9 X 11 X

10.6 X 14.4 X

11.8 X 17.4 X X X

12.8 X X X 22 X

14 X 27 X

14.7 X X X 33 X X X

15.8 X X X respike

16.6 X 33 X

17.6 X X X 33 X X X

19.7 X X X 33.1 X X X

22.7 X 33.4 X X X

24.7 X X X 34 X X X

respike 34.5 X X X

24.9 X 36 X X X

25.1 X X X 39 X X X

25.3 X 43 X X X

25.7 X X X 46 X X X

26.2 X X X 53 X X X

26.7 X X X 67 X

27.1 X X X

27.7 X

28.6 X X X

29.7 X

33.6 X X X

11.1.3 Methods: Local and Global Sensitivity and uncertainty analysis

Local and Global Sensitivity

Sensitivity and uncertainty analysis
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1. Sensitivity coefficient (SC): Local sensitivity analysis evaluates the changes on model

outputs based on small changes on the model parameters, and is calculated as the “first

derivatives of model outputs with respect to model parameters” [200]. This focused

analysis leads to a straightforward interpretation of the results [199]. We solved the

sensitivity equations for the state variables and the parameters to obtain exact time-series

of the sensitivity:

𝑆𝑖 =
𝛿𝑌𝑖
𝛿𝑝𝑗

≈
𝑌𝑖(𝑝 + Δ𝑝) − 𝑌𝑖(𝑝)

Δ𝑝
(28)

Where 𝑌𝑖 represents ith the model output, and 𝑝𝑗 the jth parameter. We calculated a

dimensionless relative sensitivity coefficient[101]:

𝑆𝑖 =
(𝑌𝑖(𝑝 + Δ𝑝) − 𝑌𝑖(𝑝)) ⋅ 𝑝

Δ𝑝 ⋅ 𝑌𝑖(𝑝 + Δ𝑝)
(29)

These values are calculated per time point, so the overall sensitivity measure per parameter

is calculated as follows:

𝑆𝑗 =
√
∑
𝑖
𝑆𝑖

2
(30)

The distinction between high and low leverage parameters is arbitrary and based on the

obtained coefficients.

2. Identifiability scores (IS): We followed the orthogonalization method from [100] to evaluate

the estimability of our parameters based on the experimental data available [128]. We

first calculated the sensitivity coefficient matrix Z for each parameter j for each measured

point i based on the relative sensitivity coefficients 𝑆𝑗 [101]:
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𝑍 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑆1,1 𝑆1,2 ⋯ 𝑆1,𝑗

𝑆2,1 ⋱ 𝑆2,𝑗−1 ⋮

⋮ 𝑆𝑖−1,2 ⋱ 0

𝑆𝑖,1 ⋯ 𝑆𝑖,𝑗−1 𝑆𝑖,𝑗

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(31)

From this matrix, we selected the parameter (jth column) 𝑋1 with the highest square

root of sum of squared of the column elements. This parameter is defined as the most

identifiable parameter. To account for the influences of the additional parameters, [100]

suggested to project each column of Z onto the column 𝑋1, and collect the residual in a

residual matrix 𝑅𝑒𝑠 with the same dimensions as the Z matrix:

𝑅𝑒𝑠 = 𝑍 − 𝑋1 ⋅ (𝑋 𝑇
1 ⋅ 𝑋1)−1 ⋅ 𝑋 𝑇

1 .𝑍 (32)

This process is repeated for the second most identifiable parameter based on the second

highest square root of sum of squared of the column elements, and the process continues

until all the parameters have been classified.

The distinction between high and low identifiability of parameters is arbitrary and based

on the obtained scores.

3. Percentage error of the estimation (PE): We determined the Cramer-Rao inequality

estimator as an alternative confidence interval for our parameters [385]. We calculated a

second Fisher information matrix 𝐹 𝐼𝑀 weighted by the covariance matrix:

𝐹 𝐼𝑀 = 𝑆𝑇 ⋅ 𝑊 ⋅ 𝑆 (33)

Where 𝑊 is the inverse of the covariance matrix [101]. The 95% confidence interval [385]:

𝐶𝐼 = 1.96 ⋅
√
𝐹𝐼𝑀−1 (34)
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We reported the error per parameter:

%𝐸𝑟𝑟𝑜𝑟 =
𝐶𝐼 ⋅ 100%

𝑝𝑗
(35)

Percentage errors higher than 100% represent poorly characterized parameter estimations.

4. Correlation matrix: We calculated the correlation of our parameter using the covariance

matrix 𝑐𝑜𝑣 (𝐽 𝑇 ⋅ 𝐽 )−1:

𝑐𝑜𝑟𝑟𝑖,𝑗 =
𝑐𝑜𝑣𝑖,𝑗

√𝑐𝑜𝑣𝑖,𝑖 ⋅ 𝑐𝑜𝑣𝑗,𝑗
(36)

Global sensitivity analysis

Unlike a local sensitivity analysis, which only evaluates the impact of small changes on

model outputs, a global sensitivity analysis evaluates changes within the entire parameter

space [239], varying all the parameters together [105] to have a more robust information of the

importance of the model parameters regarding the model outputs [201]. The Morris method

[106] or elementary effects method is a partially global and inexpensive method for screening

the important parameters for a high dimensional problem [103, 105]. This method generates

two sensitivity measures: the mean of the elementary effects or 𝜇∗, and the standard deviation

of the elementary effects or 𝜎 [201], calculated by averaging continuous local sensitivities over

the parameter space [103, 107]. 𝜇∗ describes the overall impact of the individual parameter on

the model output, whereas 𝜎 estimates interactions with other parameters [103]. This method

is not a global sensitivity analysis method, but it is more detailed than just a local sensitivity

analysis. 𝜇∗ and 𝜎 are analyzed together defining parameters with a negligible effect on the

model outputs (small 𝜇∗ and 𝜎 ), parameters with a linear effect (𝜇∗ higher than 𝜎 ), and non-linear

effects or parameter interactions (𝜎 higher than 𝜇∗, and both higher values) [73, 103].
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11.1.4 Additional Results

Model Calibration on MCPA data
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Figure S1: Model calibration on MCPA data. Time series of pesticide mineralization (A, B), tfdA
mRNA copies (transcripts) per g of soil (C, D), tfdA DNA gene copies per g of soil (E,
F). Error bars show the standard deviation of the data and of the simulations (based
on MCMC ensembles, see Material and Methods 6.4.2)
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tfdA gene dynamics for both pesticides (2,4-D and MCPA)
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Figure S2: tfdA gene dynamics for V0 (A, A1, A2), V1 (B), V2 (C). V1 and V2 only include
dynamics of 2,4-D calibration dataset. Panels showed the mean value of the
corresponding dynamics (bold line) and the 95% confidence interval (based on MCMC
ensembles, see Material and Methods 6.4.2)
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the mean value of the corresponding dynamics (bold line) and the 95% confidence
interval (based on MCMC ensembles, see Material and Methods 6.4.2).
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11.1.5 Residual pesticide (2,4-D and MCPA) concentration in soil
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Figure S4: Total residual pesticides in soils for 2,4-D and MCPA for models: V0 (A, A1, A2),
V1 (B), V2 (C): Panels showed the mean value of the corresponding dynamics (bold
line) and the 95% confidence interval (based on MCMC ensembles, see Material and
Methods 6.4.2)
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11.1.6 Local Sensitivity Analysis of reduced model variants

Table S2: Uncertainty analysis for V1 for 2,4 D data.

Parameter Best Fit SC IS PE MV SD

𝑎𝑟 0.9 1.1 103 1.1 103 32.6 0.4 0.2

𝜇𝑚𝑎𝑥 0.6 477.0 60.2 65.2 101.9 45.4

𝑛𝐹𝑃 1.0 94.0 14.9 1.2 103 0.9 0.1

𝑌𝑃 0.4 49.8 31.3 321.6 0.1 0.04

𝑓1 7.9 10−11 39.4 1.4 376.7 3.2 10−11 1.4

𝐾𝐺 9.3 10−4 32.0 0.02 3.7 103 0.05 42.4

𝑎𝑎 0.1 27.6 4.8 54.9 0.3 1.2

𝑛𝐻 4.8 16.0 0.9 184.1 1.6 0.7

𝑓𝑇 0.02 13.0 6.4 271.3 4.0 51.1

𝐾𝑀 2.3 10−4 7.3 3.9 10−3 4.0 103 2.8 10−6 28.4

𝐾𝐹𝑃 0.1 2.6 1.0 10−5 2.1 104 0.1 3.8

𝑎𝐶𝑂2 0.9 1.5 0.4 367.7 0.5 0.2

𝑎𝑠 67.2 5.2 10−5 3.4 10−8 1.6 105 3.1 10−4 7.4

SC = Sensitivity coefficient, IS = Identifiability score, PE = Percentage Error, MV and SD = mean value and standard

deviation of the estimation from 𝐷𝑅𝐸𝐴𝑀(𝑍𝑆). Parameters highlighted in yellow are suggested to be reduced.
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Table S3: Uncertainty analysis for V2 for 2,4 D data.

Parameter Best Fit SC IS PE MV SD

𝑛𝐹𝑃 0.8 1.9 103 8.6 103 87.2 0.9 0.06

𝜇𝑚𝑎𝑥 0.5 514.6 228.2 35.9 0.5 1.2

𝐾𝐺 2.2 10−4 51.1 0.1 6.0 103 2.1 10−7 159.5

𝐾𝐹𝑃 0.4 48.8 4.6 10−4 6.0 103 0.2 4.6

𝑌𝑃 0.2 44.1 17.5 1.1 103 0.3 0.05

𝑎𝑟 0.1 40.4 6.5 51.6 4.8 10−4 10.9

𝑓1 2.4 10−11 40.3 0.0 1.3 103 8.3 10−11 1.3

𝑛𝐻 5.2 19.5 1.5 192.4 4.7 3

𝑓𝑇 0.02 13.0 7.9 53.9 0.01 1.3

𝑎𝐶𝑂2 0.6 0.04 5.0 10−3 1.3 103 0.5 0.2

𝐾𝑀 1.2 10−6 5.5 10−3 2.7 10−5 1.3 104 6.3 10−5 10.2

𝑘𝑟 30.7 2.7 10−3 1.2 10−4 1.8 104 0.7 1.3

𝑎𝑖 2.8 10−5 1.3 10−11 2.1 10−14 8.0 108 2.1 10−5 24.9

𝐶𝑇 5.4 10−6 0.0 0.0 0.0 3.8 10−4 2.9

𝑘𝑑 0.6 0.0 0.0 0.0 0.4 1.3

SC = Sensitivity coefficient, IS = Identifiability score, PE = Percentage Error, MV and SD = mean value and standard

deviation of the estimation from 𝐷𝑅𝐸𝐴𝑀(𝑍𝑆). Parameters highlighted in yellow are suggested to be reduced.
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Table S4: Uncertainty analysis for V3 for 2,4 D data.

Parameter Best Fit SC IS PE MV SD

𝑛𝐹𝑃 0.8 2.0 103 2.0 103 104.9 0.9 0.1

𝜇𝑚𝑎𝑥 0.5 517.5 231.6 35.8 0.5 1.1

𝐾𝐹𝑃 0.5 52.9 5.6 10−4 4.6 103 0.1 4.0

𝐾𝐺 1.8 10−4 51.2 0.1 5.1 103 4.6 10−4 2.3

𝑌𝑃 0.2 43.9 17.5 968.8 0.2 0.1

𝑎𝑎 0.1 40.6 6.5 54.4 0.1 1.2

𝑓1 2.3 10−11 40.4 0.02 1.1 103 3.5 10−11 1.6

𝑛𝐻 5.3 19.5 1.5 139.4 5.7 1.3

𝑓𝑇 0.02 13.0 7.9 28.3 0.02 1.2

𝑎𝐶𝑂2 0.6 0.04 4.7 10−3 1.2 103 0.5 0.2

SC = Sensitivity coefficient, IS = Identifiability score, PE = Percentage Error, MV and SD = mean value and standard

deviation of the estimation from 𝐷𝑅𝐸𝐴𝑀(𝑍𝑆). Parameters highlighted in yellow are suggested to be reduced.

Table S5: Uncertainty analysis for V4 for 2,4 D data.

Parameter Best Fit SC IS PE MV SD

𝑛𝐹𝑃 0.8 1.2 104 1.2 104 113.1 0.9 0.1

𝜇𝑚𝑎𝑥 525.4 1.1 103 8.8 10−3 758.4 23.8 64.3

𝐾𝑀 0.7 987.2 6.9 1.8 103 9.4 10−3 209.4

𝐾𝐹𝑃 0.1 323.5 1.4 10−4 3.6 103 0.2 3.6

𝑎𝑎 0.4 179.9 36.9 44.0 0.2 1.8

𝑌𝑃 0.1 42.2 5.6 860.7 0.3 0.2

𝑓1 9.6 10−12 40.4 0.0 971.2 4.4 10−11 2.9

𝑓𝑇 5.8 10−3 13.0 7.6 35.6 4.8 10−3 1.2

𝑎𝐶𝑂2 0.4 0.0 1.1 10−3 1.4 103 0.5 0.2

SC = Sensitivity coefficient, IS = Identifiability score, PE = Percentage Error, MV and SD = mean value and standard

deviation of the estimation from DREAM(ZS). Parameters highlighted in yellow are suggested to be reduced.
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Table S6: Uncertainty analysis for V4’ for 2,4 D data.

Parameter Best Fit SC IS PE MV SD

𝜇𝑚𝑎𝑥 0.5 388.8 388.8 225.9 0.6 1.1

𝑌𝑃 0.5 49.1 27.5 116.8 0.5 0.1

𝑛𝐹𝑃 0.9 27.2 0.2 1.7 104 0.9 0.1

𝑓1 1.1 10−10 25.1 0.7 215.7 1.1 10−10 1.4

𝑎𝑎 0.1 22.3 8.9 142.4 0.1 1.2

𝐾𝑀 1.8 10−4 5.3 1.4 10−4 1.1 105 9.0 10−5 3.9

𝐾𝐹𝑃 0.1 0.8 1.6 10−8 3.9 105 0.2 4.0

𝑎𝐶𝑂2 0.5 0.4 0.0 320.9 0.4 0.2

SC = Sensitivity coefficient, IS = Identifiability score, PE = Percentage Error, MV and SD = mean value and standard

deviation of the estimation from DREAM(ZS). Parameters highlighted in yellow are suggested to be reduced.

