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Abstract

This dissertation aims at improving uncertainty assessment for hydrosystem models
subject to uncertainty in model structure, parameters, and forcing terms. In order to
explicitly account for conceptual uncertainty (the uncertainty in model choice), Bayesian
model averaging (BMA) is used as an integrated modeling framework. BMA is a formal
statistical approach that rests on Bayesian probability theory. Weights are assigned to
a set of alternative conceptual models based on their individual goodness-of-fit against
observed data and the principle of parsimony. With these weights, model ranking, model
selection or model averaging can be performed. The conceptual uncertainty within the
set of considered models can be quantified as so-called between-model variance. A
major obstacle to the wide-spread use of BMA lies in the computational challenge to
evaluate BMA weights accurately and efficiently. The first part of this dissertation
addresses this challenge by assessing and comparing different methods to evaluate the
BMA equations, considering both mathematical approximations and numerical schemes
(Schoniger et al., 2014). Results of two synthetic test cases and of a hydrological case
study show that the choice of evaluation method substantially influences the accuracy
of the obtained weights and, consequently, the final model ranking and model-averaged
results. If correctly evaluated, BMA weights point the modeler to an optimal trade-off
between model performance and complexity. To determine which level of complexity
can be justified by the available calibration data, the complexity component of the
Bayesian trade-off is isolated from its performance counterpart in the second part of this
dissertation. This model justifiability analysis (Schoniger et al., 2015a) is demonstrated
on model selection between groundwater models of vastly different complexity. The third
part of this dissertation addresses the question of whether model weights are reliable
under uncertain model input or calibration data. The proposed sensitivity analysis allows
to assess the related confidence in model ranking (Schoniger et al., 2015b). The impact
of noisy calibration data on model ranking is investigated in an application to soil-plant
model selection. Results show that model weights can be highly sensitive to the outcome
of random measurement errors, which compromises the significance of model ranking.
The findings from this dissertation also have important implications for the population
and extension of the model set, for further model improvement, and for optimal design
of experiments toward maximum confidence in model ranking. Overall, new statistical
tools for model evaluation and uncertainty assessment are proposed, which are expected

to be useful for a broad range of applications both in science and in practice.
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Kurzfassung

Diese Dissertation hat zum Ziel, die Quantifizierung von Unsicherheiten bei der
Modellierung von Hydrosystemen mit unsicherer Modellstruktur, unsicheren Parame-
tern und unsicheren Eingangsdaten zu verbessern. Um explizit auch die Unsicherheit in
der Modellwahl beriicksichtigen zu konnen, wird Bayessche Modellmittelung (BMA)
zur integralen Modellierung verwendet. BMA ist ein formaler statistischer Ansatz, der
auf der Bayesschen Wahrscheinlichkeitstheorie beruht. Fiir ein Ensemble von alterna-
tiven Modellen werden Gewichte anhand der individuellen Kalibrierungsgiite und des
Parsimonie-Prinzips bestimmt. Mit diesen Gewichten kann Modellranking, Modellwahl
und Modellmittelung betrieben werden. Die konzeptionelle Unsicherheit innerhalb des
Modellensembles kann als “zwischen-Modell-Varianz” quantifiziert werden. Ein grof3es
Hindernis, das der weitverbreiteten Anwendung von BMA zur integrierten Modellie-
rung und Unsicherheitsabschitzung im Wege steht, liegt in der technischen Herausfor-
derung, BMA-Gewichte exakt und effizient zu bestimmen. Der erste Teil dieser Arbeit
geht diese Herausforderung an mit einem Vergleich von verschiedenen Methoden zur
Auswertung der BMA-Gleichungen unter Beriicksichtigung sowohl mathematischer An-
nidherungen als auch numerischer Verfahren (Schoniger et al., 2014). Die Ergebnisse
zweier synthetischer Fallstudien und eines hydrologischen Anwendungsfalls zeigen, dass
die Wahl des Auswerteverfahrens die Genauigkeit der ermittelten Gewichte wesentlich
beeinflusst und damit auch das daraus folgende Modellranking und die modellgemittel-
ten Ergebnisse. Sofern korrekt berechnet, zeigen die BMA-Gewichte einen optimalen
Kompromiss zwischen Modellgiite und Komplexitit auf. Um herauszufinden, welcher
Komplexititsgrad durch den vorhandenen Kalibrierungsdatensatz gerechtfertigt werden
kann, wird im zweiten Teil der Arbeit die Komplexititskomponente des Bayesschen
Kompromisses von der Giitekomponente getrennt. Diese Modellrechtfertigungsanalyse
(Schoniger et al., 2015a) wird anhand der Modellwahl zwischen sehr unterschiedlich
komplexen Grundwassermodellen demonstriert. Der dritte Teil der Arbeit befasst sich mit
der Frage, ob die Modellgewichte unter unsicheren Modelleingangs- oder Kalibrierungs-
daten zuverldssig sind. Die vorgeschlagene Sensitivititsanalyse dient dazu, das zuldssige
Vertrauen in das resultierende Modellranking richtig einzuschitzen (Schoniger et al.,
2015b). Die Auswirkungen von verrauschten Kalibrierungsdaten auf das Modellranking
werden anhand eines Fallbeispiels zur Boden-Pflanzen-Modellwahl untersucht. Die Er-
gebnisse zeigen, dass Modellgewichte sehr empfindlich auf den zufilligen Messfehler
reagieren, was die Aussagekraft des Modellrankings beeintrichtigt. Die Erkenntnisse

aus dieser Dissertation haben auflerdem Bedeutung fiir die Auswahl und Erweiterung
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Kurzfassung

des Modellensembles, fiir die Modellweiterentwicklung und fiir die optimale Daten-
erhebung im Sinne eines maximal zuverldssigen Modellrankings. Insgesamt werden
neue statistische Instrumente zur Modellbewertung und Unsicherheitsanalyse vorge-
schlagen, die fiir ein breites Anwendungsspektrum sowohl in der Wissenschaft als auch

in der Praxis niitzlich sein werden.
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1 Introduction

Modeling and uncertainty assessment of hydrosystems Water resources are subject
to diverse uses by humankind, such as drinking water supply, agricultural irrigation,
energy production, as well as industrial and household purposes. These uses are threat-
ened by water scarcity and by water pollution. Therefore, the use and protection of
water resources needs to be efficiently managed. Further, specific risks emerging from

hydrosystems (e.g., flooding of inhabited areas) need to be anticipated and mitigated.

Numerical hydrosystem models help to guide such management decisions. Models of
surface and subsurface water flow and solute transport through hydrosystems enhance
our understanding of the natural system. Relevant threats to, or emerging from, the
hydrosystem can be more reliably identified. Further, simulation models can be used to
predict the hydrosystem’s response to future stresses or potential outcomes of manage-
ment actions. This allows for a systematic risk assessment as a basis for rational decision
making (Goodarzi et al., 2013).

Process-based models approximate the natural system with simplified conceptualiza-
tions of governing processes and with effective laws and parameters. Model parameters
typically cannot be exactly measured for several reasons: first, measurement data are
subject to measurement errors. Second, especially in subsurface hydrology, measure-
ment data are sparse. And third, effective parameters might not be observable at the
scale of interest. The conceptual uncertainty of how to adequately represent the relevant
physical processes, the parameter uncertainty, and the measurement uncertainty intro-
duce uncertainty into the derived model predictions. Further, model input uncertainty
can arise due to noise in the observations, due to uncertainty in upscaling or downscaling

of input data, or when the model is used for forecasting under future conditions.

Assessing and dissecting these four main sources of uncertainty (Renard et al., 2010) for
hydrological model predictions is of crucial importance for drawing the right conclusions
and for making informed decisions. Besides the “scientific desire to accompany predic-
tions with uncertainty estimates” (Liu and Gupta, 2007), there is a growing interest in
confidence intervals of predictions in practice. This is due to the fact that, depending on
the risk aversion of a decision maker, the preference ranking of alternative management
options might change if these options differ in their robustness against uncertainty (Hall
and Solomatine, 2008).




1. Introduction

Much effort has been made in the last decades to quantify parameter uncertainty in hy-
dro(geo)logical models (e.g., Kitanidis, 1986; Beven and Binley, 1992; Hill and Tiede-
man, 2007; Gallagher and Doherty, 2007; Nowak, 2010; Liu et al., 2010). The treatment
of input uncertainty is especially relevant in the field of surface hydrology due to the
large variability of precipitation in time and space (e.g., Kavetski et al., 2006a,b; Vrugt
et al., 2008).

Also the uncertainty in model choice itself, i.e., the conceptual uncertainty, has been
recognized as an “integral part of inference” (Buckland et al., 1997) by researchers of
various disciplines (e.g., Burnham and Anderson, 2003; Murphy et al., 2004; Refsgaard
et al., 2006; Rojas et al., 2008; Clark et al., 2011). Especially in coupled hydrosystem
modeling, considering multiple model hypotheses can provide a much more realistic
estimate of the overall predictive uncertainty. Not only input and parameter uncertainty
of individual models can be assessed, but also the conceptual uncertainty of how to
choose the most adequate representation of the (sub)system can be approximated. The
latter would be neglected in single-model approaches, leading to a potentially severe
underestimation of total predictive uncertainty. Figure 1.1 gives an overview of the

different sources of uncertainty typically considered in hydrosystem modeling.

Multi-model approaches to account for conceptual uncertainty The proposition to
retain a set of plausible theories (or alternative models) goes back to the foundations of
the philosophy of science and is known as Epicurus’ principle of multiple explanations
(see e.g., Hutter, 2006). Following this philosophy, Chamberlin (1890) argued that
keeping multiple hypotheses helps to avoid “the dangers of parental affection for a
favorite theory”. Reporting the uncertainty of model choice between several alternatives

allows for a more robust decision making.

In such multi-model frameworks, the individual models are evaluated and ranked against
each other. The ranking in form of model weights is based on predictive skill and, often,
on some penalty for complexity such that more robust models are favored. A model-
averaged estimate can be obtained from weighting the individual model predictions
or statistics thereof. The conceptual uncertainty in the current set of models can be

quantified as between-model variance.

The Bayesian multi-model approach The formal statistical approach of Bayesian
model averaging (BMA) (Draper, 1995; Hoeting et al., 1999) is a multi-model framework

that rests on Bayesian probability theory. It combines Epicurus’ principle of multiple
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Figure 1.1: Illustration of the Bayesian approach to integrated modeling and uncertainty
assessment of hydrosystem models, with the single-model approach framed in gray and
Bayesian model averaging framed in blue. Sources of uncertainty are shaded in gray.
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explanations (Asmis, 1984) with Occam’s razor or the principle of parsimony (Jefferys
and Berger, 1992): if competing models produce equally likely predictions, a higher
model weight is assigned to the simpler explanation. I have chosen this framework to
perform uncertainty analysis and to quantitatively assess the plausibility of hydrosystem
models for its various advantages over other multi-model frameworks. The motivation

for the use of BMA in this thesis is explained in Chapter 2.

BMA has been applied in various fields of research as a framework for model averaging
(e.g., Ajami and Gu, 2010; Najafi et al., 2011; Seifert et al., 2012), model selection
(e.g., Raftery, 1995; Huelsenbeck et al., 2004), quantification of conceptual uncertainty
(e.g., Rojas et al., 2008; Singh et al., 2010; Troldborg et al., 2010; Ye et al., 2010), data
worth analysis (e.g., Rojas et al., 2010; Neuman et al., 2012; Xue et al., 2014; Wohling
et al., 2015), and model component dissection (7sai and Elshall, 2013; Elshall and Tsai,
2014). The fields of application covered by the cited studies include sociology, ecology,
and hydrology. In the course of this PhD project, I have further transferred the BMA
methodology to the field of thermodynamic modeling (Lotgering-Lin et al., 2015, in

preparation).

Integrated approaches to modeling and uncertainty assessment Finally, there is
a need to combine the efforts of assessing the individual sources of uncertainty for
hydrological model predictions into an integrated modeling framework. Such a unified
framework facilitates the development, the evaluation and the improvement of models.
Scientists and practitioners benefit from an integrated approach by gaining more con-
ceptual insight into the hydrosystem under study, by learning about model structural

deficits, and by obtaining more reliable prognoses.

In the field of hydrology, two distinct approaches have been proposed to date: the
Bayesian total error analysis (BATEA) (Kavetski et al., 2006a; Kuczera et al., 2006) and
the integrated Bayesian uncertainty estimator IBUNE) (Ajami et al., 2007). BATEA
quantifies the confidence in model predictions by considering all four mentioned sources
of uncertainty: parameter uncertainty, measurement uncertainty, input uncertainty, and
conceptual uncertainty. However, it does not pursue the idea of model ranking or multi-
model combination. The modeler thus misses the opportunity to learn from a diagnostic
model comparison as possible in a multi-model framework. The IBUNE approach allows
to combine the predictions of multiple models, but uses a non-Bayesian optimization
algorithm to obtain model weights. In this case, the modeler misses the advantage of a

rigorous Bayesian derivation of posterior model probabilities.
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In the field of hydrogeology, Troldborg et al. (2010) have demonstrated the usefulness
of a fully Bayesian framework to account for uncertainty in geological model structure,
in model parameters, and in measurements. While suggesting that BMA is a suitable
framework to host the various components of uncertainty assessment, Troldborg et al.
(2010) have pointed towards challenges with regard to the numerical implementation.
From the previous studies cited here, it can be concluded that BMA is a promising
approach for integrated modeling and uncertainty assessment of hydrosystems; however,
there is a need for a systematic investigation of different aspects of BMA before a modeler

can truly apply this framework with confidence.

Objectives and structure of the thesis This thesis aims at resolving selected issues that
might hinder an efficient and meaningful use of BMA. The state of the art in Bayesian
multi-modeling is presented in Chapter 2. Chapter 3 states the research questions
addressed by this thesis. In Chapter 4, the developed concepts are presented and results
from applying these concepts to different case studies of hydrosystem modeling are
discussed. The corresponding publications can be found in Appendix A. In Chapter 5, I

draw conclusions from this work and give an outlook toward potential future research.
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2 State of the Art

The statistical framework of BMA is presented in Section 2.1. In Section 2.2, the ubig-
uitous problem of how to define the model set is touched upon. Further, the definition
of the likelihood function required to perform Bayesian updating is discussed in Section
2.3. Section 2.4 focuses on the mechanism of the Bayesian tradeoff between perfor-
mance and parsimony, which distinguishes BMA from other multi-model approaches.
Challenges in the technical implementation of BMA are discussed in Section 2.5. In
Section 2.6, the question of robustness of model weights against different sources of

uncertainty is raised.

2.1 Statistical Framework of Bayesian Model Averaging

Consider a model M which yields model predictions ¢ as a function of @ and c:

p=M(®)=[(0,c), (2.1)

with O consisting of uncertain model parameters u, and potentially uncertain model input
v, stochastic noise w (aleatory uncertainty), and model structural errors e (epistemic
uncertainty), according to the modeler’s conceptualization of the system under study.
Prior knowledge about these variables can be formulated as probability density functions
pu),p(v),p(w),and p (e). Model input can refer to time-variant or constant forcings
or boundary conditions. Model predictions ¢ might further depend on fixed input
values or non-adjustable parameters, represented by ¢. As soon as non-deterministic
components @ are considered, a predictive distribution p (¢) is obtained instead of

deterministic predictions ¢.

Bayesian updating The prior probability density function of ® is updated to the

posterior p (®|y,) in light of the evidence in the observed data set y, via Bayes’ theorem:

P (¥010) p (O)

Oly,) =
p(Oly,) 5 00)

< p(¥0|0)p(0), (2.2)

with p (:|-) representing a conditional probability density function. p (y,|®) is the

likelihood of a random realization from p (@) to have generated the observed data set.
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The posterior predictive distribution p (¢|y,) is obtained from model runs based on
p (0Oly,). The expected value of the prior or posterior predictive distribution of model
M is denoted as E [¢] or E [¢|y,], respectively, and the variances are denoted as V [¢]
and V [¢ly,], respectively.

This Bayesian updating or conditioning step corresponds to the calibration procedure in
deterministic modeling applications. While Bayesian approaches to model calibration
(or model comparison) are sometimes criticized for the need to specify prior beliefs,
this is at the same time the beauty of Bayesian statistics: it forces modelers to make
their assumptions transparent. Note that the specification of prior beliefs and of the
likelihood function p (y,|®) are actually the only two definitions required to perform
Bayesian updating. There are no limiting assumptions necessary on the structure of the
models (e.g., linearity) or the shape of the involved prior parameter distributions (e.g.,

Gaussianity).

Bayesian model averaging Now consider a set M of N,, competing conceptual mod-
els My, with k = 1...N,,. Applying BMA, the model-averaged posterior predictive

distribution is determined as a linear mixture of the individual distributions:

N
P (@lyo) = ) p(Plyo M) P (Mily,), (2.3)
k=1

with model weights P (My|y,). Formulating the weighted averaging of the individual

models’ statistics as the expected value over the model set

=

Emyy, [[1= ) [1P (Milyo), (2.4)

[

=~
Il
—_

yields an alternative expression for Equation 2.3:

p(@lyo) = Epmyy, [P ()] - (2.5)

The expected value of the posterior predictive distribution is determined as

N
> E [@lyo Mi] P (Myly,)
k=1

Emiy, {Egly,m [#]} (2.6)

Egly, [¢]
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and the posterior variance as

N

Vo, [@] = DV [@lye Mi] P (Myly,)
k=1

N
+ > (E[@lyo Mi] = E [@1yo])* P (Mily,)
k=1

= Epmpy, Voyom @1} + Vaiy A Epiy,m [#] ), (2.7)

with the first term representing within-model variance (due to the uncertainty encoded
in the probability density function of uncertain model parameters and inputs @) and the
second term representing between-model variance (conceptual uncertainty within the
set M of considered models). Both terms result from applying the law of total variance

with respect to the conceptual uncertainty within M.

The posterior model weights P (My|y,) reflect the probability of the individual models
to be the most adequate one from the set in light of the observed data. The model weights

are determined from Bayes’ theorem:

P (¥olMy) P (My) _P (¥olMy) P (My)
SV b (yol M) P (M;) Ep [p (30)]

P (Mklyo) = ; (2.8)

with the prior belief P (M}) that model M could be the most adequate one in the
set before the observed data have been considered. The denominator in Equation 2.8
normalizes the model weights such that they sum up to one. p (y,|My) is referred to as
Bayesian model evidence, marginal likelihood or prior predictive because it quantifies
the average likelihood of the observed data based on a model’s prior parameter and input
space (Drton et al., 2009):

P (¥olMy) = fg P (Yol Mk, ©) p (O|M)dOy = Egim, [P (¥0)] - (2.9)

p (®|M}) denotes the prior distribution of the model inputs and parameters, defined on
the domain Q. p (y,|My, O) is the likelihood of a realization of model Mj to have
generated the observed data set y,. The model evidence term can either be evaluated
via integration over the whole input and parameter domain Q; (Equation 2.9) (Kass and

Raftery, 1995), or via the posterior probability density function p (®| My, y,) (Equation
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2.2). Both alternatives pose a major technical challenge (see Section 2.5). The need
to evaluate Bayesian model evidence for model ranking represents an evil difference
to traditional applications of Bayesian updating. Obtaining posterior statistics from
Equation 2.2 has become tractable only since the development of Markov chain Monte
Carlo (MCMC) algorithms, because they entirely avoid the evaluation of model evidence

by dropping the normalizing constant and evaluating only the proportionality.

The two levels of applying Bayes’ theorem to obtain posterior model weights and indi-
vidual posterior model predictions have been referred to as the “two levels of inference”
by MacKay (1992). The updating step (Equation 2.2) and the model evaluation step
(Equation 2.8) are obviously intertwined if the same data set y, is used for both tasks.
This fact means that the model comparison is based on uncalibrated models (or more
generally, on models reflecting a state of knowledge prior to the analysis of the collected
data y,) as done in this thesis, or, if this is not the intention of the modeler, a new data

set needs to be collected to perform BMA as a validation step.

Interpretation of model evidence and model weights Note that model weights and
model-averaged statistics are not only conditional on the calibration data set, but also on
the chosen set of considered models. As such, model weights are expected to change if a
new model enters the competition due to their joint normalization to sum up to one (see
Equation 2.8). Bayesian model evidence itself, in contrast, is an objective likelihood
measure independent of the set of models. Future model variants can be compared to
the current set by using the same data set y, and the same likelihood function, which

makes model evidence “future-proof” (Skilling, 2006).

The ratio of model evidences for two competing models is referred to as Bayes factor
(Kass and Raftery, 1995). It is equivalent to the ratio between the posterior and prior

odds of two competing models My and M;:

P (Myly,) P(M;) — p(yo|lMy)

BF (M, M;) = = )
M M) = 5 Wity P(Me) — p (ol M)

(2.10)

The Bayes factor measures the significance in the evidence of hypothesis M; against
the null-hypothesis M;. Rules of thumb by Jeffreys (1961) and Raftery (1995) help the
modeler to interpret Bayes factor values and to define threshold values at which a model
should be dropped or selected from the set. However, even a model obtaining an almost
diminishing model weight might still contribute significantly to between-model variance
as found by Rojas et al. (2010) and Wéhling et al. (2015). Hence, model selection as

10
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such can be questioned, while model averaging is more on the safe side when aiming for

a comprehensive uncertainty assessment.

BMA can be understood as an extension of the Bayes factor to hypothesis testing for
multiple models: based on model evidences, BMA allows to compare a hypothesis (a

model) not only against a single null-hypothesis, but against a set of other hypotheses.

2.2 Definition of the Model Set

Representation of the model space A major challenge before starting any multi-
model approach, including BMA, lies in the definition of the model set. Since all derived
probabilities are conditional on this set, true probabilities could only be obtained if the
model set was complete. Also, conceptual uncertainty in a strict sense could only be
quantified if the model space was completely covered by the analysis. Since itis in reality
both conceptually and computationally impossible to represent the entire model space,
modelers need to put considerable effort into adequately sampling the model space and

then into assigning realistic prior model weights.

Although the definition of the model set is widely acknowledged as one of the most
critical issues in the context of BMA, there has been no real scientific progress even after
several decades of research (Jeffreys, 1939; Jaynes, 1985; Refsgaard et al., 2012). Gull
(1988) already stated that “The real art is to choose an appropriate ‘space of possibilities’,

and to date we have no systematic way of generating it.” This statement still applies.

Distance between models Current research focuses on how the distance between
models could be reasonably measured (e.g., Abramowitz and Gupta, 2008), because this
allows a modeler to estimate how well the model space is currently sampled and how
prior weights should be distributed to account for an over- or underrepresentation of a
certain model type. The impact of prior model weights on the outcome of BMA results
has been investigated by Rojas et al. (2009) and Ye et al. (2005), among others.

2.3 Definition of the Likelihood Function

Formal likelihood definition In order to implement Bayes’ theorem, a likelihood
function p (y,|®) needs to be specified. The likelihood function reflects the modeler’s
trust in the accuracy and precision of the calibration data set y,. Thus, it represents
the probability density function of measurement errors. Typically, for unbiased mea-

surements, a Gaussian distribution centered about zero is assumed to describe random
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measurement errors, with smaller deviations from zero being more probable than larger
deviations. Correlations between measurement errors of different data points can be
accounted for. Using a Gaussian likelihood function is also mathematically convenient
for arriving at analytical solutions, e.g. in combination with a conjugate prior (Box and
Tiao, 1973).

Accounting for model structural errors However, in real-world applications, the
existence of normally distributed residuals (differences between model predictions and
measured data) is often questioned. Non-Gaussian residuals can occur if measurement
errors follow a non-Gaussian distribution, and/or if a prediction bias adds to the discrep-
ancy between model predictions and observations. A bias in predictions is introduced
by model-specific structural errors. These errors can be formally accounted for, e.g. with
a statistical error model that is attached to the process-based simulation model. Such
error models could also treat temporal autocorrelation in prediction bias, as typically
encountered in hydrological models. A successful application of structural error models
to improve hydrological predictions has been demonstrated by Kuczera et al. (2006),

among others.

While acknowledging the existence of model errors and hence addressing the need for
more than a single conceptual model is the main motivation for using BMA, the explicit
statistical treatment of structural errors on top of the individual process-based models
has so far not been attempted within the BMA framework. Especially in the context
of BMA, but also for single-model Bayesian updating, it is important to remember
that the likelihood function should only reflect assumptions about measurement noise.
Model bias descriptions should instead be formulated as part of the model itself: model
structural errors e need to be integrated into a model’s parameter space ® as stated in
Section 2.1. The reason for this is that a model’s bias description needs to be updated
(calibrated) just like a model’s parameters in order to be able to apply the posterior
bias description to future predictions. Any error that is incorporated into the likelihood
definition, in contrast, cannot not be applied to forecasts, but only controls the degree of

conditioning.

Informal likelihood approaches If, for a specific application, model structural errors
are not explicitly accounted for, but turn out to be large compared to measurement errors,
a strict likelihood definition based on the assumed distribution of measurement errors
can lead to very low likelihood values over the whole parameter space of a model.

Proper model calibration will then be almost impossible, and from a hypothesis testing
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perspective, practically any model will be rejected. This issue has been addressed by
informal likelihood approaches such as the generalized likelihood uncertainty estimation
method (GLUE) (Beven and Binley, 1992): instead of specifying a formal probability
distribution of measurement errors, model performance thresholds are defined that allow
to identify “behavioral” parameter realizations. Such approaches represent a concession

to situations where only poorly performing models are available.

2.4 Tradeoff between Performance and Parsimony

Differences in multi-model approaches Multi-model frameworks mainly differ in
the way individual model predictions are obtained, and in the way model weights are
assigned. In the case of BMA, a predictive distribution is obtained instead of a single
most likely prediction. The uncertainty in predictions results from a specification of prior
uncertainty in parameters, inputs, and calibration data. The ability to account for these
sources of uncertainty is a major advantage of BMA over deterministic multi-model
approaches that “forget” about these uncertainties once they have arrived at a calibrated

model state.

Different options for model weights include assigning prior (e.g., equal) weights as
typically done in climate change modeling (e.g., Palmer and Raisanen, 2002), optimized
weights with the objective to maximize the likelihood of the combined prediction (e.g.,
Raftery et al., 2005; Ajami et al., 2007; Wohling and Vrugt, 2008), or trade-off weights
that balance a model’s skill with some penalty for model complexity. BMA represents
a special case of the latter, because it implicitly follows the principle of parsimony or
Occam’s razor (Jefferys and Berger, 1992; Gull, 1988) such that the BMA weights reflect
a Bayesian trade-off between model performance and complexity. Note that the model
averaging techniques with optimized weights cited above have been referred to as BMA
in the literature. However, they do not use Bayes’ theorem to obtain model weights,
which is why I classify them as a distinct, alternative type of multi-model approach. In
this thesis, the term BMA only refers to the corresponding framework that solves Bayes’

theorem (Equation 2.8) to obtain model weights.

Measures for model complexity The fact that BMA can account for model complexity
(or flexibility) is again related to its probabilistic setting. The flexibility of a model
results from the interplay of the prior uncertainty in parameters with the prescribed
model structure, resulting in a specific predictive distribution. Bayesian model evidence

measures the level of agreement between the predictive distribution and the observed
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data as an average likelihood. A precise and accurate distribution will obtain a higher
model evidence than a wide predictive distribution. This mechanism of BMA is related
to the bias-variance trade-off in statistics (see, e.g., Burnham and Anderson, 2003). If
the variance in a model’s predictions is large (low precision), a significant fraction of
predictions will show a large bias which reduces the average likelihood; if the variance
is low, chances are that the data are hardly covered by the predictive distribution (low
accuracy) and again the average likelihood is low. Intuitively, an optimal compromise
(trade-off) must exist between bias and variance in order to score a maximum model

evidence value.

Note that the predictive variance of a model is not necessarily directly related to the size
of the prior parameter space. While a direct relationship typically exists in statistical
regression models, a physical model structure with a higher number of parameters
may lead to an even narrower predictive distribution than a similar model with fewer
degrees of freedom. This empirical observation reveals the difficulty of how to define
model complexity: as briefly discussed in Schoniger et al. (2015a), one could quantify
model complexity by (1) counting the number of adjustable model parameters (some
information criteria rely on this concept, see Section 2.5), or (2) by performing a factor
analysis to account for parameter correlations, or (3) by accounting for data-parameter
sensitivity to assess a model’s flexibility in prediction space instead of in parameter
space. BMA builds on the latter concept and intuitively yields the most consistent

measure of complexity for hydrosystem models out of these alternatives.

