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Abstract. We introduce a highly accurate and precise multi-view, multi-
projector, and multi-pattern phase scanning method for shape acquisi-
tion that is able to handle occlusions and optically challenging materials.
The 3D reconstruction is formulated as a two-step process which first es-
timates reliable measurement samples and then simultaneously optimizes
over all cameras, projectors, and patterns. This holistic approach results
in significant quality improvements. Furthermore, the acquisition time is
drastically reduced by relying on just six high-frequency sinusoidal cap-
tures without the need of phase unwrapping, which is implicitly provided
by the multi-view geometry.
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Fig. 1: For objects (a) with optically challenging properties, shifted sinusoidal
patterns (b) are captured from multiple cameras and projectors. On top of the
phase information, highly accurate features (c) are generated to perform a pre-
cise bundle adjustment (d). With the multi-view continuous phase signals (e) the
reliable camera-projector pairs for every surface point are estimated by validat-
ing multi-view consistency (f). Finally, we optimize the depth over all available
information.

1 Introduction

In order to capture a complete model and to provide a good coverage of the
visible surface area of any real-world object, a multi-view approach is neces-
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sary. In particular, these multi-view recordings are relevant in the context of
object recognition, industrial inspection and material acquisition where also the
illumination is varied. In all applications, it is beneficial to acquire a detailed ge-
ometry model to establish precise correspondences between the different views.
In this paper, we propose an active multi-view, multi-projector shape acquisition
system.

Multi-view acquisition systems typically consist of multiple cameras that are
either distributed at fixed positions [21], or are movable [1] around an object, or
get extended with projectors to perform active structured light (SL) scanning
alongside reflection measurements [24]. While our proposed method is developed
to be used inside such an illumination system for material acquisition, it purely
focuses on achieving high-quality active SL geometry reconstruction in the gen-
eral case of multiple viewpoints. In this case, each projector-pattern produces
a continuous SL signal that is captured by every camera as a two-dimensional
projection. The main idea is that a surface point is located exactly where all SL
signals from different viewpoints align, provided that the surface is visible from
the respective camera-projector pair and the signal is not corrupted by material
properties like specular- or inter-reflections.

To surpass the projector resolution, which is the most limiting factor of SL
scanning, continuous coding methods [20] are suggested. We use traditional phase
shifting methods (PS), where phases are recovered from projecting at least three
shifted sinusoidal patterns [23]. Phase shifting methods have been proven to
deliver high-quality results with sub-pixel accuracy, even in optically difficult
areas [5, 6, 14, 17]. We fully integrate phase shifting into our multi-view recon-
struction pipeline with two benefits. The multi-view approach further improves
the accuracy, and we can eliminate the need for explicit phase unwrapping by a
multi-view consistency validation. Thus, our method just needs to capture the
highest frequency patterns. Real world objects are often composed out of dif-
ferent materials with varying illumination profiles, which make it necessary to
capture the phase shifting patterns in high dynamic range (HDR) sequences to
achieve precise results in all areas.

Since our optimization requires correct camera and projector poses, a very
accurate calibration is required. We perform a precise online bundle adjustment
(BA) on actively marked corresponding points. Therefore, we propose to combine
the HDR phase shifting results with a fast LDR projector pixel identification
scheme to get highly accurate sub-pixel correspondences for a structure from
motion reconstruction.

The presented results feature a geometry accuracy far beyond the pixel res-
olution of both the involved cameras and projectors.

2 Related Work

3D Reconstruction: Three-dimensional shape estimation from real world ob-
jects is still a very challenging task and an active field of research. In general,
methods can be classified into two major categories: namely passive and active. In
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passive approaches, the scene is just captured from at least two viewpoints. The
most prominent representatives are multi-view stereo systems. However, most of
these techniques depend heavily on finding good salient point correspondences
between the views. Thus, they have problems in optically challenging and tex-
tureless areas that often results in sparse reconstructions. A comparison and
evaluation can be found in [22].