11.1.7 Global Sensitivity Analysis Results - Morris Method
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Figure S6: Morris Method results for V0. X axis shows the model parameters and Y axis shows
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11.1.8 Prior and posterior distribution of the model parameters on 2,4-D and MCPA

data

Posterior distribution of the parameters of V0 for 2,4-D and MCPA data [117]
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Figure S8: Prior and posterior distribution of parameters (10-17) for V0 with 2,4-D data
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Figure S9: Prior and posterior distribution of parameters (1-9) for V0 with MCPA data
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Figure S10: Prior and posterior distribution of parameters (10-17) for V0 with MCPA data
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Posterior distribution of V3 for 2,4-D and MCPA data
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Figure S11: Prior and posterior distribution of parameters (1-6) for V3 with 2,4-D data
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Figure S12: Prior and posterior distribution of parameters (7-10) for V3 with 2,4-D data
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Figure S13: Prior and posterior distribution of parameters (1-6) for V3 with with MCPA data
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Figure S14: Prior and posterior distribution of parameters (7-10) for V3 with with MCPA data
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Posterior distribution of the parameters of V4 for 2,4-D and MCPA data
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Figure S15: Prior and posterior distribution of parameters for V4 with 2,4-D data
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Figure S16: Prior and posterior distribution of parameters for V4 with MCPA data
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Posterior distribution of V4’ for 2,4-D and MCPA data
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Figure S17: Prior and posterior distribution of parameters for V4’ with 2,4-D data
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Figure S18: Prior and posterior distribution of parameters for V4’ with MCPA data
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Posterior distribution of the parameters of V1 for 2,4-D
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Figure S19: Prior and posterior distribution of parameters (1-9) for V1 with 2,4-D data
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Figure S20: Prior and posterior distribution of parameters (10-13) for V1 with 2,4-D data
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Posterior distribution of the parameters of V2 for 2,4-D
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Figure S21: Prior and posterior distribution of parameters (1-9) for V2 with 2,4-D data
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Figure S22: Prior and posterior distribution of parameters (10-15) for V2 with 2,4-D data
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11.1.9 Correlation matrix of model variants

fT nH KG µmax f1 KM CT aa ai kr kd as YP aCO2 KFP nFP ar
fT 1.0 -0.6 0.7 0.3 -0.4 -0.7 0.1 -0.1 0.0 -0.4 0.0 0.0 -0.4 0.1 0.1 0.1 0.1

nH -0.6 1.0 -0.6 0.0 0.3 0.4 -0.1 0.0 0.0 0.3 0.2 0.1 0.2 0.0 0.0 -0.1 -0.1

KG 0.7 -0.6 1.0 0.1 -0.4 -0.5 0.2 0.0 0.0 -0.4 -0.3 -0.1 -0.3 0.1 -0.1 0.2 0.2

µmax 0.3 0.0 0.1 1.0 -0.1 0.2 0.2 0.1 -0.1 -0.5 -0.1 0.1 0.0 0.1 -0.1 0.2 0.3

f1 -0.4 0.3 -0.4 -0.1 1.0 0.4 -0.1 0.1 0.0 0.4 -0.2 0.0 0.9 -0.2 0.0 0.0 0.1

KM -0.7 0.4 -0.5 0.2 0.4 1.0 0.2 0.1 0.0 0.2 0.0 0.1 0.4 0.0 -0.3 0.0 0.1

CT 0.1 -0.1 0.2 0.2 -0.1 0.2 1.0 0.2 0.0 -0.3 -0.1 -0.1 0.0 0.2 -0.8 0.3 0.3

aa -0.1 0.0 0.0 0.1 0.1 0.1 0.2 1.0 0.0 0.0 -0.1 -0.1 0.2 0.0 -0.1 0.2 0.1

ai 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0

kr -0.4 0.3 -0.4 -0.5 0.4 0.2 -0.3 0.0 0.0 1.0 0.5 0.0 0.3 -0.1 0.1 -0.3 -0.2

kd 0.0 0.2 -0.3 -0.1 -0.2 0.0 -0.1 -0.1 0.0 0.5 1.0 0.0 -0.2 0.1 0.0 -0.3 -0.2

as 0.0 0.1 -0.1 0.1 0.0 0.1 -0.1 -0.1 0.0 0.0 0.0 1.0 -0.1 0.0 0.1 0.0 0.0

YP -0.4 0.2 -0.3 0.0 0.9 0.4 0.0 0.2 0.0 0.3 -0.2 -0.1 1.0 -0.1 -0.1 0.1 0.2

aCO2 0.1 0.0 0.1 0.1 -0.2 0.0 0.2 0.0 0.0 -0.1 0.1 0.0 -0.1 1.0 -0.1 0.1 0.1

KFP 0.1 0.0 -0.1 -0.1 0.0 -0.3 -0.8 -0.1 0.0 0.1 0.0 0.1 -0.1 -0.1 1.0 0.1 -0.3

nFP 0.1 -0.1 0.2 0.2 0.0 0.0 0.3 0.2 0.1 -0.3 -0.3 0.0 0.1 0.1 0.1 1.0 0.2

ar 0.1 -0.1 0.2 0.3 0.1 0.1 0.3 0.1 0.0 -0.2 -0.2 0.0 0.2 0.1 -0.3 0.2 1.0

Figure S23: Correlation matrix for full model V0.

fT nH KG µmax f1 KM aa as YP aCO2 KFP nFP ar
fT 1.0 -0.6 1.0 1.0 0.0 -0.3 0.6 -0.1 -0.1 -0.1 -0.1 0.0 0.2

nH -0.6 1.0 -0.6 -0.6 0.1 0.4 -0.8 0.1 0.1 0.0 0.2 0.1 0.1

KG 1.0 -0.6 1.0 1.0 0.1 -0.2 0.6 -0.1 0.0 -0.1 -0.3 0.0 0.2

µmax 1.0 -0.6 1.0 1.0 0.0 -0.3 0.6 -0.1 0.0 -0.1 -0.1 0.0 0.3

f1 0.0 0.1 0.1 0.0 1.0 0.2 -0.5 -0.2 1.0 0.1 -0.2 0.4 0.1

KM -0.3 0.4 -0.2 -0.3 0.2 1.0 -0.4 0.0 0.2 0.1 0.0 0.1 0.0

aa 0.6 -0.8 0.6 0.6 -0.5 -0.4 1.0 0.0 -0.5 -0.1 -0.2 -0.2 0.1

as -0.1 0.1 -0.1 -0.1 -0.2 0.0 0.0 1.0 -0.1 -0.1 0.0 -0.1 0.0

YP -0.1 0.1 0.0 0.0 1.0 0.2 -0.5 -0.1 1.0 0.1 -0.1 0.4 0.1

aCO2 -0.1 0.0 -0.1 -0.1 0.1 0.1 -0.1 -0.1 0.1 1.0 -0.1 0.0 -0.1

KFP -0.1 0.2 -0.3 -0.1 -0.2 0.0 -0.2 0.0 -0.1 -0.1 1.0 0.1 -0.2

nFP 0.0 0.1 0.0 0.0 0.4 0.1 -0.2 -0.1 0.4 0.0 0.1 1.0 0.1

ar 0.2 0.1 0.2 0.3 0.1 0.0 0.1 0.0 0.1 -0.1 -0.2 0.1 1.0

Figure S24: Correlation matrix for the model variant V1.
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fT nH KG µmax f1 KM CT aa ai kr kd YP aCO2 KFP nFP
fT 1.0 -0.2 0.2 -0.5 -0.2 -0.7 -0.4 0.1 -0.1 0.1 0.4 -0.3 -0.1 0.4 -0.4

nH -0.2 1.0 -0.5 -0.2 0.4 -0.1 -0.1 0.2 0.0 0.3 0.3 0.4 0.1 0.1 0.0

KG 0.2 -0.5 1.0 0.2 -0.4 0.2 0.1 -0.2 0.0 -0.4 -0.4 -0.4 0.0 -0.1 0.1

µmax -0.5 -0.2 0.2 1.0 -0.2 0.7 0.2 -0.1 0.1 -0.5 -0.7 -0.1 0.2 -0.2 0.1

f1 -0.2 0.4 -0.4 -0.2 1.0 0.2 0.3 0.0 0.0 0.6 0.2 1.0 -0.1 -0.2 0.3

KM -0.7 -0.1 0.2 0.7 0.2 1.0 0.8 -0.2 0.1 -0.2 -0.6 0.1 0.1 -0.7 0.5

CT -0.4 -0.1 0.1 0.2 0.3 0.8 1.0 -0.1 0.0 0.0 -0.3 0.3 -0.1 -0.9 0.6

aa 0.1 0.2 -0.2 -0.1 0.0 -0.2 -0.1 1.0 0.0 0.2 0.2 0.1 0.0 0.1 -0.1

ai -0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.0 1.0 0.0 -0.1 0.0 0.0 0.0 0.0

kr 0.1 0.3 -0.4 -0.5 0.6 -0.2 0.0 0.2 0.0 1.0 0.6 0.6 -0.1 0.1 0.0

kd 0.4 0.3 -0.4 -0.7 0.2 -0.6 -0.3 0.2 -0.1 0.6 1.0 0.2 -0.1 0.3 -0.2

YP -0.3 0.4 -0.4 -0.1 1.0 0.1 0.3 0.1 0.0 0.6 0.2 1.0 -0.1 -0.2 0.2

aCO2 -0.1 0.1 0.0 0.2 -0.1 0.1 -0.1 0.0 0.0 -0.1 -0.1 -0.1 1.0 0.1 0.0

KFP 0.4 0.1 -0.1 -0.2 -0.2 -0.7 -0.9 0.1 0.0 0.1 0.3 -0.2 0.1 1.0 -0.3

nFP -0.4 0.0 0.1 0.1 0.3 0.5 0.6 -0.1 0.0 0.0 -0.2 0.2 0.0 -0.3 1.0

Figure S25: Correlation matrix for the model variant V2.

fT nH KG µmax f1 aa YP aCO2 KFP nFP
fT 1.0 -0.2 0.2 0.3 0.4 -0.1 0.3 0.2 0.0 0.2

nH -0.2 1.0 -0.1 -0.7 -0.1 -0.7 -0.2 0.0 0.1 -0.2

KG 0.2 -0.1 1.0 0.2 0.4 0.1 0.4 0.1 -0.9 0.5

µmax 0.3 -0.7 0.2 1.0 -0.2 0.9 -0.1 0.0 -0.1 0.1

f1 0.4 -0.1 0.4 -0.2 1.0 -0.4 1.0 0.3 -0.3 0.5

aa -0.1 -0.7 0.1 0.9 -0.4 1.0 -0.3 -0.1 0.0 0.1

YP 0.3 -0.2 0.4 -0.1 1.0 -0.3 1.0 0.3 -0.4 0.5

aCO2 0.2 0.0 0.1 0.0 0.3 -0.1 0.3 1.0 0.0 0.0

KFP 0.0 0.1 -0.9 -0.1 -0.3 0.0 -0.4 0.0 1.0 -0.2

nFP 0.2 -0.2 0.5 0.1 0.5 0.1 0.5 0.0 -0.2 1.0

Figure S26: Correlation matrix for the model variant V3.
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fT KM µmax f1 aa YP aCO2 KFP nFP
fT 1.0 0.6 0.6 -0.6 0.7 -0.6 0.0 -0.1 0.3

KM 0.6 1.0 1.0 -0.8 0.9 -0.8 -0.1 -0.3 0.5

µmax 0.6 1.0 1.0 -0.8 0.8 -0.8 -0.1 -0.2 0.5

f1 -0.6 -0.8 -0.8 1.0 -1.0 1.0 0.2 0.1 -0.5

aa 0.7 0.9 0.8 -1.0 1.0 -1.0 -0.2 -0.1 0.5

YP -0.6 -0.8 -0.8 1.0 -1.0 1.0 0.3 0.1 -0.5

aCO2 0.0 -0.1 -0.1 0.2 -0.2 0.3 1.0 0.1 -0.2

KFP -0.1 -0.3 -0.2 0.1 -0.1 0.1 0.1 1.0 0.0

nFP 0.3 0.5 0.5 -0.5 0.5 -0.5 -0.2 0.0 1.0

Figure S27: Correlation matrix for the model variant V4.

KM µmax f1 aa YP aCO2 KFP nFP
KM 1.0 0.7 -0.2 0.3 -0.1 -0.1 -0.8 0.6

µmax 0.7 1.0 -0.5 0.6 -0.4 -0.3 -0.3 0.6

f1 -0.2 -0.5 1.0 -0.9 0.9 0.7 0.1 -0.2

aa 0.3 0.6 -0.9 1.0 -0.9 -0.6 -0.1 0.3

YP -0.1 -0.4 0.9 -0.9 1.0 0.9 0.1 -0.2

aCO2 -0.1 -0.3 0.7 -0.6 0.9 1.0 0.0 -0.1

KFP -0.8 -0.3 0.1 -0.1 0.1 0.0 1.0 -0.1

nFP 0.6 0.6 -0.2 0.3 -0.2 -0.1 -0.1 1.0

Figure S28: Correlation matrix for the model variant V4’.
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11.2 Supplementary Information for Chapter 7 (Paper 2)

11.2.1 Illustration of the degradation rate vs. Substrate concentration for both model

variants M and T:
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Figure S29: Illustration of the degradation rate vs. Substrate concentration for both model
variants M (1) and T (2) at high concentrations and low concentration (inset), for
𝑘𝐻𝑌 = 71 d−1 and 𝐾𝐻𝑌

𝑀 = 20 µg L−1

11.2.2 Determination of correction factor:

In this section, we show the determination of the correction factor for the inner pools. For the

atrazine (AT) pool, we started with a mass-based formulation of each pools. We defined 𝑉𝑅

as the total volume of the reactor and 𝑉𝐵 as the total volume of bacteria. Due to the fact that

𝑉𝐵 is negligible compared to 𝑉𝑅 , we assumed that the total volume equals the 𝑉𝑅 . We referred

the concentration of cells 𝐶𝐵 to the total volume or 𝑉𝑅 , so that the total mass of cells (𝑀𝐵) is

𝑀𝐵 = 𝐶𝐵 ⋅ 𝑉𝑅 . In turn, the concentration of AT inside the cell are referred to 𝑉𝐵, so that the mass

of AT (𝑀 𝑖
𝐴𝑇 ) equals: 𝑀 𝑖

𝐴𝑇 = 𝐶 𝑖
𝐴𝑇 ⋅ 𝑉𝐵. In the same manner, correction factors for the metabolite

hydroxyatrazine and the different AT isotopologues can be calculated.