The tradeoff-mechanism in BMA I will explain the mechanism of the tradeoff be-
tween performance and complexity (or rather: parsimony) in BMA in the following.
The prerequisite for a BMA analysis is a prior specification of model structures (see
Section 2.2), parameter distributions and measurement error statistics (see Section 2.3).
These subjective definitions are illustrated in Figure 2.1 for a simplistic case of three
arbitrary models and a calibration data set containing two observations. Model M1
yields predictions y independent of its parameter value @ (i.e., the parameter is not
sensitive to the data), model M2 shows a linear dependence between parameter values

and predictions, and model M3 is nonlinear in its parameter.

The flexibility in parameter values needs to be specified in the form of probability density
functions. For all three models, I have used two alternative specifications: a uniform

prior pl and a more informed Gaussian prior p2 (Figure 2.1b).

The likelihood function p (y,| My, ©) needs to be defined according to the assumptions

14



2. State of the Art

a) Model structure b) Parameter prior c) Likelihood function
6 " I
’I’ 15 'I‘
f’ I
M1 Z- 3 I
O b2 fnfpn = Iyl
@ A > = 10 it
> <7 M 22 B H
Pl / e p2 o I
2d1 ra o 0.5 bl
. % 1 p1 11\
/e M2 IR
0 z 0 0 L.\
d1 d2
0 1 o 2 3 0 1 o 2 3 0 2 y 4 6

Figure 2.1: Subjective definitions required to perform BMA. a) Model set with predic-
tions of data point d1 as solid lines and predictions of data point d2 as dashed lines, b)
prior parameter probability density function with two alternative specifications p1 and
p2, c) likelihood as a function of model predictions for data point d1 as solid line and
data point d2 as dashed line.

about measurement noise. Here, a Gaussian distribution is assumed that is centered about
an expected deviation of zero between model predictions and observed data (neglecting
model structural errors for the sake of simplicity). Equivalently, one can understand this
Gaussian distribution as a function of model predictions y, centered about the observed
data y,. Again, the highest likelihood is obtained for a mismatch of zero. I have chosen
this interpretation for the illustration in Figure 2.1c, because it clarifies that the definition
of the likelihood function is based on the characteristics of the observed data and that it
is valid for all individual models (i.e., it should be defined independent of the models at
hand).

As a function of the data y,, or predictions y, or their mismatch y — y,, the likelihood is
a proper probability density function which integrates to unity. However, the likelihood
can also be expressed as a function of model parameters, L (®|y,) (Fisher, 1922).
Assuming uncorrelated measurement errors, the likelihood of a parameter set to have
generated both observed data values is determined as the product of the likelihoods per
data point. The likelihood as a function of parameter values is displayed in Figure 2.2a.
The likelihood function is now no longer a formal probability density function, since
it is no longer normalized to integrate to unity. I choose this unnormalized likelihood
as a function of parameters as the starting point for explaining what Bayesian model

evidence values actually represent and how the tradeoft-mechanism works (Figure 2.2).

Based on a comparison of the likelihood functions, it can already be concluded that
model M3 performs best out of the set presented here, because it achieves the highest

likelihood among all models, and it achieves high likelihood values over a broad range
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Figure 2.2: Objective BMA algorithm based on prior specifications (cf. Figure 2.1).
a) Likelihood as a function of parameter values; b) likelihood multiplied with prior
parameter probability, with Bayesian model evidence (BME) equal to the area under the
curve; c) posterior parameter probability density function (solid lines) as compared to
prior parameter probability density function (dashed lines).

of parameter values. This is an example where a nonlinear (intuitively more complex)
structure yields a narrower predictive distribution: with varying parameter values, the
nonlinear model still produces similar predictions that agree well with the observations.

Hence, it achieves a high likelihood over a wider range of parameter values.

The differences in prior parameter probabilities now come into play: according to Bayes’
theorem (Equation 2.2), the likelihood is multiplied by the parameter prior. This step
can be understood as a reweighting of likelihood values. A wider parameter prior might
have an adverse impact, because it needs to dilute its total probability mass of unity
over a larger range of values. In the example of model M3, the uniform prior p1 causes
a downweighting of likelihood values, whereas the sharper Gaussian parameter prior
p2 causes a partial upweighting in those areas where high prior probability and high
likelihood coincide (Figure 2.2b).
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Finally, the product of likelihood and prior must be normalized to obtain the posterior
probability density function of parameters (Figure 2.2c). The normalizing factor (cf.

Equation 2.2) is exactly the targeted quantity Bayesian model evidence.

From Figure 2.2, two implications follow: (1) If parameters are sensitive to the data, the
shape of the parameter prior influences the model evidence value (cf. models M2 and
M3: for both models, the resulting model evidence value substantially differs between
the two alternative prior specifications). (2) If parameters are not sensitive, BMA will
not see a difference between alternative specifications of the parameter prior (cf. model
M1). This type of (for this specific prediction target superfluous) model complexity is
thus not tackled by BMA. Hence, the penalty for complexity is related to the calibratable
parameter space of a model. A large reduction in uncertainty through conditioning will
be penalized, leading to a lower model evidence value. Through this mechanism, BMA
favors more robust models instead of “over-calibrated” models (see also the related
discussion in Schoniger et al. (2014)). Thus, model complexity as seen through the
eyes of BMA cannot be captured by measures of the prior parameter space nor of the

posterior parameter space alone, but it is dependent on data-parameter sensitivity.

A typical practical situation might be that one model achieves a higher maximum
likelihood, while the competing one achieves acceptable likelihood values over a wider
range of parameter values. In that case, BMA will tend towards the more robust model,
as long as the difference in performance is below the “tradeoft threshold”. The ability to
point the modeler towards an optimal balance between performance and complexity is a
unique characteristic of BMA and distinguishes it from other multi-model frameworks.
This trade-off must also be understood and considered when interpreting model ranking
results: the reason for a model to win the competition could either be its superior
performance, or its parsimonious structure, or a combination of both. Although the
optimal trade-off is a core feature of BMA, its impact on model ranking results and the
implications for future model improvement or model building strategies had not been

systematically investigated prior to this thesis.

2.5 Technical Implementation

The drawback of BMA is that it requires the evaluation of Bayesian model evidence
(Equation 2.9). For practical applications, typically no analytical solution to this integral
exists, and numerical evaluation schemes require a high computational effort. Computing

the posterior distribution of parameters instead (Equation 2.2) is similarly challenging.
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Approximation of model evidence via information criteria Various authors have
therefore proposed and applied approximations to the analytical BMA equations. Neu-
man (2003) introduced the Maximum Likelihood Bayesian Model Averaging approach
(MLBMA), which relies on evaluating the Kashyap information criterion (KIC) at the
most likely parameter set to avoid the integration over a model’s parameter space. The
Bayesian information criterion (BIC) or Schwarz’ information criterion (Schwarz, 1978;
Raftery, 1995) is a simplified version of the KIC that neglects prior knowledge. The
Akaike information criterion (AIC) (Akaike, 1973) is derived from an information-
theoretical background. Besides these very frequently applied information criteria, a
long list of alternative versions have been proposed during the last decades (see, e.g.,
Kadane and Lazar, 2004).

Applicability of information criteria within BMA Many authors have, however,
reported that these information criteria yield differing posterior model weights and even
ambiguous model ranking results (Poeter and Anderson, 2005; Ye et al., 2008, 2010;
Tsai and Li, 2008; Singh et al., 2010; Morales-Casique et al., 2010; Foglia et al., 2013).
These findings suggest that the information criteria do not warrant the true Bayesian
trade-off between performance and complexity, but instead point towards an arbitrary
trade-off which is not in line with Bayesian theory. Prior to this thesis, Lu et al. (2011)
made a first effort to investigate differences in the behavior of the KIC and the BIC as
compared to a numerical reference solution in a synthetic geostatistical application. In
general, there had been a lack of recommendations as to how BMA can be implemented

efficiently and accurately.

2.6 Robustness of Model Weights

Sensitivity of model weights to calibration data Since Bayesian model evidence is a
function of the chosen data set y, through Equation 2.9, the outcome of model weights
and of model ranking might change when using a different data set size or data type.
The impact of the choice of calibration data on BMA results has become a recent focus
of interest (Rojas et al., 2010; Lu et al., 2012; Refsgaard et al., 2012; Xue et al., 2014).
I have contributed to this field of research in the course of a study on the worth of data
for soil-plant model selection and prediction (Wohling et al., 2015). We have found that
model ranking can vary substantially with the size and the composition of the data set.

This result is to be anticipated if the varied data sets “tell a different part of the story”

about the underlying natural system. BMA can only judge to which degree the competing
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models are able to predict the observed data (how fit the models are for this very purpose),
but BMA cannot provide any more general insights regarding the degree to which the
models actually represent the overall system to be modeled. Acknowledging that, through
the eyes of BMA, the purpose changes with varied calibration data sets, a modeler needs
to pay careful attention to the choice of the data set and to their judgment of whether the

obtained BMA results are representative and robust.

Sensitivity of model weights to measurement noise Moreover, BMA weights not
only depend on the chosen measurement design, but also on the very outcome of random
measurement error for all individual data values. This functional dependence introduces
uncertainty into the model weights. Yet, this source of uncertainty for model weights
is not accounted for in the standard BMA routine. BMA weights are treated as fixed
values, given a set of models and a specific data set. Therefore, prior to this thesis, there
had been a need to acknowledge this additional source of uncertainty for model weights

and to make its impact on model ranking results visible in an extended BMA routine.

Sensitivity of model weights to other sources of uncertainty Beyond measurement
uncertainty in the calibration data set, other sources of uncertainty for model weights
exist, such as noisy measurements of model forcings, or conceptual uncertainty in bound-
ary conditions. The robustness of model weights against these sources of uncertainty

needs to be assessed to find out whether the obtained model ranking is reliable or not.
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3 Objectives & Contributions

This thesis aims to advance the available statistical tools for a consistent assessment
of conceptual uncertainty in hydrosystem modeling. BMA is chosen as an integrated
modeling framework because it can account for uncertainty in model input, in model
parameters, in model structures, and in observed data. Resting on Bayesian probability
theory, BMA is a statistically rigorous routine to obtain full predictive and parameter

distributions which serve as a solid basis for decision making and scientific inference.

A wide-spread use of BMA in science and practice is, however, still hindered for several
reasons. A significant extra effort is required to build a number of alternative models
instead of a single one. Besides this obvious reason, applications of BMA are mostly
hindered by difficulties with the technical implementation. Further, the interpretation of
resulting model weights is non-trivial, given the implicit treatment of model complexity,
data scarcity and different sources of uncertainty. To enable a confident and meaningful

use of BMA, the following research questions are addressed in this thesis:

1. How can Bayesian model weights be evaluated efficiently and accurately?
2. How should model ranking results be interpreted in light of limited data?

3. How reliable are model ranking results under noisy input or calibration data?

Figure 3.1 places the three identified research questions into the context of modeling and

uncertainty assessment of hydrosystems as schematically illustrated in Figure 1.1.

Part I: Evaluating Bayesian model weights The first part of this thesis addresses the
technical challenge of how to evaluate BMA weights (see Section 4.1). In Schoniger
et al. (2014), 1 have compared a comprehensive set of methods that can evaluate the
required model evidence term with regard to underlying assumptions, accuracy, and
computational effort. Five different mathematical approximations in the form of infor-
mation criteria have been considered, as well as four numerical integration techniques.
Based on a comparison of the underlying assumptions, I have argued which methods are
truly suitable to evaluate model evidence, and which ones are prone to yield inaccurate
results. I have further designed two synthetic test cases to investigate the impact of

several influencing factors on the approximation quality in a controlled setup. Finally,
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the evaluation methods have been tested on a real-world application of hydrological
model selection. This systematic investigation of methods to determine Bayesian model
evidence takes an important next step towards robust model selection, model averaging

and uncertainty quantification in a BMA framework.

Part I1: Assessing model justifiability in light of limited data If correctly evaluated,
the main advantage of BMA as compared to other multi-model approaches is that it
implicitly follows the principle of parsimony (Occam’s razor) such that an optimal
trade-off between goodness-of-fit during calibration and robustness of future predictions
is identified. The second part of this thesis is devoted to the investigation of this trade-
off. The objective is to answer the question, how much data are needed to reasonably
calibrate a highly complex model, or, which level of complexity is justified given the
available data? To this end, I have isolated the complexity component of the Bayesian
trade-off from its performance counterpart. I refer to this analysis as model justifiability
analysis, because it reveals whether any specific level of complexity can be justified by the
available amount and type of data through the eyes of BMA. The proposed analysis can be
run prior to the actual data collection in order to identify a most efficient measurement
design. The model justifiability analysis has been introduced and demonstrated on a
case of model selection between groundwater models of vastly different complexity in
Schoniger et al. (2015a), see Section 4.2.

Part III: Accounting for sources of uncertainty for model weights The third part
of this thesis extends the BMA framework to also account for uncertainty in model
weights. With this new statistical concept, the robustness of model weights against
uncertain calibration data or model input and the related confidence in model ranking
can be assessed. I have proposed to investigate the variability in model weights with
a resampling analysis (see Section 4.3). The BMA analysis is repeated for random
outcomes of the uncertain variable, and the induced variability in model weights is
analyzed. Such a resampling analysis reveals whether or not the competing models can
be reliably ranked based on the chosen experimental data and the considered sources
of uncertainty. In the specific case of weighting uncertainty due to noisy calibration
data, a theoretical limit to model performance exists. The distance of individual models
from this optimum can be assessed and interpreted to guide further model development.
The proposed concept has been introduced and applied to soil-plant model selection in
Schoniger et al. (2015b).
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Figure 3.1: Research questions addressed by this thesis. (1) How to evaluate BMA
weights? (2) How to choose a model in light of limited data? (3) How to assess the
robustness of model weights against measurement noise and input uncertainty?
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Expected impact The new statistical tools developed within this thesis are expected
to be useful for a broad range of applications. These tools help to provide a more robust
model ranking, an improved forecasting skill, a more accurate uncertainty quantifica-
tion and hence better decision support for hydrosystem management questions, both in

scientific research and in practice.
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4 Results & Discussion

4.1 Evaluating Bayesian Model Weights

The evaluation of BMA weights poses a major computational challenge as pointed out
in Section 2.5. I have addressed the challenge of determining the model evidence
term (Equation 2.9) by comparing a set of different evaluation methods in Schoniger
etal. (2014). Three classes of methods are in principle available: (1) analytical solutions
which rarely exist for real-world applications, (2) computationally efficient mathematical
approximations in the form of information criteria and (3) computationally demanding,
but typically much more accurate numerical integration schemes. For the comparison, |
have selected five information criteria that BMA is commonly operated with (see Section
2.5): the AIC, the AICc (bias-corrected AIC), the BIC, and two versions of the KIC.
As representatives of numerical evaluation schemes, I have considered three classical
Monte Carlo integration techniques (Hammersley and Handscomb,2013): simple Monte
Carlo integration, Monte Carlo integration with importance sampling, and Monte Carlo
integration with posterior sampling. As a fourth numerical option, I have chosen a very
recent approach called nested sampling (Skilling, 2006; Elsheikh et al., 2013). 1 have
first compared the underlying assumptions of these two classes of techniques, based on

a comprehensive literature review.

Information criteria The BIC and the KIC are a result of the Laplace approximation
to solve the integral in Equation 2.9, under the assumption of a Gaussian posterior
parameter distribution. This assumption is fulfilled, e.g., if both the parameter prior
and the likelihood function are Gaussian distributions and if the model is linear. In that
case, the KIC evaluated at the maximum a posteriori parameter estimate (referred to as
KIC@MAP) yields the exact analytical solution. In contrast, the KIC evaluated at the
maximum likelihood parameter estimate (referred to as KIC@MLE) and the BIC deviate
from that exact formulation and are therefore expected to yield an inferior approximation
quality. The AIC and the AICc are based on an information-theoretical measure and
were not specifically developed as approximations to Bayesian model evidence. Hence,
they are not expected to provide an exact solution, but still, they are widely used in the
context of BMA. The approximation error of all information criteria considered here

depends on the actual application.

25



4. Results & Discussion

Numerical evaluation methods The accuracy of numerical methods, in contrast,
is typically only limited by the affordable number of samples, i.e., by restrictions in
computational effort. The challenge with regard to numerical evaluation methods is
thus to find a scheme that yields a reasonably accurate estimate of model evidence with
a reasonably small sample size. Out of the listed numerical schemes, simple (brute-
force) Monte Carlo integration is the favored approach, because it neither introduces
any bias into the model evidence estimate, nor requires any assumptions on the involved
distributions or model structures. Yet, simple Monte Carlo integration is also the most
computationally demanding numerical method considered here. Importance sampling
and (even more so) posterior sampling reduce the computational effort, but at the same
time introduce a bias into the model evidence estimate. In line with the folkloric no-
free-lunch-theorem of optimization, there is a tradeoff between accuracy and efficiency,
not only between the cheap information criteria and the expensive numerical methods,

but also within the set of numerical schemes.

Nested sampling is a promising new integration method that transfers the integration
from the high-dimensional parameter space to a one-dimensional likelihood space. Since
the transfer rule is not perfectly known, some uncertainty arises from this approach and
more research is needed to reduce this uncertainty; however, in principle, this and related
approaches may represent more efficient alternatives to traditional integration schemes

that require a high number of samples for convergence in high-dimensional applications.

Computational effort Regarding the computational effort of the different methods to
evaluate model evidence, it needs to be considered that the computational efficiency
of the information criteria varies with their formulation: while the KIC@MAP is the
most favorable one among the criteria investigated here, it is also the most computa-
tionally expensive one. Its computational effort is comparable to numerical integration
with posterior sampling, e.g. through an MCMC algorithm. Nevertheless, obtaining
a posterior sample from MCMC is still much cheaper than performing simple Monte
Carlo integration. Hence, although the KIC@MAP might not be a typical representative
of a “cheap approximation”, it potentially offers the chance of using MCMC results to
perform BMA. This would be a major breakthrough: while performing Bayesian up-
dating for individual models with the help of MCMC methods has become increasingly
popular, its output can so far not be used to perform BMA. Be referred to Schoniger
et al. (2014) for a detailed explanation why using MCMC output in posterior sampling
yields a biased approximation of model evidence. If MCMC results could be used for
BMA via the KIC@MAP, this would certainly trigger a more wide-spread use of BMA.
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Accuracy in linear and nonlinear synthetic test cases To test the actual performance
of the nine different model evidence evaluation techniques considered here, I have first
designed two synthetic test cases with the goal to investigate the resulting approximation
errors in a controlled setup. From the review of the theoretical background of the infor-
mation criteria, I have identified three main factors that influence their approximation
quality: (1) the size of the calibration data set, (2) the shape of the parameter prior,
and (3) the non-linearity of the model. The size of the data set determines the relative
importance of goodness-of-fit in the tradeoff with parsimony. As explained in Section
2.4, the shape and the dimensionality of the prior parameter distribution contribute to the
flexibility (complexity) of a model. And finally, the degree of non-linearity in a model

determines to which degree the assumption of the Laplace approximation is violated.

These three factors also influence the efficiency of the numerical schemes, but the
accuracy achieved by the numerical schemes can be increased by increasing the number
of samples. This is a major advantage over information criteria, because the convergence
in the model evidence estimate with an increasing amount of computational effort
provides some indication about the error of the approximation. The fixed result obtained
from the information criteria, in contrast, does not allow any conclusion about their

distance from the true solution.

To be able to determine the usually unknown approximation error of model evidence
evaluation, I have in a first step set up a simplistic linear test case such that an analytical
solution for the integral in Equation 2.9 exists. With the analytical solution at hand, I can
compare the results of all nine model evidence evaluation methods with the true value
and I can determine the respective absolute and relative errors. Further, I can assess
the deviation from the true model ranking, based on the evidence values of competing
models. This allows a first-time benchmarking of the different information criteria and

the numerical evaluation schemes against the true solution.

With the linear test case, the influence of the two factors (1) data set size and (2) shape of
the prior can be systematically investigated. This setting represents an ideal premise for
the KIC@MAP and its simplified variants KIC@MLE and BIC, because their underlying
assumption of a Gaussian parameter posterior is fulfilled. For this best-case scenario, the

approximation error of these information criteria is expected to be the lowest possible.

The benchmarking of the different methods against the exact analytical solution has
shown that the AIC(c) and the BIC yield arbitrarily large errors when approximating

Bayesian model evidence. Unfortunately, their errors depend on the actual data set
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used to perform BMA, and even on the outcome of measurement error in this data set.
Even worse, these criteria cannot decipher prior information about the parameter or
prediction space. This is alarming, because the prior information encodes the flexibility
or complexity of a model (see Section 2.4). It is often argued that the AIC(c) or BIC
would yield acceptable model evidence estimates if prior information is vague or not
available. In this test case, though, I have demonstrated that the approximation quality

even deteriorates for less and less informative priors.

The qualitative behavior of approximation error as a function of the two influencing
factors is shown in Figure 4.1a and b. The outcome of model ranking for two arbitrarily
chosen linear model structures (light and dark blue bars, respectively) is illustrated in
Figure 4.1c. Note that the error made by the KIC@MAP is not displayed because it is

zero in this linear case.
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Figure 4.1: Qualitative illustration of errors made when approximating Bayesian model
evidence by information criteria for the simplest case of linear models (modified from
Schoniger et al. (2014)). Behavior of relative error in evidence approximation as a
function of (a) data set size and (b) width of the parameter prior. (c) Corresponding
deviations from the true model ranking.

To investigate factor (3), the non-linearity of the model, I have in a second step created
a slightly more challenging synthetic test case that involves nonlinear models. In this
case, an analytical solution does not exist anymore, and the assumptions behind the KIC
and the BIC are no longer fulfilled. To be able to judge the quality of approximation, I
use the result of simple Monte Carlo integration with a very large number of samples
as reference, because this method has proven to be the most accurate one both in the
theoretical review and in the linear test case. While the KIC@MAP provides the correct
solution for Bayesian model evidence when its assumptions are fulfilled (e.g., in the
linear test case), its approximation quality deteriorates rapidly when confronted with

nonlinear models.
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As explained before, the quality of approximation by the numerical integration schemes
is a function of computational effort. Results from the synthetic test case have confirmed
the expectation that simple Monte Carlo integration and Monte Carlo integration with
importance sampling achieve the highest accuracy and lowest numerical uncertainty at a
specific computational effort. Nested sampling produces slightly higher approximation
errors, but still outperforms all tested information criteria on average over a large number
of measurement error realizations (be reminded that the error made by the information
criteria varies substantially with the chosen data set). Nested sampling further yields a
very accurate model ranking, which indicates that its approximation error is consistent

over the competing models.

Accuracy in real-world test case In a third step, the nine model evidence evaluation
methods have been tested on a real-world application of hydrological model selec-
tion. The discharge of the Fils river in the Upper Neckar basin in Southwest Germany
is predicted by two versions of the distributed mesoscale hydrologic model (mHM)
(Samaniego et al., 2010). The two models differ slightly in their conceptualization of
soil structure. Model ranking is performed based on a nine-year time series of daily
discharge observations. Due to the non-linearity in these two models, again no analyt-
ical solution for Bayesian model evidence exists, and the assumptions behind the KIC
and the BIC are violated. As reference solution, I have again performed simple Monte
Carlo integration with a vast amount of realizations to ensure convergence of the model

evidence estimate.

Results of this real-world test case have confirmed that the KIC achieves the best ap-
proximation quality out of the information criteria considered here. However, it still
performs much worse than any of the numerical integration schemes. Model ranking
based on this large data set yields a very clear proposition for model choice according to
the reference solution. Despite the significant errors in approximating model evidence
made by the information criteria, this clear ranking is surprisingly reflected by all of the
considered evaluation methods. One exception is the BIC, which yields a completely
reversed model ranking. The inferior performance of the BIC came without warning,
since the BIC did not perform particularly poorly in the two synthetic test cases. The
potential for such unexpected behavior must, on the other hand, be anticipated when
recalling my previous findings that the performance of the AIC(c) and the BIC depends
on the application and the data set at hand and that the model ranking suggested by those
information criteria is somewhat arbitrary and not necessarily correlated with the true

one.
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The unambiguous model ranking in this case results from the fact that, if a sufficiently
large data set is available, one of the models will receive a weight of close to 100 %,
no matter how minor the differences in model structures might seem. Several authors
had suspected a causal relationship between the use of information criteria and such
very decisive model ranking results, and proposed specific modifications to correct
this behavior (e.g., Tsai, 2010; Lu et al., 2013). Based on my investigations, this
behavior is not an artifact of using information criteria, but a characteristic of BMA,
or more specifically of the definition of the likelihood function (in this case, a specific
characteristic of assuming uncorrelated errors). When applying BMA, a modeler must
carefully choose the type and extent of calibration data and the type of likelihood
function. Future studies on alternative options to define the likelihood function should
always be guided by a numerical reference solution for the BMA weights, instead of

relying on information criteria that are prone to yield a biased result.

Ranking the same two hydrological models based on a much shorter time series of
observations has shown that, if the goodness-of-fit term is not as dominant over the
parsimony term, model ranking is slightly more ambiguous, and only the numerical

methods are able to reproduce the true result with satisfying accuracy.

Summary and implications Based on the performance of the considered information
criteria in the three test cases, I conclude that the AIC and the BIC are not able to
provide a reliable approximation to Bayesian model evidence. Further, the errors are
not consistent in the sense that they would be compensated when calculating the ratio of
evidence values for model ranking. Even for linear models, model ranking could not be
satisfyingly reproduced by the AIC and the BIC, although the test case settings represent
a best-case scenario regarding their performance. Any more successful application in a
real-world test case would be pure luck. These information criteria are not able to detect
the true dimensionality of a model, and as a consequence, they yield trade-off weights
that generally do not reflect Bayes’ theorem. Since it cannot be foretold how big the price
(the lost accuracy) will be that one has to pay for saving computational effort, I do not
recommend to use the AIC or the BIC in BMA. While the KIC@MAP provides the exact
solution when its assumptions are fulfilled, its performance deteriorates rapidly if they
are violated, which is unfortunately typically the case in real-world applications. Then,
only numerical integration can provide a reliable approximation to the true Bayesian
model ranking. Be referred to Schoniger et al. (2014) for an overview table of the merits,

pitfalls and recommended uses of the investigated evidence evaluation techniques.
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4.2 Assessing Model Justifiability in Light of Limited
Data

The characteristics of the BMA trade-off between performance and complexity are the
focus of the second part of my thesis. This trade-off is needed if only few data are
available. With few data points, it is very difficult to distinguish with confidence the
true or best performing model from competitors. This is very similar to the calibration
process of a model: a complex model needs much more data to be well-defined in its
parameter values than a simple model. The philosophy of BMA is “when in doubt,
prefer the simpler model”. Let us assume for the sake of the argument that the true
model is actually in the chosen set of models (which will never be the case in reality).
Then, BMA will still prefer simpler models than the true model up to a certain amount of
informative data, because the true complexity could not yet be justified by the available
data. But with an infinite number of data points, BMA will identify the true model with
perfect confidence, no matter how simple or complex it might be. This behavior is an
important trait of a model selection framework, but it is not guaranteed by other model
ranking techniques. Model selection with the information criteria AIC or BIC, e.g., tend
to over- or underestimate the true dimensionality, respectively (Burnham and Anderson,
2004).

The concept of model justifiability I refer to the successful identification of the true
model through BMA as model self-identification. Simple true models can be self-
identified with small data sets, while complex true models need much larger data sets
to be justified. To test whether the maximum degree of complexity that can still be
self-identified through BMA is actually rising with increasing data set size and falling
with decreasing data set size, I have developed an analysis tool in a synthetic setting. A
set of models is chosen that covers a wide range of complexity. Then, each of the models
is used to generate a number of synthetic data sets, i.e., samples from the predictive
distribution of a model are now used as data sets. Based on each of these data sets, the
standard BMA analysis is performed to obtain model weights. Now, these model weights
are averaged over all those data sets (predictions) that were generated from one specific
model. In the end, one obtains as many sets of model weights as the number of compared
models N,,. These average weights then build an N,, X N,, matrix which I call model
confusion matrix. Confusion matrices are known from the field of machine learning.
Such a matrix summarizes the performance of a classifier algorithm by distinguishing

between correctly classified and wrongly classified (confused) items.
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I'have transferred the concept of a confusion matrix to the context of model selection. The
model confusion matrix indicates the highest degree of complexity that could possibly
be justified (self-identified) based on the chosen experimental setup. The complexity of
a model is deemed justifiable if it receives the highest model weight in the set when it
has generated the data, i.e., when this model’s predictions have been used as calibration
data sets. A model weight of close to one means that the model’s complexity is perfectly
justifiable, whereas almost uniform weights indicate a highly uncertain justifiability. The
maximum justifiable degree of complexity is the complexity of the most complex model
in the set which still achieves justifiability. Figure 4.2a shows an arbitrary example of a
model confusion matrix. In this case, the degree of complexity inherent to model M3
would be identified as the maximum justifiable degree given the chosen experimental
design. Figure 4.2b schematically illustrates how curves of model weights for the data-
generating model (i.e., the average weights on the main diagonal of the model confusion

matrix) depend on model complexity and data set size.
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Figure 4.2: Model justifiability analysis, exemplarily shown for a set of four models M1
to M4 (modified from Schoniger et al. (2015a)). (a) Model confusion matrix, with the
maximum justifiable degree of complexity identified as the complexity of model M3
(marked in red). (b) Model justifiability (average model weight for the data-generating
model) as a function of complexity and data set size.