Active techniques overcome this issue by establishing correspondences be-
tween camera and projector pixels for each scene point with active illumination
patterns. Besides laser scanning [4], projector-based structured light pattern are
a well-studied technique [7,20]. The projected patterns establish correspondences
on the object, in the way that every point has a corresponding code-word, which
can be recovered by analyzing the differences in the captured images with the
projected patterns. Salvi et al. [20] compare state of the art structured light
patterns.

Structured light scanning in the appearance of global illumination, inter-
reflections or challenging materials, e.g. specular reflections, can still be an issue.
High frequency patterns can cope with that kind of problems [5,6,17]. Gupta et
al. [14] propose to combine different Gray code patterns logically in an ensem-
ble. This method achieves remarkable results. Nevertheless, the used patterns
just provide a discrete coding, and in consequence are not able to surpass the
projector resolution on their own. Hence, they applied the same technique to a
phase shifting method as Micro PS [15].

In traditional approaches, structured light patterns need to be temporally
unwrapped by projecting coarse-to-fine patterns consecutively to get a unique
correspondence for each point. The disadvantage is the number of additional
patterns that are dependent on the projector resolution. In the context of phase
shifting methods, this is referred to as phase unwrapping [20], where each fre-
quency band needs to be captured by at least three shifts. Multiple methods
are addressing this issue by reducing the amount of necessary patterns [20], e.g.
Embedded PS [16], and Micro PS [15]. Our approach replaces phase-unwrapping
by exploiting the multi-view setup.

Multi View Structured Light Scanning: For the purpose of phase un-
wrapping in a stereo camera plus projector system, Garcia and Zakhor [11]
present a method that performs a correspondence labeling in the projector do-
main via loopy belief propagation. Afterwards, missing absolute phases are esti-
mated in the camera domain from neighboring pixels.

Binary structured light scanning from uncalibrated viewpoints has been pro-
posed by several approaches: with a laser pointer [8], for multiple viewpoints
[9, 13], and for multiple projectors in a one-shot setting [10]. In a setting with
multiple cameras Young et al. [25] suggest using viewpoint-coded structured
light to mimic the temporal encoding. In recent years, using multiple cameras
and multiple projectors to capture geometry alongside photometric data in self-
calibrating systems has been demonstrated by the work of Aliaga et al. [2,3] and
Weinmann et al. [24]. Aliaga et al. utilize the projectors as additional virtual
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cameras. While this is beneficial in settings with few cameras, it makes their
approach even more dependent on the projector resolution. For a denser surface,
they perform an up-sampling scheme by warping the photometric captures onto
the geometrical model [2, 3]. Weinmann et al. [24] suggest utilizing overlapping
areas of the projected binary codes from multiple projectors to overcome low pro-
jector resolutions. The final resolution of the surface area is directly dependent
on the overlapping alignment of the projector pixel on the scene.

In contrast, our method utilizes traditional single phase shifting to achieve
continuous signals in the scene [23]. Thus, it is possible to optimize directly
on the continuous signals from multiple camera-projector pairs to estimate the
surface. Further, we introduce a novel multi-view consistency validation that
substitutes phase unwrapping, relies solely on high-frequencies patterns at no
additional cost, and reliably handles occlusions. All calculations can be done
for each 3D point separately without neighboring information. Additionally, we
propose to enhance active sparse bundle adjustment with the continuous signal
for better multi-view precision.

3 Multi-View Depth Optimization

Our reconstruction pipeline makes use of phase shifting patterns for two steps:
Once, to establish active correspondence to perform a highly accurate bundle
adjustment to estimate the camera and projector locations, and, second, for
optimizing the 3D geometry.

For the actual depth estimation, at first, a viewpoint consistency validation
is completed by coarsely sampling potential depth values. This step performs
an explicit multi-view phase unwrapping by utilizing geometrical constraints.
The step identifies for each pixel which camera-projector pairs provide valid
samples. Subsequently, all points are further optimized solely on the reliable
phase signal to achieve highly precise and accurate depth information. Figure 1
shows examples of the specific steps.

3.1 Multi-View HDR Continuous SL Calibration

This section describes our combination of the HDR phase scanning with an active
sparse bundle adjustment (SBA). Initially, we calculate the phase responses for
a horizontal and vertical projector pattern direction. Afterwards, sub-pixel ac-
curate feature points are generated by utilizing phase responses. These precisely
positioned feature points establish exact correspondences between all cameras
and all projectors suitable for a high-precision SBA.