1. First step: Mass-based model formulation of AT:
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𝑑𝑀 𝑖
𝐴𝑇

𝑑𝑡
= 𝑟𝑒 ⋅ 𝑀𝐵 ⋅ (

𝑀𝑜
𝐴𝑇
𝑉𝑅

−
𝑀 𝑖

𝐴𝑇
𝑉𝐵 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑟𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟

−
𝑘1 ⋅ 𝑀𝐵 ⋅

𝑀 𝑖
𝐴𝑇
𝑉𝐵

𝐾1 +
𝑀 𝑖

𝐴𝑇
𝑉𝐵⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑟𝐴𝑇𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛

(37)

2. Second step: Deriving concentration formulation for AT:

𝑑𝑀 𝑖
𝐴𝑇

𝑑𝑡
= 𝑟𝑒 ⋅ 𝑀𝐵 ⋅ (

𝑀𝑜
𝐴𝑇
𝑉𝑅

−
𝑀 𝑖

𝐴𝑇
𝑉𝐵 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑟𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟

−
𝑘1 ⋅ 𝑀𝐵 ⋅

𝑀 𝑖
𝐴𝑇
𝑉𝐵

𝐾1 +
𝑀 𝑖

𝐴𝑇
𝑉𝐵⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑟𝐴𝑇𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛

𝑑(𝐶 𝑖
𝐴𝑇 ⋅ 𝑉𝐵)
𝑑𝑡

= 𝑟𝑒 ⋅ 𝐶𝐵 ⋅ 𝑉𝑅 ⋅ (𝐶𝑜
𝐴𝑇 − 𝐶 𝑖

𝐴𝑇 )⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑟𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟

−
𝑘1 ⋅ 𝐶𝐵 ⋅ 𝑉𝑅 ⋅ 𝐶 𝑖

𝐴𝑇
𝐾1 + 𝐶 𝑖

𝐴𝑇⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑟𝐴𝑇𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛

(38)

Applying the product rule to the left hand side of S2:

𝑉𝐵 ⋅
𝑑𝐶 𝑖

𝐴𝑇
𝑑𝑡

+ 𝐶 𝑖
𝐴𝑇 ⋅

𝑑𝑉𝐵

𝑑𝑡
= 𝑟𝑒 ⋅ 𝐶𝐵 ⋅ 𝑉𝑅 ⋅ (𝐶𝑜

𝐴𝑇 − 𝐶 𝑖
𝐴𝑇 )⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑟𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟

−
𝑘1 ⋅ 𝐶𝐵 ⋅ 𝑉𝑅 ⋅ 𝐶 𝑖

𝐴𝑇
𝐾1 + 𝐶 𝑖

𝐴𝑇⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑟𝐴𝑇𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛

(39)

Solving for
𝑑𝐶 𝑖

𝐴𝑇
𝑑𝑡

:

𝑉𝐵 ⋅
𝑑𝐶 𝑖

𝐴𝑇
𝑑𝑡

= 𝑟𝑒 ⋅ 𝐶𝐵 ⋅ 𝑉𝑅 ⋅ (𝐶𝑜
𝐴𝑇 − 𝐶 𝑖

𝐴𝑇 )⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑟𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟

−
𝑘1 ⋅ 𝐶𝐵 ⋅ 𝑉𝑅 ⋅ 𝐶 𝑖

𝐴𝑇
𝐾1 + 𝐶 𝑖

𝐴𝑇⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑟𝐴𝑇𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛

−𝐶 𝑖
𝐴𝑇 ⋅

𝑑𝑉𝐵

𝑑𝑡
(40)

Dividing by 𝑉𝐵:
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𝑑𝐶 𝑖
𝐴𝑇

𝑑𝑡
=
𝑟𝑒 ⋅ 𝐶𝐵 ⋅ 𝑉𝑅 ⋅ (𝐶𝑜

𝐴𝑇 − 𝐶 𝑖
𝐴𝑇 )

𝑉𝐵⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑟𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟

−
𝑘1 ⋅ 𝐶𝐵 ⋅ 𝑉𝑅 ⋅ 𝐶 𝑖

𝐴𝑇
(𝐾1 + 𝐶 𝑖

𝐴𝑇 ) ⋅ 𝑉𝐵⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑟𝐴𝑇𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛

−
𝐶 𝑖
𝐴𝑇
𝑉𝐵

⋅
𝑑𝑉𝐵

𝑑𝑡⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑟𝐴𝑇𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛

(41)

Replacing: 𝑉𝐵 =
𝑉 𝑢
𝐵 ⋅ 𝐶𝐵 ⋅ 𝑉𝑅

𝑓𝑐𝑒𝑙𝑙
, and

𝑑𝑉𝐵

𝑑𝑡
=
𝑉 𝑢
𝐵 ⋅ 𝑉𝑅

𝑓𝑐𝑒𝑙𝑙
⋅
𝑑𝐶𝐵

𝑑𝑡
:

𝑑𝐶 𝑖
𝐴𝑇

𝑑𝑡
=
𝑟𝑒 ⋅ 𝐶𝐵 ⋅ 𝑉𝑅 ⋅ (𝐶𝑜

𝐴𝑇 − 𝐶 𝑖
𝐴𝑇 )

𝑉 𝑢
𝐵 ⋅ 𝐶𝐵 ⋅ 𝑉𝑅

𝑓𝑐𝑒𝑙𝑙⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑟𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟

−
𝑘1 ⋅ 𝐶𝐵 ⋅ 𝑉𝑅 ⋅ 𝐶 𝑖

𝐴𝑇

(𝐾1 + 𝐶 𝑖
𝐴𝑇 ) ⋅

𝑉 𝑢
𝐵 ⋅ 𝐶𝐵 ⋅ 𝑉𝑅

𝑓𝑐𝑒𝑙𝑙⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑟𝐴𝑇𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛

(42)

−
𝐶 𝑖
𝐴𝑇

𝑉 𝑢
𝐵 ⋅ 𝐶𝐵 ⋅ 𝑉𝑅

𝑓𝑐𝑒𝑙𝑙

⋅
𝑉 𝑢
𝐵 ⋅ 𝑉𝑅

𝑓𝑐𝑒𝑙𝑙
⋅
𝑑𝐶𝐵

𝑑𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑟𝐴𝑇𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛

(43)

where: 𝑓𝑐𝑒𝑙𝑙 is a conversion factor from cells to carbon, 𝑉𝑢 [L] is the volume of a single

bacterium set to 1 ⋅ 10−15 [63].

3. Third step: Final concentration formulation for AT:

𝑑𝐶 𝑖
𝐴𝑇

𝑑𝑡
= 𝑟𝑒 ⋅ (𝐶𝑜

𝐴𝑇 − 𝐶 𝑖
𝐴𝑇 ) ⋅

𝑓𝑐𝑒𝑙𝑙
𝑉 𝑢
𝐵⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑟𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟

−
𝑘1 ⋅ 𝐶 𝑖

𝐴𝑇
(𝐾1 + 𝐶 𝑖

𝐴𝑇 )
⋅
𝑓𝑐𝑒𝑙𝑙
𝑉 𝑢
𝐵⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑟𝐴𝑇𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛

(44)

−
𝐶 𝑖
𝐴𝑇
𝐶𝐵

⋅
𝑑𝐶𝐵

𝑑𝑡⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑟𝐴𝑇𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛

(45)

11.2.3 Determination of standard deviation of data 𝜎2
i (eq. 74 of the main text)

Since we only had two replicates (two reactors) for each observation in both systems (chemostat

and retentostat), as described by [63, 238], we first calculated the mean, standard deviation and

coefficient of variation per observation type and dilution rate, using both replicates at steady
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state. Because for some dilution rates, only one repetition was measured, we determined a mean

coefficient of variation for AT and HY measurements, and one for biomass to recalculate the

standard deviation of each dilution rate and observation type (eqs. 36 and 43 in the main paper):

Table S7: Recalculated standard deviations for chemostat and retentostat calibration based on
[63, 238]

Original Recalculated

Observation type Dilution rate Mean Std Cv Std Cv

AT [µg L−1] C1 = 0.023 79.3 1.9 0.02 3.3 0.04

C2 = 0.032 96.0 0.0 0.00 3.9 0.04

C3 = 0.048 235.5 4.9 0.02 9.7 0.04

C4 = 0.056 295.0 12.1 0.04

C5 = 0.068 446.0 5.7 0.01 18.3 0.04

HY [µg L−1] C1 = 0.023 241.0 7.07 0.03 9.9 0.04

C2 = 0.032 352.0 38.2 0.11 14.4 0.04

C3 = 0.048 414.5 24.7 0.06 17.0 0.04

C4 = 0.056 490.0 20.1 0.04

C5 = 0.068 714.0 35.4 0.05 29.3 0.04

Cells [cell L−1] C1 = 0.023 2.3 ⋅ 1010 2.2 ⋅ 109 0.10 1.6 ⋅ 109 0.04

C2 = 0.032 2.4 ⋅ 1010 2.3 ⋅ 109 0.10 1.7 ⋅ 109 0.07

C3 = 0.048 2.6 ⋅ 1010 7.1 ⋅ 107 0.00 1.8 ⋅ 109 0.07

C4 = 0.048 2.7 ⋅ 1010 8.5 ⋅ 108 0.03 1.9 ⋅ 109 0.07

C5 = 0.068 2.1 ⋅ 1010 8.5 ⋅ 108 0.04 1.5 ⋅ 109 0.07

AT [µg L−1] R1 = 0.02 12.9 0.6 0.05 0.5 0.04

HY [µg L−1] R1 = 0.02 12.5 0.7 0.06 0.5 0.04

Cells [cell L−1] R1 = 0.02 2.5 ⋅ 1011 3.9 ⋅ 1010 0.16 1.8 ⋅ 1010 0.07

Std = Standard deviation, C.V = coefficient of variation defined by the standard deviation divided by the mean. Blank

cells means that one one repetition was taken
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11.2.4 Soil Observations in Poltringen and Tailfingen, Germany

Pesticide Inventory

Table S8: Pesticide Inventory - Atrazine and Hydroxyatrazine in soils

Sample Atrazine [µg kg−1] Atrazine-2-hydroxy [µg kg−1]

P 0- 30 a 0.3 2.2

P 0- 30 b 0.5 1.5

P 0- 30 c 0.2 2.7

Mean 0.3 2.1

T 0- 30 a 0.7 1.7

T 0- 30 b 0.6 2.0

T 0- 30 c 0.6 2.1

Mean 0.6 1.9
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Sorption test results

Table S9: Sorption test results

Poltringen Tailfingen

AT conc. [µg/L] Cw* [µg/L] Cs* [µg/Kg] Cw* [µg/L] Cs* [µg/Kg]

0.027 0.43 0.033 0.67

0.06 0.026 0.43 0.032 0.67

0.028 0.43 0.030 0.68

0.260 0.66 0.269 0.89

0.4 0.268 0.65 0.258 0.91

0.299 0.58 0.268 0.89

2.344 4.18 3.881 1.34

4.0 2.387 4.06 2.537 4.03

2.452 3.95 2.292 4.52

22.688 27.57 21.109 30.61

36.0 22.686 27.26 22.237 28.27

22.575 27.48 28.575 15.78

246.709 346.73 214.333 407.25

420.0 228.472 379.72 276.396 285.26

370.428 313.689 209.25

2364.020 1225.239 1680.72

2060.0 1631.287 900.84 1445.130 1241.42

1274.485 1590.91 1353.376 1418.81

* equilibrium concentrations after 13 days. AT = atrazine
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Determination of sorption parameters
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Figure S30: Sorption fitting for both study sites

11.2.5 Seepage pesticide (atrazine and hydroxyatrazine) concentration results

Concentrations of atrazine and hydroxyatrazine at the two location were on average 0.1 ng L−1

and 10 ng L−1, respectively.
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Figure S31: Seepage water flux at A. Poltringen and B. Tailfingen at 50cm depth measured at 2019.
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11.2.6 Calibration to chemostat and retentostat data of alternative Monod-Model
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Figure S32: Simulations (boxplots) using model variant M (including Monod-kinetics) and
measurements (blank diamonds + estimated standard deviation). A-C. Steady-
state concentrations for the chemostat (for five dilution rates: C1-C5: 0.023, 0.032,
0.048, 0.056, 0.068 h−1) and the retentostat (dilution rate: R: 0.020 h−1). The middle
line in the boxplot is the median of the ensemble outputs from the MCMC (see
M&M 7.4); boxes represent 25% and 75% percentiles, and whiskers corresponds to
+/- 1.5 x IQR (interquartile range). D. Enrichment factors (𝜀), reported only for the
lowest dilution rate of the chemostat (C1) and retentotstat (R), but simulated for
C2-C5.

184



11 Appendices

1.2 1.4 1.6 1.8 2
0

0.02

0.04

1.8 1.9 2 2.1
0

0.02

1.6 1.8 2 2.2 2.4
0

0.02

0.04

2.8 3 3.2 3.4 3.6 3.8
0

0.01
0.02

-1 -0.5 0 0.5
0

0.01
0.02

0.05 0.1 0.15
0

0.02

-7.8 -7.6 -7.4 -7.2 -7
0

0.02

0.04

0 2 4 6 8
0

0.01

0.02

1.5 2 2.5 3 3.5
0

0.01
0.02

) K
1

( gL-1) m (dkAT (1/d) KM
AT kHY (1/d)

) K
2

( gL-1) kKM
HY ) m (d-1) Y (-) f ) Y (-) f

-8 -7.5 -7
0

0.01

0.02

-1.5 -1 -0.5 0
0

0.01
0.02

2 3 4
0

0.02

0.04

) Y (-) f
cell

( g cell ) r ) r
e

-1)gL(d (dg cell-1

) Y (-) f
cell

( g cell ) r ) r
e

-1)gL(d (dg cell-1

) K
2

( gL-1) kKM
HYkAT (1/d)

Chemostat Retentostat

A B C I

K

J

LD E F

G H

Figure S33: Posterior distributions for calibrations with chemostat (8 parameters) and retentostat
(4 parameters) data. All parameters are expressed n log scale with the exception of
the parameter Y.

11.2.7 Correlation tables

Table S11: Parameter correlation for model variant T data using MCMC ensemble

𝑘𝐴𝑇 𝐾𝐴𝑇
𝑀 𝑘𝐻𝑌 𝐾𝐻𝑌

𝑀 𝑚 𝑌 𝑓𝑐𝑒𝑙𝑙 𝑟𝑒 𝑘𝐴𝑇 𝐾𝐻𝑌
𝑀 𝑓𝑐𝑒𝑙𝑙 𝑟𝑒

𝑘𝐴𝑇 1.00 0.12 1.00 0.01 0.42 -1.00 -1.00 0.07 0.24 0.18 -0.44 0.44

𝐾𝐴𝑇
𝑀 0.12 1.00 0.07 0.14 -0.42 -0.08 -0.05 0.03 -0.17 0.52 0.42 -0.42

𝑘𝐻𝑌 1.00 0.07 1.00 0.09 0.43 -1.00 -1.00 0.07 0.24 0.18 -0.45 0.45

𝐾𝐻𝑌
𝑀 0.01 0.14 0.09 1.00 -0.26 -0.01 0.00 -0.03 -0.12 0.36 0.26 -0.26

𝑚 0.42 -0.42 0.43 -0.26 1.00 -0.43 -0.45 0.07 0.47 -0.78 -0.99 1.00

𝑌 -1.00 -0.08 -1.00 -0.01 -0.43 1.00 1.00 -0.07 -0.24 -0.18 0.45 -0.45

𝑓𝑐𝑒𝑙𝑙 -1.00 -0.05 -1.00 0.00 -0.45 1.00 1.00 -0.07 -0.25 -0.15 0.47 -0.47

𝑟𝑒 0.07 0.03 0.07 -0.03 0.07 -0.07 -0.07 1.00 0.04 -0.03 -0.07 0.07

𝑘𝐴𝑇 0.24 -0.17 0.24 -0.12 0.47 -0.24 -0.25 0.04 1.00 -0.35 -0.47 0.44

𝐾𝐻𝑌
𝑀 0.18 0.52 0.18 0.36 -0.78 -0.18 -0.15 -0.03 -0.35 1.00 0.77 -0.77

𝑓𝑐𝑒𝑙𝑙 -0.44 0.42 -0.45 0.26 -0.99 0.45 0.47 -0.07 -0.47 0.77 1.00 -1.00

𝑟𝑒 0.44 -0.42 0.45 -0.26 1.00 -0.45 -0.47 0.07 0.44 -0.77 -1.00 1.00

Diagonal highlighted in light green; highly correlated parameters (𝜎 2 > 0.80) highlighted in light blue.
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Table S12: Parameter correlation for model variant M data using MCMC ensemble

