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Abstract

To increase robustness of depth-map-based multi-view stereo approaches, we com-

bine several techniques: Depth estimates are propagated in parallel in the local neigh-

borhood to efficiently spread reliable depth information into regions without prominent

structures. A faster coarse-to-fine strategy fills in larger holes. Most importantly, a novel

cross-view filtering stage based on free-space constraints and variance filtering, enforces

consistency among the depth maps of different views. Our algorithm alternates between

correlation and consistency optimization. This way, noisy patches and spikes are ex-

cluded so that the task for the subsequent depth map fusion algorithms becomes easier.

Combining improved propagation, hierarchical estimation, and iterative multi-view con-

sistency optimization, our method increases the estimation speed, generates dense depth

maps with desirable global consistency, and yields convincing 3D reconstruction results.

1 Introduction

Multi View Stereo (MVS) aims to establish 3D models from multiple calibrated images.

Based on the taxonomy of Seitz et al. [34], MVS algorithms can be loosely divided into: 3D

volumetric approaches [22, 35], surface evolution techniques [37, 41], feature extraction and

growing methods [2, 11, 17, 18], and the algorithms based on depth maps [6, 14, 16, 30].

The MVS evaluation website [1] shows that the last two occupy most of the top performers.

Some methods employ region growing in the depth map creation stage of the last category,

followed by depth map fusion, among which are the works of Goesele et al. [17] and Bailer et

al. [2]. We base our spatial depth propagation on these two methods tackling their drawbacks,

and propose a valid improvement for the whole depth-map-based MVS system.

Goesele et al. [17] grow regions with a priority queue of matching candidates, by em-

ploying robust statistics and adaptive view selection, but they only estimate depth in reliable

regions. Bailer et al. [2] alternate between left/rightward and up/downward propagations

along quite long scanlines. Though they achieve dense and fast estimation by exploiting

GPU parallelism, the iterative long propagation steps slow down the entire estimation.
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Figure 1: Our processing pipeline for one view of Dino dataset. Ik, Dk, and Nk are the im-

age, depth map, and normal map at scale k. I0 is the input image, and D0 is initialized from

bundler [36]. Our key steps (main differences from the work [2]) are highlighted: hierar-

chical framework (blue), local propagation (red), and cross-view filtering with an additional

propagation pass (green). Backgrounds are removed by thresholding.

A more crucial drawback of these methods is that they only estimate depth map for each

view independently, so inconsistent outliers may exist and probably grow during propaga-

tion, producing unstable estimates across views. This leads to a large amount of estimates

removed in the depth map merging stage after consistency checking, and diminishes the

reconstruction quality. This also applies to most of other depth-map-based methods, consid-

ering that they only focus on the correlation measure in their depth map estimation.

In this paper, we propose an iterative hierarchical method for depth map estimation (see

Fig. 1 for our workflow), combining both correlation certainty and multi-view consistency:

1) A parallel, local propagation scheme grows depth along short scanlines. To get dense

estimates in poorly textured regions, we spread the sparse estimates to neighbors at a coarse

scale by down-scaling, and then depth estimates grow at finer scale using the up-scaled

results from lower resolution. This also leads to a significant speed-up of our estimation.

2) Our main objective is to produce globally consistent depth maps. Recent work [27] on

optical flow estimation obtains temporal consistency by filtering along motion paths, which

simultaneously uses and estimates per-pixel results. Based on this idea, we impose a cross-

view filtering stage after each view-dependent propagation pass, and use a second propaga-

tion to spread the optimized results. Thereby, we can determine the consistent depths earlier

so that the consistency can be balanced against the non-robust correlation measure. This is

not possible in the typical setup of individual depth map creation plus subsequent multi-view

fusion. Moreover, filtering across views also can fill holes using the depth candidates pro-

jected from other views. The superior consistency and density of our depth maps puts less

stress on the fusion steps producing denser output with less outliers.