The model confusion matrix provides two major benefits: (1) It reveals the degree of
similarity between the alternative models. This knowledge helps a modeler to reconsider
the choice of prior model probabilities, because one might want to dilute prior model
weights if some models appear to share a specific structure (George, 2010). (2) It helps
to interpret the model weights resulting from the conventional BMA procedure. If two
or more models receive a very similar weight, it is typically difficult to decipher whether
the models are actually very similar in their predictions, or whether the similar model
weights just result from a similar overall goodness-of-fit. The model confusion matrix

can clearly discover the former case.
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Application to groundwater model selection The justifiability analysis is proposed
in Schoniger et al. (2015a). To illustrate the analysis, I have chosen an application
to aquifer characterization via hydraulic tomography. Steady-state drawdown data are
used to characterize the heterogeneous spatial distribution of hydraulic conductivity in
a sandbox aquifer. The construction of the sandbox and the experimental design for
hydraulic tomography are documented in /l/lman et al. (2010). Four alternative concepts
to parametrize the spatial distribution of hydraulic conductivity are considered: (1) a
homogeneous, equivalent medium approach, (2) a geological model that is inspired by
the true layering visible from the sandbox, (3) a geostatistical interpolation by pilot
points, and (4) a full geostatistical approach. These four approaches differ vastly in
complexity and computational effort. Further, the required amount of calibration data
clearly increases with model complexity. Geostatistical approaches have proven to yield
skillful and reliable prognoses also beyond the calibration setup when calibrated with a
comprehensive data set from hydraulic tomography (/llman et al., 2010). On the other
hand, the much simpler geological model with zones of constant hydraulic conductivity
is more frequently applied in practice and in science, and has also shown acceptable
results in comparison to geostatistical approaches (Berg and Illman, 2011; Illman et al.,
2015). Hence, the question arises whether, under a limited amount of data, the highly
flexible geostatistical approach is justified, or whether the more robust zonated model
should be preferred from a parsimonious point of view. This question is answered by

applying BMA to rank these four different parameterizations.

I have used this test case to find out how much data are required to justify the different
proposed levels of complexity, ranging from one effective parameter (homogeneous
approach) to a full geostatistical approach where hydraulic conductivity varies in each
of the 12,480 grid cells used for spatial discretization. I have further investigated how
the maximum level of complexity that can still be justified depends on the amount of
available data. To this end, I have used hydraulic tomography data from between one
and six pumping tests for the inversion and repeated my suggested justifiability analysis

for all these data sets.

Results have shown that the simplest model (homogeneous, equivalent medium) can be
(almost) perfectly justified in all data set variants, even if only a single pumping test
is used for hydraulic tomography. Justifiability of the more complex geological model
can also be achieved in all data set variants, however, with less confidence: when the
geological model generates the data sets, it does obtain a higher model weight than the

competitors, but its weight does not (yet) approach 100 %. Justifiability becomes even
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more difficult in the case of the interpolation model. Its complexity cannot be supported
by a single pumping test anymore and, when adding more data, it still does not obtain a
model weight of more than 50 %, i.e., it never obtains an “absolute majority”. The most
complex full geostatistical model is the only one which cannot be justified, not even by
the most comprehensive data set considered in this study. When this model generates
the data, the relatively similar interpolated model obtains the largest weight out of all
models. Thus, the maximum level of complexity that can be justified through the eyes of
BMA with the data set variants investigated here is represented by the complexity of the
interpolated model. I suspect that many more informative data points would be needed

to reach a breaking point such that the full geostatistical model could be justified as well.

I have further observed that the more data are used for the BMA ranking, the higher the
confidence of justifiability. This behavior agrees with the theoretical claim that BMA
will recognize the true model, regardless of its complexity, in the limit of an infinite
data set size. Also, the test case results have confirmed that BMA will consistently point
towards the true model even if it is of low complexity and a large data set is used. Hence,
BMA does not tend to over-fit the data as opposed to, e.g., model ranking with the AIC
(Burnham and Anderson, 2004).

Interpretation of model ranking results based on justifiability After having per-
formed my proposed justifiability analysis in a synthetic setup first (the experimental
setup has been used in the analysis, but only synthetic, model-generated data instead of
observed data), I have performed the standard BMA analysis in a second step. While
the first step indicates which level of complexity could possibly be retrieved from the
chosen experimental setup, the second step shows how the models are ranked based on
the actually observed experimental data. Then, these results are interpreted with the

help of the findings from the first step.

When using the actually observed drawdown data for BMA, the geological model always
ranks first, no matter which data set variant (observations from one to six pumping tests).
As explained in Section 2.4, there are three potential explanations why this specific model
scores best: either, it is parsimonious enough in the eyes of BMA, or it shows a superior
goodness-of-fit, or because of a mixture of both reasons. To disentangle these potential
reasons, I have drawn upon my findings from the justifiability analysis in the first step.
Since the geological model can be well self-identified under the current experimental
design, its high model weight when confronted with the observed data suggests a close

agreement between the model’s predictions and the observed system response.

34



4. Results & Discussion

To cancel out the other option that the geological model has only been ranked first due
to its simplicity, I have set up another competing model of almost the same complexity.
The competing model structure completely ignores the knowledge about the packing
pattern of the sandbox. I have repeated the BMA analysis with the original geological
model replaced by this “impaired” version of it. The geology-ignoring variant scores
significantly worse and is ranked last in all data set variants. Thus, simplicity is not the
key to a high model weight in this case, and I have concluded that the geological model
with the informed structure wins the BMA context because of a reasonable amount of

flexibility at the right spots.

For this specific test case application, I have found that the inversion of hydraulic
tomography data does not per se justify or require a geostatistical description of aquifer
heterogeneity. Rather, a well-informed geological model might provide more robust
results. Combining these two approaches by equipping a zonation-based model with a
geostatistical representation of small-scale variability in hydraulic conductivity within
zones (see, e.g., Fienen et al., 2008) seems a promising approach that should be further

investigated in science and finally applied in practice.

Summary and implications 1 have performed a two-step BMA procedure to find out
(1) which groundwater model complexity could possibly be justified by using data from
one to six pumping tests for hydraulic tomography, and (2) which model actually turns
out to incorporate the optimal Bayesian trade-off between performance and complexity.
The proposed two-step procedure disentangles model justifiability (in light of the ex-
perimental setup) from model adequacy (in light of the actually observed data). Since
model justifiability is assessed in a synthetic setting, it can be used to guide the planning
of experiments. This analysis will tell modelers which data to collect in order to run
a meaningful model ranking analysis. Modelers should be aware that, if the available
data are not sufficient to justify the most complex model under consideration, the most
complex model could still be the one closest to the true underlying system, but it will

not be ranked first by BMA, due to the implicit preference of parsimonious models.

The additional computational effort for the proposed justifiability analysis is relatively
low compared to the effort for the numerical evaluation of the conventional BMA
algorithm, which is the most reliable method of evaluation (see results of the first part of
my thesis, Section 4.1). Therefore, I recommend to perform both steps in applications
for which the interpretation of resulting BMA weights might seem non-trivial. I expect

this to be the case in the vast majority of real-world applications.
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4.3 Accounting for Sources of Uncertainty for Model
Weights

The third part of this thesis focuses on the reliability of model weights under different
sources of uncertainty. While, traditionally, model weights are perceived as fixed values,
I have claimed that they are sensitive to uncertainty in the calibration data set. Tradition-
ally, the BMA framework is able to account for the impact of this source of uncertainty
on the predictive distribution of individual models, and assigns fixed model weights
based on the agreement between the predictive distributions and the observed data. This
routine neglects that the weighting would turn out differently if the measurement error in
the observed data set had taken on a different value (e.g, if measurements were repeated).
Hence, I have proposed to treat model weights as uncertain quantities as well (Schoniger
et al., 2015b).

The need for an extended BMA routine Accounting for measurement noise as source
of uncertainty for model weights is a logical consequence and improvement of the stan-
dard BMA scheme, because assumptions about the statistical properties of measurement
noise need to be specified anyway in order to define the likelihood function. Given
these assumptions, a modeler should test whether the obtained weights are robust under
varying outcomes of measurement error in the data set. As soon as an assumption about

the quality of the data is made, my proposed routine should follow.

Other sources of uncertainty for model weights such as uncertain forcings or boundary
conditions could be treated with my suggested extension in the same fashion, although
it might seem less natural because assumptions on the quality of model input need to be

made, which are not required (but may be included) in the standard BMA routine.

The statistical concept of resampling [ have proposed to assess the variability of
model weights under any specific source of uncertainty by a resampling analysis within
aMonte Carlo framework. The uncertainty in an uncertain quantity w (e.g., measurement
error in input or output data) is represented by generating a sufficiently large number
of random realizations from its assumed distribution p (w). This procedure is referred
to as parametric bootstrap (e.g., Davison and Hinkley, 1997). For each of the random
realizations and each of the models, the corresponding model evidence is evaluated. The
outcome of the resampling analysis is then an ensemble of evidence values and model

weights.
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The variability in model weights can be summarized by determining confidence intervals
(exemplarily shown in Figure 4.3a). By assessing the overlap between confidence
intervals of model weights for competing models, first insights about the robustness
of model ranking under the investigated source of uncertainty can be gained. The
distributions of model evidence allow to assess the reliability of model ranking in further
detail (Figure 4.3b). Several options are available to analyze and interpret the resulting
distributions of model evidence as discussed in Schoniger et al. (2015b). As most
promising, I have identified the Bayes factor (Equation 2.10). From the distributions
of Bayes factors, the modeler can tell how reliable a statement like “model A scores a
higher evidence value than model B actually is. Such a detailed analysis is of great

worth for further model development.

Theoretical limit to model performance In the specific case of considering measure-
ment noise in the calibration data as source of uncertainty for model weights, statistics
of model evidence values can be used to find out how far off the models’ performances
are from the theoretical maximum. This theoretical limit for model performance exists,
because even a perfect (true) model would yield a distribution of model evidence values
under noisy calibration data. I define the theoretically optimal model (TOM) as the
observed data set, because it combines a perfect fit with zero complexity (no adjustable
parameters). The TOM’s evidence distribution represents the best-case scenario of a
model evidence distribution under noisy data. The distance of the competing models
from the TOM or their overlap, respectively, can then be measured in the same fashion
as the evidence distributions of competing models are compared with each other, e.g.
with the help of Bayes factors (Schoniger et al., 2015b).

In the spirit of strict hypothesis testing, a modeler could choose a significance level and
check whether the proposed model fails this test against the TOM with a specific level of
evidence (e.g. using the rules of thumb mentioned in Section 2.1). This is schematically

illustrated in Figure 4.3c.

The comparison of a model’s performance with the theoretically optimal performance
(the performance of the TOM) provides an absolute measure for model skill, as opposed
to relative model weights that are conditional on the current model set. After having
evaluated this absolute distance, a modeler is better able to decide whether the already
considered models perform sufficiently well for the given purpose, or whether they need

to be improved, or whether completely new models should be included in the comparison.
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Figure 4.3: Robustness of model ranking against measurement noise in the calibration
data set, exemplarily shown for a set of four models M1 to M4 (modified from Schoniger
et al. (2015b)). (a) Boxplots showing mean values and confidence intervals of possible
model weight outcomes, (b) distribution of possible model evidence values, (c) distri-
bution of Bayes factors in favor of the theoretically optimal model (TOM), with colored
lines indicating specific significance thresholds.

As a welcome side effect, the proposed analysis tools are expected to trigger further
research on the question how to sample the model space well (see Section 2.2). Knowing
some sort of distance between competing models and between the individual models and
the TOM is a good basis to start from, because the model space can only be extended

efficiently with new or modified models if the current sampling state is well characterized.

Application to soil-plant model selection Ihave demonstrated the use of the extended
BMA routine in an application to soil-plant modeling, following up on a previous study
I was involved in during the course of my PhD project (Wohling et al., 2015). In
the cited study, we have performed the standard BMA analysis for four crop models
that differ in how detailed and how mechanistically plant processes are represented,
but are coupled to the same model to simulate water movement through the soil. The
BMA analysis has greatly helped to diagnose model structural deficiencies of the four
alternative crop models, and to understand how they react to different calibration data
types. We have further investigated, how the amount of data influences the decisiveness

in model ranking.

I have continued along this path by investigating how model weights change under ran-
dom outcomes of measurement noise in the calibration data set, and how model ranking
results are affected (Schoniger et al., 2015b). Assumptions about the measurement error
distributions were derived from replicated measurements and experiences from previous

experiments.
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To perform the proposed resampling analysis, I have drawn random realizations of
measurement error from its specified distribution and I have added them to the observed
data values since, on average, measurement error is assumed to be zero. Model evidence
values are determined from simple Monte Carlo integration which has been proven to
yield most accurate results in the first part of my thesis (see Section 4.1). Distributions
of model evidence are then obtained by repeating the standard BMA analysis for random

outcomes of measurement error.

I'have repeated the full resampling analysis for different calibration data sets. Considering
different data types for calibration allows to draw conclusions about the relevance of
weighting uncertainty under different calibration conditions. I further went through
different assumptions on the shape of the distribution of measurement error to find out

how an increase or decrease in noise influences the robustness of model ranking.

Reliability of model ranking Results of this study have shown that the variability in
model weights due to noisy data is especially high for the two best-performing models
in this specific application. This variability leads to ambiguous model rankings in
all investigated calibration scenarios. It can be concluded that, based on the given
experimental design and the specified assumptions about measurement noise, no single

model can be selected from the set with confidence.

A reduced measurement error standard deviation has yielded more decisive results, while
an increased measurement error standard deviation has led to even more variability.
Hence, to arrive at a more solid model ranking, more accurate data or other more
informative data types should be collected. The search for most useful future data could

be guided by optimal design approaches that rest on the proposed extended BMA routine.

Propagation of weighting uncertainty to total predictive uncertainty Beyond the
impact on model ranking results, weighting uncertainty intuitively must also have an ef-
fect on the total uncertainty of model-averaged predictions. Therefore, the total variance
formulation of the standard BMA routine needs to be extended to account for weighting
uncertainty. I propose to derive the extended variance formulation from Equation 2.7

using the law of total variance:
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Terms (1) and (2) represent expectations over p (w) of within-model variance and
between-model variance, respectively. The new weighting variance term (3) reflects the
variability of the expected prediction due to uncertainty in the variable w. All three

terms can be evaluated based on the results of the resampling analysis presented above.

Bayesian vs. frequentist interpretation Although mathematically sound, there is a
difficulty in interpreting the variance decomposition in Equation 4.1: the expectations
and variances over p (w) are frequentist properties of the otherwise Bayesian statistics
and probabilities, because they do not follow from Bayes’ theorem, but from a resampling
analysis according to specified statistics. Hence, it might be argued that frequentist

confidence intervals should not be mingled with Bayesian credible intervals.

The apparent conflict can be resolved by understanding that the resampling analysis is
merely a frequentist tool to make weighting uncertainty visible, i.e. to isolate it from the
other two components within-model variance and between-model variance. The total
variance could just as well be determined from the traditional Bayesian approach by
incorporating the uncertainty in the variable w into the calculation of Bayesian model

evidence to obtain an aggregated model weight.

Note that in the resampling analysis, model weights are treated as uncertain quantities
with a probability distribution of their own. Since model weights themselves represent a
distribution over the competing models, two levels of statistical distributions arise. These
two distributions can be collapsed, and hence one again arrives at a single model weight
per model. This supports the hypothesis that both the Bayesian approach, yielding fixed
model weights, and the frequentist approach, yielding distributions of weights, can be

used to determine the overall predictive uncertainty (Equation 4.1).
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The final uncertainty estimates of model-averaged predictions obtained by the two differ-
ent approaches are expected to roughly coincide if prior information is dominated by the
data and a sufficiently large number of resampled data sets is used. In a follow-up study
on Schoniger et al. (2015b), I will investigate this hypothesis in synthetic and real-world
test cases. It should be kept in mind, however, that the mixed confidence and credible
intervals obtained from resampling are not necessarily representative if the required
assumptions are not fulfilled. Thus, I recommend to perform the Bayesian approach
to correctly quantify the overall prediction uncertainty, and to perform the frequentist
resampling analysis if the variability in model weights shall be explicitly evaluated as an
intermediate result that is otherwise hidden in the Bayesian approach. As demonstrated
in the case study of soil-plant modeling, the variability in model weights is of particular

relevance for the purpose of model ranking and model selection.

Treatment of input uncertainty The Bayesian approach of aggregated model weights
has been implemented for the case of input uncertainty (Ajami et al., 2007; Rojas et al.,
2008). Alternatively, input uncertainty could be specifically addressed by the proposed
frequentist resampling analysis to obtain an ensemble of model weights. These two
options differ in their implicit meaning. If the aggregated Bayesian approach is chosen,
the considered source of uncertainty is automatically attributed to the model and will
be penalized by BMA in the spirit of parsimony. This approach could be useful, e.g.,
if input uncertainty varies for the competing models. If input uncertainty is the same
for all models, it might be more interesting to find out, how robust the model ranking is
against this source of uncertainty. Then, instead of integrating over the uncertain input,

the resampling analysis should be performed.

Treatment of measurement noise In the case of measurement noise in the calibra-
tion data as a source of uncertainty for model weights, the interpretation of weighting
uncertainty becomes trickier. I have claimed that model weights turn uncertain be-
cause their outcome varies with different outcomes of measurement error in the data
set. The standard BMA routine requires to specify the likelihood function according to
the assumptions about the distribution of measurement error. Repeating this analysis
for perturbed data means that each time, the likelihood function is moved in order to
center it about the respective perturbed value (cf. Figure 2.1c). Since the perturbation
is done according to the very same distribution of measurement error, this is equivalent
to the convolution of the distribution of measurement error with itself. In the case of a

Gaussian likelihood function, this results in a variance twice as large as the measurement
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error variance o2. Thus, to evaluate the Bayesian expression of the total variance (the
left side of Equation 4.1), one needs to perform the standard BMA routine based on a

likelihood function with a variance of o> = 20°2.

Whether, from a methodological viewpoint, the impact of measurement error should
be accounted for twice is debatable, since this approach clearly mixes the Bayesian
interpretation (measurement values are perceived as fixed values, measurement error is
accounted for by the likelihood function) with the frequentist approach (measurement
error is accounted for through repeated measurements). It will be tested in a future
study whether this mixed approach could still prove useful from a practical viewpoint
by analyzing the predictive coverage achieved by mixed confidence/credible intervals of

predictions in an independent validation setup.

Summary and implications I have proposed to extend the existing BMA routine to
also account for sources of uncertainty for model weights, such as noisy calibration
data or uncertain model input. With the concept of resampling, the robustness of
model weights and model ranking against the investigated source of uncertainty can be
assessed. The application to a case study of soil-plant model selection has shown that
model ranking can be highly sensitive to the outcome of random measurement errors
in the calibration data set. The proposed extended BMA routine should be used to
detect whether this sensitivity is high in any specific application, and to guide further
data collection aiming at an increased confidence in model ranking. The proposed
resampling analysis further offers the chance to determine a distance in performance
between individual models and a theoretical upper limit. Knowing this distance helps to

guide further model development.

Beyond the impact on model ranking results, I have claimed that the uncertainty in
model weights adds to the total predictive uncertainty. Statistically, the propagation
of weighting uncertainty to predictive uncertainty can be developed with the law of
total variance. However, difficulties in the interpretation of this variance decomposition
arise because frequentist properties are apparently mixed with Bayesian probabilities.
I have argued that these difficulties can be resolved by differentiating between two
approaches with two distinct goals: the Bayesian approach should be used to correctly
quantify the overall predictive uncertainty inherent to the model-averaged predictions.
The frequentist resampling approach should be used to make the variability in model
weights visible (which would otherwise remain hidden in the Bayesian procedure), and

hence to verify that the obtained BMA results are robust and meaningful.
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As explained in the introduction to this thesis, several obstacles to an efficient and
meaningful use of BMA exist(ed). Some of these obstacles have been addressed in this

thesis by answering the research questions put forward in Chapter 3.

Part I: The necessity to place BMA into a Monte Carlo framework First, I have
addressed the question of how to evaluate BMA weights efficiently and accurately by
performing a rigorous comparison of existing methods to determine Bayesian model
evidence, which is the key ingredient of the BMA equations. I have conducted a first-
time benchmarking of mathematical approximations and numerical evaluation schemes
against a reference solution under both synthetic and real-world conditions. Results
have shown that computationally cheap approximations in form of information criteria
yield potentially very inaccurate model weights that do not reflect the true Bayesian
trade-off between performance and parsimony. The discrepancy is especially large in
the case of nonlinear models. Instead, I recommend to use brute-force Monte Carlo
integration whenever feasible in order to obtain an accurate Bayesian model ranking.
Solving the BMA equations with Monte Carlo integration is conceptually simple and
its implementation is straightforward such that the use of BMA should not be hindered
by technical difficulties anymore, given that enough computational power is available.
It remains an open question for future investigation whether the so far unacceptable
performance of information criteria in approximating Bayesian model evidence could be
improved in order to create a computationally less demanding but accurate alternative to
Monte Carlo integration. A specific focus should be laid on how to adequately encode
model complexity, because this aspect is currently causing the information criteria to
fail.

Part II: The benefit of performing a model justifiability analysis Second, I have
investigated the mechanism of BMA that balances performance with parsimony. The
proposed model justifiability analysis allows a better understanding of this trade-off
and facilitates the interpretation of BMA results. It answers the question, whether the
complexity in the considered models could possibly be justified with the data available for
calibration. If the complexity of a model cannot be justified, BMA might favor simpler

models not because they seem more realistic, but because they are better justifiable
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in light of limited data. The proposed model justifiability analysis can be applied to
arbitrary models and data and comes at little additional costs if the standard BMA
analysis is already performed in a Monte Carlo framework, which I highly recommend
based on the findings from the first part of this thesis. The proposed two-step procedure
has yielded valuable insights into the required or justified complexity of groundwater
models for a synthetic sandbox aquifer. Transferring this methodology to field-scale

applications poses a challenge to be addressed in future studies.

Part III: The importance of assessing the robustness of model weights Third, I
have addressed the question of how robust and representative model ranking results
are. Therefore, I have extended the standard BMA routine to also account for sources
of uncertainty for model weights, such as measurement noise in calibration data or in
input data, or conceptual uncertainty in boundary conditions. Since assumptions on
the distribution of measurement errors in the calibration data set are already part of
the standard BMA analysis, it is advisable to assess the variability in model weights
due to these very assumptions in any BMA application. Results from a case study of
soil-plant model selection have confirmed the hypothesis that model weights can be
highly sensitive to the outcome of random measurement errors, which compromises
the confidence in model ranking. As a highly beneficial side product, the proposed
analysis provides an indication how well individual models perform as compared to a
theoretical optimum. Testing the proposed extended BMA routine on uncertain forcings
or boundary conditions remains open for future studies. The extended BMA framework
is further a solid basis for the optimal design of future data collection campaigns, because
it can point the modeler towards those measurements of input or output data that yield
a most decisive and most confident model ranking. The definition of utility functions
that also account for the negative impact of weighting uncertainty will be in the focus
of future research. It should further be investigated in synthetic and real-world case
studies, how relevant the contribution of weighting uncertainty to the overall predictive

uncertainty is.

Remaining issues for future research These three distinct contributions have paved
the ground for using BMA as a general-purpose multi-modeling framework that can
consistently handle sources of uncertainty in models, parameters, inputs, and data. The
proposed extended BMA routine is a valuable addition to existing integrated modeling
approaches, because it is able to explicitly evaluate the variability in model weights

due to any one of these sources of uncertainty. One link is, however, still missing to
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fully establish BMA as an integrated modeling framework especially for hydrosystem
modeling. Equipping each process-based model with its own statistical error model
to reduce the bias in predictions has so far not been explicitly attempted within BMA.
This seems to be an adjustment long overdue, since acknowledging the existence of
model structural errors is the main motivation to use multi-model frameworks in the first
place. It is expected that incorporating model structural errors into the BMA routine
will further improve the predictive coverage of BMA-weighted predictions and will
allow for a potentially more realistic estimation of model parameters and their attached

uncertainty.

While this thesis has advanced Bayesian multi-modeling with regard to its technical
implementation, its interpretation, and its reliability, some of the listed obstacles persist.
Especially the population of the model space remains an unresolved challenge. Some of
the analysis tools presented in this thesis can be used to assess the degree of (dis)similarity
and hence the identifiability of alternative models: the model confusion matrix assesses
this distance in an a priori sense (without considering the actually observed data), and
the distance from the theoretically optimal model is a measure in relation to the observed
data. Knowledge about the distance between competing models and the absolute distance
from a theoretical optimum can give some insight about the structure of the currently

sampled model space.

The subjective choice of prior weights for the models in the set will also remain in the
focus of BMA criticism. But as long as there is a lack of better suited alternatives, I
believe this obstacle should not prevent us from using BMA. In the end, BMA is an
objective, coherent and transparent approach that starts from a subjective (but explicitly
stated) viewpoint of the modeler, and this is certainly much better scientific practice
than starting from a subjective position (not necessarily made explicit) and moving
forward based on further subjective decisions. Equipped with the tools developed within
this thesis and anticipating further theoretical development as suggested here, BMA will
help to advance hydrosystem modeling in various aspects, such as system understanding,

uncertainty quantification and forecasting skill.
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Abstract Bayesian model selection or averaging objectively ranks a number of plausible, competing con-
ceptual models based on Bayes’ theorem. It implicitly performs an optimal trade-off between performance
in fitting available data and minimum model complexity. The procedure requires determining Bayesian
model evidence (BME), which is the likelihood of the observed data integrated over each model’s parameter
space. The computation of this integral is highly challenging because it is as high-dimensional as the num-
ber of model parameters. Three classes of techniques to compute BME are available, each with its own chal-
lenges and limitations: (1) Exact and fast analytical solutions are limited by strong assumptions. (2)
Numerical evaluation quickly becomes unfeasible for expensive models. (3) Approximations known as infor-
mation criteria (ICs) such as the AIC, BIC, or KIC (Akaike, Bayesian, or Kashyap information criterion, respec-
tively) yield contradicting results with regard to model ranking. Our study features a theory-based
intercomparison of these techniques. We further assess their accuracy in a simplistic synthetic example
where for some scenarios an exact analytical solution exists. In more challenging scenarios, we use a brute-
force Monte Carlo integration method as reference. We continue this analysis with a real-world application
of hydrological model selection. This is a first-time benchmarking of the various methods for BME evalua-
tion against true solutions. Results show that BME values from ICs are often heavily biased and that the
choice of approximation method substantially influences the accuracy of model ranking. For reliable model
selection, bias-free numerical methods should be preferred over ICs whenever computationally feasible.

1. Introduction

The idea of model validation is to objectively scrutinize a model’s ability to reproduce an observed data set
and then to falsify the hypothesis that this model is a good representation for the system under study [Popper,
1959]. If this hypothesis cannot be rejected, the model may be considered for predictive purposes. Modelers
have been encouraged for centuries to create multiple such working hypotheses instead of limiting them-
selves to the subjective choice of a single conceptual representation, therewith avoiding the “dangers of
parental affection for a favorite theory” [Chamberlin, 1890]. These dangers include a significant underestima-
tion of predictive uncertainty due to the neglected conceptual uncertainty (uncertainty in the choice of a
most adequate representation of a system). Recognizing conceptual uncertainty as a main contribution to
overall predictive uncertainty [e.g., Burnham and Anderson, 2003; Gupta et al., 2012; Clark et al.,, 2011; Refsgaard
et al., 2006] makes model selection an “integral part of inference” [Buckland et al., 19971. The quantification of
conceptual uncertainty is of importance in a variety of scientific disciplines, e.g., in climate change modeling
[Murphy et al., 2004; Najafi et al., 2011], weather forecasting [Raftery et al., 2005], hydrogeology [Rojas et al.,
2008; Poeter and Anderson, 2005; Ye et al.,, 2010a], geostatistics [Neuman, 2003; Ye et al., 2004], vadose zone
hydrology [Wohling and Vrugt, 2008], and surface hydrology [Ajami et al., 2007; Vrugt and Robinson, 2007;
Renard et al., 2010], to name only a few selected examples from the field of water resources.