𝑘𝐴𝑇 𝐾𝐴𝑇
𝑀 𝑘𝐻𝑌 𝐾𝐻𝑌

𝑀 𝑚 𝑌 𝑓𝑐𝑒𝑙𝑙 𝑟𝑒 𝑘𝐴𝑇 𝐾𝐻𝑌
𝑀 𝑓𝑐𝑒𝑙𝑙 𝑟𝑒

𝑘𝐴𝑇 1.00 -0.09 0.34 -0.52 0.70 -1.00 -0.98 0.07 0.23 -0.42 -0.69 0.69

𝐾𝐴𝑇
𝑀 -0.09 1.00 0.15 0.33 -0.65 0.15 0.24 0.01 -0.19 0.64 0.64 -0.64

𝑘𝐻𝑌 0.34 0.15 1.00 0.61 0.06 -0.35 -0.31 -0.04 0.02 0.50 -0.06 0.06

𝐾𝐻𝑌
𝑀 -0.52 0.33 0.61 1.00 -0.60 0.53 0.56 -0.09 -0.20 0.85 0.59 -0.59

𝑚 0.70 -0.65 0.06 -0.60 1.00 -0.70 -0.77 0.07 0.31 -0.83 -0.99 0.99

𝑌 -1.00 0.15 -0.35 0.53 -0.70 1.00 0.99 -0.06 -0.24 0.42 0.70 -0.70

𝑓𝑐𝑒𝑙𝑙 -0.98 0.24 -0.31 0.56 -0.77 0.99 1.00 -0.07 -0.26 0.50 0.77 -0.77

𝑟𝑒 0.07 0.01 -0.04 -0.09 0.07 -0.06 -0.07 1.00 0.03 -0.08 -0.07 0.07

𝑘𝐴𝑇 0.23 -0.19 0.02 -0.20 0.31 -0.24 -0.26 0.03 1.00 -0.26 -0.31 0.23

𝐾𝐻𝑌
𝑀 -0.42 0.64 0.50 0.85 -0.83 0.42 0.50 -0.08 -0.26 1.00 0.83 -0.83

𝑓𝑐𝑒𝑙𝑙 -0.69 0.64 -0.06 0.59 -0.99 0.70 0.77 -0.07 -0.31 0.83 1.00 -0.98

𝑟𝑒 0.69 -0.64 0.06 -0.59 0.99 -0.70 -0.77 0.07 0.23 -0.83 -0.98 1.00

Diagonal highlighted in light green; highly correlated parameters (𝜎 2 > 0.80) highlighted in light blue.

11.2.8 Global sensitivity results

Morris Method

Thermodynamic Model Monod Model

kAT kATkHY kHYKAT
M

KAT
MKM

HY KM
HY

Figure S34: l2 − norm values from Morris Method [73, 105] for thermodynamic and Monod
Model
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Sobol indices
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Figure S35: Sobol Indices [202]: 1: Final Biomass, 2 Final AT in the system:, 3 Final AT inside
the cell:, 4: Final HY in the system, 5: Final HY inside the cell, 6: Enrichment Factor
𝜀 fit.
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11.2.9 Local sensitivity analysis

11.2.10 Alternative model structure for engineered systems

Model description

Figure S36: Alternative model structure for engineered systems, including a pool of growing
and non-growing bacteria.

Governing equations

1. Growing bacteria (𝐶𝐵)

𝑑𝐶𝐵

𝑑𝑡
= 𝐶𝐵 ⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑘𝐻𝑌 ⋅ 𝐶 𝑖
𝐻𝑌𝑔

𝐾𝐻𝑌 + 𝐶 𝑖
𝐻𝑌𝑔

⋅ 𝑌

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑔𝑟𝑜𝑤𝑡ℎ

𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

−
(
1 −

𝐶 𝑖
𝐻𝑌𝑔

𝐾𝐻𝑌 + 𝐶 𝑖
𝐻𝑌𝑔 )

⋅ 𝑚 ⋅ 𝑌 −𝑟𝐷 ⋅ 𝛽
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑓 𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑

𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
−(1 − 𝜏𝑔) ⋅ 𝑘𝑑

⎞
⎟
⎟
⎟
⎟
⎟
⎠

+ 𝜏𝑛𝑔 ⋅ 𝑘𝑟 ⋅ 𝐶𝑛𝑔
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

(46)
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2. Non-growing bacteria (𝐶𝑛𝑔)

𝑑𝐶𝑛𝑔

𝑑𝑡
= 𝐶𝑛𝑔 ⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

−
(
1 −

𝐶 𝑖
𝐻𝑌𝑛𝑔

𝐾𝐻𝑌 + 𝐶 𝑖
𝐻𝑌𝑛𝑔 )

⋅ 𝑚 ⋅ 𝑌 −𝑟𝐷 ⋅ 𝛽
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑓 𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑

𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
−𝜏𝑛𝑔 ⋅ 𝑘𝑟

⎞
⎟
⎟
⎟
⎟
⎟
⎠

+ (1 − 𝜏𝑔) ⋅ 𝑘𝑑 ⋅ 𝐶𝐵
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

(47)

3. Light AT isotopologue inside growing bacteria (𝐶 𝑙
𝐴𝑇𝑖𝑔 )

𝑑𝐶 𝑙
𝐴𝑇𝑖𝑔

𝑑𝑡
=

𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

−
𝑘𝐴𝑇 ⋅ 𝐶 𝑙

𝐴𝑇𝑖𝑔

𝐾𝐴𝑇 + 𝐶 𝑙
𝐴𝑇𝑖𝑔 + 𝐶ℎ

𝐴𝑇𝑖𝑔
⋅
𝑓𝑐𝑒𝑙𝑙
𝑉 𝑢
𝐵

+

𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑟𝑒 ⋅
𝑓𝑐𝑒𝑙𝑙
𝑉 𝑢
𝐵

⋅ (𝐶
𝑙
𝐴𝑇𝑜 − 𝐶 𝑙

𝐴𝑇𝑖𝑔)

−(1 − 𝜏𝑔) ⋅ 𝑘𝑑 ⋅ 𝐶 𝑙
𝐴𝑇𝑖𝑔⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

+
𝜏𝑛𝑔 ⋅ 𝑘𝑟 ⋅ 𝐶 𝑙

𝐴𝑇𝑖𝑛𝑔 ⋅ 𝐶𝑛𝑔

𝐶𝐵⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

−
𝐶 𝑙
𝐴𝑇𝑖𝑔

𝐶𝐵
⋅
𝑑𝐶𝐵

𝑑𝑡⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛−𝑓 𝑎𝑐𝑡𝑜𝑟

(48)

4. Heavy AT isotopologue inside growing bacteria (𝐶ℎ
𝐴𝑇𝑖𝑔 )

𝑑𝐶ℎ
𝐴𝑇𝑖𝑔

𝑑𝑡
= −

𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝛼 ⋅ 𝑘𝐴𝑇 ⋅ 𝐶ℎ

𝐴𝑇𝑖𝑔

𝐾𝐴𝑇 + 𝐶 𝑙
𝐴𝑇𝑖𝑔 + 𝐶ℎ

𝐴𝑇𝑖𝑔
⋅
𝑓𝑐𝑒𝑙𝑙
𝑉 𝑢
𝐵

+

𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑟𝑒 ⋅ (𝐶
ℎ
𝐴𝑇𝑜 − 𝐶ℎ

𝐴𝑇𝑖𝑔) ⋅
𝑓𝑐𝑒𝑙𝑙
𝑉 𝑢
𝐵

−(1 − 𝜏𝑔) ⋅ 𝑘𝑑 ⋅ 𝐶ℎ
𝐴𝑇𝑖𝑔⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

+
𝜏𝑛𝑔 ⋅ 𝑘𝑟 ⋅ 𝐶ℎ

𝐴𝑇𝑖𝑛𝑔 ⋅ 𝐶𝑛𝑔

𝐶𝐵⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

−
𝐶ℎ
𝐴𝑇𝑖𝑔

𝐶𝐵
⋅ (

𝑑𝐶𝐵

𝑑𝑡 )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛−𝑓 𝑎𝑐𝑡𝑜𝑟

(49)

5. Light AT isotopologue inside non-growing bacteria (𝐶 𝑙
𝐴𝑇𝑖𝑛𝑔 )
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𝑑𝐶 𝑙
𝐴𝑇𝑖𝑛𝑔

𝑑𝑡
=

𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

−
𝑘𝐴𝑇 ⋅ 𝐶 𝑙

𝐴𝑇𝑖𝑛𝑔

𝐾𝐴𝑇 + 𝐶 𝑙
𝐴𝑇𝑖𝑛𝑔 + 𝐶ℎ

𝐴𝑇𝑖𝑛𝑔
⋅
𝑓𝑐𝑒𝑙𝑙
𝑉 𝑢
𝐵

+

𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑟𝑒 ⋅ (𝐶
𝑙
𝐴𝑇𝑜 − 𝐶 𝑙

𝐴𝑇𝑖𝑛𝑔) ⋅
𝑓𝑐𝑒𝑙𝑙
𝑉 𝑢
𝐵

+
(1 − 𝜏𝑔) ⋅ 𝑘𝑑 ⋅ 𝐶 𝑙

𝐴𝑇𝑖𝑔 ⋅ 𝐶𝐵

𝐶𝑛𝑔
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

−𝜏𝑛𝑔 ⋅ 𝑘𝑟 ⋅ 𝐶 𝑙
𝐴𝑇𝑖𝑛𝑔⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

−
𝐶 𝑙
𝐴𝑇𝑖𝑛𝑔

𝐶𝑛𝑔
⋅ (

𝑑𝐶𝑛𝑔

𝑑𝑡 )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛−𝑓 𝑎𝑐𝑡𝑜𝑟

(50)

6. Heavy AT isotopologue inside non-growing bacteria (𝐶ℎ
𝐴𝑇𝑖𝑛𝑔 )

𝑑𝐶ℎ
𝐴𝑇𝑖𝑛𝑔

𝑑𝑡
= −

𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝛼 ⋅ 𝑘𝐴𝑇 ⋅ 𝐶ℎ

𝐴𝑇𝑖𝑛𝑔

𝐾𝐴𝑇 + 𝐶 𝑙
𝐴𝑇𝑖𝑛𝑔 + 𝐶ℎ

𝐴𝑇𝑖𝑛𝑔
⋅
𝑓𝑐𝑒𝑙𝑙
𝑉 𝑢
𝐵

+

𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑟𝑒 ⋅ (𝐶
ℎ
𝐴𝑇𝑜 − 𝐶ℎ

𝐴𝑇𝑖𝑛𝑔) ⋅
𝑓𝑐𝑒𝑙𝑙
𝑉 𝑢
𝐵

+
(1 − 𝜏𝑔) ⋅ 𝑘𝑑 ⋅ 𝐶ℎ

𝐴𝑇𝑖𝑔 ⋅ 𝐶𝐵

𝐶𝑛𝑔
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

−𝜏𝑛𝑔 ⋅ 𝑘𝑟 ⋅ 𝐶ℎ
𝐴𝑇𝑖𝑛𝑔⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

−
𝐶ℎ
𝐴𝑇𝑖𝑛𝑔

𝐶𝑛𝑔
⋅ (

𝑑𝐶𝑛𝑔

𝑑𝑡 )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛−𝑓 𝑎𝑐𝑡𝑜𝑟

(51)

7. Light AT isotopologue outside bacteria (𝐶 𝑙
𝐴𝑇𝑜 )

𝑑𝐶 𝑙
𝐴𝑇𝑜
𝑑𝑡

= 𝑟𝐷 ⋅ (𝐶 𝑙
𝐼 − 𝐶 𝑙

𝐴𝑇𝑜 )⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑖𝑛𝑝𝑢𝑡−𝑜𝑢𝑡𝑝𝑢𝑡−𝑜𝑓 −𝑠𝑦𝑠𝑡𝑒𝑚

−

𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟−𝑔⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑟𝑒 ⋅ (𝐶

𝑙
𝐴𝑇𝑜 − 𝐶 𝑙

𝐴𝑇𝑖𝑔) ⋅ 𝐶𝐵 −

𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟−𝑛𝑔⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑟𝑒 ⋅ (𝐶

𝑙
𝐴𝑇𝑜 − 𝐶 𝑙

𝐴𝑇𝑖𝑛𝑔) ⋅ 𝐶𝑛𝑔 (52)

8. Heavy AT isotopologue outside bacteria (𝐶ℎ
𝐴𝑇𝑜 )

𝑑𝐶ℎ
𝐴𝑇𝑜
𝑑𝑡

= 𝑟𝐷 ⋅ (𝐶ℎ
𝐼 − 𝐶ℎ

𝐴𝑇𝑜 )⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑖𝑛𝑝𝑢𝑡−𝑜𝑢𝑡𝑝𝑢𝑡−𝑜𝑓 −𝑠𝑦𝑠𝑡𝑒𝑚

−

𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟−𝑔⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑟𝑒 ⋅ (𝐶

ℎ
𝐴𝑇𝑜 − 𝐶ℎ

𝐴𝑇𝑖𝑔) ⋅ 𝐶𝐵 −

𝑚𝑎𝑠𝑠−𝑡𝑟𝑎𝑛𝑠𝑓 𝑒𝑟−𝑛𝑔⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑟𝑒 ⋅ (𝐶

ℎ
𝐴𝑇𝑜 − 𝐶ℎ

𝐴𝑇𝑖𝑛𝑔) ⋅ 𝐶𝑛𝑔 (53)
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11 Appendices

9. HY inside growing bacteria (𝐶 𝑖
𝐻𝑌𝑔 )

𝑑𝐶 𝑖
𝐻𝑌𝑔 ⋅
𝑑𝑡

=
𝑘𝐴𝑇 ⋅ 𝐶 𝑙

𝐴𝑇𝑖𝑔

𝐾𝐴𝑇 + 𝐶 𝑙
𝐴𝑇𝑖𝑔 + 𝐶ℎ

𝐴𝑇𝑖𝑔
⋅
𝑓𝑐𝑒𝑙𝑙
𝑣𝑢
𝐵

+
𝛼 ⋅ 𝑘𝐴𝑇 ⋅ 𝐶ℎ

𝐴𝑇𝑖𝑔

𝐾𝐴𝑇 + 𝐶 𝑙
𝐴𝑇𝑖𝑔 + 𝐶ℎ

𝐴𝑇𝑖𝑔
⋅
𝑓𝑐𝑒𝑙𝑙
𝑣𝑢
𝐵

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐼 𝑛𝑝𝑢𝑡−𝐴𝑇

−
𝑘𝐻𝑌 ⋅ 𝐶 𝑖

𝐻𝑌𝑔

𝐾𝐻𝑌 + 𝐶 𝑖
𝐻𝑌𝑔

⋅
𝑓𝑐𝑒𝑙𝑙
𝑣𝑢
𝐵

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛

+ 𝑟𝑒 ⋅ (𝐶𝐻𝑌𝑜 − 𝐶 𝑖
𝐻𝑌𝑔) ⋅

𝑓𝑐𝑒𝑙𝑙
𝑣𝑢
𝐵⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑀𝑎𝑠𝑠−𝑇𝑟𝑎𝑛𝑠𝑓 𝑒𝑟−𝐻𝑌