2 Related Work

Region Growing. Some methods [11, 18, 20] propagate sparse patches in 3D space to

avoid computations, cleaning up, and merging of noisy or redundant depth maps. Goesele et

al. [17] prioritize the pixel traversal in image space by matching confidence. The PatchMatch

stereo works [4, 5] use a top-left to bottom-right order in odd iterations, and the reversed or-

der in even iterations. These methods [4, 5, 17] though achieving high accuracy are difficult

to parallelize. Bailer et al. [2] propose a more GPU friendly propagation method with long

parallel horizontal and vertical scanlines. Because such propagation does not make full use

of the GPU, we employ a more effective local traversal scheme for speed improvement.
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Dense Reconstruction. Many works have been presented to improve the reconstruction

density. They adopt multi-baseline matching [30], dynamic programming [31, 32], silhou-

ette and stereo fusion [8], scaled window matching [6], or identification of dominant plane

orientations [12]. Unlike these methods, Goesele et al. [16, 17] only deal with those points

with strong multi-view correlation. For dense estimation, we and Bailer et al. [2] both tra-

verse all pixels in the region growing. Our hierarchical propagation and cross-view filtering

can fill in otherwise unrecoverable regions producing depth maps of higher coverage.

Consistent Depth Estimation. An early work [23] gets consistent estimates using global

energy minimization via graph cuts. They treat input images symmetrically and encode

visibility constraint properly. Campbell et al. [7] introduce an unknown state for those pixels

with inconsistent depth values and use a subsequent global regularization step to recover the

surfaces in these places. Furukawa and Ponce [11] enforce global visibility consistency and

a weak form of regularization to eliminate incorrect 3D patches after each patch expansion.

In the optical flow estimation area, Lang et al. [27] introduce a temporal smoothness as-

sumption for consistent results. Beginning with the sparse estimates and an edge-aware fil-

tering in image space, they filter the results in temporal domain by following motion vectors.

Then the estimates are updated by iterating between spatial and temporal filtering passes.

Since most depth-map-based MVS works do not use a consistency optimization process

during depth estimation, unreliable values may affect the accuracy of all following steps.

We base our approach on the work [27] by performing a cross-view filtering in addition to

independent propagation. Our method iteratively produces and optimizes consistent results,

and thus improves the final consistency of the depth maps.

Depth Map Merging. To reconstruct the 3D models many depth map fusion and mesh

creation approaches [9, 10, 19, 28, 29, 33, 42] have been proposed. They typically reject

lots of points using noisy and inconsistent depth maps, and thus induce a loss of detail in the

final mesh. Instead, we improve both accuracy and consistency of each individual depth map

in the depth map estimation stage. This reduces the burden in the merging and 3D model

polishing steps, so more consistent geometries with high coverage are reconstructed.

3 Depth Map Estimation

Like Bailer et al. [2], our depth map estimation is based on the PatchMatch work [3], but

uses the workflow in Fig. 1 with the highlighted novel contributions. After initializing the

sparse depth map and selecting secondary images for each view, all images and depth maps

are down-scaled. Next, we start our hierarchical estimation. Concretely, at each scale we use

a propagation-filtering-propagation approach. The propagation traverses pixels along short

paths. The cross-view filtering step removes inconsistent outliers and propagates reliable

information to different views. Then the depth and normal maps are up-scaled for the esti-

mation at the next consecutive scale. Finally, inconsistent values are rejected by consistency

checking, and an edge-aware filter is used for refinement. Each view selects at most 6 sec-

ondary images using the scale robust method [2]. We use three scales with scaling factor of

2. At each scale, three cross-view filtering passes are performed, and before the first prop-

agation step, randomly shifted depth estimates and random normals are assigned if smaller

matching errors are obtained (the random optimization step in Fig. 1).

Initialization. Let Dk, Nk, and Ek be the depth, normal, and matching error maps of a

reference view r at scale k. For each pixel p, we initialize its finest-scale depth D0(p) from
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bundler [36] if p is feature point; otherwise D0(p) = 0. Its normal Nk(p) = {Nx
k (p),Ny

k (p)}
includes the gradients of the tangent plane in x and y directions. The surface normals are

initialized fronto-parallel at the coarsest scale, i.e. N2(p) = {0,0}. Before the estimation at

each scale, Ek is initialized using the existing depth and normal estimates.

Matching Error Calculation. We calculate the matching error using the self weighted

average: 1 minus the Normalized Cross Correlation (NCC) scores [2]:

Ek(p,Dk(p),Nk(p)) =
∑i∈Φr 1−NCCr,i(p,Dk(p),Nk(p))· 1

1−NCCr,i(p,Dk(p),Nk(p))

∑i∈Φr
1

1−NCCr,i(p,Dk(p),Nk(p))

(1)

where Φr is the secondary views of the reference view r. The calculation of the NCC score

NCCr,i(p,Dk(p),Nk(p)) for tilted patches can be seen in the work [11].