We perform this calibration online during the capturing process to estimate
all extrinsic and also intrinsic parameters for a moving camera setup. In a fixed
system the same calibration could also be performed as a pre-processing step.

HDR Phase Scanning: We use traditional phase shifting [5,20] for the x and
y directions of the projectors respectively. Given a linearized projector, a set of
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N shifted sine patterns Ln,x in direction x, period T is generated:

Ln,x(x, y) = 0.5 cos (xω + θn) + 0.5, (1)

with ω = 1/T and θn = n2π/N.
Once successively projected and captured by the camera the phase vector

u = [o, c, s] (offset, cosine, sine) can be recovered for a single frequency given
the captured intensity responses r = [r0, r1, . . . , rn] (see [16]):

u = argmin
u
‖r −Au‖2 , with A :=


1 cos(θ0) − sin(θ0)
1 cos(θ1) − sin(θ1)
...

...
...

1 cos(θn) − sin(θn)

 . (2)

The phase φ is obtained by φ = tan−1 (s/c).
Since our goal is to recover the shape of objects with optically challenging

materials, the acquisition with a HDR sequence is essential, for which we use
the algorithm provided by Granados et al. [12].

Representing Phase Information: All phase differences and interpolations
in this work are computed on the respective sine and cosine part, not on the
angle. Consequently, for two phase responses a and b, we represent the norm as:

‖a− b‖Φ :=

√
(cos (a)− cos (b))

2
+ (sin (a)− sin (b))

2
, (3)

and for linear interpolation:

lerp(a, b;λ)Φ :=

[
(1− λ) ∗ cos(a) + λ · cos(b)
(1− λ) ∗ sin(a) + λ · sin(b)

]
. (4)

While this approximation introduces errors on larger intervals, on small scale
they perform close to the optimum. This is sufficient, since higher differences
are thresholded and interpolation is most likely performed on very small scale.
Especially on GPUs, this not only avoids unnecessary branching when dealing
with phase values, but also enables the utilization of the texture hardware.

Active Sparse Bundle Adjustment: After capturing the phases patterns for
each viewpoint, a sparse set of randomly sampled projector pixels are projected
temporally onto the scene using a binary encoding to enumerate these pixels.
This is very robust and done in LDR with high gain to be much faster than a
single capture of a HDR sequence.

For the selected projector pixels the analytic phase is known. An initial cam-
era pixel position for these feature points is obtained as the center of mass
of the detected spots. Afterwards the the sub-pixel location is refined by the
Nelder-Mead procedure [18] to match the analytically given phase to the mea-
sured phase in the camera image. This optimization procedure yields very accu-
rate correspondences and subsequently more precise results in the SBA. For the
SBA we use the work from [19].
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3.2 Multi-View Depth Optimization
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Fig. 2: General concept: Points along a ray are projected into all view-projector
pairs. Each point is evaluated based on the phase differences between the ob-
tained and the expected phase values for all patterns.

The general concept of our shape reconstruction is to recover the depth of
a surface point by a multi-view optimization, i.e. combining the information
of all cameras, projectors and patterns. Tracing a ray into the scene from an
arbitrarily chosen reference camera system R, we are able to project any point
q of depth d along the ray into all camera-views V and projectors P to get
the respective phase responses Φv,p,k as well as the expected projector phases

Φ̂p,k for all patterns K. This procedure is illustrated in Figure 2. For an actual

surface point the phase differences ‖Φv,p,k(d) − Φ̂p,k(d)‖Φ are required to be
minimal. However, we need to ensure to only operate on correct phase signals,
since occlusion and optical properties could induce corrupted phase information.
Hence, the depth reconstruction can be formulated as an optimization problem
over all views, projectors and patterns:

d = argmin
d

∑
p∈P

∑
v∈V

∑
k∈K

Ωv,p,k(d) ‖Φv,p,k(d)− Φ̂p,k(d)‖Φ , (5)

where Ωv,p,k(d) is our multi-view consistency validation that evaluates to 1 if
the phase information is estimated to be reliable and 0 otherwise.