Different strategies have been proposed to develop alternative conceptual models, assess their strengths
and weaknesses, and to test their predictive ability. Bayesian model averaging (BMA) [Hoeting et al., 1999] is
a formal statistical approach which allows comparing alternative conceptual models, testing their adequacy,
combining their predictions into a more robust output estimate, and quantifying the contribution of
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conceptual uncertainty to the overall prediction uncertainty. The BMA approach is based on Bayes’ theo-
rem, which combines a prior belief about the adequacy of each model with its performance in reproducing
a common data set. It yields model weights that represent posterior probabilities for each model to be the
best one from the set of proposed alternative models. Based on the weights, it allows for a ranking and
quantitative comparison of the competing models. Hence, BMA can be understood as a Bayesian hypothe-
sis testing framework, merging the idea of classical hypothesis testing with the ability to test several alterna-
tive models against each other in a probabilistic way. The principle of parsimony or “Occam’s razor” [e.g.,
Angluin and Smith, 1983] is implicitly followed by Bayes’ theorem, such that the posterior model weights
reflect a compromise between model complexity and goodness of fit (also known as the bias-variance
trade-off [Geman et al., 1992]). BMA has been adopted in many different fields of research, e.g., sociology
[Raftery, 1995], ecology [Link and Barker, 2006], hydrogeology [Li and Tsai, 2009], or contaminant hydrology
[Troldborg et al., 2010], indicating the general need for such a systematic model selection procedure.

The drawback of BMA is, however, that it involves the evaluation of a quantity called Bayesian model evi-
dence (BME). This integral over a model’s parameter space typically cannot be computed analytically, while
numerical solutions come at the price of high computational costs. Various authors have suggested and
applied different approximations to the analytical BMA equations to render the procedure feasible. Neuman
[2003] proposes a Maximum Likelihood Bayesian Model Averaging approach (MLBMA), which reduces com-
putational effort by evaluating Kashyap'’s information criterion (KIC) for the most likely parameter set
instead of integrating over the whole parameter space. This is especially compelling for high-dimensional
applications (i.e., models with many parameters). If prior knowledge about the parameters is not available
or vague, a further simplification leads to the Bayesian information criterion or Schwarz’ information crite-
rion (BIC) [Schwarz, 1978; Raftery, 1995]. The Akaike information criterion (AIC) [Akaike, 1973] originates from
information theory and is frequently applied in the context of BMA in social research [Burnham and Ander-
son, 2003] for its ease of implementation. Previous studies have revealed that these information criteria (IC)
differ in the resulting posterior model weights or even in the ranking of the models [Poeter and Anderson,
2005; Ye et al., 2008, 2010a, 2010b; Tsai and Li, 2010, 2010; Singh et al., 2010; Morales-Casique et al., 2010;
Foglia et al., 2013]. This implies that they do not reflect the true Bayesian trade-off between performance
and complexity, but might produce an arbitrary trade-off which is not supported by Bayesian theory and
cannot provide a reliable basis for Bayesian model selection. Burnham and Anderson [2004] conclude that
“... many reported studies are not appropriate as a basis for inference about which criterion should be
used for model selection with real data.” The work of Lu et al. [2011] has been a first step into clarifying the
so far contradictory results by comparing the KIC and the BIC against a Markov chain Monte Carlo (MCMC)
reference solution for a synthetic geostatistical application.

Our study aims to advance this endeavor by rigorously assessing and comparing a more comprehensive set
of nine different methods to evaluate BME. In specific, we will highlight their theoretical derivation, compu-
tational effort, and approximation accuracy. As representatives of mathematical approximations, we con-
sider the AIC, AlCc (bias-corrected AIC), and BIC in our comparison. We further include the KIC evaluated at
the maximum likelihood parameter estimate (KIC@MLE) as introduced in MLBMA, and an alternative formu-
lation that is evaluated at the maximum a posteriori parameter estimate instead (KIC@MAP). We also con-
sider three types of Monte Carlo integration techniques (simple Monte Carlo integration, MC; MC
integration with importance sampling, MC IS; MC integration with posterior sampling, MC PS) and a very
recent approach called nested sampling (NS) as representatives of numerical methods. By pointing out and
comparing the important features and assumptions of these mostly well-known techniques, we are able to
argue which methods are truly suitable for BME evaluation, and which ones are suspected to yield inaccu-
rate results. We then present a simplistic synthetic, linear test case where an exact analytical expression for
BME exists. With this first-time benchmarking of the different BME evaluation methods against the true
solution, we close a significant gap in the model selection literature.

The controlled setup in the simplistic example allows us to systematically investigate the factors which influ-
ence the value of BME and the approximation thereof by the nine featured evaluation methods. The two
main factors investigated are (1) the size of the data set which determines the “seriousness” of the good-
ness of fit rating, and (2) the shape of the parameter prior which characterizes the robustness of a model. In
a second step, we assess the performance of the different methods when confronted with low-dimensional
nonlinear models. In this more challenging scenario of the synthetic example, no analytical solution to
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compute BME exists. We therefore generate a reference solution by brute-force MC integration, after having
proven its suitability as reference solution in the linear case. In a third step, we present a real-world applica-
tion of hydrological model selection. We chose this application such that the model selection task is still rel-
atively simple and unambiguous. Even in this case the deficiencies of some of the evaluation methods
become apparent. Our systematic investigation of methods to determine BME takes an important next step
toward robust model selection in agreement with Bayes’ theorem, heaving it up on solid ground.

We summarize the statistical framework of BMA in section 2 and discuss assets and drawbacks of the avail-
able techniques to determine BME in section 3. In section 4, we present the first-time benchmarking of the
featured methods on the simplistic test case. Section 5 compares the approximation performance in a real-
world hydrological model selection problem. We summarize our findings and formulate recommendations
on which methods to use for reliable model selection in even more complex situations in section 6.

2. Bayesian Model Averaging Framework

We formulate the BMA equations according to Hoeting et al. [1999]. All probabilities and statistics are implic-
itly conditional on the set of considered models. While the suite of models is a subjective choice that lies in
the responsibility of the modeler, it is the starting point for a systematic procedure to account for model
uncertainty based on objective likelihood measures.

Let us consider N,, plausible, competing models M. The posterior predictive distribution of a quantity of
interest ¢ given the vector of observed data y, can be expressed as:

Nm
P(lye)=>_ P(@]yo, Mi)P(Mkly,) M
k=1

with p(-]y,) representing a conditional probability distribution and P(M|y,) being discrete posterior model
weights. The weights can be interpreted as the Bayesian probability of the individual models to be the best
representation of the system from the set of considered models.

The model weights are given by Bayes’ theorem:

Mi)P(M
Py, = o re P @

(Yol M)P(M)

with the prior probability (or rather subjective model credibility) P(My) that model My could be the best one (the
most plausible, adequate, and consistent one) in the set of models before any observed data have been consid-
ered. A “reasonable, neutral choice” [Hoeting et al., 1999] could be equally likely priors P(My)=1/N, if there is lit-
tle prior knowledge about the assets of the different models under consideration. The denominator in equation
(2) is the normalizing constant of the posterior distribution of the models. It is easily obtained by determination
of the individual weights. It could even be neglected, since all model weights are normalized by the same con-
stant, so that the ranking of the individual models against each other is fully defined by the proportionality:

P(Mk‘yo) Ocp(YO|Mk)P(Mk)- (3)

p(¥,|Mk) represents the BME term as introduced in section 1 and is also referred to as marginal likelihood or
prior predictive because it quantifies the likelihood of the observed data based on the prior distribution of
the parameters:

PV IM)= | pUYolMc ui)p(ue M), @
k

where uy denotes the vector of parameters of model M with dimension equal to the number N, . of param-
eters, Uy is the corresponding parameter space, and p(ux|My) denotes their prior distribution. p(y,|Mx, uy)
is the likelihood or probability of the parameter set u, of model M, to have generated the observed data
set. The BME term can either be evaluated via integration over the full parameter space U (equation (4),
referred to as Bayesian integral by Kass and Raftery [1995]), or via the posterior probability distribution of
the parameters p(ux|Mx, y,) by rewriting Bayes’ theorem with respect to the parameter distribution (instead
of the model distribution, equation (2)):

SCHONIGER ET AL.

©2014. The Authors. 9486



@AG U Water Resources Research 10.1002/2014WR016062

(Yo|Mk, u)p(ug |Mk)
p(YolMk) ’

Pk My, y,)=" )
p(y,|Mk) acts as a model-specific normalizing constant for the posterior of the parameters p(ux|Mx,y,). As
a matter of fact, evaluating p(y,|Mx) for any given model is a major nuisance in Bayesian updating, and
MCMC methods have been developed with the goal to entirely avoid its evaluation. However, in order to
evaluate BME, this normalizing constant has to be determined, which is the challenge addressed in the cur-
rent study. Rearranging equation (5) yields the alternative formulation for equation (4):

P(Yo M, w)p(uk| M)

6
p(udMy. y,) ©

p(Y,|Mk)=

MacKay [1992] refers to the twofold evaluation of Bayes’ theorem (equations (2) and (4) or (6)) as the “two
levels of inference” in Bayesian model averaging: the first level is concerned with finding the posterior distri-
bution of the models, the second level with finding the posterior distribution of each model’s parameters
(or rather its normalizing constant).

The integration over the full parameter space in equation (4) can be an exhaustive calculation, especially for
high-dimensional parameter spaces Uy. The alternative of computing the posterior distribution of the param-
eters (defining the “calibrated” parameter space, equation (5)) is similarly demanding in high-dimensional
applications. Analytical solutions are available only under strongly limiting assumptions. In general, mathe-
matical approximations or numerical methods have to be drawn upon instead. We discuss and compare the
nine different methods to compute BME in the following section and assess their accuracy in section 4.

3. Available Techniques to Determine BME

We will adopt the notation of Kass and Raftery [1995] for equation (4):
=P (Yol = Py, M, oo e g
Juy

and denote any approximation to the true BME value Iy as /,. After explaining two formulations of the ana-
lytical solution in detail in section 3.1, we examine mathematical approximations in the form of ICs in sec-
tion 3.2. Finally, we discuss assets and drawbacks of selected numerical evaluation methods in section 3.3
and summarize our preliminary findings from this theoretical comparison in section 3.4. All BME evaluation
methods featured in this study are listed with their underlying assumptions in Table 4. All approximation
methods (i.e., the nine nonanalytical approaches) follow equation (7) to evaluate BME. We do not use equa-
tion (6) here, since typically for medium to highly parameterized applications, the multivariate probability
density of posterior parameter realizations cannot be estimated. Knowing the posterior parameter distribu-
tion up to its normalizing constant (as in MCMC methods, see section 3.3.3) does not suffice here since the
normalizing constant is actually the targeted quantity itself.

3.1. Analytical Solution

The Bayesian integral or BME [, for model M can be evaluated analytically for exponential family distribu-
tions with conjugate priors [see e.g., DeGroot, 1970]. Thus, analytical solutions for BME are available, if the
observed data y, are measurements of the model parameters u, or a linear function thereof and a conju-
gate prior (i.e., the prior parameter distribution is in the same family as the posterior parameter distribution)
exists. This is generally not the case in realistic applications. However, we will briefly outline the analytical
solution to BME under these restrictive and simple conditions, before we discuss other evaluation methods
that are not limited by these strong assumptions in sections 3.2 and 3.3.

We will focus here on the special case of a linear model M with a linear model operator Hy relating multi-
Gaussian parameters uy to multivariate Gaussian distributed variables y,:

My : Y, =Hgug. (8)
The prior parameter distribution is defined as a normal distribution p(uy) ~ N (U, Cyy,) with the prior mean

Uy and the covariance matrix C,,. For simplicity of notation, the index k is dropped from the notation for
the parameter covariance matrix.
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The residuals e=y,—y, signify any type of error associated with the data set and the models, e.g., measure-
ment errors and model errors. Here we assume the models to be perfect (free of model errors) and only
measurement errors to be relevant, and adopt a Gaussian model € ~ A/(0, R) with a diagonal matrix R rep-
resenting the covariance matrix for uncorrelated measurement errors. This results in a Gaussian likelihood
function p(y,| Mk, ux) ~ N (y, R). Using the theory of linear uncertainty propagation [e.g.,, Schweppe, 1973] and
the stated assumptions, BME can be directly evaluated for any given data set y, from the Gaussian distribution:

lk=p(Yo|Mk) ~ N (HyUx, )y +R), )

with C,,, =H,C,,HJ.

As an alternative way to determine BME analytically, the posterior distribution of the parameters can be
derived since the Gaussian distribution family is self-conjugate [Box and Tiao, 1973]. In general, the likeli-
hood L of the observed data given the prior parameter space of model My can be written as a function of
the parameters L£(My, ukly,) [Fisher, 1922]. Note that the likelihood function is not necessarily a proper
probability density function with respect to ug, because it does not necessarily integrate to one. With the
assumptions of Gaussian measurement noise and a linear model, the likelihood can be expressed as a Gauss-
ian function of the parameters £(My, uly,) ~ N (Gx, Cyg) with Gy = (H,IH;<)71 HLy, and Cy; = [H[R "H(] -
The mean of the distribution, Gy, is the maximum likelihood estimate (MLE) and (in this case) also the estimate
obtained by ordinary least squares regression. It represents the parameter vector that yields the best possible
fit to the observed data to be achieved by model M.

The combination of a Gaussian prior distribution and a Gaussian likelihood function yields an analytical
expression for the posterior distribution p(uk|y,, M) ~ N (U, Czz), which is again Gaussian with G, =Cy;
(Coday+C.ux) and Cag=(C;) +C;.)) . Under the current set of assumptions, the mean of the posterior
distribution, uy, is the maximum a posteriori estimate (MAP). The MAP represents those parameter values
that are the most likely ones for model M, taking into account both prior belief about the distribution of
the parameters and the performance in fitting the observed data. For a derivation of these statistics, see
e.g., Box and Tiao [1973].

With the posterior parameter distribution, the quotient in equation (6) (Bayes’ theorem rewritten to solve
for the normalizing constant, equivalent to the integral in equation (7)) can be determined for any given
value uy; within the limits of p(uy).

3.2. Mathematical Approximation

If no analytical solution exists to the application at hand, equation (7) can be approximated mathematically,
e.g., by a Taylor series expansion followed by a Laplace approximation. We briefly outline this approach in
section 3.2.1 and then discuss the derivation of the KIC (section 3.2.2) which is based on this approximation.
In this context, it becomes more evident how Occam'’s razor works in BMA (section 3.2.3). The BIC (section
3.2.4) represents a truncated version of the KIC. Another mathematical approximation, which is based on
information theory, results in the AIC(c) (section 3.2.5). We contrast the expected impact of the different IC
formulations on model selection in section 3.2.6.

3.2.1. Laplace Approximation

The idea of the Laplace method [De Bruijn, 1961] is to approximate the integral by defining a simpler mathe-
matical function for a subinterval of the original parameter space, assuming that the contribution of this
neighborhood almost makes up the whole integral. Here a Gaussian posterior distribution is assumed as sim-
plification to the unknown distribution. This is a suitable approximation if the posterior distribution is highly
peaked around its mode (or maximum) u. This assumption holds, if a large data set with a high information
content is available for calibration. Expanding the logarithm of the integrand in equation (7) by a Taylor
series about the posterior mode uy (i.e,, the MAP), neglecting third-order and higher-order terms, taking the
exponent again and finally performing the integration with the help of the Laplace approximation yields:

=L (M, Bielyo )P (8l Me) (2m) >4/ £ [12, (10
with the likelihood function £(M, Uxly,), the prior density p(Ux|M), and the number of parameters N, .

- . -1
The Npx x Npx matrix X=— [dzafzfz")] lu=a is the negative inverse Hessian matrix of second derivatives and

represents an asymptotic estimator of the posterior covariance Cy;. It is equal to Cy; for the case of an
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actually Gaussian posterior (see section 3.1). For details on the Laplace approximation in the field of Bayes-
ian statistics and an analysis of its asymptotic errors, please refer to Tierney and Kadane [1986].

If the parameter prior is little informative, the expansion could also be carried out about the MLE i instead
of the MAP k. This approximation will be less accurate in general, with the deterioration depending on the
distance between the MAP and MLE estimators. However, the MLE may be easier to find than the MAP with
standard optimization routines. The corresponding approximation takes the following form:

= LMy, Gy, )p (| M) (2m) /% | S[2. (1)

The inverse of the covariance matrix 3 is the observed Fisher information matrix evaluated at the MLE,
F=— (‘,’—Sé lu—as With [ being the log-likelihood function [Kass and Raftery, 1995].

If the normalized (per observation) Fisher information is used, F;=F /N;, 2 equals [F{N,] "= le F,' [Yeet al, 2008]:

I =L (M, Gy, )p (0 | M) (2) ">/ B |12
) . o Nok/2 B (12)
vyt (5)
S

For clarity in notation, model indices are omitted here for the covariance matrices and for the Fisher infor-
mation matrix.

The presented mathematical approximations to the Bayesian Integral (equation (7)) are typically known in
the shape of ICs, i.e, as —2In/,. We subsequently discuss the three most commonly used ICs in the BMA
framework. They all generally aim at identifying the optimal bias-variance trade-off in model selection, but
differ in their theoretical derivation and therefore in their accuracy with respect to the theoretically optimal
trade-off according to Bayes' theorem.

3.2.2. Kashyap Information Criterion
The Kashyap information criterion (KIC) directly results from the approximation defined in equation (12) by
applying —2In/, [Kashyap, 1982]:

. . N. N
KIC; =—2In L(Mg, Gk|y,)—2In p(ax[Mk) +NpIn 2—‘ +In |Fq. (13)
Y

The KIC is applied within the framework of MLBMA [Neuman, 2002]. By means of this approximation,
MLBMA is a computationally feasible alternative to full Bayesian model averaging if knowledge about the
prior of parameters is vague. For applications of MLBMA, see Neuman [2003], Ye et al. [2004], Neuman et al.
[2012], and references therein.

If an estimate of the postcalibration covariance matrix C;; is obtainable, equation (11) can be drawn upon
instead:

K/C{,Z —2In [,(Mk, ﬁk|yo)—2ln p(ﬁk\Mk)—NprkIn (Zn)—ln\Ca[, ‘ (14)

Ye et al. [2004] point toward the close relationship of the KIC; with the original Laplace approximation, but
prefer the evaluation at the MLE, because it is in line with traditional MLE-based hydrological model selec-
tion and parameter estimation routines. Neuman et al. [2012] appreciate that MLBMA “admits but does not
require prior information about the parameters” and include prior information in their likelihood optimiza-
tion routine, which makes it de facto a MAP estimation routine. We strongly advertise the latter variant,
because the Laplace approximation originally involves an expansion about the MAP instead of the MLE, and
we understand prior information on the parameters as a vital part of Bayesian inference. Therefore, we pro-
pose to explicitly evaluate the KIC at the MAP:

KIC(,: —2In [’(Mkaﬁk|yo) —2Inp(ﬁk|Mk) —Nprkln (271') —/I’)‘CQC,‘ . (15)
——
NLL 1 2 3

Occam factor

We will refer to this formulation as KIC@MAP as opposed to the KIC@MLE (equation (14)) to avoid any con-
fusion within the MLBMA framework, which seems to admit both of the KIC variants discussed here. The
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evaluation at the MAP is consistent with the Laplace approach to approximate the Bayesian integral and, in
case of an actually Gaussian parameter posterior, will yield accurate results; this does not hold if the approx-
imation is evaluated at the MLE. If the assumption of a Gaussian posterior is violated, it needs to be assessed
how the different evaluation points affect the already inaccurate approximation. We will investigate the dif-
ferences in performance between the KIC@MLE and our proposed KIC@MAP in section 4.

3.2.3. Interpretation Via Occam’s Razor

In equation (15), we have distinguished different terms of the Laplace approximation in the formulation of
the KIC@MAP. They can be interpreted within the context of BMA, and if the assumption of a Gaussian pos-
terior parameter distribution is satisfied, this represents an interpretation of the ingredients of BME (or
more specifically, minus twice the logarithm of BME). It incorporates a measure of goodness of fit (the nega-
tive log-likelihood term, NLL) and three penalty terms that account for model dimensionality (dimension of
the model’s parameter space). These three terms are referred to as Occam factor [MacKay, 1992].

The Occam factor reflects the principle of parsimony or Occam’s razor: If any number of competing models
shows the same quality of fit, the least complex one should be used to explain the observed effects. Any
additional parameter is considered to be fitted to noise in the observed data and might lead to low parame-
ter sensitivities and poor predictive performance (due to little robustness of the estimated parameters). Syn-
thesizing the discussions by Neuman [2002, 2003], Ye et al. [2004], and Lu et al. [2011], and explicitly
transferring them to the expansion about the MAP, we make an attempt to explain the role of the three
terms that are contained in the Occam factor.

The parameter prior p(Ux|My) (term 1) implicitly penalizes a growing complexity in that it gives a lower
probability density to models with larger parameter spaces (larger N, ), since high-dimensional densities
have to dilute their total probability mass of unity within a larger space. Thus, a more complex model with
its smaller prior parameter probabilities will obtain a higher value of the criterion or a decreased value of
BME, which will compromise its chances to rule out its competitors according to Occam’s razor.

The opposite is true for —N, xIn (27) (term 2): here, an increase in dimensionality yields a decrease of the
KIC or an increase in model evidence. This term is actually part of the normalizing factor of a Gaussian prior
distribution and thus partially compensates the effect of (1).

Finally, |Czz| (term 3) accounts for the curvature of the posterior distribution. A strong negative curvature,
i.e., a very narrow posterior distribution, represents a high information content in the data with respect to
the calibration of the parameters. A narrow posterior leads to a low value for the determinant and thus to a
decrease in model evidence or an increase of the KIC. This might seem counter-intuitive at first, but has to
be interpreted from the viewpoint that if the data provide a high information content, the resulting likeli-
hood function shall be narrow, and thus, its peak value shall also be high. The determinant is thus a partially
compensating counterpart to the NLL term. If two competing models achieve the same likelihood, but differ
in their sensitivity to the data, the one with a smaller sensitivity will be chosen because of its robustness [Ye
et al., 2010b].

3.2.4. Bayesian Information Criterion
The Bayesian information criterion (BIC) or Schwarz information criterion [Schwarz, 1978] is a simplification
to equation (13) in that it only retains terms that vary with N;:

BIC=—2In E(Mk,ﬁk|yo)+Np.kIn N;. (16)

Evaluating this criterion for the MAP u, would not be consistent, because the influence of the prior is
completely ignored in equation (16). Since only parts of the Occam factor are retained compared to
equation (15), the BIC penalizes a model’s dimensionality to a different extent. Those differences are
not supported by any specific theory. However, the KIC@MLE reduces asymptotically to BIC with grow-
ing data set size N,. The reason is that the prior probability of G, as well as the normalized Fisher infor-
mation do not grow with data set size, but the likelihood —2In £L(M, Gkly,) and N, «In Ns do, rendering
contributions that only grow with N, negligible [Neuman, 2003]. The error in approximation by the
BIC is therefore expected to reduce to the error made by the KIC for large data set sizes. In section
3.2.6, we will compare the different IC approximations with regard to their penalty terms, and in sec-
tion 4 we will investigate the convergence behavior of the KIC and BIC in more detail on a synthetic
test case.
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Applying the KIC or BIC for model selection (as opposed to averaging) is consistent as the assigned weight
for the true model (if it is a member of the considered set of models) converges to unity for an infinite data
set size. The truncated form (BIC) still seems to perform reasonably well for model identification or explana-
tory purposes [Koehler and Murphree, 1988]. It is also much less expensive to evaluate than the KIC for mod-
els with high-dimensional parameter spaces, since the evaluation of the covariance matrix is not required.

3.2.5. Akaike Information Criterion

The Akaike information criterion (AIC) or, as originally entitled, “an information criterion,” originates from
information theory (as opposed to the Bayesian origin of the KIC and BIC), but has frequently been applied
in the framework of BMA [e.g., Poeter and Anderson, 2005]. It is derived from the Kullback-Leibler (KL) diver-
gence that measures the loss of information when using an alternative model M with a predictive density
function g(Y|M, uy) instead of the “true” model with predictive density function f(Y), with Y being a ran-
dom variable from the true density f of the same size N; as the observed data set y,:

DKL(f,g)=Jf(Y)In <%)W
:Ef[ln f(Y)]—Ef[In g(Y|Mk7 uk)].

(17)

The first term in the second line of equation (17) is an unknown constant that drops out when comparing
differences in the expected KL-information for the competing models in the set [e.g., Kuha, 2004]. Akaike
[1973, 1974] argued that the second term, called relative expected KL-information, can be estimated using
the MLE. For reasons not provided here, this estimator is biased by N, x, the number of parameters in the
model M. Correcting this bias and multiplying by —2 yields the AIC [Burnham and Anderson, 2004]. The AIC
formulation contains the NLL term as an expression for the goodness of fit and a penalty term for the num-
ber of parameters:

AlIC=—2In E(Mkaﬁk|yo)+2Np‘k~ (18)
Compared to the BIC in equation (16), the penalty term for the number of parameters N, is less severe. For

data set sizes Ns > 7, BIC favors models with less parameters than AIC, since its penalty term N xIn Ns
becomes larger than the AIC's 2N, .

For a finite data set size N, a second-order bias correction has been suggested [Sugiura, 1978; Hurvich and

Tsai, 1989]:

2Np s (Npk+1)
Ns—Npx—1

AlCc=AIC+ (19)

Among others, Burnham and Anderson [2004] suggest using the corrected formulation for data set sizes
N < 40N, . For increasing data set sizes, the AlCc converges to the AIC.

The posterior Akaike model weight is derived from:

exp (—0.5Ak)  exp(—0.5AIC)
S exp (—0.50)) - 3" exp (—0.54IC)
with Ag=AIC,—AICpn or Ax=AICck—AlCcmin, respectively. Based on its theoretical derivation, the absolute
value of AIC, or AlCc, has no explanatory power [Burnham and Anderson, 2004], only the difference Ay with

respect to the lowest AIC, or AlCc, can be interpreted. The BIC or KIC, in contrast, are a direct approximation
to BME (equation (7)) and therefore yield meaningful values, also in interpretation as absolute values.

P(Mkly,)= , (20)

The AIC seems to perform well for predictive purposes, with a tendency to over-fit observed data [see e.g.,
Koehler and Murphree, 1988; Claeskens and Hjort, 2008]. This tendency is supposedly less severe for the bias-
corrected AlCc. Both versions of the AIC do not converge to the true model for an infinite data set size. The
reason is that, with an increasing amount of data, the model chosen by AIC(c) will increase in complexity,
potentially beyond the complexity of the true model (if it exists) [Burnham and Anderson, 20041.

The KIC is expected to provide the most consistent results among the ICs investigated here because it is
based on the approximation closest to the true equations. Applications and comparisons of KIC, BIC, and
AIC can be found in Ye et al. [2008], Tsai and Li [2010], Singh et al. [2010], Riva et al. [2011], Morales-Casique

SCHONIGER ET AL.

©2014. The Authors. 9491



@AG U Water Resources Research 10.1002/2014WR016062

et al. [2010], and Lu et al. [2011]. In the following, we will summarize the main theoretical differences in the
BME approximation by these ICs.

3.2.6. Theoretical Comparison of IC Approximations to BME
Based on equation (10), the Laplace approximated BME can be divided into the likelihood and the Occam
factor OF (see section 3.2.3):

=L My, Gy, )p (0 |Mic) (2m) "/ ? | [ = L (M, Gy, ) OF . @1

The ICs analyzed here all share the same approximation for the goodness of fit term based on the MLE. The
only exception is the KIC@MAP, which is evaluated at the MAP instead of at the MLE. However, they all differ
in their approximation to the OF. The OF represents the penalty for the dimensionality of a model or what
we call the sharpness of Occam’s razor. For the different ICs, it is given by:
OFyc 5 =p(a|My) (2m)">%|Cyy [
OFc.a=p(a|Mi) (2m)"*/*|Cyq '
OFgic =N;"ox/2
OFA,C=exp (_Np,k)

12N,k (Npi+1)
OFpicc= “Npp—s——7=|.
Alcc=€XP ( pkT 5 No—Np—1

(22)

The OF as approximated by KIC does not explicitly account for data set size, yet N; typically influences the
curvature of the posterior probability (or the likelihood function) and thus implicitly affects |CL~,L~,|1/2 (or

|Cais |1/2). In contrast, AlCc and BIC explicitly take data set size N, in account, but do not evaluate the sensitiv-
ity of the calibrated parameter set via the curvature. The effects of these differences on the accuracy of the
BME approximation will be demonstrated exemplarily on two test case applications in sections 4 and 5.