This section introduces our key steps: the local propagation, the hierarchical framework,

and the cross-view filtering. We also describe how the depth maps are cleaned and refined.

3.1 Local Propagation

Figure 2: An

example of

downward

propagation.

In the propagation, good estimates are dispersed into the neighborhoods by

traversing all pixels if the propagated value improves the correlation measure.

Specifically, for a pixel p = (x,y), loop over each secondary pixel q = (x′,y′)
with Dk(q)> 0. Figure 2 shows an example of downward propagation from

three secondary pixels (x− 1,y− 1), (x,y− 1), and (x+ 1,y− 1). Since the

depths are not equal in a tilted patch, a depth hypothesis d = Dk(q) · (1−2k ·
(x′− x) ·Nx

k (q)− 2k · (y′− y) ·Ny
k (q)) is calculated depending on the patch

normal by modifying the depth in both x and y directions, where 2k considers

the effect of image scaling. If p has no estimate or we get a matching error

e < Ek(p) for p using d and Nk(q), we update its depth, normal, and matching error.

The work [2] traverses pixels following parallel scanlines with length of half the image

height (width) in the vertical (horizontal) propagation. They scan downward and upward

(leftward and rightward) on GPU simultaneously, and achieves faster estimation compared

to other CPU-based methods [4, 5, 17]. However, their speed is still limited by too few

scanlines to keep the GPU busy. So we shorten the traversal distance such that more GPU

threads can be assigned. In the vertical (horizontal) propagation, we select an eighth of the

image height (width) as the length of each scanline. In every other iteration vertical and

horizontal propagations are applied alternately.

3.2 Hierarchical Framework

For textureless regions with few initial estimates, one propagation alone at the original scale

is insufficient due to the locality of short scanlines. We solve this problem by down-scaling

the depth map and spreading the sparse data into the neighborhoods. This way, one prop-

agation at the coarsest scale can fill most of the holes. Then the estimates are used for the

consecutive finer scale by up-scaling. Another benefit is the reduced overall time of depth es-

timation, since the scaling process is negligible compared with the speed-up of propagation.

In practice, we also down-scale the images and up-scale the estimated normal maps.

We base our up-scaling procedure on the joint bilateral upsampler [24], which guides

data interpolation by considering the information from the high-resolution image. Let Ik be

the image at scale k, and Sk be its depth map Dk or normal map Nx
k or N

y
k . We up-scale Sk+1 to
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Sk using Eq. 2a, where N is a neighborhood of pixel p. q may be a pixel at finer-scale k or the

corresponding pixel at coarser-scale k+1. The weight ω(p,q) = s(||p−q||) ·r(Ik(p)−Ik(q))
depends on the Gaussian functions s and r with σs = 0.4 and σr = 0.2, decreasing with larger

spatial distance and intensity difference. Similarly, we down-scale images and depth maps

using Eq. 2b, where ω(p,q) = s(||p−q||) · r(Ik+1(p)− Ik+1(q)).

Sk(p) =
∑q∈N ω(p,q)·Sk+1(q)

∑q∈N ω(p,q) (2a) Sk+1(p) =
∑q∈N ω(p,q)·Sk(q)

∑q∈N ω(p,q) (2b)

Because the sparse depth data often belong to isolated pixels in the initial depth maps,

most of the depth data in the first round are just copied into their neighbors during down-

scaling, except in the case that two spread regions interfere.

3.3 Cross-View Filtering

So far, our propagation is per view, which may lead to global instabilities of depths. Inspired

by the temporally consistent optical flow estimation [27], after propagation of all views at

the coarsest scale, we perform a cross-view filtering for each reference view to improve the

depth consistency. Then a second propagation spreads the optimized estimates. The results

are updated in each propagation-filtering-propagation iteration at finer scales.

The temporal filtering of Lang et al. [27] follows optical flow vectors to avoid averaging

across object boundaries. Similarly, our cross-view filtering considers the projection rela-

tionships of pixels between views using the depth information. For each depth value, we find

the corresponding pixels in the secondary views, and project them back into the reference

view obtaining new depth candidates. These candidates are weighted by the depth difference

between the reference and secondary views to get an optimized depth. In some cases, this

depth projection from secondary views can even fill holes in the reference, spawning further,

more consistent propagation.