−(1 − 𝜏𝑔) ⋅ 𝑘𝑑 ⋅ 𝐶 𝑖
𝐻𝑌𝑔⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

+
𝜏𝑛𝑔 ⋅ 𝑘𝑟 ⋅ 𝐶 𝑖

𝐻𝑌𝑛𝑔 ⋅ 𝐶𝑛𝑔

𝐶𝐵⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

−
(

𝑚 ⋅ 𝐶 𝑖
𝐻𝑌𝑔

𝐾𝐻𝑌 + 𝐶 𝑖
𝐻𝑌𝑔 )

⋅
𝑓𝑐𝑒𝑙𝑙
𝑣𝑢
𝐵

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒

−
𝐶 𝑖
𝐻𝑌𝑔

𝐶𝐵
⋅ (

𝑑𝐶𝐵
𝑑𝑡 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛−𝐹𝑎𝑐𝑡𝑜𝑟

(54)

10. HY inside non-growing bacteria (𝐶 𝑖
𝐻𝑌𝑛𝑔 )

𝑑𝐶 𝑖
𝐻𝑌𝑛𝑔 ⋅
𝑑𝑡

=
𝑘𝐴𝑇 ⋅ 𝐶 𝑙

𝐴𝑇𝑖𝑛𝑔

𝐾𝐴𝑇 + 𝐶 𝑙
𝐴𝑇𝑖𝑛𝑔 + 𝐶ℎ

𝐴𝑇𝑖𝑛𝑔
⋅
𝑓𝑐𝑒𝑙𝑙
𝑣𝑢
𝐵

+
𝛼 ⋅ 𝑘𝐴𝑇 ⋅ 𝐶ℎ

𝐴𝑇𝑖𝑛𝑔

𝐾𝐴𝑇 + 𝐶 𝑙
𝐴𝑇𝑖𝑛𝑔 + 𝐶ℎ

𝐴𝑇𝑖𝑛𝑔
⋅
𝑓𝑐𝑒𝑙𝑙
𝑣𝑢
𝐵

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐼 𝑛𝑝𝑢𝑡−𝐴𝑇

−
𝑘𝐻𝑌 ⋅ 𝐶 𝑖

𝐻𝑌𝑛𝑔

𝐾𝐻𝑌 + 𝐶 𝑖
𝐻𝑌𝑛𝑔

⋅
𝑓𝑐𝑒𝑙𝑙
𝑣𝑢
𝐵

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛

+ 𝑟𝑒 ⋅ (𝐶𝐻𝑌𝑜 − 𝐶 𝑖
𝐻𝑌𝑛𝑔) ⋅

𝑓𝑐𝑒𝑙𝑙
𝑣𝑢
𝐵⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑀𝑎𝑠𝑠−𝑇𝑟𝑎𝑛𝑠𝑓 𝑒𝑟−𝐻𝑌

+
(1 − 𝜏𝑔) ⋅ 𝑘𝑑 ⋅ 𝐶 𝑖

𝐻𝑌𝑔 ⋅ 𝐶𝐵

𝐶𝑛𝑔
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

−𝜏𝑛𝑔 ⋅ 𝑘𝑟 ⋅ 𝐶 𝑖
𝐻𝑌𝑛𝑔⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

−
(

𝑚 ⋅ 𝐶 𝑖
𝐻𝑌𝑛𝑔

𝐾𝐻𝑌 + 𝐶 𝑖
𝐻𝑌𝑛𝑔 )

⋅
𝑓𝑐𝑒𝑙𝑙
𝑣𝑢
𝐵

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒

−
𝐶 𝑖
𝐻𝑌𝑛𝑔

𝐶𝑛𝑔
⋅ (

𝑑𝐶𝑛𝑔

𝑑𝑡 )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛−𝐹𝑎𝑐𝑡𝑜𝑟

(55)

11. HY outside bacteria (𝐶𝐻𝑌𝑜 )
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𝑑(𝐶𝐻𝑌𝑜
𝑑𝑡

= −𝑟𝑒 ⋅ (𝐶𝐻𝑌𝑜 − 𝐶 𝑖
𝐻𝑌𝑔) ⋅ 𝐶𝐵

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑀𝑎𝑠𝑠−𝑇𝑟𝑎𝑛𝑠𝑓 𝑒𝑟−𝐻𝑌−𝑔

−𝑟𝑒 ⋅ (𝐶𝐻𝑌𝑜 − 𝐶 𝑖
𝐻𝑌𝑛𝑔) ⋅ 𝐶𝑛𝑔

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑀𝑎𝑠𝑠−𝑇𝑟𝑎𝑛𝑠𝑓 𝑒𝑟−𝐻𝑌−𝑛𝑔

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛−𝑙𝑒𝑎𝑣𝑖𝑛𝑔−𝑠𝑦𝑠𝑡𝑒𝑚⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
−𝑟𝐷 ⋅ 𝐶𝐻𝑌𝑜

(56)

Combined calibration of retentostat and chemostat results using Simulated annealing

from Matlab
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Figure S37: Chemostat and Retentostat fit: Atrazine, hydroxyatrazine and biomass
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Figure S38: Chemostat and Retentostat fit: Enrichment factor. Dashed line indicate the
enrichment value for chemostat -5.4‰ and retentostat -0.45‰
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11.3 Supplementary Information for Chapter 8 (Paper 3)

11.3.1 Main characteristics of the sampled soil

Table S15: Chemical and physical soil properties

Soil Horizon Depth pH Corg Nitrogen Phosphate Sand Silt Clay

Ap [cm] [CaCl2] [mg g−1] [mg g−1] [mg g−1] [%] [%] [%]

0-5 6.48 18.4 2.1 1.038 2.26 72.04 23.8

11.3.2 MCPA degrader abundance and activity

Table S16: Reverse transcription

Reaction Mixture Temperature profile

reaction 1 11 µl DNA digestion sample 5 min at 65°C

(+ and - sample) 1µl random primer >= 1 min at 4°C

1 µl dNTPs

reaction 2 • Preparation (+ samples): 5 min at 25°C

4 µl 5x First Strand Buffer 60 min at 50°C

1 µl 0.1 M DTT (100mM) 15 min at 70°C

1 µl RNase OUT Cool down at 4°C

1 µl reverse transcriptase (200 U/l)

13 µl reaction 1

• Preparation (- samples):

4 µl 5x First Strand Buffer

1 µl 0.1 M DTT (100mM)

1 µl RNase OUT

1 µl DEPC water

13 µl reaction 1

196



11 Appendices

Table S17: Digestion

Procedure Reaction mixture Temperature profile

Incubation 20 µL RNA sample 30 min at 37 °C

2.4 µL 10x Turbo DNA buffer

1.6 µL Turbo DNase

DNase Inactivation 0.16 Vol Inactivation reagent 5 min at room temperature

11.3.3 Model parameters

Table S19: Model Parameters

Hierarchy Parameters Units Description Range

C 𝑓𝑇 transcripts gene−1 Conversion factor transcripts per gene [10−3–103]

C 𝑛𝐻 - Hill exponent [1-10]

𝐾𝐺 mmol cm−3 Hill constant [10−10–103]

C 𝜇𝑚𝑎𝑥 d−1 Maximum growth rate coefficient [0.1–5]

W 𝑎𝑎 d−1 Decay rate coefficient [10−3–0.1]

𝑌𝑃 - Yield coefficient [0.1–0.9]

m d−1 Maintenance coefficient [10−5–0.1]

𝐾𝑀 mmol cm−3 Monod constant [10−5–103]

W 𝑎𝐶𝑂2 d−1 Decay rate coefficient of the NER [10−5–0.1]

𝑓1 mmol gene−1 Conversion factor cell to carbon [10−12–10−9]

𝑄10 - Temperature function constant [1.1–3]

S 𝐶𝑜
𝐵 gene g−1 Initial biomass [104–106]

C = concentration specific; W = water level specific; S = soil/sample specific
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11 Appendices

Table S20: Calibrated model parameters

1 mg 20 mg

Hierarchy Parameters pF = 1.8 pF = 3.5 pF = 1.8 pF = 3.5

C.S 𝑓𝑇 0.07 0.07 0.2 0.2

C.S 𝑛𝐻 8.1 8.1 7.6 7.6

𝐾𝐺 6.04 ⋅ 10−7 2.80 ⋅ 10−8 2.40 ⋅ 10−7 1.60 ⋅ 10−8

C.S 𝜇𝑚𝑎𝑥 1.8 1.8 0.2 0.2

WL.S 𝑎𝑎 0.01 0.009 0.01 0.009

𝑌𝑃 0.7 0.87 0.6 0.7

𝑚 0.005 0.008 0.03 0.009

𝐾𝑀 0.0004 0.0001 0.0007 0.0002

WL.S 𝑎𝐶𝑂2 0.0003 0.0005 0.0003 0.0005

𝑓1 5.0 ⋅ 10−11 1.4 ⋅ 10−11 6.1 ⋅ 10−10 5.6 ⋅ 10−10

𝑄10 1.5 1.4 2.03 2.07

S.S 𝐼 𝑛𝑖𝑡𝑖𝑎𝑙

𝐵𝑖𝑜𝑚𝑎𝑠𝑠

54875.2 54875.2 54875.2 54875.2

C.S = concentration specific; WL.S = water level specific; S.S = soil/sample specific

Model codes available under: DOI: 10.5281/zenodo.5081655.
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11.3.4 14C incorporation to 14CO2 respiration

Figure S39: Cumulative 14CO2 mineralization of two MCPA concentrations as a function of soil
temperature and soil moisture over time. Mineralization of MCPA is represented
by the percentage of initial 14C-MCPA. Curves were fitted to the data points via a
logistic model.

Table S21: Contrast of the estimated marginal means of mineralization on day 28 as a function
of temperature (the contrast function setting interaction = "tukey")

temp_treatment_tukey Estimate SE df t.ratio p.value

1 - 20°C -10.5 1.2 16 -8.7 1.9 ⋅ 10−7
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Table S22: Interaction contrast of the estimated marginal means of mineralization on day 28 as
a function of temperature and MCPA concentration (the contrast function setting
interaction = "tukey")

temp_treatment_tukey Concentration Estimate SE df t.ratio p.value

1 - 20°C 1 -3.3 1.7 16 -1.9 0.07

1 - 20°C 20 -17.7 1.7 16 -10.3 1.7 ⋅ 10−8

Table S23: Contrast of the estimated marginal means of mineralization on day 28 as a function
of soil moisture (the contrast function setting interaction = "tukey")

water_treatment_tukey Estimate SE df t.ratio p.value

pF_1.8 - pF_3.5 16.2 1.2 16 13.4 4.2 ⋅ 10−10

Table S24: Interaction contrast of the estimated marginal means of mineralization on day 28 as
a function of soil moisture and MCPA concentration (the contrast function setting
interaction = "tukey")

water_treatment_tukey Concentration Estimate SE df t.ratio p.value

pF_1.8 - pF_3.5 1 11.1 1.7 16 6.5 7.8 ⋅ 10−6

pF_1.8 - pF_3.5 20 21.3 1.7 16 12.4 1.2 ⋅ 10−9
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Table S25: Interaction contrast of the estimated marginal means of tfdA copies g−1 as a function
of temperature, MCPA concentration, time and soil moisture (the contrast function
setting interaction = "tukey")

Temp_tukey MCPA Day pF Estimate SE df t.ratio p.value

1 - 20°C 0 0 1.8 −1.1 ⋅ 10−12 91.8 24 −1.1 ⋅ 10−14 1.00

1 - 20°C 1,000 0 1.8 2.6 ⋅ 10−13 91.8 24 2.9 ⋅ 10−15 1.00

1 - 20°C 20,000 0 1.8 6.6 ⋅ 10−13 91.8 24 7.2 ⋅ 10−15 1.00

1 - 20°C 0 6 1.8 -51.7 91.8 24 -0.6 0.58

1 - 20°C 1,000 6 1.8 -180.1 91.8 24 -2.0 0.06

1 - 20°C 20,000 6 1.8 -85.2 91.8 24 -0.9 0.36

1 - 20°C 0 10 1.8 -138.2 91.8 24 -1.5 0.15

1 - 20°C 1,000 10 1.8 -130.8 91.8 24 -1.4 0.17

1 - 20°C 20,000 10 1.8 −1.2 ⋅ 10−3 91.8 24 -12.8 3.0 ⋅ 10−12

1 - 20°C 0 15 1.8 277.6 91.8 24 3.0 0.01

1 - 20°C 1,000 15 1.8 98.0 91.8 24 1.1 0.30

1 - 20°C 20,000 15 1.8 -915.8 91.8 24 -10.0 5.2 ⋅ 10−10

1 - 20°C 0 26 1.8 -2.3 91.8 24 0.0 0.98

1 - 20°C 1,000 26 1.8 4.9 91.8 24 0.1 0.96

1 - 20°C 20,000 26 1.8 -0.4 91.8 24 0.0 1.00

1 - 20°C 0 0 3.5 −2.9 ⋅ 10−15 91.8 24 −3.2 ⋅ 10−15 1.00

1 - 20°C 1,000 0 3.5 1.2 ⋅ 10−13 91.8 24 1.3 ⋅ 10−15 1.00

1 - 20°C 20,000 0 3.5 1.2 ⋅ 10−13 91.8 24 1.3 ⋅ 10−15 1.00

1 - 20°C 0 6 3.5 74.9 91.8 24 0.8 0.42

1 - 20°C 1,000 6 3.5 -33.4 91.8 24 -0.4 0.72

1 - 20°C 20,000 6 3.5 55.4 91.8 24 0.6 0.55

1 - 20°C 0 10 3.5 -18.7 91.8 24 -0.2 0.84

1 - 20°C 1,000 10 3.5 -55.6 91.8 24 -0.6 0.55

1 - 20°C 20,000 10 3.5 −1.5 ⋅ 10−3 91.8 24 -16.4 1.6 ⋅ 10−14

1 - 20°C 0 15 3.5 44.0 91.8 24 0.5 0.64

1 - 20°C 1,000 15 3.5 130.0 91.8 24 1.4 0.17

1 - 20°C 20,000 15 3.5 -580.9 91.8 24 -6.3 1.5 ⋅ 106

1 - 20°C 0 26 3.5 -0.6 91.8 24 0.0 0.99

1 - 20°C 1,000 26 3.5 4.5 91.8 24 0.0 0.96

1 - 20°C 20,000 26 3.5 2.3 91.8 24 0.0 0.98202
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Table S26: Interaction contrast of the estimated marginal means of tfdA gene transcript as a
function of temperature, MCPA concentration, time and soil moisture (the contrast
function setting interaction = "tukey")