3.3. Numerical Evaluation

Numerical evaluation offers a second alternative to determine BME, if no analytical solution is available or if
one mistrusts the approximate character of the ICs. A comprehensive review of numerical methods to eval-
uate the Bayesian integral (equation (7)) is given by Evans and Swartz [1995]. In the following, we will shortly
review selected state-of-the-art methods and discuss their strengths and limitations. Note that conventional
efficient integration schemes (e.g., adaptive Gaussian quadrature) are limited to low-dimensional applica-
tions [Kass and Raftery, 1995]. In this study, we focus on numerical methods that can also be applied to
highly complex models (models with large parameter spaces) in order to provide a useful discussion for a
broad range of research fields and applications.

3.3.1. Monte Carlo Integration

Simple Monte Carlo integration [Hammersley, 1960] evaluates the integrand at randomly chosen points uy ;
in parameter space. These parameter sets uy; are randomly drawn from their prior distribution p(ux|My).
The integral (or expected value over parameter space, cf. equation (4)) is then determined as the mean
value of the evaluated likelihoods (sometimes referred to as arithmetic mean approach):

Y
= NZL',(M/(, |'|k,i|yo)7 a
=

with the number of Monte Carlo (MC) realizations N. For large ensemble sizes N and a friendly overlap of
the parameter prior and the likelihood function, this method will provide very accurate results. For high-
dimensional parameter spaces, however, a sufficient (converging) ensemble might come at a high or even
prohibitive computational cost. If the likelihood function is sharp compared to the prior distribution, only
very few integration points will contribute a high likelihood value to the integral (making £ a very skewed
variable), and the numerical uncertainty in the approximated integral might be large.

3.3.2. Monte Carlo Integration With Importance Sampling

To reduce computational effort and improve convergence, importance sampling [Hammersley et al., 1965]
aims at a more efficient sampling strategy. Instead of drawing random realizations from the prior parameter
distribution, integration points are drawn from any arbitrary distribution that is more similar to the posterior
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distribution. Thus, the mass of the integral will be detected more likely by the sampling points. When draw-
ing from a different distribution g than the prior distribution p, the integrand in equation (7) must be
expanded by q / g. This modifies equation (23) to:

g :\1:1 wiL (M, ugily,)
= N b
Zi:1 Wi

with weights w;=p (uy;|Mx) /g (uk;|Mk). The improvement achieved by importance sampling compared to
simple MC integration will greatly depend on the choice of the importance function q.

I, (24)

3.3.3. Monte Carlo Integration With Posterior Sampling

Developing this idea further, it could be most advantageous to draw parameter realizations from the poste-
rior distribution p(ux|y,, M) in order to capture the full mass of the integral. Sampling from the posterior
distribution is possible, e.g., with the MCMC method [Hastings, 1970].

For posterior sampling, the approximation to the integral reduces to the harmonic mean of likelihoods
[Newton and Raftery, 1994], also referred to as the harmonic mean approach:

—1

e _
= NZﬁ(Mk,umyo) "o (25)
i=1

Equation (25) can be subject to numerical instabilities, due to small likelihoods that may corrupt the evalua-
tion of the harmonic mean.

According to Jensen'’s inequality [Jensen, 1906], sampling exclusively from the posterior parameter distribu-
tion yields a biased estimator that overestimates BME. Thus, the harmonic mean approach should be seen
as a trade-off between accuracy and computational effort. In order to avoid the instabilities of the harmonic
mean approach by solving equation (6) instead, it would be necessary to estimate the posterior parameter
probability density from the generated ensemble through kernel density estimators [e.g., Hardle, 1991],
which is only possible for low-dimensional parameter spaces. We therefore do not investigate this alterna-
tive option further within this study.

3.3.4. Integration in Likelihood Space With Nested Sampling

The main challenge in evaluating BME lies in sufficiently sampling high-dimensional parameter spaces. A
promising approach which avoids this challenge and instead samples the one-dimensional likelihood space
is called nested sampling [Skilling, 2006]. The integral to obtain BME is written as:

/k=p(yo|Mk>=[cwk,uk\vo)dz, 6)

where Z represents prior mass p(ux|My)du. It is solved by discretizing into m likelihood threshold values
with the sequence £1 < £; < ... < Ly and summing up over the corresponding prior mass pieces 1 > Z;
> 7y > ...>Z, > 0according to a numerical integration rule. How to find subsequent likelihood thresh-
olds is described in Skilling [2006].

One of the remaining challenges for this very recent approach lies in finding conforming samples
above the current likelihood threshold. We follow Elsheikh et al. [2013] in utilizing a short random walk
Markov chain starting from a random sample that overcame the previous threshold. However, instead
of using the ratio of likelihoods as acceptance distribution, we take the ratio of prior probabilities
instead, to ensure that new samples still conform with their prior. Another challenge lies in ending the
procedure with a suitable termination criterion (e.g., stop if the increase in BME per iteration has flat-
tened out or if the likelihood threshold cannot be overcome within a maximum number of MCMC
steps).

If the prior mass enclosing a specific likelihood threshold was known, the value of BME could be determined
as accurately as the integration scheme allows. However, the fact that the real prior mass pieces Z; are
unknown introduces a significant amount of uncertainty into the procedure, which reduces its precision. To
quantify the resulting numerical uncertainty, an MC simulation over randomly chosen prior mass shrinkage
factor t;=Z;/Z;—, should be performed [Skilling, 2006].
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3.4. Conclusions From Theoretical Comparison

From our comparison of the underlying assumptions for the nine BME evaluation methods considered here,
we conclude that out of the ICs, the KIC@MAP is the most consistent one with BMA theory. It represents the
true solution if the assumptions of the Laplace approximation hold (i.e., if the posterior parameter distribu-
tion is Gaussian). The other ICs considered here represent simplifications of this approach or, in the case of
the AIC(c), are derived from a different theoretical perspective and are therefore expected to show an infe-
rior approximation quality. Among the numerical methods considered here, simple MC integration is the
most generally applicable approach because it is bias-free and spares any assumptions on the shape of the
parameter distribution, but is also the computationally most expensive one. The other numerical methods
vary in their efficiency, but are expected to yield similarly accurate results, except for MC integration with
posterior sampling, which yields a biased estimate. We will test these expectations on a synthetic setup in
the following section. The underlying assumptions of the nine BME evaluation methods analyzed in this
study are summarized in Table 4.

4. Benchmarking on a Synthetic Test Case

The nine methods to solve the Bayesian integral (equation (7)) differ in their accuracy and computational
effort, as described in the previous section. To illustrate the differences in accuracy under completely con-
trolled conditions, we apply the methods presented in section 3 to an oversimplified synthetic example. In
a first step, we consider a setup with a linear model where an analytical solution exists. We create an ideal
premise for the KIC@MAP and its variants (KIC@MLE and BIC) by using a Gaussian parameter posterior,
which fulfills their core assumption. We designed this test case as a best-case scenario regarding the per-
formance of these ICs: there is no less challenging case in which the information criteria could possibly per-
form better. In a second step, we also consider nonlinear models of different complexity that violate this
core assumption. Since in this case no analytical solution exists, we use brute-force MC integration as refer-
ence for benchmarking. We designed this test case as an intermediate step toward real-world applications
that typically entail nonlinear models and a higher number of parameters.

4.1. Setup and Implementation

In the first step, a linear model y=u1x+u, relates bivariate Gaussian distributed parameters u=us, u,]
(slope and intersect of a linear function) to multi-Gaussian distributed predictions y at measurement loca-
tions x. This linear model is tested against a synthetic data set. The synthetic truth underlying the data set is
generated from the same model, but with slightly different parameter values than the prior mean. To obtain
a synthetic data set, a random measurement error is added according to a Gaussian distribution

e~ N(0,R).

For this artificial setup, BME can be determined analytically according to equations (9) (determining BME via
linear uncertainty propagation) or 6 (solving Bayes’ theorem for BME). This exact value is used as reference
for the approximate methods presented in section 3. In this simple case, the MAP, u, and the MLE, G, are
known analytically. Also, the corresponding covariances C;; and Cy; are known. We allow the mathematical
approximations to take advantage of this knowledge by evaluating them at these exact values. Normally,
these quantities have to be approximated by optimization algorithms first. This initial step represents the
computational effort needed to determine BME with mathematical approximations in the form of ICs, since
the evaluation of their algebraic equations itself is very cheap. Here we are not concerned with the potential
challenge to find these parameter estimates, but merely wish to remind the reader of this fact.

The numerical evaluation schemes do not take advantage of the linearity of the test case. Their computational
effort is determined by the number of required parameter realizations, and hence by the number of required
model evaluations. To assess the expected improvement in accuracy by investing in computational effort, we
repeat the determination of BME for increasing ensemble sizes (MC integration, importance sampling, sampling
from the posterior) or increasing sizes of the active set (nested sampling). To determine the lowest reasonable
ensemble size, we investigate the convergence of the BME approximation for each method. Simple MC integra-
tion is performed based on ensembles of 2000-1,000,000 parameter realizations drawn from the Gaussian prior.
MC integration with importance sampling is performed based on the same ensemble sizes. The sampling distri-
bution for importance sampling is chosen to be Gaussian with a mean value equal to the MAP and a variance
equal to the prior variance. Realizations of the posterior parameter distribution for MC integration with posterior
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sampling are generated by the differential evolution adaptive metropolis adaptive MCMC scheme DREAM [Vrugt
et al.,, 2008]. With DREAM, BME is approximated based on ensembles of 5000-1,000,000 parameter realizations.
Convergence of the MCMC runs was monitored by the Gelman-Rubin criterion [Gelman and Rubin, 1992] and
we chose to take the final 25% of the converged Markov chains as posterior ensemble. Nested sampling is per-
formed with initial ensemble sizes of 10-10,000. A nested sampling run is complete if one of the two following
termination criteria is reached. The first termination criterion stops the calculation if the current likelihood
threshold could not be overcome within 100 MCMC steps with a scaling vector =0.05[v/Ci7, v/C5. The sec-
ond termination criterion stops the calculation if the current BME estimate would not increase by more than
0.5% even if the current maximum likelihood value would be multiplied with the total remaining prior mass.
This results in total ensemble sizes (summed over all iterations) of roughly 1000-1,000,000.

As a base case, we generate a synthetic data set of size Ny = 15. Figure 1 shows the setup for the synthetic
test case. The parameters used in the synthetic example are summarized in Table 1.

In our synthetic test case, the computational effort required for one model run is very low. This allows us to
repeat the entire analysis for the base case and to average over 500 runs for each ensemble size in order to
quantify the inherent numerical uncertainty in the results obtained from the numerical approximation
methods. In the case of nested sampling, we additionally average over 200 random realizations of the prior
mass shrinkage factor per run.

With the setup described above, we compare the performance of the different approximation methods in
quantifying BME. Additionally, we study by scenario variations the impact of varied data set size and varied
prior information (different mean values and variances of parameters) on the outcome of BME and on the
performance of the different methods. The behavior of the mathematical approximations for small or large
data set sizes has been touched upon in the literature [e.g., Burnham and Anderson, 2004; Lu et al., 2011].
We will underpin these discussions by systematically increasing the data set size from N; = 2 to N; = 50.
Again, the same model is used to generate the synthetic truth as in the base case, and the measurements
are taken at equidistant locations on the same interval of x. To show the general behavior of the approxima-
tion methods and to eliminate artifacts caused by a specific outcome of measurement error, we generate
200,000 perturbed data sets for each data set size and average over the results of these realizations.

To our knowledge, the impact of prior information on the performance of BME approximation methods has not
yet been studied in such a systematic approach. With the help of our synthetic test case, we can assess and then
discuss this impact in a rigorous manner. Figure 2a visualizes the prior parameter densities, the likelihood func-
tion, and the posterior densities for a range of prior widths, Figure 2b for different prior/likelihood overlaps. The
second column represents the base case as described above. Variations in prior width are normalized as fractions
of the base case variances (covariance is not varied), variations in overlap of prior and likelihood are measured as
distance between the prior mean and the MLE. The varied parameter values are also listed in Table 1.

Besides the factors explained above, the model structure and dimensionality of the models’ parameter
spaces is expected to influence the performance of the different approximation methods. In the first step,
we consider varying complexity with regard to the allowed parameter ranges as defined by the prior. In the
second step, we also consider models with varied structure. Differences in model structure can manifest
themselves in either differences in the dimensionality of the model (i.e., the number of parameters), or in
the type of model (linear versus nonlinear), or in both. We consider all of these options here by including a
linear model with one parameter y=ux (smaller number of parameters, but same model type; L1), a weakly
nonlinear model with two parameters y=exp (u;X)+u, (same number of parameters, but different model
type; NL2), and a nonlinear model with four parameters y=u;cos (ux+us)+u4 (higher number of parame-
ters and different model type; NL4) into the analysis. All prior distributions are chosen to be Gaussian with
their mean and covariance values given in Table 1. For nonlinear models, no analytical solution exists. In
order to still be able to assess the differences in approximation quality, we generate a reference solution
with brute-force MC integration using a very large ensemble of 10 million realizations per model. We
choose this exceptionally large number of realizations to obtain a very reliable estimate of BME as a refer-
ence. In a numerical convergence analysis (bootstrapping) [Efron, 1979], we determined the variance upon
resampling of the ensemble members, which confirmed that the BME estimate is varying less than 0.001%.
This variation is insignificant in relation to the lowest error produced by the compared BME evaluation
methods, which is two orders of magnitude larger. The average BME approximation quality (and its
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scattering) achieved by the other numerical
methods is based on 500 repeated runs with
ensemble sizes of 50,000, which might be con-
sidered a reasonable compromise between
accuracy and computational effort based on
the findings from the first step of our synthetic
test case. From the posterior parameter sam-
ple generated by DREAM, we determine the
MAP and the covariance matrix needed for the
evaluation of the KIC@MAP. We obtain the
respective ML statistics for the KIC@MLE from
a DREAM run with uninformative prior distri-
0 S - - . ' butions to cancel out the influence of the

0 ! Measirement Iocztion « 4 ° prior. We also evaluate the AIC(c) and the BIC

at this parameter set.
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Figure 1. Synthetic test case setup. Measurements marked in black, prior For all cases (base case, varied data set size
estimate of linear (L1, L2) and nonlinear (NL2, NL4) models in solid lines, ! !

95% Bayesian prediction confidence intervals in dashed lines of the varied prior information, varied model struc-
respective color. ture), the error in BME approximation is quan-

tified as a relative error

-1
Erei= |, I (27)
with the subscript i representing any of the discussed methods. In the case of numerical techniques, the
average E,, value and its Bayesian confidence interval out of all repetitions is provided.

Finally, we determine the impact of BME approximation errors on model weights based on the same
setup and implementation details as described for the investigation of the influence of model structure
(section 4.5).

4.2, Results for the Base Case

Figure 3 shows the relative error of BME approximations with respect to the analytical solution for the base
case (see definition of parameters in section 4.1) as a function of ensemble size (number of model calls).
Obviously, the accuracy of approximation improves for numerical methods when investing more computa-
tional effort, i.e., when increasing the numerical ensemble size. The improvement includes both a reduction

Table 1. Definition of Parameters Used in Different Scenarios of the Synthetic Test Case®
Parameter Symbol Value

Base Case (L2)

Prior mean u u=1u,=0

Prior covariance Cu C1=0C5,=0.04; C;, =C5;=—0.007

Data set size N Ns=15

Meas. error covariance R Ri=0.3%; Rj=0

Varied Data Set Size

Data set size Ng N;=2-50

Varied Prior Width

Prior covariance (G C11=0C5,=0.008-2; C;,=C,;=—0.007
Varied Prior/Likelihood Overlap

Prior mean u u1=0.95-1.5; u,=-0.05-0.5

Varied Model Structure

Prior mean (L1) u u=1

Prior variance (L1) s2 $2=0.04

Prior mean (NL2) u U,=0.4;u,=-0.3

Prior covariance (NL2) (S C17=0.003; C, =0.03; C;,=C5;=—0.0001
Prior mean (NL4) u U1=2.6;U,=0.5;U03=—2.8;Us=2.3

Prior covariance (NL4) (S C11=0.44; (;,,=0.02; C33=0.21; C44,=0.28; C;,=—0.07;

C13=0.24; C;4=—0.14; C;3=—0.05; C23=0.02; C3,=—0.16

?For variations of the base case, only differences to the base case parameters are listed.
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Figure 2. Prior densities (gray), likelihood (orange), and posterior densities (blue) for the different scenarios of the synthetic test case. Contour lines represent 10-90% Bayesian confi-
dence intervals: (a) variations of prior width (fractions of base case variance shown here: 0.5,. . .,5), (b) variations of prior/likelihood overlap (distance between prior mean and MLE shown

here: 0,...,0.3).

in bias (error) and a reduction in variance (numerical uncertainty, shown as 95% Bayesian confidence inter-
vals of the approximation error in Figure 3).

Simple MC integration (MC) and MC integration with importance sampling (MC IS) perform equally well for
this setup. MC results improve linearly in quality in this log-log-plot, which complies with its well-known
convergence rate of (’)(N;”Z) (Central Limit Theorem) [Feller, 1968]. MC integration with sampling from the
posterior (MC PS), however, leads to a severe overestimation of BME as anticipated (see section 3.3.3) and
does not improve linearly with ensemble size in log-log-space, but shows a slower convergence. It also pro-
duces a much larger numerical uncertainty (keep in mind the logarithmic scale of the error axis). Note that
the bias in BME approximation stems from the harmonic mean formulation and not from the sampling
technique, because the posterior realizations generated with DREAM were checked to be consistent with
the (in this case) known analytical posterior parameter distribution.

Nested sampling (NS) shows a similar approximation quality to MC integration, but is shifted on the x axis,
i.e, itis less efficient with regard to numerical ensemble sizes in this specific test case. The convergence
behavior shown here might not be a general property of nested sampling, because we found that modifica-
tions in the termination criteria significantly influence its approximation quality and uncertainty bounds. For
this synthetic linear test case, we conclude that nested sampling is not as efficient as simple MC integration.
It is also less reliable due to its somewhat arbitrary formulation with respect to the search for a replacement
realization and the choice of termination criteria. In principle, it offers an alternative to simple MC integra-
tion and might become more advantageous in high-dimensional parameter spaces. We will continue this
discussion for the real-word hydrological test case (section 5) and draw some final conclusions in section 6.

Since the ICs do not use random realizations to approximate BME, they are plotted as horizontal lines. With
its assumptions fully satisfied, the KIC@MAP is equal to the analytical solution in this case. Therefore, it does
not produce any error to be plotted in Figure 3. Evaluating the KIC at the MLE (KIC@MLE), however, leads to
a significant deviation from the exact solution. For this specific setup, the AlCc (after the KIC@MAP) per-
forms best out of the mathematical approximations with a tolerable error of 3%. However, we will demon-
strate later that this is not a general result. Note that we assess the AIC(c)’s performance in approximating
the absolute BME value here for illustrative reasons, although strictly speaking, it is only derived for compar-
ing models with each other, i.e., only the resulting model weights should be assessed (see section 4.6). The
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10° other ICs yield approximation errors of 20—
VG PS 60%. Figure 3 shows that, except for MC inte-
102 b ac gration with posterior sampling, the numeri-

cal methods outperform all of the ICs

< 10 | = evaluated at the MLE, if only enough realiza-
S = tions are used.
g 10 MC/MC IS
34 4.3. Results for Varied Data Set Size
¢ 10 ¢ The approximation results as a function of
2 data set size are shown in Figure 4. Since we
10y have demonstrated that the numerical
1073 . . | methods (except for posterior sampling) can
10° 100 10° 10° approximate the true solution with arbitrary

accuracy if only the invested computational
power is large enough, we do not show their
Figure 3. Relative error of BME approximation with respect to the analytical results here, as they would coincide with the

solution for the synthetic base case as a function of ensemble size. IC solu- luti f the KIC@MAP. Fi h
tions are plotted as horizontal lines, as they do not use realizations for BME solution of the @ - Figure 4a shows

evaluation. Results of the numerical evaluation schemes are presented with  the approximated BME values, while the rela-
95% Bayesian confidence intervals. tive error in percent with respect to the ana-

lytical solution is shown in Figure 4b.

Ensemble size

The true BME curve (represented by the KIC@MAP here) is approximated quite well by both the KIC@MLE
and by the BIC. However, while the KIC@MLE converges to the KIC@MAP with increasing data set size, the
BIC does not. Its relative error with respect to the analytical solution becomes stable at more than 20%. This
result is not in agreement with the findings of Lu et al. [2011], who confirmed the general belief that the BIC
approaches the KIC with increasing data set size. In our case, the contribution of the terms dismissed by the
BIC (see section 3.2) is still significant and hence produces a relevant deviation between the two BME
approximations.

The AIC shows a linear dependence on data set size in this semilog plot. As expected, the AlCc converges to
the AIC with increasing data set size. Still, both variants of the AIC produce a relative error of more than
30%, which even increases with increasing data set size to more than 300% in this specific test case. Again,
be reminded that the AIC(c) is only derived for comparing models with each other by the means of model
weights, not as an approximation to the absolute BME value.

We investigate the reasons for the different behavior of the ICs over data set size by separating the likeli-
hood term from the Occam factor penalty term (see section 3.2.6). Figure 4c shows how the true likelihood
term (here: KIC@MAP) is approximated by the other ICs. Obviously, approximating this term produces negli-
gible errors if the data set size is reasonably large, i.e., if the MAP and the MLE almost coincide. The prob-
lems in BME approximation clearly stem from the challenge of approximating the Occam factor (Figure 4d).
The true Occam factor (or complexity penalty term) decreases with data set size. The KIC@MLE converges to
this true behavior. The BIC is able to closely approximate the true curve, but does not yet converge to it in the
range analyzed here. The penalty term of the AIC is a constant, which intersects the BIC's penalty term curve
at N = 7 (see explanation in section 3.2.5). The penalty term of the AICc variant is converging to the constant
AIC from below, i.e., it is increasing in contrast to the true, decreasing behavior. We conclude that the ICs differ
substantially in the way they approximate the penalty term and therefore yield very different BME approxima-
tions with huge relative errors observed for the AIC and AlCc.

Note that the results for Ny = 15 measurements, marked with circles in Figure 4, are similar, but not equal to
the results we showed in Figure 3. This is due to the fact that to investigate the influence of data set size,
we have marginalized over the random measurement error, while as a base case, we presented results for
just one specific outcome of measurement error. We chose this scenario on purpose to illustrate that all
those approximation methods which do not explicitly account for the sensitivity of the parameters to the
specific data set, suffer from unpredictable behavior. The range of potential relative errors (95% Bayesian
confidence intervals) over all 200,000 random realizations of measurement errors are shown as shaded
areas in Figure 4b. It becomes clear that, up to a data set size of about N; = 20 in our test case, none of the
specific ICs would be a reliable choice: the AIC, AlCc, and BIC could potentially yield very low (<1%) or very
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10 i i i i high (>100%) relative errors. Choosing the

a) \ KIC@MLE is a more reliable choice, since it
shows narrower bounds of potential relative

errors, but still results in intolerable errors up
to a data set size of about 30 in this case. We
will elaborate on the question of how to
make a safe choice of BME evaluation
method in section 6.

BME

4.4, Results for Varied Prior Information
Next, we investigate the behavior of the
ICs for varied prior information. Figure 5
10 L ] compares the influence of the prior width
(left column) with the influence of varied
distance between the MLE and the prior
mean, i.e., of a shifted prior (right column).
Again, we present the BME approximation
(Figures 5a and 5e) and its relative error
(Figures 5b and 5f), and the KIC@MAP rep-
resents the true solution. The AIC, AlCc,
and BIC approximations are constant over
both variations, because they are not able
to detect any information about the prior
beyond the sheer number of parameters.
In theory, however, increasing the prior
width and moving the prior away from the
area of high likelihood, both lead to a
decrease in BME, which can be seen in the
BME curve obtained by the KIC@MAP.
While BME stabilizes at some point when
increasing the prior width to a fully unin-
formative prior, it falls steeply if the prior is
shifted farther away. This is important to
keep in mind, because also the systematic
\ relative errors in approximation (Figures 5b

AIC and 5f) are much larger for the shifted
prior.

O
~

Relative error [%]

o
~

Likelihood term

-1

o
—

| Kic@MAP
Only the KIC@MLE is able to track the varia-
tions in prior information and yields accept-
able errors in both BME approximation and

the approximation of the individual terms

10 . . . . (likelihood term, Figures 5c and 5g, and
0 10 20 30 40 50 .

Data st size penalty term, Figures 5d and 5h). Neverthe-
less, this error is in the range of 10%. In the
Figure 4. Synthetic test case results as a function of data set size: (a) case of increased prior width, the KIC@MLE

approximation of BME, (b) relative error with respect to the analytical solu- converges to the true solution because the
tion with 95% Bayesian confidence intervals, (c) likelihood term approxima-

tion, (d) Occam factor approximation. The result obtained from KIC@MAP MAP moves toward the MLE, and, at the
represents the analytical solution in this case. same time, the posterior covariance is

approximated more closely by the covari-
ance around the MLE. In contrast, there is no such convergence behavior with decreasing distance
between the MLE and the prior mean, because in that case only the MAP moves toward the MLE, but
the covariances do not coincide if the prior is still somewhat informative. Therefore, the solution of the
KIC@MLE deviates from the true BME value even if the MAP is equal to the MLE, still producing a relative
error of 30%.

Occam factor (penalty term)
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Figure 5. (left) Results obtained for the synthetic test case as a function of prior width and (right) as a function of distance between prior
mean and MLE. (a and e) Approximation of BME, (b and f) relative error with respect to the analytical solution, (c and g) likelihood term
approximation, (d and h) Occam factor approximation. The result obtained from KIC@MAP represents the analytical solution in this case.

For increasing distance between the MLE and the prior mean, the approximation of the likelihood term (Fig-
ure 5g) by MLE-based criteria deteriorates significantly. Since neither the likelihood term nor the penalty
term are adequately approximated by the AIC, AlCc, or BIC, substantial errors in BME approximation arise.
There are poles in the relative error curves, where they cut the analytical solution. These locations are, how-
ever, dependent on the actual model at hand and on the outcome of the measurement error, and can
therefore not be predicted a priori. Again, preferring any IC among AIC, AlCc, and BIC as an approximation
to BME is not a reliable choice as already pointed out when analyzing their performance over data set size.
We will discuss implications of this finding in section 6.
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4.5. Results for Varied Model Structure

In this section, we illustrate the influence of model structure on the BME approximation quality achieved by
the nine different evaluation methods. In the previous sections, we have investigated the behavior of the
ICs for varied data set size and varied prior information under optimal conditions, i.e., their underlying
assumption of a Gaussian posterior distribution was fulfilled. For the nonlinear models considered here, this
is no longer the case. This setup therefore represents a more realistic setting where no analytical solution
exists. In order to still be able to assess the differences in approximation quality, we generate a reference
solution with brute-force MC integration. We choose this method as reference for its absence of assump-
tions (section 3.3.1), i.e,, its unrestricted applicability to any arbitrary (linear or nonlinear) setup, and for its
precision and accuracy in BME approximation as demonstrated in the first step of our synthetic test case
(section 4.2).

The relative approximation errors made by the different BME evaluation methods for the four different
models are listed in Table 2. The performance of the numerical methods is comparable to the results shown
in the previous sections, since their approximation quality is not directly related to model structure (but
might be influenced by the shape of the area of high likelihood). Results for the AIC, AlCc, and BIC vary arbi-
trarily with regard to model type and model dimensionality. We have shown that their approximation qual-
ity hugely depends on the actual data set (cf. section 4.3). This effect seems to be similarly strong here,
mixing with errors due to the linear approximation of the complexity penalty term and due to violations of
the underlying assumptions by the nonlinear models. The KIC variants show a much clearer tendency to fail
with increasing nonlinearity of the model. The KIC@MAP is equal to the true solution in the case of the lin-
ear models L1 and L2, but not in the nonlinear case of the models NL2 and NL4. Since its approximation is
perfect under linear (and multi-Gaussian) conditions, the deterioration in approximation quality for the non-
linear models clearly shows its deficiencies if these assumptions are not fulfilled. The KIC@MLE additionally
suffers from differences in the location of the MAP and the MLE, which seems to cause similar trouble in the
linear case (L2) and in the weakly nonlinear case (NL2). Note that the KIC@MLE suffers more strongly than
the other ICs considered in this study, since not only its likelihood term, but also its Occam factor (penalty)
term depends on this chosen point of expansion (see section 4.4).