In the following, we first describe how to obtain the depth candidates. Then based on the

visibility analysis of Merrell et al. [29], a depth value is judged to be consistent or conflicted

with other views. According to these constraints, we describe two coherence measurements,

which are utilized in the cross-view filtering introduced subsequently, the next subsection for

post-processing, and our result evaluations.

Figure 3: The two depth candidates

obtained from a secondary view i

for the reference view pixel p.

Depth Candidates. Let Dr and Di be the depth maps

of the reference view r and the view i ∈Φr. As shown

in Fig. 3, for each pixel p in the view r one can ob-

tain two depth candidates Di→r(p) and Dr→i→r(p) per

secondary image. To obtain Di→r(p), we project all

depth values from the view i to r and pick the least

distant depth at position p. To obtain Dr→i→r(p), we

project the estimate Dr(p) into the view i, obtaining a

projected depth Dr→i(p) and a position pr→i on the im-

age plane of the view i. We project its depth Di(pr→i)
back into the view r to obtain the new candidate.

Visibility Constraints. If the views r and i see the same surface, i.e. Dr(p) and Di→r(p) are

close enough, Dr(p) is consistent; otherwise, if Di→r(p) < Dr(p), the estimated surface of

p is occluded. If Dr→i(p)< Di(pr→i), we say that the surface of pr→i is violated by Dr(p).

Coherence Measurements. We use two coherence measurements for the depth map pixels:
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Consistency: The consistency rating [2] Mr(p) for Dr(p) is defined by Eq. 3a, increased

by consistent secondary views (Bi) and decreased by violation case (Ai). The difference of

violation and occlusion cases (Ci) is used as penalty because it is impossible that a point is

both too near and too far. Given Eq. 3b which is used in the following outlier removal step,

Dr(p) is the more consistent, the higher Mr(p) is.

Mr(p) = ∑i∈Φr
2Bi(p)−

∣

∣∑i∈Φr
Ai(p)−∑i∈Φr

Ci(p)
∣

∣

(3a) Mr(p)≥







0 if |Φr|< 2

2 if |Φr|> 5

1 else

(3b)

Variance: If Dr(p) is not conflicted with other views, the relative depth difference ∆Di→r(p)=
Dr(p)−Di→r(p)

Dr(p) should be close to 0 for each view i. That means, all the values of {Di→r(p)}

should have a low variance relative to Dr(p). We also consider the relative depth difference

∆Dr→i(p) = Di(pr→i)−Dr→i(p)
Di(pr→i)

, since in this case Dr→i(p) should also have a close value to the

depth Di(pr→i). We define the variance Vr(p) for Dr(p) in Eq. 4, considering the minimum

value of |∆Di→r(p)|2 and |∆Dr→i(p)|2 for each secondary view i, and we say that Dr(p) is

sufficiently consistent if Vr(p)≤ τ1.

Vr(p) = 1
|Φr |

∑i∈Φr
min

(

|∆Di→r(p)|2, |∆Dr→i(p)|2
)

(4)

The variance is more precise for measuring coherence, because the consistency rating

can only be integer and depends on the number of secondary views. Therefore, we use the

variance in our cross-view filtering while adopting the consistency for outlier removal.

Cross-View Filtering. In Eq. 5 we calculate a new depth D̃r(p) for each pixel p as a

weighted average of Dr(p) as well as the candidates Di→r(p) and Dr→i→r(p) projected from

each view i. The weights ω are defined in Eq. 6 with τ2 > τ1 being a looser threshold.

D̃r(p) =
ωr(p)·Dr(p)+∑i∈Φr (ωi→r(p)·Di→r(p)+ωr→i→r(p)·Dr→i→r(p))

ωr(p)+∑i∈Φr (ωi→r(p)+ωr→i→r(p)) (5)

ωr(p) = 0, ωi→r(p) = 1, ωr→i→r(p) = 0, if Dr(p) = 0 or Vr(p)> τ2 (6a)

ωr(p) = 1, ωi→r(p) = exp
(

− |∆Di→r(p)|2

σd(p)2

)

,

ωr→i→r(p) = exp
(

− |∆Dr→i(p)| · |∆Dr→i→r(p)|

σd(p)2

)

, with σd(p) = γ ·Vr(p)
else (6b)

In Eq. 6a, if pixel p has no estimate, i.e. Dr(p) = 0, or its depth Dr(p) is significantly

inconsistent, i.e. Vr(p)> τ2, the projected depths {Dr→i→r(p)} are unavailable or unreliable,

so D̃r(p) is obtained simply using the average of the candidates {Di→r(p)}. In this case,

cross-view filtering fills the hole here or corrects Dr(p) with a consistent D̃r(p) value.