Temp_tukey MCPA Day pF Estimate SE df t.ratio p.value

1 - 20°C 0 0 1.8 2.0 ⋅ 10−10 1.0 ⋅ 105 24 2.0 ⋅ 10−15 1.00

1 - 20°C 1,000 0 1.8 9.5 ⋅ 10−11 1.0 ⋅ 105 24 9.5 ⋅ 10−16 1.00

1 - 20°C 20,000 0 1.8 −1.1 ⋅ 10−10 1.0 ⋅ 105 24 −1.1 ⋅ 10−15 1.00

1 - 20°C 0 6 1.8 -346.1 1.0 ⋅ 105 24 −3.5 ⋅ 10−3 1.00

1 - 20°C 1,000 6 1.8 −3.1 ⋅ 104 1.0 ⋅ 105 24 -0.3 0.76

1 - 20°C 20,000 6 1.8 −2.0 ⋅ 104 1.0 ⋅ 105 24 -0.2 0.84

1 - 20°C 0 10 1.8 -70.3 1.0 ⋅ 105 24 −7.0 ⋅ 10−4 1.00

1 - 20°C 1,000 10 1.8 1.9 ⋅ 104 1.0 ⋅ 105 24 0.2 0.85

1 - 20°C 20,000 10 1.8 −2.0 ⋅ 106 1.0 ⋅ 105 24 -15.3 6.8 ⋅ 10−14

1 - 20°C 0 15 1.8 5.0 ⋅ 103 1.0 ⋅ 105 24 0.05 0.96

1 - 20°C 1,000 15 1.8 1.6 ⋅ 104 1.0 ⋅ 105 24 0.2 0.87

1 - 20°C 20,000 15 1.8 −8.0 ⋅ 104 1.0 ⋅ 105 24 -0.8 0.44

1 - 20°C 0 26 1.8 -519.9 1.0 ⋅ 105 24 −5.2 ⋅ 10−3 1.00

1 - 20°C 1,000 26 1.8 18.2 1.0 ⋅ 105 24 1.8 ⋅ 10−4 1.00

1 - 20°C 20,000 26 1.8 1.5 ⋅ 105 1.0 ⋅ 105 24 1.5 0.16

1 - 20°C 0 0 3.5 1.5 ⋅ 10−10 1.0 ⋅ 105 24 1.5 ⋅ 10−15 1.00

1 - 20°C 1,000 0 3.5 1.2 ⋅ 10−10 1.0 ⋅ 105 24 1.2 ⋅ 10−15 1.00

1 - 20°C 20,000 0 3.5 3.9 ⋅ 10−11 1.0 ⋅ 105 24 3.9 ⋅ 10−16 1.00

1 - 20°C 0 6 3.5 −2.6 ⋅ 10−10 1.0 ⋅ 105 24 −2.6 ⋅ 10−15 1.00

1 - 20°C 1,000 6 3.5 7.1 ⋅ 103 1.0 ⋅ 105 24 0.07 0.94

1 - 20°C 20,000 6 3.5 −2.1 ⋅ 104 1.0 ⋅ 105 24 -0.2 0.84

1 - 20°C 0 10 3.5 971.3 1.0 ⋅ 105 24 9.7 ⋅ 10−3 0.99

1 - 20°C 1,000 10 3.5 1.8 ⋅ 104 1.0 ⋅ 105 24 0.2 0.86

1 - 20°C 20,000 10 3.5 −1.4 ⋅ 106 1.0 ⋅ 105 24 -14.1 4.4 ⋅ 10−13

1 - 20°C 0 15 3.5 -25.7 1.0 ⋅ 105 24 −2.6 ⋅ 10−4 1.00

1 - 20°C 1,000 15 3.5 2.6 ⋅ 103 1.0 ⋅ 105 24 0.03 0.98

1 - 20°C 20,000 15 3.5 −9.4 ⋅ 103 1.0 ⋅ 105 24 -0.09 0.93

1 - 20°C 0 26 3.5 -10.6 1.0 ⋅ 105 24 −1.1 ⋅ 10−4 1.00

1 - 20°C 1,000 26 3.5 12.4 1.0 ⋅ 105 24 1.2 ⋅ 10−4 1.00

1 - 20°C 20,000 26 3.5 4.7 ⋅ 103 1.0 ⋅ 105 24 0.05 0.96
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Table S27: Contrast of the estimated marginal means of 14C incorporation as a function of soil
moisture (the contrast function setting interaction ="tukey")

Water_treatment_tukey mcpa Estimate SE df t.ratio p.value

pF 1.8 - pF 3.5 1 mg kg−1 -1.2 1.5 16 -0.8 0.4

pF 1.8 - pF 3.5 20 mg kg−1 2.7 1.5 16 1.8 0.1

Table S28: Contrast of the estimated marginal means of 14C incorporation as a function of
temperature (the contrast function setting interaction ="tukey")

Temp_treatment_tukey Day estimate SE df t.ratio p.value

1 - 20°C 5 2.9 1.3 16 2.2 0.04

1 - 20°C 15 8.0 1.3 16 6.0 1.8 ⋅ 10−5

1 - 20°C 28 6.5 1.4 16 4.8 2.0 ⋅ 10−4

Table S29: Contrast of the estimated marginal means of 𝐶𝑈𝐸𝑀 as a function of MCPA
concentration (the contrast function setting interaction = "tukey")

Concentration_tukey day Estimate SE df t.ratio p.value

1 - 20 mg kg−1 5 -0.05 0.02 16 -2.1 0.05

1 - 20 mg kg−1 15 -0.06 0.03 16 -2.4 0.03

1 - 20 mg kg−1 28 0.05 0.02 16 2.1 0.05

Table S30: Contrast of the estimated marginal means of 𝐶𝑈𝐸𝑀 as a function of temperature
(the contrast function setting interaction = "tukey")

temp_treatment_tukey day Estimate SE df t.ratio p.value

1 - 20°C 5 0.2 0.0239 16 9.6 4.8 ⋅ 10−8

1 - 20°C 15 0.4 0.0252 16 13.9 2.3 ⋅ 10−10

1 - 20°C 28 0.1 0.0246 16 5.5 5.2 ⋅ 10−5
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Table S31: Contrast of the estimated marginal means of 𝐶𝑈𝐸𝑀 as a function of soil moisture
(the contrast function setting interaction = "tukey")

water_treatment_tukey day Estimate SE df t.ratio p.value

pF_1.8 - pF_3.5 5 -0.15 0.024 16 -6.3 9.7 ⋅ 10−6

pF_1.8 - pF_3.5 15 -0.12 0.025 16 -4.8 2.2 ⋅ 10−4

pF_1.8 - pF_3.5 28 -0.06 0.025 16 -2.5 0.02

11.3.5 𝐶𝑈𝐸𝐶

Normalized residual MCPA concentration

pF = 1.8 pF = 3.5

E F G H

pF = 1.8 pF = 3.5

20 mg/kg 1 mg/kg
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Figure S40: 𝐶𝑈𝐸𝐶 (eq. 107) vs. time (d) showed in panels A to D, and 𝐶𝑈𝐸𝐶 vs normalized
residual MCPA concentration in soils showed in panels E to H
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11.4 Supplementary Information for Chapter 9 (Paper 4)

11.4.1 Model scenario descriptions

Model M1

The different bacterial guilds and the corresponding carbon sources are:

• 𝑁𝐴 (Guild A) = AT, HY, NE, NI, DEA, DIA.

• 𝑁𝐵 (Guild B) = HY, NI.

• 𝑁𝐶 (Guild C) = HY, NE, NI.

• 𝑁𝐷 (Guild D) = AT.

Biokinetic functions

Growth rate coefficient of Guild A

𝜇𝐴,𝐴𝑇 =
𝜇𝐴,𝐴𝑇𝑚𝑎𝑥 ⋅ 𝐴𝑇 𝐿

𝜇𝐴,𝐴𝑇𝑚𝑎𝑥 + 𝜇N𝐴

(57)

𝜇𝐴,𝐻𝑌 =
𝜇𝐴,𝐻𝑌
𝑚𝑎𝑥 ⋅ 𝐻𝑌 𝐿

𝜇𝐴,𝐻𝑌
𝑚𝑎𝑥 + 𝜇N𝐴

(58)

𝜇𝐴,𝑁𝐸 =
𝜇𝐴,𝑁𝐸
𝑚𝑎𝑥 ⋅ 𝑁𝐸𝐿

𝜇𝐴,𝑁𝐸
𝑚𝑎𝑥 + 𝜇N𝐴

(59)

𝜇𝐴,𝑁 𝐼 =
𝜇𝐴,𝑁 𝐼
𝑚𝑎𝑥 ⋅ 𝑁 𝐼 𝐿

𝜇𝐴,𝑁 𝐼
𝑚𝑎𝑥 + 𝜇N𝐴

(60)

𝜇𝐴,𝐷𝐸𝐴 =
𝜇𝐴,𝐷𝐸𝐴𝑚𝑎𝑥 ⋅ 𝐷𝐸𝐴𝐿

𝜇𝐴,𝐷𝐸𝐴𝑚𝑎𝑥 + 𝜇N𝐴

(61)

𝜇𝐴,𝐷𝐼𝐴 =
𝜇𝐴,𝐷𝐼𝐴𝑚𝑎𝑥 ⋅ 𝐷𝐼𝐴𝐿

𝜇𝐴,𝐷𝐼𝐴𝑚𝑎𝑥 + 𝜇N𝐴

(62)

206



11 Appendices

where:

𝜇N𝐴 = 𝐴𝑇 𝐿+𝐾𝐴,𝐴𝑇 +𝐻𝑌 𝐿+𝐾𝐴,𝐻𝑌 +𝑁𝐸𝐿+𝐾𝐴,𝑁𝐸+𝑁 𝐼 𝐿+𝐾𝐴,𝑁 𝐼 +𝐷𝐸𝐴𝐿+𝐾𝐴,𝐷𝐸𝐴+𝐷𝐼𝐴𝐿+𝐾𝐴,𝐷𝐼𝐴 (63)

Growth rate coefficient of Guild B

𝜇𝐵,𝐻𝑌 =
𝜇𝐵,𝐻𝑌
𝑚𝑎𝑥 ⋅ 𝐻𝑌 𝐿

𝜇𝐵,𝐻𝑌
𝑚𝑎𝑥 + 𝜇N𝐵

(64)

𝜇𝐵,𝑁 𝐼 =
𝜇𝐵,𝑁 𝐼
𝑚𝑎𝑥 ⋅ 𝑁 𝐼 𝐿

𝜇𝐵,𝑁 𝐼
𝑚𝑎𝑥 + 𝜇N𝐵

(65)

where:

𝜇N𝐵 = 𝐻𝑌 𝐿 + 𝐾𝐵,𝐻𝑌 + 𝑁 𝐼 𝐿 + 𝐾𝐵,𝑁 𝐼 (66)

Growth rate coefficient of Guild C

𝜇𝐶,𝐻𝑌 =
𝜇𝐶,𝐻𝑌
𝑚𝑎𝑥 ⋅ 𝐻𝑌 𝐿

𝜇𝐶,𝐻𝑌
𝑚𝑎𝑥 + 𝜇N𝐶

(67)

𝜇𝐶,𝑁𝐸 =
𝜇𝐶,𝑁𝐸
𝑚𝑎𝑥 ⋅ 𝑁𝐸𝐿

𝜇𝐶,𝑁𝐸
𝑚𝑎𝑥 + 𝜇N𝐶

(68)

𝜇𝐶,𝑁 𝐼 =
𝜇𝐶,𝑁 𝐼
𝑚𝑎𝑥 ⋅ 𝑁 𝐼 𝐿

𝜇𝐶,𝑁 𝐼
𝑚𝑎𝑥 + 𝜇N𝐶

(69)

where:

𝜇N𝐶 = 𝐻𝑌 𝐿 + 𝐾𝐶,𝐻𝑌 + 𝑁𝐸𝐿 + 𝐾𝐶,𝑁𝐸 + 𝑁 𝐼 𝐿 + 𝐾𝐶,𝑁 𝐼 (70)

Growth rate coefficient of Guild D

𝜇𝐷,𝐴𝑇 =
𝜇𝐷,𝐴𝑇𝑚𝑎𝑥 ⋅ 𝐴𝑇 𝐿

𝜇𝐷,𝐴𝑇𝑚𝑎𝑥 + 𝜇N𝐷

(71)
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where:

𝜇N𝐷 = 𝐴𝑇 𝐿 + 𝐾𝐷,𝐴𝑇 (72)

Switch function for active/reactivation of Guild A

𝜏𝐴 =
1

exp(
𝑁𝐴
𝑡ℎ − (𝐴𝑇 𝐿 + 𝐻𝑌 𝐿 + 𝑁𝐸𝐿 + 𝑁 𝐼 𝐿 + 𝐷𝐸𝐴𝐿 + 𝐷𝐼𝐴𝐿)

𝑛 ⋅ 𝑁𝐴
𝑡ℎ ) + 1

(73)

Switch function for active/reactivation of Guild B

𝜏𝐵 =
1

exp(
𝑁 𝐵
𝑡ℎ − (𝐴𝑇 𝐿 + 𝐻𝑌 𝐿 + 𝑁 𝐼 𝐿)

𝑛 ⋅ 𝑁 𝐵
𝑡ℎ ) + 1

(74)

Switch function for active/reactivation of Guild C

𝜏𝐶 =
1

exp(
𝑁 𝐶
𝑡ℎ − (𝐻𝑌 𝐿 + 𝑁𝐸𝐿 + 𝑁 𝐼 𝐿)

𝑛 ⋅ 𝑁 𝐶
𝑡ℎ ) + 1

(75)

Switch function for active/reactivation of Guild D

𝜏𝐷 =
1

exp(
𝑁𝐷
𝑡ℎ − (𝐴𝑇 𝐿)
𝑛 ⋅ 𝑁𝐷

𝑡ℎ ) + 1
(76)

Dechlorination AT to HY by Guild B

𝐾 𝑜
𝐴𝑇−𝐻𝑌 =

𝑘𝐴𝑇−𝐻𝑌 ⋅ 𝐴𝑇 𝐿

𝐾𝐴𝑇−𝐻𝑌 + 𝐴𝑇 𝐿 (77)

Governing equations

Active Guild A
𝑑𝐵𝑎𝐴
𝑑𝑡

= 𝐵𝑎𝐴 ⋅ (𝜇𝐴,𝐴𝑇 ⋅ 𝑓𝐴𝑇−𝐶𝐴 + 𝜇𝐴,𝐻𝑌 ⋅ 𝑓𝐻𝑌−𝐶𝐴 + 𝜇𝐴,𝑁𝐸 ⋅ 𝑓𝑁𝐸−𝐶𝐴 + 𝜇𝐴,𝑁 𝐼 ⋅ 𝑓𝑁 𝐼−𝐶𝐴+

𝜇𝐴,𝐷𝐸𝐴 ⋅ 𝑓𝐷𝐸𝐴−𝐶𝐴 + 𝜇𝐴,𝐷𝐼𝐴 ⋅ 𝑓𝐷𝐼𝐴−𝐶𝐴 − 𝑎𝑎,𝐴) − (1 − 𝜏𝐴) ⋅ 𝑘𝑑𝐴 ⋅ 𝐵𝑎𝐴 + 𝜏𝐴 ⋅ 𝑘𝑎𝐴 ⋅ 𝐵𝑑𝐴

(78)
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Dormant Guild A

𝑑𝐵𝑑𝐴
𝑑𝑡

= (1 − 𝜏𝐴) ⋅ 𝑘𝑑𝐴 ⋅ 𝐵𝑎𝐴 − 𝜏𝐴 ⋅ 𝑘𝑎𝐴 ⋅ 𝐵𝑑𝐴 − 𝐵𝑑𝐴 ⋅ 𝑎𝑑,𝐴 (79)