Multi-view Consistency Validation: This step identifies which phase re-
sponses are reliable. For that reason, correct phase responses need to be distin-
guished from false positives. These wrongly predicted phase signals occur very
often in a system that only relies on high frequency patterns. On the other side,
phase responses can also be truly wrong or corrupted by optical influences such
as inter-reflections (false negatives). As neither of those signals should be used
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Fig. 3: Evaluation for an example point along a ray (depth) with the er-
ror/consistency for all camera-projector-pattern phase signals (horizontal) and
the sum of each depth. Our multi-view consistency scheme is able to determine
the contributing camera-projector pairs reliably and eliminates all false candi-
dates.

for the optimization, it is necessary to keep track of such events to not falsely
exclude cameras or projectors.

We utilize the geometrical setup to perform a consistency check. The accep-
tance measure of a single pattern is defined as:

Ω̂v,p,k(d) :=

{
1, if ‖Φv,p,k(d)− Φ̂p,k(d)‖Φ < θ

0, otherwise
, (6)

where θ is the allowed threshold difference for a phase value to still be acceptable.
Further, for the correct depth all patterns from the same view-projector

pair need to be consistent as well: Ω̂v,p,k0(d) ∧ · · · ∧ Ω̂v,p,kK−1
(d) (single-view

consistency).
Finally, we consider the fact that for any point in the scene it is not possible

to have disjunctive subsets of valid view-projector pairs: If a projector is valid
in one view it cannot be occluded in the other views; and vice versa. If a view
is able to receive the signal from one projector this view cannot be occluded
for the other projectors. Firstly, the contributing projectors are determined by
evaluating the overlap of valid views. Subsequently, a view is accepted if it is valid
for at least half of the contributing projectors. In that way, we allow for some
optical disturbances. Nonetheless, corrupted phase responses are still excluded
from the final optimization. The validation for a single point at different depth
is demonstrated in Figure 3.

Coarse Approximation and Multi-view-based Phase Unwrapping: For
the purpose of finding points close to a surface, the number of consistent phases
correlates to a good alignment. Thus, performing multi-view consistency valida-
tion along the depth substitutes phase unwrapping.

With relaxing the consistency threshold θ, it is possible to coarsely sample
the depth along the ray to approximate a good initial alignment.
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Fine Depth Estimation: Our fine depth estimation takes the result of the
coarse approximation as seed and performs a simple binary search on Equation 5.
We compute the variance σ of the phase differences for the final depth as an
additional measure of fitness.

4 Experimental Hardware Setup

All experiments in this paper have been captured in a light stage setting, with
two Point Grey Grasshopper3 (GS3-U3-120S6C-C) 12 MP cameras and three
Viewsonic Pro9000 1080p LED projectors. The two cameras are moved along
an arc at about 1 m distance around the scene to different positions. They are
treated as independent cameras in our system. The projectors have to be placed
outside the light stage. Otherwise, they would occlude lightpaths for the re-
flectance measurement. Thus, their distance is roughly 1.40 m, and the scene
is only covered by a subset of the projected area for each projector. The pro-
jector resolution on the scene is only about 500 µm, whereas the camera has a
resolution of about 80 µm on the object. The setting is shown in Figure 5.

For the structured light scanning, we use two shifted sinusoidal patterns
in horizontal as well as vertical direction respectively with a period length of 8
pixels and three shifts. Hence, we need to capture 6 HDR sequences per projector.
We chose to capture the scenes from 8 positions along the two-camera-arc with
an angle of about 10 degrees apart (vertical) and with the three projectors to
the side (horizontal). Altogether, we optimize on 48 camera-projector pairs with
two patterns each which result in 96 phases signals. For the demonstration of the
results, we always choose the lowest camera viewpoint as the reference view. The
global threshold for acceptable points is 8 camera-projector pairs and only phase
differences below θ = π/6 are considered acceptable. The coarse estimation is
calculated in 100 µm steps.

Since all work is done on a per point basis, the problem is highly paralleliz-
able. The optimization is carried out on the GPU requiring just a few seconds
of computation time for a whole scene.