Otherwise, in Eq. 6b, we simply set the weight ωr(p) = 1 for Dr(p), and define the

weights ωi→r(p) and ωr→i→r(p) as Gaussian functions, considering the relative depth differ-

ences: ∆Di→r(p), ∆Dr→i(p), and ∆Dr→i→r(p). Here, ∆Dr→i→r(p) = Dr(p)−Dr→i→r(p)
Dr(p) mea-

sures the difference between Dr(p) and the candidate Dr→i→r(p) projected from view i.

The parameter σd(p) controls the resulting smoothness. A smaller σd(p) makes D̃r(p)
gain less support from different depths, and a larger σd(p) produces more smooth depth

map but also increases the possibility of spreading depths across the object boundaries. The

calculation of σd(p) in Eq. 6b takes the coherence of Dr(p) into account, enforcing more

filtering on the Dr(p) with a higher Vr(p), and γ controls the overall effect of the filtering.

The above filtering may lead to slight shifting for some inliers which were accurate be-

fore. To avoid this, after obtaining the new depth D̃r(p), we perform three random shiftings



WEI, RESCH, LENSCH: DEPTH MAP ESTIMATION WITH CROSS-VIEW CONSISTENCY 7

Image region Without cross-

view filtering

γ = 0.5 with

random checking

γ = 2.0 with

random checking

γ = 10.0 with

random checking

γ = 2.0 without

random checking

Figure 4: The first two are a region and its depth at scale 1 without our cross-view filtering.

The next three show the filtering results using γ =0.5, 2.0, and 10.0, all with the subsequent

random checking. The last one is the result using γ = 2.0 but without the random checking.

Figure 5: Sample images of the datasets.

Name Images Image Size Patch Size γ λ

Fountain-P11 [38] 11 3072 × 2048 7 × 7 2.0 0.3

Dino [1] 363 640 × 480 7 × 7 2.0 0.1

Temple [1] 312 640 × 480 3 × 3 1.0 0.3

Sofa [2] 82 1853 × 1236 7 × 7 2.0 0.3

Table 1: Dataset characteristics.

(see [2] for more details) around D̃r(p) to get more depths and calculate the matching error

(described in Subsection 3.1) for each. If the smallest error is lower than a threshold λ , we

update Dk(p) with the corresponding depth since the correlation measure is more robust in

this case. Otherwise, the pixel p is likely located within a textureless region, so we depend

more on the cross-view filtering and update Dk(p)← D̃r(p).
Figure 4 presents the results for Dino dataset after cross-view filtering using different

γ with and without the random checking. Obviously, a smaller γ makes less filtering ef-

fect, while a larger γ tends to homogeneously smooth the depths and leads to difficulty in

finding back the details even if using additional random checking. In the case of adopting

the trade-off value of γ with the random checking, we get better alignment between depth

discontinuities and object boundaries compared to the result without in the last subfigure.

Coherence Constraint in Depth Propagation. A naive depth propagation may decrease the

strong coherence achieved by the previous cross-view filtering step, due to the non-robust

correlation measure. Therefore, in each depth propagation pass, for the consistent estimates

with a variance lower than 1.5 · τ1, we only update the data if the matching error of the new

depth and normal is 1.2 times smaller than that of the former estimate.

3.4 Outlier Removal and Refinement

Inconsistent outliers with a low consistency conflicting Eq. 3b are filtered out from the result-

ing depth maps. Finally we use a domain transform filter [15] with σs = 30 and σr = 0.03 to

refine the results by filling the holes and then filtering the noise. We perform three complete

filtering passes (i.e. horizontal+vertical 1D passes for each) for both tasks. In the hole filling

the existing depths are not altered. To avoid involving inconsistent values, we also remove

the outliers before each complete filtering pass and after the last pass.

4 Results

We used four datasets with the sample images shown in Fig. 5. Table 1 lists the number

and size of their images. Our procedures introduced in Section 3 are all implemented on

GPU. Results are also obtained using the GPU-based work of Bailer et al. [2]. We use the

minimum least square algorithm [13] for point selection and optimization, and the Delaunay

triangulation [26] for 3D reconstruction.