Active Guild B
𝑑𝐵𝑎𝐵
𝑑𝑡

= 𝐵𝑎𝐵 ⋅ (𝜇𝐵,𝐻𝑌 ⋅ 𝑓𝐻𝑌−𝑁𝐸 + 𝜇𝐵,𝑁 𝐼 ⋅ 𝑓𝑁 𝐼−𝐶𝐴 − 𝑎𝑎,𝐵)−

(1 − 𝜏𝐵) ⋅ 𝑘𝑑𝐵 ⋅ 𝐵𝑎𝐵 + 𝜏𝐵 ⋅ 𝑘𝑎𝐵 ⋅ 𝐵
𝑑
𝐵

(80)

Dormant Guild B

𝑑𝐵𝑑𝐵
𝑑𝑡

= (1 − 𝜏𝐵) ⋅ 𝑘𝑑𝐴 ⋅ 𝐵𝑎𝐵 − 𝜏𝐵 ⋅ 𝑘𝑎𝐵 ⋅ 𝐵
𝑑
𝐵 − 𝐵𝑑𝐵 ⋅ 𝑎𝑑,𝐵 (81)

Active Guild C
𝑑𝐵𝑎𝐶
𝑑𝑡

= 𝐵𝑎𝐵 ⋅ (𝜇𝐶,𝐻𝑌 ⋅ 𝑓𝐻𝑌−𝑁 𝐼 + 𝜇𝐶,𝑁𝐸 ⋅ 𝑓𝑁𝐸−𝐶𝐴 + 𝜇𝐶,𝑁 𝐼 ⋅ 𝑓𝑁 𝐼−𝐶𝐴 − 𝑎𝑎,𝐶 )−

(1 − 𝜏𝐶 ) ⋅ 𝑘𝑑𝐶 ⋅ 𝐵𝑎𝐶 + 𝜏𝐶 ⋅ 𝑘𝑎𝐶 ⋅ 𝐵𝑑𝐶

(82)

Dormant Guild C

𝑑𝐵𝑑𝐶
𝑑𝑡

= (1 − 𝜏𝐶 ) ⋅ 𝑘𝑑𝐴 ⋅ 𝐵𝑎𝐶 − 𝜏𝐶 ⋅ 𝑘𝑎𝐶 ⋅ 𝐵𝑑𝐶 − 𝐵𝑑𝐶 ⋅ 𝑎𝑑,𝐶 (83)

Active Guild D

𝑑𝐵𝑎𝐷
𝑑𝑡

= 𝐵𝑎𝐷 ⋅ (𝜇𝐷,𝐴𝑇 ⋅ 𝑓 𝑜𝐷 − 𝑎𝑎,𝐷) − (1 − 𝜏𝐷) ⋅ 𝑘𝑑𝐷 ⋅ 𝐵𝑎𝐷 + 𝜏𝐷 ⋅ 𝑘𝑎𝐷 ⋅ 𝐵𝑑𝐷 (84)

Dormant Guild D

𝑑𝐵𝑑𝐷
𝑑𝑡

= (1 − 𝜏𝐷) ⋅ 𝑘𝑑𝐷 ⋅ 𝐵𝑎𝐷 − 𝜏𝐷 ⋅ 𝑘𝑎𝐷 ⋅ 𝐵𝑑𝐷 − 𝐵𝑑𝐷 ⋅ 𝑎𝑑,𝐷 (85)

Atrazine (AT) in Solution

𝑑𝐴𝑇 𝐿

𝑑𝑡
= −(𝐵

𝑎
𝐴 ⋅

𝜌
𝜃
⋅ 𝜇𝐴,𝐴𝑇 ⋅ (

𝑓𝐴𝑇−𝐶𝐴
𝑌𝐴,𝐴𝑇

− (1 − 𝑓𝐴𝑇−𝐶𝐴)) + 𝐾 𝑜
𝐴𝑇−𝐻𝑌 ⋅

𝜌
𝜃
⋅ 𝐵𝑎𝐵 + 𝑘𝑜 ⋅ 𝐴𝑇 𝐿+

𝐵𝑎𝐷 ⋅
𝜌
𝜃
⋅ 𝜇𝐷,𝐴𝑇 ⋅ (

𝑓 𝑜𝐷
𝑌𝐷,𝐴𝑇

− (1 − 𝑓 𝑜𝐷)))(1 +
𝜌
𝜃
⋅ 𝐾𝐴𝑇

𝐹𝑃 ⋅ 𝑛𝐴𝑇𝐹𝑃 ⋅ (𝐴𝑇 𝐿)(𝑛
𝐴𝑇
𝐹𝑃 −1))

(−1)
(86)
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Hydroxyatrazine (HY) in Solution

𝑑𝐻𝑌 𝐿

𝑑𝑡
= (𝐵

𝑎
𝐴 ⋅

𝜌
𝜃
⋅ 𝜇𝐴,𝐴𝑇 ⋅ (1 − 𝑓𝐻 ) ⋅ (1 − 𝑓𝐴𝑇−𝐶𝐴) + 𝐾 𝑜

𝐴𝑇−𝐻𝑌 ⋅
𝜌
𝜃
⋅ 𝐵𝑎𝐵 + 𝑘𝑜 ⋅ 𝐴𝑇 𝐿

−𝐵𝑎𝐴 ⋅
𝜌
𝜃
⋅ 𝜇𝐴,𝐻𝑌 ⋅ (

𝑓𝐻𝑌−𝐶𝐴

𝑌𝐴,𝐻𝑌
− (1 − 𝑓𝐻𝑌−𝐶𝐴))) − 𝐵𝑎𝐵 ⋅

𝜌
𝜃
⋅ 𝜇𝐵,𝐻𝑌 ⋅ (

𝑓𝐻𝑌−𝑁𝐸

𝑌𝐵,𝐻𝑌
− (1 − 𝑓𝐻𝑌−𝑁𝐸))

−𝐵𝑎𝐶 ⋅
𝜌
𝜃
⋅ 𝜇𝐶,𝐻𝑌 ⋅ (

𝑓𝐻𝑌−𝑁 𝐼

𝑌𝐶,𝐻𝑌
− (1 − 𝑓𝐻𝑌−𝑁 𝐼 )))(1 +

𝜌
𝜃
⋅ 𝐾𝐻𝑌

𝐹𝑃 ⋅ 𝑛𝐻𝑌
𝐹𝑃 ⋅ (𝐻𝑌 𝐿)(𝑛

𝐻𝑌
𝐹𝑃 −1)

)
(−1)

(87)

N-Ethylammelide (NE) in Solution

𝑑𝑁𝐸𝐿

𝑑𝑡
= (𝐵𝑎𝐵 ⋅

𝜌
𝜃
⋅ 𝜇𝐵,𝐻𝑌 ⋅ (1 − 𝑓𝐻𝑌−𝑁𝐸) − 𝐵𝑎𝐴 ⋅

𝜌
𝜃
⋅ 𝜇𝐴,𝑁𝐸 ⋅ (

𝑓𝑁𝐸−𝐶𝐴

𝑌𝐴,𝑁𝐸
− (1 − 𝑓𝑁𝐸−𝐶𝐴)))

−𝐵𝑎𝐶 ⋅
𝜌
𝜃
⋅ 𝜇𝐶,𝑁𝐸 ⋅ (

𝑓𝑁𝐸−𝐶𝐴

𝑌𝐶,𝑁𝐸
− (1 − 𝑓𝑁𝐸−𝐶𝐴)))(1 +

𝜌
𝜃
⋅ 𝐾𝑁𝐸

𝐹𝑃 ⋅ 𝑛𝑁𝐸
𝐹𝑃 ⋅ (𝑁𝐸𝐿)(𝑛

𝑁𝐸
𝐹𝑃 −1))

(−1)
(88)

N-Isopropylammelide (NI) in Solution

𝑑𝑁 𝐼 𝐿

𝑑𝑡
= (𝐵

𝑎
𝐶 ⋅

𝜌
𝜃
⋅ 𝜇𝐶,𝐻𝑌 ⋅ (1 − 𝑓𝐻𝑌−𝑁 𝐼 ) − 𝐵𝑎𝐴 ⋅

𝜌
𝜃
⋅ 𝜇𝐴,𝑁 𝐼 ⋅ (

𝑓𝑁 𝐼−𝐶𝐴

𝑌𝐴,𝑁 𝐼
− (1 − 𝑓𝑁 𝐼−𝐶𝐴)))

−𝐵𝑎𝐵 ⋅
𝜌
𝜃
⋅ 𝜇𝐵,𝑁 𝐼 ⋅ (

𝑓𝑁 𝐼−𝐶𝐴

𝑌𝐵,𝑁 𝐼
− (1 − 𝑓𝑁 𝐼−𝐶𝐴)) − 𝐵𝑎𝐶 ⋅

𝜌
𝜃
⋅ 𝜇𝐶,𝑁 𝐼 ⋅ (

𝑓𝑁 𝐼−𝐶𝐴

𝑌𝐶,𝑁 𝐼
− (1 − 𝑓𝑁 𝐼−𝐶𝐴)))

(1 +
𝜌
𝜃
⋅ 𝐾𝑁 𝐼

𝐹𝑃 ⋅ 𝑛𝑁 𝐼
𝐹𝑃 ⋅ (𝑁 𝐼 𝐿)(𝑛

𝑁 𝐼
𝐹𝑃 −1))

(−1)

(89)

Deethylatrazine (DEA) in Solution

𝑑𝐷𝐸𝐴𝐿

𝑑𝑡
= (𝐵𝑎𝐷 ⋅

𝜌
𝜃
⋅ 𝜇𝐷,𝐴𝑇 ⋅ (1 − 𝑓 𝑜𝐷) ⋅ (1 − 𝑓𝐷) − 𝐵𝑎𝐴 ⋅

𝜌
𝜃
⋅ 𝜇𝐴,𝐷𝐸𝐴 ⋅ (

𝑓𝐷𝐸𝐴−𝐶𝐴
𝑌𝐴,𝐷𝐸𝐴

− (1 − 𝑓𝐷𝐸𝐴−𝐶𝐴)))

(1 +
𝜌
𝜃
⋅ 𝐾𝐷𝐸𝐴

𝐹𝑃 ⋅ 𝑛𝐷𝐸𝐴𝐹𝑃 ⋅ (𝐷𝐸𝐴𝐿)(𝑛
𝐷𝐸𝐴
𝐹𝑃 −1)

)
(−1)

(90)

Deisopropylatrazine (DIA) in Solution

𝑑𝐷𝐼𝐴𝐿

𝑑𝑡
= (𝐵𝑎𝐷 ⋅

𝜌
𝜃
⋅ 𝜇𝐷,𝐴𝑇 ⋅ (1 − 𝑓 𝑜𝐷) ⋅ 𝑓𝐷 − 𝐵𝑎𝐴 ⋅

𝜌
𝜃
⋅ 𝜇𝐴,𝐷𝐼𝐴 ⋅ (

𝑓𝐷𝐼𝐴−𝐶𝐴
𝑌𝐴,𝐷𝐼𝐴

− (1 − 𝑓𝐷𝐼𝐴−𝐶𝐴)))

(1 +
𝜌
𝜃
⋅ 𝐾𝐷𝐼𝐴

𝐹𝑃 ⋅ 𝑛𝐷𝐼𝐴𝐹𝑃 ⋅ (𝐷𝐼𝐴𝐿)(𝑛
𝐷𝐼𝐴
𝐹𝑃 −1)

)
(−1)

(91)
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Cyanuric Acid (CA) in Solution

𝑑𝐶𝐴𝐿

𝑑𝑡
= (𝐵

𝑎
𝐴 ⋅

𝜌
𝜃
⋅ 𝜇𝐴,𝐴𝑇 ⋅ (1 − 𝑓𝐴𝑇−𝐶𝐴) ⋅ 𝑓𝐻 + 𝐵𝑎𝐴 ⋅

𝜌
𝜃
⋅ 𝜇𝐴,𝐻𝑌 ⋅ (1 − 𝑓𝐻𝑌−𝐶𝐴))

+𝐵𝑎𝐴 ⋅
𝜌
𝜃
⋅ 𝜇𝐴,𝑁𝐸 ⋅ (1 − 𝑓𝑁𝐸−𝐶𝐴) + 𝐵𝑎𝐴 ⋅

𝜌
𝜃
⋅ 𝜇𝐴,𝑁 𝐼 ⋅ (1 − 𝑓𝑁 𝐼−𝐶𝐴))

+𝐵𝑎𝐴 ⋅
𝜌
𝜃
⋅ 𝜇𝐴,𝐷𝐸𝐴 ⋅ (1 − 𝑓𝐷𝐸𝐴−𝐶𝐴) + 𝐵𝑎𝐴 ⋅

𝜌
𝜃
⋅ 𝜇𝐴,𝐷𝐼𝐴 ⋅ (1 − 𝑓𝐷𝐼𝐴−𝐶𝐴))

+𝐵𝑎𝐵 ⋅
𝜌
𝜃
⋅ 𝜇𝐵,𝑁 𝐼 ⋅ (1 − 𝑓𝑁 𝐼−𝐶𝐴) + 𝐵𝑎𝐶 ⋅

𝜌
𝜃
⋅ 𝜇𝐶,𝑁 𝐼 ⋅ (1 − 𝑓𝑁 𝐼−𝐶𝐴))

+𝐵𝑎𝐶 ⋅
𝜌
𝜃
⋅ 𝜇𝐶,𝑁𝐸 ⋅ (1 − 𝑓𝑁𝐸−𝐶𝐴 − 𝐶𝐴𝐿 ⋅ 𝑑𝐶𝐴−𝐶𝑂2 ⋅

𝐾𝐼

𝑁𝑂3 + 𝐾𝐼
))(1 +

𝜌
𝜃
⋅ 𝐾𝐶𝐴

𝐹𝑃 ⋅ 𝑛𝐶𝐴𝐹𝑃 ⋅ (𝐶𝐴𝐿)(𝑛
𝐶𝐴
𝐹𝑃 −1))

(−1)

(92)

CO2

𝑑𝐶𝑂2

𝑑𝑡
= 𝐶𝐴𝐿 ⋅ 𝑑𝐶𝐴−𝐶𝑂2 ⋅

𝜌
𝜃
⋅

𝐾𝐼

𝑁𝑂3 + 𝐾𝐼
+ 𝐵𝑎𝐴 ⋅ 𝜇𝐴,𝐴𝑇 ⋅ 𝑓𝐴𝑇−𝐶𝐴 ⋅ (

1 − 𝑌𝐴,𝐴𝑇
𝑌𝐴,𝐴𝑇 )

+𝐵𝑎𝐷 ⋅ 𝜇𝐷,𝐴𝑇 ⋅ 𝑓 𝑜𝐷 ⋅ (
1 − 𝑌𝐷,𝐴𝑇
𝑌𝐷,𝐴𝑇 ) + 𝐵𝑎𝐴 ⋅ 𝜇𝐴,𝐻𝑌 ⋅ 𝑓𝐻𝑌−𝐶𝐴 ⋅ (

1 − 𝑌𝐴,𝐻𝑌

𝑌𝐴,𝐻𝑌 )

+𝐵𝑎𝐴 ⋅ 𝜇𝐴,𝑁𝐸 ⋅ 𝑓𝑁𝐸−𝐶𝐴 ⋅ (
1 − 𝑌𝐴,𝑁𝐸

𝑌𝐴,𝑁𝐸 ) + 𝐵𝑎𝐴 ⋅ 𝜇𝐴,𝑁 𝐼 ⋅ 𝑓𝑁 𝐼−𝐶𝐴 ⋅ (
1 − 𝑌𝐴,𝑁 𝐼

𝑌𝐴,𝑁 𝐼 )