4.6. Impact of Approximation Errors on Model Selection

The overestimation or underestimation of BME itself might not be a major concern, if it yielded consistent
results in model weighting, i.e., if the estimated BME values were correlated with the exact values, so that
ratios of BME between alternative models were consistent. Furthermore, the AlC(c) is derived to assess dif-
ferences between competing models, and one would expect to see a better approximation to the true
model weights than to the absolute BME values. To investigate this, we determine the model ranking for
the four models described in section 4.1. We further introduce two additional versions of the base case
model L2 by using two different prior distributions: Model L2a (see Figure 2) acts on an informative prior
which has a significant overlap with the area of high likelihood. Model L2b uses a slightly less informative
prior, which is significantly shifted away from the area of high likelihood. Model L2a is therefore clearly the
favorite among those two model versions, because it makes better predictions while being even more parsi-
monious. We deliberately include those two versions as competing models to illustrate the inability of the
AlC(c) and the BIC to detect differences in the parameter prior. We assign equal prior weights to all six mod-
els to let BME be the decisive factor in model averaging (see equation (2)).

Figure 6 shows the resulting posterior model weights as obtained from the different approximation meth-
ods, with the model weights of L2b, NL2, and NL4 additionally displayed on a logarithmic axis for better
visual inspection. The ranking obtained from simple MC integration with an ensemble of 10 million realiza-
tions per model is used as reference solution. The solution obtained for the KIC@MAP coincides with the
true weighting according to Bayes’ theorem in case of the linear models L1, L2a, L2, and L2b, since the
underlying assumption for the Laplace approximation is fulfilled. The results of simple MC integration (MC)
and MC integration with importance sampling (MC IS) are shown in one bar in Figure 6 because, as demon-
strated for the base case, they yield nearly identical results. MC integration with sampling from the posterior
(MC PS) yields a biased result for model ranking, while nested sampling (NS) yields, on average, a very accu-
rate result of model weighting, which indicates that the potential bias in overestimation or underestimation
of BME induced by the somewhat arbitrary choice of termination criteria is consistent (correlated with the
true value across the competing models).
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Table 2. Relative Error of BME Approximation Methods for Different Model Structures as Compared to the Reference Solution (Analyti-
cal Solution Equal to the KIC@MAP in Case of Linear Models, Brute-Force MC Integration in Case of Nonlinear Models, Highlighted in
Italic Font)®

Method Erel,11 (%) Erel 12 (%) Erel ni2 (%) Erel ni4 (%)
KIC@MLE 0.9 304 249 99.8
KIC@MAP 0.0 0.0 13.2 59.4

BIC 94.0 213 375 70.3

AlIC 176.4 59.7 179.2 225

AlCc 137.0 32 69.4 834

MC 0.0 0.0 0.0 0.0

MCIS 0.8 [0.0; 2.2] 0.1 [0.0; 0.4] 1.1 [0.0; 2.9] 1.5[0.1; 4.1]
MC PS 132.0 [25.7; 196.6] 131.8 [23.5; 221.7] 324.8 [40.8; 490.3] 232.8[18.1; 481.8]
NS 2410.1;6.4] 2.8[04; 27.2] 4.0[0.2; 10.7] 11.2[3.3;18.9]

?95% Bayesian confidence intervals of numerical results given in parentheses.

The AIC, AlCc, and BIC assign a too large weight to the simplest model in the set (L1). This is due to the fact
that these criteria merely count the number of parameters used by a model, instead of considering correla-
tions among the parameters (defined by the parameter prior) which reduce the actual degrees of freedom.
Furthermore, these criteria are not able to distinguish between the three models L2a, L2, and L2b, which
only differ in their prior parameter assumptions, but not in their respective MLE. The corresponding BME
approximations by AIC, AlCc, and BIC therefore yield the most indecisive weighting for these three models
(equal weights), whereas the true BMA weights convey the clear message that, out of these three models,
L2a should be preferred over L2, and L2b should be discarded.

Within this model set, the nonlinear models obtain very small weights (see Figure 6) in the reference solu-
tion because the model structure of NL2 does not match the data well and NL4 is already too complex to
compete with the simpler linear models. Since the BME approximation errors of the KIC variants increase
drastically with the nonlinearity of the models, these errors are expected to impact model ranking signifi-
cantly if nonlinear models are playing a relevant role in the model selection competition. Here the nonlinear
models play an almost irrelevant role and thus model ranking is not too badly compromised when using
the KIC@MLE or the KIC@MAP, with the latter still outperforming the former.

4.7. Conclusions From Synthetic

UEE t2a[ ] 2[00 teo[] N2l N Test Case

The benchmarking has shown that

KIC@MLE all ICs (except for the KIC@MAP)
potentially yield unacceptably
KIC@MAP large errors in BME approximation.
Their performance depends on the
BIC actual data set (including the out-
come of measurement error) that
AIC is used for calibration. We have
learned that the AIC and AlCc
AlCe behave differently from the BIC
and KIC for increasing data set
—— size, i.e., the error made by the
AIC(c) increases, while the error of
the BIC and KIC decreases. Under
MC PS . L. .
varied prior information, however,
NS the BIC follows the error behavior
. . : . . of the AIC(c) in that it cannot dis-
0 0.2 04 0.6 0.8 1 10* 102 0 tinguish models which only differ
Posterior model weight in their prior definition of the

parameter space. This is a crucial
Figure 6. Posterior model weights as obtained from the different BME evaluation meth- . . . .
ods for linear (L1, L2) and nonlinear (NL2, NL4) models. L2, L2a, and L2b represent the ﬁndmg’ since the prior contains all
same linear model with differently shaped priors. Green vertical lines indicate reference the information about the
solution (obtained from brute-force MC integration).

SCHONIGER ET AL.

©2014. The Authors. 9502



@AG U Water Resources Research 10.1002/2014WR016062

flexibility of a model and is the basis for an adequate punishment of model complexity. Also, differences in
model dimensionality cannot be adequately captured by those ICs. Among the ICs considered here, the
KIC@MLE is closest to the true solution, which is identical to the KIC@MAP in the linear case. The perform-
ance of the KIC under nonlinear conditions deteriorates toward unacceptable approximation errors in both
its versions, while the KIC@MAP still outperforms the KIC@MLE. Except for MC integration with posterior
sampling, we have shown that the numerical methods considered here are capable of approximating the
true BME value with satisfying accuracy, if the required computational power is affordable. Out of the
numerical methods, simple MC integration and MC integration with importance sampling show the highest
accuracy and lowest uncertainty for a given computational effort, which is in agreement with the theoretical
basis of the respective methods (see section 3.4). Our findings regarding the approximation quality of the
absolute BME value also apply to the approximation quality of the resulting model weights in this synthetic
case, with one exception: nested sampling proves to yield a similarly accurate model ranking despite its
slightly higher BME approximation errors as compared to MC integration.

5. Real-World Application to Hydrological Model Selection

In this section, we describe the application of the BME approximation methods presented in section 3 to
real-world hydrological model selection. Due to the nonlinearity in the hydrological models considered
here, no analytical solution exists. As already argued in section 4.5, we generate a reference solution by
investing a large amount of computational effort into a brute-force MC integration. Hydrological model
selection based on discharge measurements as presented here can be seen as a relatively simple model
selection task, since generally a large number of measurements is available, which emphasizes differen-
ces in model behavior. In other disciplines, model selection might become more difficult, as the number
of measurements and their information content are typically limited. Therefore, this real-world applica-
tion can still be considered as a rather good-natured case of model selection. BME evaluation methods
which fail in this application are expected to perform similarly insufficiently or even worse in other
applications.

5.1. Setup and Implementation

We use the distributed mesoscale hydrologic model (mHM, Version 4.0) [Samaniego et al., 2010] to illus-
trate the performance of the different BME approximation methods in hydrological model selection.
mHM is based on numerical approximations of dominant hydrological processes that have been tested
in various existing hydrological models (e.g., in HBV [Bergstrom et al., 1997] and VIC [Liang et al., 1996]).
It features a novel multiscale parameter regionalization technique to treat subgrid variability of input
variables and model parameters [Samaniego et al., 2010; Kumar et al., 2010]. A detailed description of
mHM can be found in Samaniego et al. [2010], Kumar et al. [2010], and Wohling et al. [2013] and is there-
fore not repeated here. The model is applied to the Fils river catchment (area 361 km?) of the Upper
Neckar basin, Southwest Germany, using daily discharge measurements for the time period between 1980
and 1988. Please refer to sub-catchment 17 in Wohling et al. [2013] for details on the model setup and a multi-
criteria model calibration. The original model considers two soil layers and employs 53 global parameters, 33
of which have been found sensitive to discharge predictions in a sensitivity analysis conducted prior to this
study (results not shown here). This model is subsequently referred to as mMHM2L. For the purpose of this
study, a slightly simpler model with a single soil layer was built (mMHM1L), where 29 of the 53 global parame-
ters have been found sensitive to discharge predictions. Conventional model calibration for these two models
yields Nash-Sutcliffe efficiencies (NSE) [Nash and Sutcliffe, 1970] of 0.9309 and 0.9073 for mHM2L and mHM1L,
respectively. These values indicate that both models are able to adequately reproduce the observed discharge
time series.

A uniform prior is assumed for the sensitive parameters with parameter ranges set to mHM-recommended
values [see Kumar et al., 2010]. The insensitive parameters are fixed at midrange.

From a preprocessing analysis, the residuals between predictions and observations were found to be heter-
oscedastic, which is often encountered in hydrological modeling [Sorooshian and Dracup, 1980]. To mitigate
heteroscedasticity, we applied a Box-Cox transformation [Box and Cox, 1964] to both discharge predictions
y; and discharge observations y,:
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(28)

A value of 1=0.55 proved to be best suitable to reduce heteroscedasticity and to achieve a satisfying com-
promise in the fit to both high-flow and low-flow periods. The remaining variance in residuals is attributed
to both measurement noise and conceptual errors. If only tested against measurement noise, both models
(just like any other conceptual model) would be rejected from the statistical viewpoint [Reichert and Mieleit-
ner, 2009] despite the high NSE values reported above, because not all observations can be reproduced
within measurement error bounds. The residuals appeared to be correlated to a varying extent on different
time scales (most likely due to superposition of seasonal trends and event-based model deficiencies), such
that we could not identify a parsimonious correlation model that would reasonably explain the observed
patterns. Since the identification of more elaborate but robust error models [see e.g., Del Giudice et al., 2013;
Evin et al., 2014] is beyond the scope of our study, we restricted ourselves to a simple uncorrelated error
that increases with discharge in the untransformed space, similar to a relative error. We chose a relatively
large and constant standard deviation of 4.4 (m3s’1)0'55 for this lumped error in transformed space as a
mild penalty for deviations from the observations. The sheer length of the observed time series neverthe-
less led to an effective reduction of parameter and prediction uncertainty, i.e., to a successful and reliable
calibration. Posterior uncertainty in discharge predictions was reduced to around 5% of prior uncertainty
for both models. Our chosen error parameterization is represented as an error matrix R with entries on the
main diagonal. The Gaussian likelihood function to be evaluated in equation (7) then takes the form:

_ - 1 N o AT e
P (Yo My we) =27 2R 71/2 - exp (—E(v,«—yo) R 1(yi—m,))l_[v:;.ﬂ, (29)
j=

with the last term being the derivative of the transformed observations y; with respect to the untrans-
formed observations y,. Prior and posterior predictions of discharge as obtained from both models are
shown for the first year of the observation time series in Figure 7.

The reference BME value for each model was determined by MC integration (equation (23)) over ensembles
of 1.1 million realizations per model. Effective sample sizes [Liu, 2008] (the number of prior realizations that
significantly contribute to the posterior distribution) of 95 for the double-layer model (mHM2L) and of 27
for the single-layer model (mHM1L) were considered to be sufficiently large to produce a reliable statistic of
BME. We again performed a numerical convergence analysis (see section 4.1), which confirmed that the
BME estimate is varying less than 1%.

Based on this reference solution, we assess the approximation quality of the different methods presented in
section 3. From a posterior parameter ensemble of size 25,000 generated by DREAM, we determine the MAP
(and the covariance matrix needed for the evaluation of the KIC). In this case, the MAP is equal to the MLE due
to the uniform prior parameter distributions, and because the MLE does not fall outside of the bounds of the
prior. We evaluate the AIC, BIC, and KIC at this parameter set. Note that, when using the full calibration time
series with Ny = 3227 measurements, we do not consider the AlCc, because it yields the same results as the
AIC. This is expected since the ratio Ny /N, is much larger than 40 and, therefore, there is no need to correct for
a small data set size (see section 3.2.5). Importance sampling is performed with Gaussian sampling distributions
that are centered about the MLE (obtained from DREAM) with the same standard deviations as specified for
the prior parameter distributions. 100,000 realizations are generated from each model. Nested sampling is per-
formed with an initial ensemble size of 500. The same termination criteria as described in the synthetic test
case (section 4) are used. This leads to a total ensemble size (number of model calls) of around 110,000.

All BME approximation methods are assessed with regard to the error in reproducing the absolute BME value as
well as with regard to model ranking. Since all mathematical approximation methods drastically underestimate
BME in this test case and relative errors would all end up being 100%, we specify the approximation error instead
by determining the ratio between approximate and reference BME value and taking the natural logarithm:

Epn(y=In 7":Inl',flnl. (30)

-

A good approximation will hence be characterized by a ratio of close to 1 and an E,(,) value of close to 0. A
negative value indicates that the approximation underestimates the reference value, and a positive value
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Figure 7. Model predictions of discharge for first year of calibration time series. (a) mHM1L, (b) mHM2L. Prior 95% Bayesian confidence intervals are shaded in gray, posterior 95% Bayes-
ian confidence intervals in respective color.

indicates overestimation. The impact on model ranking is evaluated by comparing the resulting model
weights (equation (2)).

5.2. Results for Full Observation Time Series

When using the full observation time series of 3227 daily discharge measurements for calibration, BME
takes a very small value since the likelihood of a parameter set is the product of the relatively small likeli-
hoods for each data point. We therefore report the natural logarithm of the BME value instead. The refer-
ence In(BME) values as obtained from MC integration are —10,003 for the single-layer model (mHM1L) and
—9991 for the double-layer model (mHM2L). While the numerical methods and the KIC arrive relatively
close to this reference solution, the AIC and BIC drastically underestimate the reference values (see Table 3).
Again, the AIC might be excused because it is not derived for approximating the absolute BME value, but
for approximating the differences in models via model weights. The numerical methods tend to overestimate
BME (especially posterior sampling and importance sampling), while the KIC underestimates instead. Nested
sampling yields the most accurate results of all numerical methods (besides the MC reference solution that has
a roughly 10-fold computational effort). MC integration with importance sampling leads to an overestimation of
BME here. This indicates that the choice of importance density is already close enough to the posterior parame-
ter density to inherit (some of) the biasedness of MC integration with posterior sampling (see section 3.3.3).
Results of all approximation methods are summarized in Table 3.

Based on BME values, the double-layer model mHM2L is the clear winner in this model comparison.
Although both models exhibit a good predictive performance which is confirmed by NSE values greater
than 0.90, mHM2L outperforms mHM1L because the concept of two soil layers is able to mimic the water
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retention capacity and the water movement in
Table 3. Performance of BME Approximation Methods in Hydrologi-

cal Test Case as Compared to the Brute-Force MC Reference Solution the unsaturated zone better than a Smgle soil
(Highlighted in Italic Font) layer. This leads to a slightly but notably better

Full Time Series Reduced Time Series fit of the simulated discharge hydrograph to
the data. With regard to model complexity,

Method Ein(ry.mHmt Eln(ry.mHmaL En(ry.mHmit Eln(r).mHmaL

both models use the same number of parame-
KIC -52 -7.2 -68 -84 o o
BIC 1031 1206 _797 o021 ters, but differ in the number of sensitive (non-
AIC -15.0 -203 -23.1 -27.8 fixed) parameters. Even though the number of
iz =23 =Hikz sensitive parameters is slightly smaller for
MC 0.0 0.0 0.0 0.0 .
MCIS 14 33 10 15 mHM1L than mHM2L (29 versus 33), the size of
MC PS 3.1 48 08 1.0 the parameter space as defined by the prior
NS 11 05 03 -0.1

density is larger in the case of mMHM1L due to
the actual permitted range of parameter values;
i.e., some sensitive parameters of mHM1L, which are fixed in mHM2L, have a larger range of values. As a
consequence, there is no trade-off between goodness of fit and model complexity, and model mHM2L
obtains a full posterior model weight of 100% (mHM1L obtains a weight of 0.0004% in the reference
solution).

All numerical methods as well as the KIC and AIC agree with the reference model weights. The BIC, however,
yields the exact opposite: It assigns a weight of 99.4% to the competing model, mHM1L. The BIC's parame-
terization of the Occam factor is in this case the decisive (and guilty) factor, because the difference in the
countable number of parameters is large enough to compensate the slightly better goodness of fit, which is
in reality not the case. Posterior model weights are visualized in Figure 8a. Although the quality of approxi-
mation achieved by the different methods varies drastically, the model ranking and model selection result
is (except for BIC) extremely clear and correct. This is due to the fact that the difference in goodness of fit is
significantly large, in favor of mHM2L. This is mirrored in the difference of maximum likelihoods between
both models, and is therefore detected by the ICs.

Previous studies on hydrological model selection have yielded similar results in that one model obtained an IC
weight of close to 100% [e.g., Meyer et al., 20071. Lu et al. [2013] have interpreted this clear weighting as too
“aggressive,” because it did not seem justified given the available data and prior knowledge. They therefore
propose to use a different formulation for the likelihood function which considers not only uncorrelated (mea-
surement) errors, but also correlated model structural errors. This led to a less clear weighting for all of the ICs
that are also considered here. Tsai and Li [2010] proposed a different procedure, but following the same line of
thought: They suggest to modify the calculation of the model weights by scaling the IC results in order to
obtain a less obvious model ranking. Ye et al. [2010a] used the generalized likelihood uncertainty estimation
method (GLUE) [Beven and Binley, 1992]), which penalizes deviations from the observed values in a nonformal,
user-specified manner. They calculated posterior model weights merely based on GLUE-likelihoods of the cali-
brated models (which does not incorporate any Bayesian penalty for complexity) and compared them with
model weights obtained from ICs, also finding that ICs seem to discriminate too harshly. Rojas et al. [2008], on
the other hand, compared different (formal and informal) likelihood formulations within the theoretical BMA
framework, but did not find significant differences in the resulting model weights.

We would like to add to this discussion by pointing out that the choice of likelihood function clearly influen-
ces the outcome of BME and, potentially, the resulting model weights as a consequence. If uncorrelated
errors are assumed, the likelihood for all individual data points are multiplied. If, for a long data series, one
model at all times predicted only slightly worse than its opponent, multiplying all the slightly lower likeli-
hoods would lead to a drastically lower total likelihood and hence to a significantly lower BME value. BMA
theory therefore supports the finding that, if only enough data points are available for calibration (and such
a type of likelihood function is used), one model will be the clear winner—no matter if the competing
model is performing very well, too, as it is the case in our application.

This might seem counter-intuitive, as one would argue that there is not necessarily more information about
model choice in a more frequently measured time series. But it needs to be kept in mind that the clear
model ranking is only based on the calibration period, i.e., the models might behave very differently under
changing boundary conditions. Hence, the choice of the calibration period, the sampling frequency and the
definition of the likelihood function lie in the responsibility of the modeler and should be subject to further

SCHONIGER ET AL.

©2014. The Authors. 9506



10.1002/2014WR016062

C)AG U Water Resources Research

papa3U Yd1e3saI d10W

9a4)-seiq Inq ‘(9bexulys

JIN 03 dAneuI} e bulsiwoid ssew Joud ur A&yuresadun o3 anp) JAg 104 USBISAUOD MO ybIH SUON 9z SN Buljdwes paisaN
(yoeoudde uesw diuowiey buidwes
VIAIG 10} PaPUSWIWOI3I JON 0] 9Np) Paselq 210W UIAS 1N ‘92Ua6ISAU0D I9)Se) UDAT ybIH SUON (4 Sd DWW Joudysod yum uonesbarul HIA
bundwes
DN 01 9AIIRUIS)|E JUBIDLYS SIOW B Sy paselq (A|jenuaiod) Inq ‘93usbIaAU0D J3)Se ybIH SUON vz SIDW Souenodwi yum uoneibarul HIN
9|qiseay Ajjeuoneindwod J9ASUSYM 93.J-sel1q Inq ‘92uabIsAu0d MO|S EIEY NG| AuoN €T W uoneibayul ojie) juoy 3dwis
sanbiuy2a) uoPNILA3 [DILBWINN
Joud saioubi (awg o1 uoudlId
VNG 10} PSPUSWIWOI3] 10N ‘(395 e1ep [en1de uo Buipuadap) sieinddeul A1aA Ajjenusiod Mo uonewixoidde se paALSp J0u) 6l DY UOIRWIOJUI 31Xy Pa129110D
Joud saioubi (Iwg o1
VNG 10} PSPUSWIWOI3] JON ‘(395 e1ep [en3de uo Buipuadap) sieinddeul A1aA Ajjenusiod MO uonewixoidde se paauLSp J0u) 8l DIV UOLISILID UOIIeULIOJUI SYIB)Y
Joud saioubi Joud jo adusnpul 3|qib16au
VING 10} PSPUSWIWOI31 10N ‘(39s eiep |enioe uo buipuadap) a1einddeul L1aA Ajerualod Mo ‘Jou9150d Ja19wWweled ueissnen 9l olg UOLISILID uonewIojul Uelsakeg
aAIsuadxa 003 sanbiuyday dVIN e paienjeas
|esuswinu /p3||yny suondwinsse j| 9)eInddey| (p3]|y|ny suondwinsse) 15ex3 wnipapy Jousisod Jsoysweled ueissnen Sl dYIW@DIM ‘uouI1d uonewloyul s,dekysey
(pa1ejolA A|pjiw suondwnsse) Joud jo adusnpul 3|qib16au I 1€ paienjeas
pauiagaid 39 03 dYIN@DIN ajeinddeu| a1eindde A|pAneRY wnipap ‘Jjoua3s0d Jaoweled ueissnen vl JIN@DIN ‘uolId)Id uonewloyul s,defysey|
suonpwixoiddp [po1IpWaYID)Y
Jou1sod
S|qe[IBAR JSASUSYM S|qe|ieAe 10N 10ex3 S|qib16aN [opow Jeau| Joud 1e6nfuod 9 - J91sweded Jo Jueisuod buizijewioN
[9Pow Jeaul| ‘pooyi|ay!
S|qe[IBAR JSASUSYM S|qe|jieAe 10N 10ex3 S|qib16aN pue Joud Ja1swesed ueissnen 6 - JNg JO UoNQLASIP [BI11R103Y |
uoinjos [pa1ApuUYy
95 PaPUBWIWIOIDY $958)) 159 JB3Ul|-UON 9580 159 uoy3 "dwod suondwnssy ‘b3 uoleIAIqqy poyiaw uonen|eny

Ul dUBWIONIY J1eaUIT Ul 9dUBWIONSd

Buikpspun

9DUIPIAT [9POIA UeISaARY 31BN|RAT 01 SPOYIBIA JO MIAIBAQ *F 3]qeL

9507

©2014. The Authors.

SCHONIGER ET AL.



@AG U Water Resources Research 10.1002/2014WR016062

a)

KIC

BIC

AIC

AlCc

MC

MC IS

MC PS

NS

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Posterior model weight

Figure 8. Posterior model weights for (a) full observation time series and b) reduced observation time series as obtained from the different
BME evaluation methods for models mHM1L (dark blue) and mHM2L (light blue). Green vertical line indicates reference solution generated
by MC integration.

research. In summary, overly decisive weights are not an artifact of BME evaluation via ICs. They are a char-
acteristic of BMA theory (and hence also of BME evaluation via numerical methods). Future investigations
on the adequate choice of likelihood functions should therefore consider a suitable numerical method as a
reference for the true characteristics of the BMA framework.

We hypothesize that, if the difference in model performance was not as dominant, model ranking would
not be as obvious and not as accurately reproduced by approximation methods. To test this hypothesis, we
shorten the observation time series in the spirit of a thought experiment and only consider the first year for
calibration. By virtue of reducing the number of data points, the difference in goodness of fit will not be as
pronounced because the multiplication of likelihoods for each data point of the time series will have a
much less drastic effect. We do not advocate to use such a short time series for proper hydrological model
calibration, but proceed with it in section 5.3 to illustrate the impact of the number of observations. Note
that we do not change the analysis framework here (neither the definition of the likelihood function nor the
formulation of how to calculate model weights from ICs) as suggested by the authors listed above, but
actually change the amount of information that goes into the BMA analysis. Using the reduced time series
for model selection can also be seen as representative for more difficult model selection tasks in other disci-
plines that have to cope with a limited number of measurements.

5.3. Results for Reduced Observation Time Series

When using the reduced observation time series of 365 daily discharge measurements for calibration, BME
takes values of —1134 for the single-layer model (mHM1L) and —1132 for the double-layer model (mHM2L)
in the reference solution. As intended, the difference in goodness of fit and therefore in BME values is now
much less pronounced. Again, the numerical methods and the KIC achieve relatively good results. The AIC,
AlCc (considered here since N; /N, < 40), and BIC again drastically underestimate the reference values.
Nested sampling consistently yields the most accurate BME value. Approximation results are summarized in
Table 3.

This setup now leads to a less decisive weighting of 16.5% (mHM1L) versus 83.5% (mHM2L) in the reference
solution. Apparently, the difference in performance over the reduced time series is now small enough such
that model mMHM1L should not be discarded, despite its slightly larger parameter space. Nevertheless,
mHM2L still obtains a significantly larger posterior probability of being the better model due to its more
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suitable representation of water retention capacity and water movement in the unsaturated zone. This
time, however, not only the BIC yields model weights erroneously in clear favor of mHM1L, but also the AIC
and AICc (even though they are derived for approximating BMA weights). Despite its BME approximation
quality being inferior to nested sampling, posterior sampling surprisingly yields weights closest to the refer-
ence solution. Nested sampling and importance sampling weights still convey a similar message, but
already deviate significantly from the reference weighting. Here the KIC yields indecisive weights of 51.9%
versus 48.1% and therefore does not qualify as a reliable approximation method. Resulting model weights
are visualized in Figure 8b.

5.4. Conclusions From Real-World Test Case

From this real-world test case, we have found that, still, the KIC performs best out of the ICs considered
here, but it produces a much larger approximation error than any of the numerical methods. All of the
methods used in this study, except for the BIC, are able to reproduce the reference model weighting when
using a large calibration data set. The BIC yields exactly the opposite model ranking and therefore contra-
dicts the true Bayesian model ranking, even in such a good-natured model selection problem where a large
data set is available. The fact that the BIC did not perform particularly badly (e.g., definitely not worse than
the AIC) in the synthetic setup (section 4) is alarming, because this means that there is not necessarily a cor-
relation between the ICs’ performance under linear conditions with their performance under nonlinear (but
still good-natured) conditions. When using a significantly shorter time series, the quality of BME approxima-
tion deteriorates for the AIC and improves in case of the BIC, while the approximation quality of the KIC
slightly decreases. This was expected from our investigation of the influence of the data set size in the syn-
thetic test case (see section 4.3). Independently of the actual BME approximation quality, all ICs yield inaccu-
rate posterior model weights. We therefore have to face the fact that the ICs considered here produce a
rather arbitrary model ranking result in nonlinear real-world applications, and their accuracy cannot be pre-
dicted in a general manner. Only the numerical methods are able to reproduce the true model ranking reli-
ably and sufficiently well.

6. Summary and Conclusions

In this study, we have compared nine methods to approximate Bayesian model evidence (BME), which is
required to perform Bayesian model averaging (BMA) or Bayesian model selection. Since analytical solutions
only exist under strongly limiting assumptions, we have investigated the usefulness of four numerical meth-
ods (simple MC integration, MC integration with importance sampling, MC integration with posterior sam-
pling, and nested sampling) which do not rely on any assumptions, but suffer from high computational
effort and potential inefficiency in high parameter dimensions. We have further considered four different
mathematical approximations which are known as information criteria (AIC, AlCc, BIC, and KIC evaluated at
the MLE) and are frequently used in the context of BMA, but in previous studies yielded contradicting
results with regard to model ranking. To be most consistent with approximation theory, we have proposed
to evaluate the KIC at the MAP, instead, and also included this variant in our intercomparison. The nine BME
evaluation methods analyzed in this study are summarized in Table 4.