8 WEI, RESCH, LENSCH: DEPTH MAP ESTIMATION WITH CROSS-VIEW CONSISTENCY

Table 2: Timings of each step using

Bailer et al. [2] and different combi-

nations of our individual processing

steps, when reconstructing all views

of Fountain-P11. The results are

not finally refined in the approach of

Bailer et al. [2].

Step Bailer et al. [2] Only LP LP+HF LP+CVF LP+HF+CVF

Downscaling 8.4s 8.4s

1st

Propagation 174.3s 142.2s 13.6s 142.0s 13.6s

Cross-View Filtering 151.2s 10.8s

Propagation 226.9s 16.0s

Upscaling 0.4s 0.4s

2nd

Propagation 1126.6s 880.3s 224.5s 1000.7s 250.0s

Cross-View Filtering 193.3s 49.2s

Propagation 951.9s 228.7s

Upscaling 2.1s 2.1s

3rd

Propagation 418.0s 410.2s 417.4s 450.6s 458.2s

Cross-View Filtering 204.1s 214.0s

Propagation 279.9s 280.6s

Outlier removal 42.2s 41.2s 44.2s 48.1s 51.1s

Refinement 121.7s 144.1s 151.3s 189.5s

Overall 1984.4s 1866.8s 1079.1s 4020.3s 1844.1s

Bailer et al. [2] Only LP LP+HF LP+CVF LP+HF+CVF LP+HF+CVF1 LP+HF+CVF2

Figure 6: Relative error maps for the center view of Fountain-P11 after outlier removal,

but not refined. LP+HF+CVF1 uses cross-view filtering only for post-processing, and

LP+HF+CVF2 uses propagation-filtering at each scale without the second propagation. The

blue pixels have no depth, the red have an error larger than 0.003, the green have no ground

truth data, and the pixels with an error between 0 and 0.003 are marked gray 255 to 0.

Performance of the individual processing steps is evaluated on Fountain-P11 with the

ground truth depth maps provided in [39], referring to Table 2 for timings, Fig. 6 for relative

error maps of the center-view depth maps, as well as Table 3 for comparisons of statistics.

The relative error evaluates depth accuracy between the depth estimates D and ground truth

Dgt : e = |D−Dgt |/Dgt . The completeness relates the number of recovered pixels to the

image size. The consistency (Eq. 3a) and variance (Eq. 4) measure the multi-view coherence.

Parameter Selection. The patch size for calculating the matching error, the filtering param-

eter γ , and the matching error threshold λ are sensitive to the image size and content of the

datasets. Their values for different datasets are given in Table 1. For the Temple scene with

low image resolution, sufficient texture, and frequent occlusions, we adopt small patch size

for reliable matching and small γ value to preserve the accurate estimate from patch match-

ing. For Fountain-P11 as well as Sofa with high image resolution, and Dino which lacks

enough texture, we utilize large patches for more information in patch matching and large γ

values for less inconsistent outliers. We set λ = 0.1 for Dino to depend more on cross-view

filtering instead of non-robust patch matching due to poor texture, while larger λ values are

used for others. The two thresholds τ1 and τ2 of the variance are independent of the datasets,

so they are fixed in our experiments: τ1 = 4×10−6 and τ2 = 36×10−6.

Local Propagation (LP). Table 2 shows that local propagation with shorter scanlines is

faster but might result in more holes if applied alone as shown in Figs. 6 and 7, as well as

Table 3. It has little effect on the accuracy though.

Hierarchical Framework (HF). Table 2 also shows that our hierarchical estimation achieves

a remarkable speed-up at coarse scales, and is faster than the work [2] and Only LP if a cross-

view filtering and a second propagation are used (the time for scaling is almost negligible).

Furthermore, comparing Only LP and LP+HF in Table 3 the hierarchical strategy improves

the depth accuracy and density. Though the holes are filled regardless of accuracy by our

coarse-to-fine strategy, the subsequent random optimization and propagation steps improve

the estimates. Its hole-filling effect is also illustrated in Figs. 1 and 7.