+𝐵𝑎𝐴 ⋅ 𝜇𝐴,𝐷𝐸𝐴 ⋅ 𝑓𝐷𝐸𝐴−𝐶𝐴 ⋅ (
1 − 𝑌𝐴,𝐷𝐸𝐴
𝑌𝐴,𝐷𝐸𝐴 ) + 𝐵𝑎𝐴 ⋅ 𝜇𝐴,𝐷𝐼𝐴 ⋅ 𝑓𝐷𝐼𝐴−𝐶𝐴 ⋅ (

1 − 𝑌𝐴,𝐷𝐼𝐴
𝑌𝐴,𝐷𝐼𝐴 )

+𝐵𝑎𝐵 ⋅ 𝜇𝐵,𝑁 𝐼 ⋅ 𝑓𝑁 𝐼−𝐶𝐴 ⋅ (
1 − 𝑌𝐵,𝑁 𝐼

𝑌𝐵,𝑁 𝐼 ) + 𝐵𝑎𝐵 ⋅ 𝜇𝐵,𝐻𝑌 ⋅ 𝑓𝐻𝑌−𝑁𝐸 ⋅ (
1 − 𝑌𝐵,𝐻𝑌

𝑌𝐵,𝐻𝑌 )

+𝐵𝑎𝐶 ⋅ 𝜇𝐶,𝑁𝐸 ⋅ 𝑓𝑁𝐸−𝐶𝐴 ⋅ (
1 − 𝑌𝐶,𝑁𝐸

𝑌𝐶,𝑁𝐸 ) + 𝐵𝑎𝐶 ⋅ 𝜇𝐶,𝑁 𝐼 ⋅ 𝑓𝑁 𝐼−𝐶𝐴 ⋅ (
1 − 𝑌𝐶,𝑁 𝐼

𝑌𝐶,𝑁 𝐼 )

+𝐵𝑎𝐶 ⋅ 𝜇𝐶,𝐻𝑌 ⋅ 𝑓𝐻𝑌−𝑁 𝐼 ⋅ (
1 − 𝑌𝐶,𝐻𝑌

𝑌𝐶,𝐻𝑌 ) + (𝐵𝑎𝐴 ⋅ 𝑎𝑎,𝐴 + 𝐵𝑑𝐴 ⋅ 𝑎𝑑,𝐴 + 𝐵𝑎𝐵 ⋅ 𝑎𝑎,𝐵 + 𝐵𝑑𝐵 ⋅ 𝑎𝑑,𝐵

+𝐵𝑎𝐶 ⋅ 𝑎𝑎,𝐶 + 𝐵𝑑𝐶 ⋅ 𝑎𝑑,𝐶 + 𝐵𝑎𝐷 ⋅ 𝑎𝑎,𝐷 + 𝐵𝑑𝐷 ⋅ 𝑎𝑑,𝐷) ⋅ 𝑓𝑅

(93)

Dissolved organic carbon(DOC)

𝑑𝐷𝑂𝐶
𝑑𝑡

= (𝐵𝑎𝐴 ⋅𝑎𝑎,𝐴+𝐵
𝑑
𝐴 ⋅𝑎𝑑,𝐴+𝐵

𝑎
𝐵 ⋅𝑎𝑎,𝐵+𝐵

𝑑
𝐵 ⋅𝑎𝑑,𝐵+𝐵

𝑎
𝐶 ⋅𝑎𝑎,𝐶+𝐵

𝑑
𝐶 ⋅𝑎𝑑,𝐶+𝐵

𝑎
𝐷 ⋅𝑎𝑎,𝐷+𝐵

𝑑
𝐷 ⋅𝑎𝑑,𝐷)⋅(1−𝑓𝑅) (94)

Model M2

The different bacterial guilds and the corresponding carbon sources are:

• 𝑁𝐵 (Guild B) = HY, NI.
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• 𝑁𝐶 (Guild C) = HY, NE, NI.

• 𝑁𝐷 (Guild D) = AT.

Model M3

The different bacterial guilds and the corresponding carbon sources are:

• 𝑁𝐴 (Guild A) = AT, HY, NI, DEA, DIA.

• 𝑁𝐶 (Guild C) = HY, NI.

• 𝑁𝐷 (Guild D) = AT.

Model M4

The different bacterial guilds and the corresponding carbon sources are:

• 𝑁𝐴 (Guild A) = AT, HY, NE, DEA, DIA.

• 𝑁𝐵 (Guild B) = HY.

• 𝑁𝐷 (Guild D) = AT.

Model M5

The different bacterial guilds and the corresponding carbon sources are:

• 𝑁𝐴 (Guild A) = AT, HY, DEA, DIA.

• 𝑁𝐷 (Guild D) = AT.

Model M6

First order decay model on AT, main metabolites (AT, HY, DEA, DIA), and sinks (CA, CO2)

Governing equations
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Atrazine (AT) in Solution

𝑑𝐴𝑇 𝐿

𝑑𝑡
= − (𝐴𝑇 𝐿 ⋅ (𝑑𝐴𝑇−𝐻𝑌 + 𝑑𝐴𝑇−𝐷𝐷)) ⋅ (1 +

𝜌
𝜃
⋅ 𝐾𝐴𝑇

𝐹𝑃 ⋅ 𝑛𝐴𝑇𝐹𝑃 ⋅ (𝐴𝑇 𝐿)(𝑛
𝐴𝑇
𝐹𝑃 −1))

(−1)
(95)

Hydroxyatrazine (HY) in Solution

𝑑𝐻𝑌 𝐿

𝑑𝑡
= (𝐴𝑇 𝐿 ⋅ 𝑑𝐴𝑇−𝐻𝑌 − 𝐻𝑌 𝐿 ⋅ 𝑑𝐻𝑌−𝐶𝐴) ⋅ (1 +

𝜌
𝜃
⋅ 𝐾𝐻𝑌

𝐹𝑃 ⋅ 𝑛𝐻𝑌
𝐹𝑃 ⋅ (𝐻𝑌 𝐿)(𝑛

𝐻𝑌
𝐹𝑃 −1)

)
(−1)

(96)

Deethylatrazine (DEA) in Solution

𝑑𝐷𝐸𝐴𝐿

𝑑𝑡
= (𝑓𝐷 ⋅ 𝐴𝑇 𝐿 ⋅ 𝑑𝐴𝑇−𝐷𝐷 − 𝐷𝐸𝐴𝐿 ⋅ 𝑑𝐷𝐸𝐴−𝐶𝐴) ⋅ (1 +

𝜌
𝜃
⋅ 𝐾𝐷𝐸𝐴

𝐹𝑃 ⋅ 𝑛𝐷𝐸𝐴𝐹𝑃 ⋅ (𝐷𝐸𝐴𝐿)(𝑛
𝐷𝐸𝐴
𝐹𝑃 −1)

)
(−1)

(97)

Deisopropylatrazine (DIA) in Solution

𝑑𝐷𝐼𝐴𝐿

𝑑𝑡
= ((1 − 𝑓𝐷) ⋅ 𝐴𝑇 𝐿 ⋅ 𝑑𝐴𝑇−𝐷𝐷 − 𝐷𝐼𝐴𝐿 ⋅ 𝑑𝐷𝐼𝐴−𝐶𝐴) ⋅ (1 +

𝜌
𝜃
⋅ 𝐾𝐷𝐼𝐴

𝐹𝑃 ⋅ 𝑛𝐷𝐼𝐴𝐹𝑃 ⋅ (𝐷𝐼𝐴𝐿)(𝑛
𝐷𝐼𝐴
𝐹𝑃 −1)

)
(−1)

(98)

Cyanuric Acid (CA) in Solution

𝑑𝐶𝐴𝐿

𝑑𝑡
= (𝐻𝑌 𝐿 ⋅ 𝑑𝐻𝑌−𝐶𝐴 ⋅ 𝑓𝐻𝑌−𝐶𝐴 + 𝐷𝐸𝐴𝐿 ⋅ 𝑑𝐷𝐸𝐴−𝐶𝐴 ⋅ 𝑓𝐷𝐸𝐴−𝐶𝐴 + 𝐷𝐼𝐴𝐿 ⋅ 𝑑𝐷𝐼𝐴−𝐶𝐴 ⋅ 𝑓𝐷𝐼𝐴−𝐶𝐴)

−𝐶𝐴𝐿 ⋅ 𝑑𝐶𝐴−𝐶𝑂2 ⋅
𝐾𝐼

𝑁𝑂3 + 𝐾𝐼
)) ⋅ (1 +

𝜌
𝜃
⋅ 𝐾𝐶𝐴

𝐹𝑃 ⋅ 𝑛𝐶𝐴𝐹𝑃 ⋅ (𝐶𝐴𝐿)(𝑛
𝐶𝐴
𝐹𝑃 −1))

(−1)

(99)

CO2

𝑑𝐶𝑂2

𝑑𝑡
= 𝐶𝐴𝐿 ⋅

𝜃
𝜌
⋅ 𝑑𝐶𝐴−𝐶𝑂2 ⋅

𝜃
𝜌
⋅

𝐾𝐼

𝑁𝑂3 + 𝐾𝐼
+ 𝐻𝑌 𝐿 ⋅

𝜃
𝜌
⋅ 𝑑𝐻𝑌−𝐶𝐴 ⋅ (1 − 𝑓𝐻𝑌−𝐶𝐴)

+𝐷𝐸𝐴𝐿 ⋅
𝜃
𝜌
⋅ 𝑑𝐷𝐸𝐴−𝐶𝐴 ⋅ (1 − 𝑓𝐷𝐸𝐴−𝐶𝐴) + 𝐷𝐼𝐴𝐿 ⋅

𝜃
𝜌
⋅ 𝑑𝐷𝐼𝐴−𝐶𝐴 ⋅ (1 − 𝑓𝐷𝐼𝐴−𝐶𝐴)

(100)
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11.4.2 Modified constraint-based parameter search algorithm - Sampling results

Sampling histograms

Figure S41: Sampled parameters for model scenario M1 after applying the modified constraint-
based parameter search algorithm. We showed prior parameter distribution (blue)
and the results of two independent runs of the sampling algorithm (pink and yellow).
Both independent runs show similar sampling results
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Figure S42: Sampled parameters (continuation) for model scenario M1 after applying the
modified constraint-based parameter search algorithm. We showed prior parameter
distribution (blue) and the results of two independent runs of the sampling algorithm
(pink and yellow). Both independent runs show similar sampling results
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Figure S43: Sampled parameters for model scenario M2 after applying the modified constraint-
based parameter search algorithm. We showed prior parameter distribution (blue)
and the results of two independent runs of the sampling algorithm (pink and yellow).
Both independent runs show similar sampling results
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Figure S44: Sampled parameters (continuation) for model scenario M2 after applying the
modified constraint-based parameter search algorithm. We showed prior parameter
distribution (blue) and the results of two independent runs of the sampling algorithm
(pink and yellow). Both independent runs show similar sampling results
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Figure S45: Sampled parameters for model scenario M3 after applying the modified constraint-
based parameter search algorithm. We showed prior parameter distribution (blue)
and the results of two independent runs of the sampling algorithm (pink and yellow).
Both independent runs show similar sampling results
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Figure S46: Sampled parameters (continuation) for model scenario M3 after applying the
modified constraint-based parameter search algorithm. We showed prior parameter
distribution (blue) and the results of two independent runs of the sampling algorithm
(pink and yellow). Both independent runs show similar sampling results

219



11 Appendices

Figure S47: Sampled parameters for model scenario M4 after applying the modified constraint-
based parameter search algorithm. We showed prior parameter distribution (blue)
and the results of three independent runs of the sampling algorithm (pink, yellow
and purple). Both independent runs show similar sampling results
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Figure S48: Sampled parameters (continuation) for model scenario M4 after applying the
modified constraint-based parameter search algorithm. We showed prior parameter
distribution (blue) and the results of three independent runs of the sampling
algorithm (pink, yellow and purple). Both independent runs show similar sampling
results
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Figure S49: Sampled parameters for model scenario M5 after applying the modified constraint-
based parameter search algorithm. We showed prior parameter distribution (blue)
and the results of two independent runs of the sampling algorithm (pink and yellow).
Both independent runs show similar sampling results
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Figure S50: Sampled parameters (continuation) for model scenario M5 after applying the
modified constraint-based parameter search algorithm. We showed prior parameter
distribution (blue) and the results of two independent runs of the sampling algorithm
(pink and yellow). Both independent runs show similar sampling results

Figure S51: Sampled parameters for model scenario M6 after applying the modified constraint-
based parameter search algorithm. We showed prior parameter distribution (blue)
and the results of two independent runs of the sampling algorithm (pink and yellow).
Both independent runs show similar sampling results
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Model outputs - Spaghetti plots
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Figure S52: Model outputs (AT, metabolites (HY, DEA, DIA), and sinks (CA, CO2)) presented as
spaghetti plots for model scenario M1. We showed 100 randomly selected outputs
out of the 30,000 produced from the modified constraint-based parameter search
algorithm. Pools of DIA and DEA lie under the detection limit of 1 ⋅ 10−7 mg cm−3
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Figure S53: Model outputs (AT, metabolites (HY, DEA, DIA), and sinks (CA, CO2)) presented as
spaghetti plots for model scenario M2. We showed 100 randomly selected outputs
out of the 30,000 produced from the modified constraint-based parameter search
algorithm. Pools of DIA and DEA lie under the detection limit of 1 ⋅ 10−7 mg cm−3
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Figure S54: Model outputs (AT, metabolites (HY, DEA, DIA), and sinks (CA, CO2)) presented as
spaghetti plots for model scenario M3. We showed 100 randomly selected outputs
out of the 30,000 produced from the modified constraint-based parameter search
algorithm. Pools of DIA and DEA lie under the detection limit of 1 ⋅ 10−7 mg cm−3
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Figure S55: Model outputs (AT, metabolites (HY, DEA, DIA), and sinks (CA, CO2)) presented as
spaghetti plots for model scenario M4. We showed 100 randomly selected outputs
out of the 30,000 produced from the modified constraint-based parameter search
algorithm. Pools of DIA and DEA lie under the detection limit of 1 ⋅ 10−7 mg cm−3
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Figure S56: Model outputs (AT, metabolites (HY, DEA, DIA), and sinks (CA, CO2)) presented as
spaghetti plots for model scenario M5. We showed 100 randomly selected outputs
out of the 30,000 produced from the modified constraint-based parameter search
algorithm
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Figure S57: Model outputs (AT, metabolites (HY, DEA, DIA), and sinks (CA, CO2)) presented as
spaghetti plots for model scenario M6. We showed 100 randomly selected outputs
out of the 30,000 produced from the modified constraint-based parameter search
algorithm
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11.4.3 Energy distance (ED) robustness results

Figure S58: Robustness test. Energy distance values per design candidates, including AT,
metabolites (HY, DEA, DIA), and sinks (CA, CO2) for the different ensemble sizes.
Ensemble size of 100 differs from the bigger ensemble sizes, but an ensemble size of
1,000, 5,000, 10,000 seems to produce similar results
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