5 Results

In this section, we demonstrate our results on three objects that are shown in
Figure 5. The angel is carved out of wood and painted in different colors. The
small gold plates are a specular alloy. The mug consists of a plastic top and
a rubber middle part with embossed details. In between and at the ground it
consists of brushed metal. The ball is a good target since it features specular
reflection as well as subsurface scattering; Furthermore, the diameter is known
for ground truth evaluation.

Firstly, we demonstrate that our coarse depth estimation finds correct re-
gions and respective visibilities. The colored point clouds are shown in Figure 4.
Bright green areas display that all camera-projector pairs are reliable, whereas
the darker regions indicate a drop of supported pairs. Keep in mind that the
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Fig. 4: Pointclouds of the estimated depth with respect to a reference camera.
The color encodes the number of contributing camera-projector pairs: green (all)
to purple (few). Changes are due to excluding unreliable phase information.
Examples are given for specular reflections (red) and occlusions (blue).

color does not signal a change in the geometry. Most of the differences are due
to occlusion of different projectors, or cameras (blue). The small, isolated areas
on the ball as well as on the body of the angel are due to highly specular re-
flections in some of the camera-projector patterns (red). At the lower mirroring
part of the mug, we have inter-reflection with the ground. Nonetheless, most of
the shape up front and on the ground is recovered at high precision. Especially
on the ground of the mug, many phase signals are dropped due to inconsistency
introduced by the interreflections. This shape would definitively benefit from a
more azimuthal camera setting. There are also some inaccuracies in the very
dark top area due to high gain used to accelerate the capturing.

For the evaluation of our fine optimization step, we follow the work of Wein-
mann et al. [24]. The reconstructed point cloud of the cue ball is mapped against
a sphere and normalized with respect to the specified diameter of 6.02 cm. We
need to stress that we do not perform any removal of outliers, except defining an
ROI to crop out the mounting device of the ball. We vary the set of used points
dependent on the number of at least visible camera-projector pairs and accepted
variance in the result of the fine optimization step. The numbers are reported
in Table 1 as RMSE values in µm. These numbers indicate that the number of
pairs is an important factor for achieving high accuracy.

Comparing the numbers with Weinmann et al., they achieved an RMSE of
23.3 µm with 51 cameras and 10 projectors. We achieve an RMSE error of down
to 13.9 µm for the points visible from almost all cameras and projectors. Even
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Fig. 5: The test objects in our ex-
perimental hardware setup. (Blue:
Cameras on the arc. Red: Projec-
tors)

Cam/Proj-Pairs

σ2 8 15 30 45

π/12 25.2 22.1 18.0 15.0

π/18 24.9 21.9 17.7 15.0

π/24 21.9 20.3 17.2 14.9

π/36 16.1 15.2 14.1 13.9

Table 1: Results of the cue ball eval-
uation (RMSE values in µm).

when we include less reliable points, the numbers are still comparable, but with
much fewer required cameras and projectors. Furthermore, we need to capture
only 6 images per projector, whereas their approach would be on 44 for the same
projector resolution.

6 Conclusion

We propose an accurate and precise multi-view phase scanning method for robust
3D reconstruction that is able to handle occlusions and optically challenging ma-
terials with e.g. subsurface scattering and specular reflections. We demonstrate
that optimizing over all cameras, all projectors and all patterns simultaneously
improves the overall accuracy significantly. Nonetheless, we only rely on cap-
turing the highest frequency phase shifting patterns. Phase unwrapping with
lower frequencies is substituted by a multi-view consistency validation. The fi-
nal optimization considers the phase of all available SL responses which have
been judged to be reliable. The quality of the reconstructed results clearly de-
pends on the number of reliable camera-projector pairs, which strongly indicates
that the method fully exploits the available multi-view information for improved
accuracy.

While we demonstrate that our combined multi-view and multi-projector
approach is able to cope with subsurface scattering and specular reflections,
areas of very strong inter-reflections that affect almost all projectors still pose
a challenge. The proposed framework is easily extendable with other continuous
structured light patterns or even a mixture of different patterns for potentially
more reliable detection of correct camera-projector pairs.
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