Cross-View Filtering (CVF). Comparing the first three columns and the columns LP+CVF
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Measurement Bailer et al. [2] Only LP LP+HF LP+CVF LP+HF+CVF LP+HF+CVF1 LP+HF+CVF2

Mean Rel. Error (×10−3) ↓ 1.663 1.414 1.236 2.407 1.732 1.505 2.062

Completeness (%) ↑ 64.0 63.9 66.9 74.6 79.6 75.9 80.5

Mean Consistency ↑ 9.083 9.019 9.124 9.611 9.556 9.253 10.090

Mean Variance (×10−6) ↓ 1.790 1.722 1.626 1.602 1.092 1.179 1.099

Mean Rel. Error of LP+HF+CVF on

Pixels of Other Methods (×10−3) ↓ 1.102 1.068 1.142 1.292 1.319 1.368

Table 3: Statistical comparisons obtained by the methods in Fig. 6. The first row measures

their relative errors on all reconstructed pixels. The last row measures the relative errors

of LP+HF+CVF only on the pixels reconstructed by other methods. The arrows indicate

preferred directions. Our approach LP+HF+CVF significantly improves all measures.
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Figure 7: Completeness, mean consistency rating, and mean variance comparisons for some

views of Dino and Temple. Views are sorted in preferred orders of LP+HF+CVF’s results.

as well as LP+HF+CVF in Table 3, the cross-view filtering improves reconstruction density

and depth coherence in terms of both consistency and variance at the same time. This is

underlined in Figs. 6 and 7 where our algorithm shows better results for all tested views in

Dino and Temple scenes.

We also evaluate the effectiveness of including cross-view filtering in the inner loop

rather than using the consistency optimization as a post-processing filter at the finest scale

(LP+HF+CVF1 in Fig. 6 and Table 3). Only used as a post-process, coverage, consistency

and variance are reduced. Similar results would appear if one included similar weighting

in the mesh fusion step. The benefit of the propagation step after the cross-view filtering

becomes obvious in the last column of Table 3 where the second propagation step is missing,

resulting in higher coherence and higher density but lower accuracy.

As shown in the first row of Table 3, we obtain larger values of the overall relative

error using the methods with the cross-view filtering than those of the methods without.

However, as presented in the last row of the table, significantly higher accuracies are achieved

if only the pixels reconstructed by other methods are considered. This demonstrates that,

our combined approach can find a desirable balance between depth accuracy and multi-

view coherence by iterating between correlation and consistency optimization, because high

performance of either cue alone can not guarantee correct reconstruction of the 3D model.

Depth Map Merging and 3D Meshing. Figure 8 presents the normalized depth estimates

and reconstructed models for sample regions of Fountain-P11 and Sofa. Our combined ap-

proach yields higher quality of mesh models with smooth surfaces due to the denser and

more coherent depth maps, and the depth map refinement step further improves the results.

We can get the same conclusion from the full pipeline as shown in Fig. 1. To compare the

full models of all the datasets, please refer to the supplementary material.

To evaluate the benefit of our superior depth consistency in different depth map merging

and meshing schemes, Fig. 9 shows the reconstructed models from our refined depth maps

using: the minimum least square (MLS) algorithm [13] combined with Delaunay triangu-

lation [26], MLS with subsequent Poisson surface reconstruction (PSR) [21], and the depth
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Figure 9: Refined depth maps of Dino and Temple without and with the cross-view filtering,

and reconstructed details by using different depth map merging and meshing methods.

map fusion work of Fuhrmann et al. [10]. Our method with cross-view filtering produces

smooth surfaces without loss of details, even if the homogeneous Dino has little texture data,

which is problematic for most patch-based methods.

Comparisons to Other MVS Methods. We benchmark the reconstructions of our full

pipeline (LP+HF+CVF) using the Middlebury evaluation website [1] which considers ac-

curacy, completeness, and processing time. For Temple, we achieve an accuracy of 0.34mm

at 99.4% completeness. Our high accuracy is ranked first among all evaluated MVS works.

For Dino, we achieve an accuracy of 0.42mm at 98.1% completeness, demonstrating that our

work is competitive with other state-of-art methods, in particular, better than some region-

growing-based [17, 20] and depth-map-fusion [25, 40] techniques. We reconstruct Dino in

63 mins and Temple in 27 mins, placing our work among the most efficient approaches.

5 Conclusions

We have proposed a hierarchical depth estimation algorithm using local propagation and

cross-view filtering for MVS. The method is accelerated by parallel propagation along short

scanlines. The coarse-to-fine estimation produces denser reconstructions at reduced cost.

The main focus is on optimizing the cross-view coherence of depth maps at all scales. In-

consistent depth estimates are removed and reliable, averaged candidates are propagated to

neighboring views potentially helping in recovering the correct depth where otherwise would

be a hole. The results show that all of our improvements lead to faster estimation, signifi-

cantly denser and more consistent depth maps as well as more convincing 3D models.
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