6.1. Summary of Results

We have systematically compared these nine approximation techniques with regard to their theoretical
derivations, common features, and differences in underlying assumptions. From this extensive analysis,
we conclude that out of the ICs, the KIC evaluated at the MAP (KIC@MAP) is the most consistent one
with BMA theory, but also the most expensive one to evaluate. It yields the true solution if the posterior
parameter distribution is Gaussian (e.g., if the data set is large). The other ICs considered here are simpli-
fied versions of the KIC@MAP (KIC@MLE and BIC) or derived in a non-BMA context (AIC and AlCc). Since
the ICs’ assumptions to calculate BME are too strong for nonlinear models or lack the correct theoretical
foundation altogether, the contradicting reports on their performance at various accounts in the litera-
ture were to be expected. The numerical methods considered here are not limited by any assumptions.
Simple MC integration is bias-free, but computationally very expensive. The other numerical methods
are potentially more efficient, but prone to show a bias in their BME estimate. The most important
assumptions and limitations of the nine BME evaluation methods analyzed in this study are summarized
in Table 4.
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The main contribution of this study is a first-time benchmarking of the different methods on a simplistic
synthetic example where an exact analytical solution exists. The benchmarking has shown that all ICs
(except for the KIC@MAP) potentially yield unacceptably large errors in BME approximation, with their per-
formance depending on the actual calibration data set. Therefore, it cannot be recommended to use either
of these criteria for a reliable, accurate approximation of BME. Especially, the AIC(c) and BIC cannot distin-
guish models which only differ in their prior definition of the parameter space. This is a major concern, since
the specification of prior information is a fundamental part of Bayesian inference and Bayesian model rank-
ing. It is misleading to think that the AIC(c) or BIC would perform acceptably if prior information is vague or
not available; we have demonstrated that actually the opposite is the case. Also, these criteria are incapable
of capturing the true dimensionality of a model. It remains an open question for future investigation,
whether model dimensionality could be more adequately “encoded” in these ICs to improve their so far
unacceptable performance in BME approximation. While the KIC@MAP represents a perfect choice if its
assumptions are fulfilled, its performance deteriorates significantly with increasing nonlinearity in the con-
sidered models as illustrated in the second part of our synthetic example. The accuracy of BME approxima-
tion by the numerical methods considered here is only limited by computational effort (except for MC
integration with posterior sampling, which is expected to overestimate BME due to its theoretical formula-
tion). Simple MC integration and MC integration with importance sampling showed the highest accuracy
and lowest uncertainty for a given computational effort, which agrees with the expectations based on the
theoretical background of the respective methods.

We have continued our analysis with a real-world application to hydrological model selection. We have
compared two conceptually slightly different versions of the distributed mesoscale hydrologic model
(mHM) [Samaniego et al., 2010], which are applied to the Fils river catchment of the Upper Neckar basin in
Southwest Germany. Here the nonlinearity in model equations represents a typical case where the assump-
tions of the analytical solution or the Laplace approximation are not fulfilled. Based on the findings from
our theoretical comparison and the benchmarking, we have therefore used simple MC integration as refer-
ence solution. In this realistic setup, the KIC again performs best out of the ICs considered in this study, but
it produces a much larger approximation error than any of the numerical methods. Using a long time series
of daily discharge measurements between 1980 and 1988 for calibration, model choice turns out to be very
clear, such that the conceptually superior model obtains a posterior model weight of 100%. In this case, all
of the methods considered in this study, except for the BIC, reproduce this clear model weighting, despite
their difficulties in approximating the actual value of BME. Note that the BIC yields exactly the opposite
model ranking and therefore contradicts the true Bayesian model ranking, even in this good-natured model
selection problem where a large data set is available. The BIC's much worse performance in the real-world
application could not be foreseen from its performance in the synthetic setup. This fact is revealing,
because it reminds us again that the approximation quality of the ICs is rather arbitrary and application-
dependent, which has already become evident in the synthetic test case.

We have pointed out that BMA theory supports the finding from our studies and previous work that, if only
enough data points are available for calibration, one model will be the clear winner, even if the competing
model is also performing very well as in our application. This might seem counter-intuitive, but is not an
artifact of approximating BME via ICs as previously suspected by other authors. To test our hypothesis that
also the other ICs discussed here would not be able to yield a consistent ranking if the calibration time
series were shorter (as would often be the case for model selection in disciplines other than hydrology), we
have repeated the analysis using only the first year of measurements for calibration. We do not advocate to
use such a short data set for a robust calibration of mHM, but provide this analysis to make the reader
aware of the important role of the data set length. Independently of the actual BME approximation quality,
all ICs yield inaccurate posterior model weights in this case, while the numerical methods are able to repro-
duce the true model ranking sufficiently well.

6.2. Implications for Robust Model Selection

Both test case applications have revealed that using ICs to approximate BME potentially can, but not neces-
sarily will, produce acceptable results for both the absolute BME value and the resulting model ranking. The
Bayesian trade-off between model performance and model complexity is not represented adequately by
the ICs, with the potential exception of the KIC@MAP. However, it cannot be decided in advance if a data
set is large enough for the KIC@MAP to perform well for a given application and model set. This is why we
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advocate to perform a comparison of the KIC@MAP with at least one of the numerical methods presented
here, in order to assess the degree of agreement between the methods. If the discrepancy is large, one
should continue with numerical methods if computationally feasible. If computation time is limited, nested
sampling could be an efficient alternative to full MC integration as indicated by our test case results. If
numerical evaluation is not an option at all because large model run times prohibit such an approach, we
still do not recommend to compare several ICs amongst each other as frequently suggested in the litera-
ture, since this procedure cannot provide any conclusive insight. Instead, we suggest to solely use the KIC,
evaluated at the MAP. Note that this still involves nonnegligible computational effort, since the MAP and
the posterior covariance need to be determined; this could however be done by more efficient numerical
optimization schemes. Nonetheless, finding a reliable alternative to numerical BME evaluation is still an
open research question.

6.3. Conclusions

In conclusion, the findings from our theoretical intercomparison, the benchmarking results from our syn-
thetic study as well as the insights from the application to a real-world hydrological model selection prob-
lem demonstrate that

1. for real-world applications, BME typically needs to be evaluated numerically or approximated by ICs
because no analytical solution exists;

2. out of the ICs, the KIC evaluated at the MAP is the most consistent one, but might still be heavily biased
when applied to nonlinear models;

3. the choice of evaluation method for BME substantially influences the deviation from the true BME value,
the outcome of posterior model weights and model ranking as such;

4. for reliable model selection, there is still no reliable alternative to bias-free numerical methods.
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Groundwater modelers face the challenge of how to assign representative parameter values to the stud-
ied aquifer. Several approaches are available to parameterize spatial heterogeneity in aquifer parameters.
They differ in their conceptualization and complexity, ranging from homogeneous models to heteroge-
neous random fields. While it is common practice to invest more effort into data collection for models
with a finer resolution of heterogeneities, there is a lack of advice which amount of data is required to
justify a certain level of model complexity. In this study, we propose to use concepts related to
Bayesian model selection to identify this balance. We demonstrate our approach on the characterization
of a heterogeneous aquifer via hydraulic tomography in a sandbox experiment (Illman et al., 2010). We
consider four increasingly complex parameterizations of hydraulic conductivity: (1) Effective homoge-
neous medium, (2) geology-based zonation, (3) interpolation by pilot points, and (4) geostatistical ran-
dom fields. First, we investigate the shift in justified complexity with increasing amount of available
data by constructing a model confusion matrix. This matrix indicates the maximum level of complexity
that can be justified given a specific experimental setup. Second, we determine which parameterization
is most adequate given the observed drawdown data. Third, we test how the different parameterizations
perform in a validation setup. The results of our test case indicate that aquifer characterization via
hydraulic tomography does not necessarily require (or justify) a geostatistical description. Instead, a
zonation-based model might be a more robust choice, but only if the zonation is geologically adequate.
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1. Introduction steady-state assumptions, only the spatial distribution of hydraulic
conductivity influences the flow conditions.

Several available to characterize the

Groundwater models are built for various types of investiga-
tions, both in science and in practice. They can serve as a basis
for hypothesis testing, risk assessment, and management of
resources. To provide reliable predictions for these objectives,
models must be calibrated sufficiently well. However, in light of
limited budgets, modelers have to cope with small calibration data
sets. For physically-based models that consider the fundamentally
important processes, the calibration procedure aims at finding
appropriate parameterizations and then constraining the plausible
parameter ranges. In groundwater modeling, the most effort is typ-
ically spent on characterizing the heterogeneity of the subsurface
parameters hydraulic conductivity and specific storage. Under
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approaches are
heterogeneity in hydraulic conductivity, which differ in effort
and scale. Traditionally, a large number of hydraulic conductivity
estimates is obtained from collecting core samples and performing
permeameter tests (Sudicky, 1986; Sudicky et al., 2010), or from
performing slug or pumping tests. The local-scale information
obtained from such campaigns is then regionalized to larger scales
by upscaling, zonation, interpolation, or geostatistical simulation.
Alternatively, more detailed measurements can be obtained from
geophysical investigations (e.g., Hubbard and Rubin, 2000) or
hydraulic tomography (e.g., Gottlieb and Dietrich, 1995; Butler
et al,, 1999; Yeh and Liu, 2000; Straface et al., 2007; Li et al,,
2007; Illman et al., 2010).

Hydraulic tomography has been developed to investigate the
heterogeneity in aquifer properties in a fine spatial resolution. A
number of pumping tests is performed sequentially in different
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wells at various locations throughout the aquifer. Pumping induces
a spatial distribution of drawdown, which is captured by observa-
tion wells throughout the domain. These drawdown data are then
used to derive via numerical inversion the spatial distribution of
hydraulic conductivity and related properties such as connectivity.
Further, the uncertainty attached to the inferred parameters can be
quantified. The spatial resolution of the derived parameter distri-
bution depends on the horizontal well spacing and the vertical
packer intervals (Yeh and Liu, 2000).

Several approaches exist for the analysis and interpretation of
the data obtained from all these aquifer characterization methods,
and for the representation of the observed spatial heterogeneity in
groundwater models. In general, a groundwater model with a
specific spatial structure of hydraulic conductivity must be
assumed. These assumptions vary in their conceptualization and
their complexity (e.g., the number of parameters involved). Please
note that the definition of model complexity is not unique, ranging
from pure parameter counting over factor analysis to concepts that
take into account probability distributions of parameters,
data-parameter sensitivity and predictive variance. In principle,
any parameterization ranging from the simple homogeneous case
with an effective conductivity value to a geostatistical random field
could be used. For the inversion of hydraulic tomography data,
geostatistics-based inverse modeling methods are most frequently
applied, such as the quasi-linear geostatistical approach (QL)
(Kitanidis, 1995) and the sequential successive linear estimator
(SSLE) (e.g., Yeh and Liu, 2000).

Eventually, the adequacy of the inferred hydraulic conductivity
field and the overall groundwater model will depend on both the
aquifer characterization technique and the chosen parameteriza-
tion. The more data are available for calibration, the more detailed
heterogeneities can be resolved. While it is common practice to
invest more effort into data collection for geostatistical models
(e.g. in form of hydraulic tomography data) than for simpler, effec-
tive conductivity models (e.g. in the form of core samples, slug
tests or single-hole tests), there is a lack of advice, which amount
and information content of data is required to justify a certain level
of model complexity. We therefore see a need for a method that
balances calibration effort (meaning both the effort for data collec-
tion and the computational effort to perform the inversion with the
model) with model complexity and, implicitly, with model predic-
tive performance. Assuming that the calibration effort increases
with data set size, we use the amount of available data as proxy
for the calibration effort in the following.

The formal statistical approach of Bayesian model averaging
(BMA) (Draper, 1995; Hoeting et al., 1999) qualifies as such a
method. It objectively ranks a number of competing models based
on their fit to available data. Starting from a prior belief about the
plausibility of each considered model, BMA updates this belief with
knowledge from observed data via Bayes’ theorem, and yields pos-
terior model probabilities that reflect the updated plausibility.
These probabilities allow for a quantitative ranking of the compet-
ing models and provide a basis for model selection. If more than
one model obtains a significant model probability, their predic-
tions can be combined in a weighted average that uses the proba-
bilities as model weights. Finally, the uncertainty caused by the
inability to uniquely choose only one of the considered models
can be quantified as between-model variance.

BMA has been used in various disciplines as a statistical tool for
model averaging (e.g., Ajami and Gu, 2010; Najafi et al., 2011;
Seifert et al, 2012), model selection (e.g., Raftery, 1995;
Huelsenbeck et al., 2004), quantification of model choice uncer-
tainty (e.g., Rojas et al., 2008; Singh et al., 2010; Troldborg et al.,
2010; Ye et al, 2010), data worth analysis (e.g., Rojas
et al., 2010; Neuman et al., 2012; Xue et al., 2014; Wohling et al.,
2015), and model component dissection (Tsai and Elshall, 2013;

Elshall and Tsai, 2014). In groundwater modeling, it has been
applied to choose between different parameterizations of aquifer
heterogeneity, e.g. by Ye et al. (2004), Tsai and Li (2008), Rojas
et al. (2008), Morales-Casique et al. (2010), Seifert et al. (2012),
and Elsheikh et al. (2013), to name only a few selected examples.
Refsgaard et al. (2012) provide a review of strategies, including
BMA, to address geological uncertainty in groundwater flow and
transport modeling.

In the context of groundwater model selection and calibration,
finding a balance between performance and complexity is of great
interest (e.g., Yeh and Yoon, 1981; Fienen et al., 2009; Elsheikh
et al.,, 2013). BMA is ideally suited to guide this search, because it
implicitly honors the principle of parsimony or “Occam’s razor”
(Jeffreys, 1939; Gull, 1988). The BMA ranking reflects an optimal
tradeoff between goodness-of-fit and model complexity, with
model complexity being encoded in the prior probability distribu-
tions of the model parameters. The prior uncertainty in parameters
is propagated through the model to the predictions, which are then
compared to the observed data. A wide predictive distribution will
be penalized by BMA, whereas a precise and accurate predictive
distribution will be favored.

Although this optimal tradeoff is a main result of BMA, BMA has
not yet been used to find the data amount required to justify a
given level of complexity. In a certain sense, this reverses the direc-
tion in which BMA is usually applied, i.e. to rank models of differ-
ent complexity for a given data set. We intend to fill this gap by
isolating the complexity component of the tradeoff from its perfor-
mance counterpart. We achieve this in a synthetic setup for BMA,
where the models are mutually tested against their own predic-
tions, instead of against real data. We introduce the concept of a
model confusion matrix, which expresses how likely it is to identify
the respective true model given the current experimental setup.
We refer to this analysis as model justifiability analysis, because it
reveals whether any specific level of complexity can be justified
by the available amount and type of data (independent of the actu-
ally measured values) through the eyes of BMA. The question of
justifiability is hence detached from the observed data values
and becomes a function of the calibration effort only. Note that
the calibration effort does not depend on the information content
in the data (the effort for data collection is the same, no matter if
the data turn out to be informative or not). The sensitivity of the
model parameters to the data, on the other hand, has an impact
on the outcome of BMA results and on the justifiability analysis.

While the justifiability analysis is based on the experimental
design but not the actually measured data values, the adequacy
of a model with regard to a specific prediction goal is defined by
the tradeoff between complexity and performance in predicting
the actually observed data values. The observations serve simulta-
neously as training and testing data for the specified model pur-
pose. Hence, model adequacy as opposed to justifiability is
assessed by the standard BMA routine based on the observed data.
We therefore propose to perform BMA in a two-step procedure,
running the synthetic justifiability analysis for the experimental
setup first and determining the adequacy of each model in light
of the observed data values in a second step that consists of the
conventional BMA method. The results of the first step will then
help to decide whether (a) the identified most adequate model is
really the best choice given the current set of models, or (b)
whether the identified model is only optimal given the currently
too limited amount and information content of the data. The latter
could occur when the available data do not allow to identify a more
complex model among the model set, although the more complex
model would actually be closer to the observed response of the
system.

Further, the justifiability analysis can uncover the reasons for
two models obtaining almost the same weight in the conventional
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BMA analysis. The model confusion matrix reveals whether two
models are actually very similar in their predictions, while the
conventional BMA analysis cannot distinguish this case from the
case of two models that by chance achieve a similar overall
goodness-of-fit.

As application study for our approach, we use hydraulic tomog-
raphy data to characterize a synthetic heterogeneous sandbox
aquifer. The experimental setup of the sandbox and the data collec-
tion are described in Illman et al. (2010). We consider four concep-
tual models of vastly different structure and complexity to
parameterize the spatial heterogeneity of hydraulic conductivity:
a very simple homogeneous model, a zonation-based model that
mimics the observed layering in the sandbox, and two variants of
a highly flexible geostatistical model. For later analysis, we also
use a geologically uninformed zonation model.

The prediction target of the groundwater model, using either
one of these parameterizations, are the changes in groundwater
head induced by sequential pumping at various locations through-
out the sandbox aquifer. It is not clear beforehand which level of
detail is required in the representation of heterogeneities to
achieve reliable predictions. Since we know the true layering quite
well from the experimental setup of the sandbox, the zonated
model with its structure derived from the visible packing pattern
might be seen as the favorite model. However, due to boundary
and mixing effects between different sand types as well as errors
involved with packing and with discretization, this is merely a
hypothesis that remains to be tested. It is further a priori unknown
whether the much more flexible geostatistical model should not be
seen as the favorite.

In a parallel study, Illman et al. (2015) investigated the perfor-
mance of a geostatistical model and a geologically well-informed
zonation model when inverting hydraulic tomography data
obtained from the same sandbox. They found that while
geostatistics-based inversion yielded the best performance in
terms of both calibration and validation results, the much less
complex zonated model performed almost as well. The question
how to choose optimally between these models in the spirit of
Occam’s razor will be answered in this study. We will perform
the BMA analysis with an increasing amount of hydraulic tomogra-
phy data from one to six cross-hole pumping tests. The resulting
model rankings will point toward the most plausible parameteriza-
tion in the spirit of Occam’s razor as a function of available data.

With our proposed two-step procedure, we can answer the fol-
lowing two questions: (1) Which amount of hydraulic tomography
data would be hypothetically needed to justify the use of a geosta-
tistical approach for parameterizing the groundwater model? Or,
vice versa, up to which amount of data should we choose a less
flexible model instead, because it can still be calibrated reasonably
well? And (2), which of the parameterizations is the most adequate
one given the actually measured data?

Finally, we determine the predictions of the individual models
and the BMA-weighted average for four independent cross-hole
pumping tests not used in the BMA analysis. We compare the pre-
dictive performance of all models in this validation step to find out
whether, in this specific test case, BMA is able to identify a robust
model and whether the weighted average outperforms the optimal
model.

As main contributions of this study, we demonstrate the appli-
cation of BMA to choose between groundwater models which dif-
fer in the complexity of hydraulic conductivity parameterization
by orders of magnitude. We introduce a model confusion matrix
which indicates the maximum level of complexity that is theoret-
ically justified by a specific experimental setup. This analysis
serves as a basis for interpreting the model ranking which emerges
from the actually observed data. Our suggested add-on to the stan-
dard BMA routine lays a special focus on the key ingredient of

BMA, the implicit tradeoff between performance and complexity.
As a side product, the model confusion matrix helps to revise the
subjective choice of prior model probabilities, because it reveals
the degree of similarity between the alternative models.

We briefly summarize the statistical framework of BMA and pre-
sent our proposed model justifiability analysis in Section 2. In Sec-
tion 3, we outline the general procedure of groundwater model
calibration via hydraulic tomography, and provide details on the
experimental setup, the hydraulic conductivity parameterizations,
and the numerical implementation. Section 4 demonstrates the
application of the justifiability analysis in a synthetic setup, while
the model ranking based on the actually observed data is presented
in Section 5. We summarize the insights from this study in Section 6.

2. Model ranking methodology
2.1. Bayesian model averaging

The mathematical framework of the BMA analysis is outlined
and discussed comprehensively in Hoeting et al. (1999). We briefly
present the relevant equations here. Note that all probabilities and
statistics are conditional on the chosen set of models.

Based on the predictive distributions p(¢ |y,, M) for a pre-
dicted quantity ¢ obtained from N,, competing models M;, their
weighted average according to BMA is given by

Nm
P(@|Yo) = > P(@ | Yo, Mi)P(M | Vo) (1)

k=1

with p(- | y,) representing a probability distribution conditional on
the observed datay,. P(M, | y,) is the posterior probability of model
M, to be the best one (in light of the given datay,) in the set of con-
sidered models. These posterior probabilities are used as weights in
the model averaging procedure.

The posterior mean of the prediction ¢ is determined as the
weighted average of the mean predictions by the individual
models:

Nm
E[@ |Y,] = > El@ | Vo, MiJP(Mi | ¥,)- )
k=1
The posterior variance of the model-averaged predictive distri-
bution is given by

N
V@Yol =D Ve | Vo, MiP(Mk | Y,)

k=1

Nm
+ (E[@ | Yo, Mi] — E[@ | Y,))*P(Mi | ¥,) 3)

k=1

with the first term representing within-model variance due to
parameter uncertainty and the second term representing
between-model variance due to conceptual uncertainty (uncer-
tainty in model choice).

The posterior model weights P(My | y,) are derived from Bayes’
theorem. To obtain these weights, the prior belief about each mod-
el’s adequacy P(My) is updated with the evidence of the observed
data:

M;)P(M
P(M | y,) = LYo [ MUPOL @)
>ip(¥o | Mi)P(My)
where p(y, | M) represents Bayesian model evidence (BME). It
quantifies the average likelihood of the observed data for model
M,, accounting for its prior parameter space U:

p(y, | My) =/M p(Y, | My, w)p(uy | My)du,. 5)
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Here, p(u, | My) denotes the prior distribution of the parameters
u, in model M,, while p(y,| My, u) is the likelihood of the
observed data corresponding to the parameter set u, of model M.

The integral in Eq. (5) can be either evaluated numerically (Kass
and Raftery, 1995) at high computational costs, or approximated
mathematically by so-called information criteria. The Kashyap
information criterion (KIC) (Neuman, 2003), the Bayesian informa-
tion criterion (BIC) (Schwarz, 1978; Raftery, 1995), and the Akaike
information criterion (AIC) (Akaike, 1973) are the most commonly
used ones within the BMA framework, although the AIC does not
originate from the Bayesian context (e.g., Burnham and
Anderson, 2004). While these criteria are favorable due to their
computational efficiency, they have been shown to yield inaccu-
rate and contradicting model ranking results in numerous studies
(see e.g., Ye et al., 2008; Tsai and Li, 2008; Ye et al., 2010; Singh
et al,, 2010; Morales-Casique et al., 2010; Foglia et al., 2013). In a
benchmarking exercise (Schoniger et al., 2014), these information
criteria have been tested against computationally expensive
numerical reference solutions for BME in both synthetic and
real-world cases. The benchmarking clearly demonstrated that
information criteria are poor approximations of BME in almost
all cases and yield misleading model ranking results, and that
brute-force numerical techniques for evaluating BME should be
used whenever possible. Thus, we perform the BMA analysis in a
Monte Carlo framework and evaluate BME via brute-force Monte
Carlo integration. This method was shown to yield the most accu-
rate results in the intercomparison study of Schoniger et al. (2014).

2.2. Model justifiability analysis

In this study, we focus on the properties of the BMA tradeoff
between performance and complexity. In the limit of an infinite
data set size, there is no need for such a tradeoff because the true
model is perfectly known. Then, BMA will identify the true model
(if it is part of the model set) with a weight of 100%, regardless of

Homogeneous Zonated

Interpolated

99

its complexity. We will call the successful identification of the true
model through BMA model self-identification. With a limited
amount of data, however, the optimal tradeoff has to be found,
because an overly flexible model will fail in producing reliable
prognoses (mostly due to over-fitting problems), while a too sim-
ple model will make overly confident, biased predictions.

Self-identification is achieved faster for low-complexity true
models, because high complexity can only be justified by large data
sets. We will prove that BMA is consistent with this reasoning by
showing that the maximum level of complexity that can still be
self-identified is shifting upwards with increasing data set size
and downwards with decreasing data set size. Note that, in con-
trast to other methods that choose an optimal model based on a
non-Bayesian tradeoff between performance and complexity, sim-
ple true models will still be recognized by BMA through a large cal-
ibration data set, while other methods such as the AIC tend to
overestimate the true complexity with increasing data set size
(Burnham and Anderson, 2004).

We propose to test how much data are required for model
self-identification in a controlled, synthetic setup. We let the com-
peting models take turns in generating synthetic data sets, based
on random parameter realizations per model. Then, we perform
the standard BMA analysis for each of the synthetic data sets,
and average the obtained model weights over all data sets that
were generated by a specific model. The averaged weights can be
summarized in what we call a model confusion matrix. We borrow
the term “confusion matrix” from the field of machine learning. A
confusion matrix, or “contingency table”, refers to a specific table
layout that easily visualizes the score of a classifier algorithm by
dividing into correctly classified objects and erroneously (“con-
fused”) classified objects. Such a matrix is quadratic and, in the
case of a model confusion matrix, has the size N,;, x Ny,.

Fig. 1 shows a schematic drawing of a model confusion matrix
in its optimum state. The columns correspond to the respective
defined-to-be-true models, i.e. the data-generating models. The
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Fig. 1. Schematic illustration of how the model confusion matrix is constructed in a Monte Carlo framework for BMA. Each model takes its turn to generate N, random
synthetic data sets. For each of these data sets, model weights are determined based on the BME values achieved by the competing models. Model weights are averaged over
the data sets generated by each model. The average weights for the four models are placed into the respective column that corresponds to the data-generating model. In the
best case scenario, each model can be perfectly identified based on its own data sets, i.e. the main diagonal consists of mean model weights equal to one, and the off-diagonal

entries are equal to zero.
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rows correspond to the models that shall be ranked through BMA.
Each data-generating model is perfectly identified as the true one
with a posterior probability of 100% (all main diagonal entries
are equal to one), whereas all models that did not generate the data
receive a model weight of 0% (all off-diagonal entries are zero). For
actual applications, however, the matrix is expected to show a
suboptimal state. Models that did not generate the data could erro-
neously receive a significant probability of being the true one (they
could be “confused” with the true one), while the true models
might receive a weight significantly less than one. Note that this
is equivalent to statistical hypothesis testing, with two competing
models formulated as null hypothesis and alternative hypothesis,
respectively. The model confusion matrix corresponds to the
Bayesian probability matrix of correct outcomes versus type I
and type II errors. However, in the model comparison case, typi-
cally there is no clear null hypothesis, such that none of the errors
is perceived more critical than the other.

The model confusion matrix yields the maximum level of com-
plexity that could potentially be self-identified and hence justified
from the current experimental setup. Justifiability is achieved, if
the data-generating model receives a higher weight than the com-
peting candidate models. The absolute value of the weight relates
to the degree of justifiability, i.e. a weight of one corresponds to
perfect justifiability, and a weight of slightly more than 1/N,, cor-
responds to highly uncertain justifiability. The maximum level of
complexity that can be self-identified corresponds to the complex-
ity of the most complex model in the set that can still be justified.

If two or more models cannot be distinguished (i.e., the true
model cannot be identified), this can have two reasons. First, the
models might actually be very similar in their predictions. This
means that, with the given experimental setup, they can hardly
be discriminated. In that case, a modeler could decide to assign
“diluted” prior weights in order to account for the fact that these
models (seem to) belong to the same group of models (George,
2010). Second, the amount of data is too low to identify a complex
true model because of the principle of parsimony. If the models
cannot be sufficiently distinguished under the given conditions,
other experimental designs (i.e., including more data and/or other
data types) could be used to test whether the models at hand are
actually not distinguishable or whether the tradeoff with parsi-
mony under a limited amount of data was the reason for the lack
in justifiability.

The model confusion matrix further represents the potential of
each model in the model competition. A model that can be per-
fectly self-identified with the given experimental setup is expected
to also obtain a weight of close to 100% in the model ranking based

z (cm)

on actually observed data, if it represents the true system suffi-
ciently well. Any significant decrease in the model weight when
moving from the synthetic data analysis to the real data analysis
indicates a significant mismatch between the model predictions
and the data.

3. Groundwater model calibration via hydraulic tomography

We will base our analysis on experimental data from Illman
et al. (2010). They used steady-state cross-hole pumping tests to
perform hydraulic tomography of a sandbox aquifer. The experi-
mental setup is briefly described in Section 3.1. For the inversion
of the hydraulic tomography data, a groundwater model must be
assumed. The four competing parameterizations of hydraulic con-
ductivity we consider in the groundwater model are presented in
Section 3.2. These four parameterizations constitute the set of
models to be ranked by the BMA analysis in Section 5. Note that
we use the terms “parameterization” and “hydraulic conductivity
model” interchangeably in this study. Section 3.4 describes the
inversion procedure, and Section 3.5 the numerical implementa-
tion of both the inversion and the BMA analysis.

3.1. Experimental setup

The construction of the synthetic aquifer in a vertical sandbox is
described in detail in [llman et al. (2010), such that we will only
summarize the main characteristics here. The sandbox dimensions
are 193.0 cm length, 82.6 cm height and 10.2 cm width. A natural
layering was achieved by filling the sandbox through a cyclic flux
of sediment-laden water under varying conditions, using eleven
different sand types. The final layering is visible from the frontal
view photograph in Fig. 2. Hydraulic conductivity of the layers var-

ies between less than 1 x 1072 cm/s and more than 3 x 10! cm/s.
This layering was constructed with natural sedimentation pro-
cesses in mind, with the goal to test geostatistical inversion tech-
niques on realistic structures.

At 48 ports, horizontal wells were installed which allow for mon-
itoring with pressure transducers or for pumping. Since the wells
penetrate the sandbox horizontally, the aquifer can be modeled in
2D, and the domain relevant for modeling is sized 160 cm x 78 cm.
The hydraulic heads at the left- and right-hand boundaries
are fixed by constant head reservoirs, and we treat the top boundary
as a constant head boundary due to ponding water.

We use up to six cross-hole pumping tests for hydraulic tomog-
raphy, i.e. for calibration and ranking of the groundwater models.

Fig. 2. Experimental setup of the sandbox aquifer (modified after Illman et al. (2010)): Black numbers indicate soil layers, blue and green numbers in squares indicate port
numbers. Blue marked squares represent the ports used for hydraulic tomography (calibration), green marked squares represent ports used for independent cross-hole

pumping tests (validation).
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The corresponding ports are labeled in blue in Fig. 2. We further
use pumping tests performed in four other ports (labeled in green
in Fig. 2) to validate the conditioned model predictions.

We refer to Illman et al. (2010) for details on the available data
besides the cross-hole pumping tests used for conditioning and
model ranking here, such as hydraulic conductivity estimates from
core samples or single-hole pumping tests.

3.2. Set of considered models

We consider four alternative parameterizations of hydraulic
conductivity in the groundwater model: (1) A homogeneous,
effective-value approach, (2) a zonation approach (with a variation
in later analysis steps), (3) a geostatistical interpolation approach
based on pilot points, and (4) a full geostatistical approach. These
four parameterizations result from the following reasoning:

The simplest model is an effective-value approach, assuming an
equivalent homogeneous medium. This model only uses one single
parameter, which is the effective hydraulic conductivity value of
the whole domain. Such a model is plausible if only very limited
data is available to characterize the study area.

If knowledge about the site-specific geology is available, zones
of constant hydraulic conductivity are typically derived. Here, we
define the structure of the zonated model based on visual inspec-
tion of the sandbox layers. This of course represents a best-case
scenario, since such detailed geological information is not available
in field applications. We still include this approach to investigate
the potential of geology-based zonation when calibrated with
hydraulic tomography data. The zonated model consists of 19
zones (see numbered zones in Fig. 2), which corresponds to 19
parameters (one hydraulic conductivity value per zone).

The most complex parameterization is represented by a dis-
cretized fully geostatistical field, where each model cell (here:
12,480 grid cells, see Section 3.5) has a hydraulic conductivity
value that can vary randomly according to a geostatistical model.
Geostatistical inversion is the most commonly used approach
when using hydraulic tomography data (e.g., Yeh and Liu, 2000;
Li et al., 2005; Cardiff et al., 2009; Schoniger et al., 2012).

To soften the difference in complexity (assessed through
parameter counting) between the zonated and the geostatistical
model, we also consider a model variant which is generated by
geostatistical interpolation between 120 pilot points (e.g.,
RamaRao et al., 1995; Vesselinov et al., 2001; Castagna and
Bellin, 2009). The interpolated model only uses those cells as
parameters which correspond to pilot point locations. This
approach might be considered a reasonable compromise between
the ability to fit the calibration data well and the potential
over-parameterization by full geostatistics.

To visualize the structural differences between the different
models, we show individual parameter realizations of each model
in the left column of Fig. 4. These realizations represent conditional
realizations when calibrating on the observations during the
pumping test in port 44. Structural differences in the hydraulic
conductivity fields are most obvious between the homogeneous
model (Fig. 4a), the zonated model (Fig. 4b), and the two
geostatistical approaches (Fig. 4c and d): While the zonated model
shows characteristic edges along the zone boundaries, the
geostatistics-based approaches show a smoother transition
between small-scale areas of lower or higher hydraulic conductiv-
ity. The homogeneous approach obviously is maximally smooth.
Differences between the two geostatistics-based approaches are
less evident. The interpolated field is even more smooth than the
fully geostatistical field, with more connected areas of high or
low hydraulic conductivity. Resulting differences in drawdown
predictions can be seen in the right column of Fig. 4. The draw-
down patterns produced by the zonated model and the two

geostatistics-based models look very similar, but differ from the
pattern produced by the homogeneous model. We will analyze
the performance of the four alternative parameterizations in detail
in Section 5.

3.3. The problem of assessing model complexity and model
justifiability

Intuitively, the four considered models vary greatly in complex-
ity. However, there is no clear definition of complexity that would
allow us to judge which one of those models is most appropriate
given a specific amount of data. To illustrate the differences in
complexity, we have chosen three different measures to quantify
complexity: first, we simply count the number of adjustable
parameters as, e.g., done by some of the information criteria (see
Section 1); second, we use the results of a factor analysis based
on the hydraulic conductivity fields produced by the models; and
third, we determine the average standard deviation of drawdown
predictions when calibrated on six pumping tests. The latter is
most closely related to how BMA actually deciphers model com-
plexity, because it is a measure for a model’s flexibility in the pre-
diction space as opposed to the parameter space. The three
measures are shown in Fig. 3. The color scheme used here ranges
from blue for lowest complexity to red for highest complexity
and is maintained throughout the manuscript.

We note that, in factor analysis, the number of determined fac-
tors strongly depends on the used criterion. Here, we have applied
the Kaiser criterion (Kaiser, 1960) which claims that a factor should
explain a larger variation than an average single item. If we instead
choose to keep all those factors which in sum explain 90% of the
total parameter variance, the number of determined factors will
change (see Fig. 3). Thus, the resulting number of factors can only
provide a rough indication how many data points are needed when
aiming at a calibration problem that should at least be determined
(if not even overdetermined). Here, the factor analysis could not
provide a clear hint whether the most complex geostatistical
model is appropriate or over-parameterized given the at maximum
210 available data values.

While simply counting the number of parameters without
accounting for correlation is obviously misleading, a factor analysis
could be a useful pre-processing tool to make a first guess about
the complexity and justifiability of a model with little effort.
However, it cannot reveal anything about the merits of each model
compared to each other and in light of the data. Considering all of
parameter number, parameter variances and data-parameter
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Fig. 3. Complexity of the four considered parameterizations, quantified as (a) the
number of adjustable parameters (squares, left axis), (b) the number of factors with
eigenvalues larger than one (circles, left axis), (¢) the number of factors that explain
90% of the total variance (dashed circles, left axis), and (d) the average standard
deviation of drawdown predictions (diamonds, right axis).



102 A. Schoniger et al./Journal of Hydrology 531 (2015) 96-110

sensitivity to assess the justifiability of a model’s complexity calls
for a more elaborate approach such as BMA.

3.4. Inversion procedure

A review of inversion techniques for hydraulic tomography is
given by Cardiff and Barrash (2011) and by Schoéniger et al.
(2012). Here, we solve the inversion problem by fully Bayesian
updating of the prior parameter distribution with the evidence
provided by the hydraulic tomography data. We obtain posterior
parameter estimates with the bootstrap filter (Gordon et al.,
1993). While computationally expensive, this algorithm does not
require any assumptions (such as Gaussianity or linearity) on the
involved probability distributions and the dependence between
data and parameters.

3.5. Numerical implementation

For the numerical implementation of the inversion procedure,
we discretize the model domain (the sandbox) into 160 x 78 =
12,480 elements and 12,719 nodes. This discretization corresponds
to a cell size of 1 x 1 cm.

To assign parameter values to each cell, we draw from prior
parameter distributions. For all models, we assume that
log-conductivity (InK) follows a Gaussian distribution. The prior
mean is set to InK = —2.56 (corresponding to K = 0.077 cm/s),
which is the average value of hydraulic conductivity estimates
from core samples, single-hole pumping tests and one cross-hole
pumping test not used in either calibration or validation here.

For the homogeneous medium approach, we draw random In K
values from a univariate Gaussian distribution centered about this
prior mean, with a variance of s?,, = 0.87. This value corresponds
to the variance observed in the core samples, which are deemed
to represent local-scale variability best out of the available data
types. Given a specific structure, the variance of the prior parame-
ter distribution defines the flexibility of the model. By assigning a
realistic value, we aim at making the BMA competition, which
penalizes flexibility (complexity), as fair as possible.

For the zonated model, we draw random parameter values from
the same distribution for each of the zones independently, i.e. we
do not assume correlation across the layer boundaries. Thus, while
we make use of the visible packing pattern in the sandbox to
inform the geometry of the layers, the model does not benefit from
any knowledge about the properties of each layer.

For both geostatistics-based parameterizations, we assume a
stationary multi-Gaussian distribution for In K, with an exponen-
tial covariance model and a nugget of zero. The exponential vari-
ogram model is defined by the prior mean, the prior variance,
and correlation lengths in horizontal and vertical directions,
respectively. The prior mean is again set to K = 0.077 cm/s, to be
consistent over all four parameterizations. The prior variance is
increased to s, = 2.0, since we are trying to mimic the sharp
edges between layers with a smooth spatial model. The correlation
length in vertical direction is derived from visual inspection of the
sandbox layers and set to 6 cm. The correlation length in horizontal
direction is set to 60 cm. This value is determined from maximizing
the likelihood of the hydraulic conductivity values obtained from
core samples, given the predefined mean, variance, and correlation
length in vertical direction. Note that we use other available data
besides the cross-hole pumping tests for the definition of the prior
parameter distributions, but not for direct conditioning of the spa-
tial random fields, to maintain comparability with the other two
parameterizations.

To set up the interpolated model, we define 6 x 20 = 120 pilot
point locations on a regular grid. Their configuration is chosen such

that each correlation length of the geostatistical model is sampled
by about two pilot points. A random realization of this model is
generated by drawing random values from the multivariate prior
distribution for the pilot points. This approach still honors the spa-
tial dependence between the pilot point values prescribed by the
geostatistical model. Subsequently, the values in cells between
the pilot points are interpolated based on kriging (e.g., Kitanidis,
1997). Recall that this type of interpolation is deterministic, which
constitutes the difference to the fully geostatistical model. In the
fully geostatistical case, each cell is allowed to vary randomly
according to the geostatistical model. This is the reason why the
interpolated model produces smoother spatial fields than the geo-
statistical model as observed in the left column of Fig. 4. The
random fields are generated with the FFT-based random field
generator also used in Nowak et al. (2008, 2010, 2012).

Between one and six pumping tests are included into the inver-
sion (see ports marked blue in Fig. 2). For each pumping test, 48
observations of steady-state drawdown are available. Here, we
exclude the observation directly at the pumping port. We further
exclude observations from the top of the sandbox (observation
ports 1 to 12, lllman et al. (2010)), where the signal-to-noise ratio
was found to be very low in a pre-processing analysis not shown
here. This leaves us with 35 observations per pumping test, yield-
ing up to 210 observations used in the inversion.

We define the likelihood function p(y, | My, u;) needed to per-
form the Bayesian update and to solve the Bayesian integral in
Eq. (5) through a Gaussian distribution, centered about the
observed data y,. We assume uncorrelated errors with a standard
deviation of 1cm. This assumption covers both measurement
errors of up to 0.5 cm and unknown structural errors. In general,
correlated errors and other distribution shapes should be used to
define the likelihood function where adequate. Model-structural
errors could also be considered with more complex statistical or
stochastic descriptions, but such an analysis would be beyond
the scope of the current study.

Based on random realizations generated from each of the four
parameterizations as described above, we determine the BME
value by brute-force Monte Carlo integration of Eq. (5); i.e., we
average the likelihood values obtained from all parameter
realizations.

We monitor the convergence of the BME estimate over increas-
ing ensemble sizes to ensure a stable estimate as basis for the cal-
culation of model weights. The final ensembles comprise 200,000
realizations for the homogeneous model, and 10 million realiza-
tions in the case of the zonated, the interpolated, and the geostatis-
tical model.

We further determine the effective sample size (ESS) (Liu, 2008)
for each model ensemble to detect any problems with degenera-
tion of the bootstrap filter. The ESS measures the number of real-
izations which contribute significantly to the BME estimate and
the posterior model predictions. ESS values vary between models
and combinations of pumping tests used in the inversion. The low-
est ESS results from calibration on all six pumping tests. ESS values
then range between 11,671 for the homogeneous model and 171
for the geostatistical model. Together with the convergence analy-
sis, these values confirm that we obtained sufficiently reliable pos-
terior statistics.

4. Justifiability of the four parameterizations based on synthetic
data

4.1. Construction of the model confusion matrix
To perform a model justifiability analysis, we first need to gen-

erate synthetic data sets with each one of the competing models.
We therefore randomly draw Ny, = 1000 parameter realizations
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Fig. 4. Conditional realizations of hydraulic conductivity (left column) obtained from the four different parameterizations when conditioning on the observed drawdown
during pumping test in port 44 (black square), and corresponding drawdown prediction (right column). (a, e) Homogeneous model; (b, f) zonated model; (c, g) interpolated

model; (d, h) geostatistical model.

from the prior distribution p(u, | My) for each of the four models
and determine their corresponding drawdown predictions. We
use the same experimental setup and configuration of observations
for the synthetic truths as described for the real observations (see
Section 3.1). Based on each of these synthetic data sets
Yoxj» k=1,...,Ny and j=1,..., Ny, posterior model weights for
all of the competing models are determined from Eq. (4). This sums
up to a number of Ny = Zﬁgl N4, BMA runs for a given experimen-
tal setup. The prior model weights are set to P(My) = 1/Ny, such
that all models are equally likely before accounting for the evi-
dence in the synthetic data sets. In a post-processing step, the pos-
terior model weights are averaged over each data-generating
model, i.e. all those weights are averaged that were obtained with
the synthetic data sets generated by model M;:

Nak

P(Mi | ¥,,) = mZP(Mk | Yous): (6)
k3

where P(M | y,;) denotes the expected weight for model M under
data from model M,.

Fig. 1 schematically shows how the model confusion matrix is
constructed and what its entries represent. The rows correspond
to models M (i.e. homogeneous, zonated, interpolated, and geosta-
tistical model, respectively) for which a posterior probability has
been determined based on integration of likelihoods over Ny, prior
parameter realizations (Monte Carlo integration of Eq. (5)). The col-
umns correspond to models M; (the same set as M, ) which gener-
ated the synthetic data. Each cell of this matrix shows the expected
probability according to Bayes’ theorem that, out of the considered
set of models, model M, is perceived as being most adequate to
predict a data set which was actually generated from model M,.
Thus, the averaged model weights in each column sum up to one.

To investigate the influence of data set size on the outcome of
model justifiability, we repeat the analysis for one, two, three, four,
five, and six pumping tests included in the inversion. Considering
all possible combinations of pumping test locations (e.g., 15 in
the case of two pumping tests, 20 in the case of three pumping
tests, and so on), this adds up to N, = 63 data set variants. For each
of the 63 data set variants, we obtain a model confusion matrix.
Finally, we average all model confusion matrices that correspond
to a specific data set size and assess their (dis-) similarity with
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the optimal result as given by the identity matrix (see explanations
in Section 2.2).

In total, N, - Ny = 252,000 BMA runs are performed. Compared
to the effort required for the inversion (i.e., the effort to generate
the prior ensemble of parameter realizations to be used for boot-
strap filtering, see Section 3.4), additional BMA runs are relatively
cheap, because they only need evaluations of likelihoods, but no
repeated simulations. This fact allows for a detailed analysis with
regard to data set size.

We monitor the convergence of the average weights P(My | y,,)
with increasing number of synthetic data sets Nq. This conver-
gence analysis confirmed that 1000 synthetic data sets per model
suffice to reach a stable result for the average weights.

4.2. Results and discussion

Fig. 5 summarizes the results of the model justifiability analysis
applied to the four competing parameterizations. Fig. 5a shows the
model confusion matrix as obtained when using a single pumping
test in the inversion, Fig. 5b and ¢ shows the model confusion
matrices based on three and six pumping tests, respectively. The
colors of the matrix columns are chosen according to the
data-generating model, and the color intensity increases with
increasing model weight.

The simplest model (homogeneous medium) obtains a signifi-
cantly higher weight than the competing parameterizations when
it generated the data (first column of the matrices), even if only
using a single pumping test. A perfect justifiability with a model
weight of 100% is achieved when using six pumping tests. This
means that its complexity is sufficiently supported even with the
smallest data set, and perfectly supported by the largest data set.
Following the same argumentation, the slightly more complex

(a) Data generated by (b)

Homogeneous Zonated Interpolated Geostatistical

Data generated by (C)

Homogeneous ~ Zonated

zonated model is also justified in all configurations, but with less
confidence than the simpler homogeneous model.

The interpolated model can hardly be self-identified when using
a single pumping test, because all four models receive a posterior
model weight close to their prior weight of 25%. This means that
either the complexity of the interpolated model is not yet justified
given 35 observations, and/or the models produce very similar pre-
dictions such that they cannot be discriminated. Since we have
shown that both of the simpler models can be self-identified rather
clearly based on one pumping test, the indecisive ranking between
the interpolated model, the zonated model, and the homogeneous
model indicates that the complexity of the interpolated model is
not yet supported by the smallest data set. When including more
data, the interpolated model can be self-identified and justified
with increasing confidence. However, it never reaches a model
weight of more than 50%, which means that there is never an “ab-
solute majority” in favor of justifiability for this model.

The most complex model (geostatistical random fields) cannot
be justified with these measurement configurations. Including
more pumping test data yields a clearer decision as indicated by
the increasing deviation of the posterior model weights from the
prior weights. However, this decision is in favor of the less com-
plex, but similarly structured interpolated model, and not in favor
of the geostatistical model, even though it is now the one that in
fact generated the data. Thus, using six pumping tests with 35
observations each does not yet suffice to justify its high level of
complexity. Increasing the amount of pumping test data further
is expected to lead to an even clearer decision in favor of the more
parsimonious model, until a breaking point is reached at which the
true underlying complexity is finally justified in light of the avail-
able data. Due to correlations in the observed data, this breaking
point might require a too large amount of calibration data which
cannot be accomplished in real applications.
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Fig. 5. Justifiability of the four models when using an increasing amount of pumping test data. (a-c) Model confusion matrices as obtained when including one, three, and six
cross-hole pumping tests, respectively. (d) Average model weight for the data-generating model over increasing amount of used cross-hole pumping tests.
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In general, it can be observed that with more data, any model
can be self-identified with higher confidence, because the values
on the main diagonal increase monotonically with increasing
data set size. This is in line with BMA theory, which claims
unique identification of the true model (if it is part of the con-
sidered model set) in the limit of infinite data set size. Further,
within each model confusion matrix, the color intensity of the
main diagonal entry decreases from the top left to the bottom
right, because the higher-complexity models need more data to
be justified than the lower-complexity models. The fact that
the simplest model always obtains the highest weight on the
main diagonal demonstrates that BMA is able to identify the true
underlying model, even if it is of low complexity and a large
data set is used. This confirms that BMA is not prone to
over-fitting the data, as opposed to, e.g., model selection with
the AIC (Burnham and Anderson, 2004).

The weights obtained by each model when it actually gener-
ated the data are plotted over increasing data set size in Fig. 5d.
This graph shows that, for the simplest model, perfect justifica-
tion through a model weight of 100% is approached in an
asymptotic behavior. This asymptotic phase is not yet reached
in the case of the zonated or the interpolated model, indicating
that their level of complexity still requires a significantly larger
amount of data to be perfectly justified. The model weight for
the most complex model stagnates at 33% in the range of data
set sizes investigated here. As explained before, we expect that
a drastically larger data set would be required to justify the geo-
statistical model.

5. Comparison of the four parameterizations based on observed
data

In this section, we present the results of inverting the actually
observed hydraulic tomography data. Based on these data, we per-
form the standard BMA analysis to rank the four hydraulic conduc-
tivity parameterizations according to their plausibility in light of
the observed data. We will interpret the obtained ranking based
on our findings from the model justifiability analysis (previous sec-
tion). For details on the numerical implementation, we refer to
Section 3.5.

5.1. Results

5.1.1. Tomograms

By inverting the observed drawdown data from all six pumping
tests, a so-called hydraulic conductivity tomogram is obtained for
each parameterization. It is determined as the posterior mean of
hydraulic conductivity, denoted as E[u; | My,y,]. Such tomograms
are computed based on all four parameterizations. Fig. 6 shows
these tomograms in the left column. The right column shows their
respective uncertainty, determined as the posterior variance of
hydraulic conductivity, V[u, | My,y,].

The tomogram most rich in contrast is the one obtained from
the zonated model. Because of its low complexity, its parameter
values have been constrained efficiently by the inversion. This is
apparent from the comparatively low posterior variance in the
hydraulic conductivity estimate. The two more comple,
geostatistics-based models yield a smoother hydraulic conductiv-
ity estimate in combination with a partly higher uncertainty.
Among those two models, the interpolated model yields a lower
uncertainty. This is due to the fact that the interpolation between
the pilot points via kriging is deterministic, such that there is
generally a lower uncertainty between pilot points than in the fully
geostatistical field. The striped pattern in its posterior variance

(Fig. 6g) is a well-known artifact of localizing the inversion to pilot
points.

5.1.2. Model performance in inversion

We assess the success of the inversion for each parameteriza-
tion as root mean square error (RMSE) produced by the posterior
mean prediction with respect to the data used in the inversion:

RMSEk = \/I\lls Z (E[y | YOkaJ - yo)z' (7)

N; is the size of the calibration data set y,. Ey | y,, M| denotes
the posterior mean prediction of model M,. The performances of
each parameterization when using data from one to six pumping
tests in the inversion are listed in Table 1. The RMSE values for
individual combinations of pumping tests are averaged to obtain
one representative value per data set size.

The homogeneous model performs worst among the alternative
parameterizations. It produces the highest error for all data set
sizes. The two geostatistics-based models produce much lower
errors, with the geostatistical model leading to only very minor
improvements over the less complex interpolated model. A larger
improvement could be expected when using an even finer
resolution, i.e.,, a higher number of grid cells per correlation
length. The zonated model performs slightly worse than the
geostatistics-based models, but much better than the homoge-
neous model. It is worth noting that all models show a slight
increase in the error when increasing the data set size from one
to three pumping tests. When including even more data, however,
the error reduces again, with the exception of the homogeneous
model. The error reduction is due to the stronger conditioning
effect in the inversion which increases the skill of the more flexible
models.

5.1.3. Model ranking

We perform the BMA analysis for the data set variants
described in Section 4.1, i.e., for different data set sizes (ranging
from one to six pumping tests) and different combinations of
pumping ports. We then average the obtained model weights over
all data set variants of a specific size. The average model weights as
a function of data set size (number of pumping tests used) are
shown in Fig. 7a.

It can be observed that, starting from a uniform prior distribu-
tion of model weights (using zero pumping tests for calibration),
model choice becomes increasingly clear with increasing number
of pumping test data used in the inversion. The zonated model is
clearly favored over the competing models in all data set sizes. It
obtains a weight of more than 50% when using at least two pump-
ing tests for inversion, and reaches a weight of 76% when using six
pumping tests. While the weight of the zonated model increases
over increasing data set size, the weights of the homogeneous
and the geostatistical model decrease to less than 1% and 6%,
respectively. The interpolated model shows a relatively stable
weight of about 16%. When increasing the data set size from four
pumping tests to six pumping tests, there is a very slight increase
in model weight for the interpolated model from 15.5% to 17.2%
which could be related to a slow shift in justified complexity.
When using the largest data set considered here, the zonated
model is clearly the most adequate parameterization. The two
geostatistics-based models still obtain significant weights that jus-
tify keeping those models in the set, whereas the homogeneous
model could be rejected based on a weight of 0.3%. In general, it
should be checked prior to discarding a model from the set
whether this model still contributes significantly to the
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Fig. 6. Tomograms (left column) and their uncertainty (posterior parameter variance, right column) obtained from the four different parameterizations when using six
pumping tests in ports 44, 47, 32, 35, 14, and 17. (a, e¢) Homogeneous model; (b, f) zonated model; (c, g) interpolated model; (d, h) geostatistical model.

Table 1
Average RMSE in drawdown predictions (cm) as obtained by the posterior mean of
each parameterization.

Model Number of pumping tests included in inversion

1 2 3 4 5 6
Homogeneous 0.35 0.40 0.41 0.42 0.42 0.42
Zonated 0.22 0.23 0.23 0.23 0.22 0.21
Interpolated 0.19 0.20 0.20 0.19 0.18 0.17
Geostatistical 0.19 0.19 0.19 0.18 0.18 0.17

between-variance part of the overall prediction variance. Previous
studies have shown that this can be the case despite a very small
model weight (Rojas et al., 2010; Wohling et al., 2015).

5.1.4. Model performance in validation

We finally want to assess the performance and plausibility of
the four models after conditioning on the data. Several approaches
are available for validation, such as collecting additional data from
core samples, single-hole pumping tests or flux measurements.
Studies by Liu et al. (2007) and Illman et al. (2007) have indicated
that, for large-scale groundwater models, validation with indepen-
dent cross-hole pumping tests is most appropriate, because they

provide more integral information about the adequacy of the mod-
els in large regions of the model domain.

We also include the BMA predictions in the validation assess-
ment to find out whether the combination of the predictive distri-
butions (Eq. (1)) is able to outperform the individual models in this
specific case.

We compare the individual and the BMA-based model perfor-
mance in predicting the drawdown distribution in the sandbox
during pumping tests in ports 39, 40, 15, and 16 (see Fig. 2). These
pumping test data were not used for calibration and thus allow for
an independent validation of the models.

We evaluate three different performance metrics to cover
aspects of accuracy, precision, and predictive coverage. To assess
the accuracy of the models, we again determine the RMSE (Eq.
(7)), now with respect to drawdown predictions ¢ for the valida-
tion pumping tests. For the model-weighted average, E[¢ | y,, M]
is replaced by E[¢ | y,] (Eq. (2)).

As a measure of precision, we determine the average posterior
variance in the predicted values of the individual models
Vie | ¥,, Mi] and of the model-weighted average V(¢ | y,] (Eq. (3)).

We determine the predictive coverage (Hoeting et al., 1999) as
the fraction of observed data points that fall within the 90%
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Fig. 7. Model ranking results when using an increasing amount of observed
pumping test data. (a) Model weights obtained for the four parameterizations, (b)
model weights obtained when replacing the geologically-informed zonation with
an uninformed zonation.

Bayesian credible intervals predicted by the individual models and
the model-weighted average.

The resulting statistics for the four parameterizations and their
BMA-weighted average are listed in Table 2. In terms of accuracy,
both geostatistics-based models yield the best results. The zonated
model performs slightly worse, but still much better than the
homogeneous model. The model-weighted average reflects a com-
promise solution between the three more complex models.

In terms of precision, the homogeneous model yields an overly
confident prediction, while the geostatistics-based models show
the largest uncertainty in their predictions. The model-weighted
ensemble spread is larger than the individual model uncertainties.

Finally, the predictive coverage is best (but still too low) in the
case of the interpolated model. The predictive coverage values
achieved by the zonated model, the geostatistical model, and the
BMA ensemble are slightly worse, while the homogeneous model
shows a really poor coverage. Predictive coverage is especially
low for all models in the case of pumping in port 15. From the lay-
ering in the sandbox (Fig. 2), it is apparent that this pumping port
is located directly at a layer boundary. The zonated model is best
able to reproduce the drawdown distribution there, with the
highest predictive coverage and the lowest RMSE among all four

Table 2
Performance of the four models and the BMA-weighted prediction in validation setup,
predicting drawdown distributions induced by pumping in ports 39, 40, 15, and 16.

Model RMSE Standard deviation Predictive coverage'
(cm) (cm) (%)

Homogeneous 0.52 0.06 18

Zonated 0.37 0.20 70

Interpolated 0.33 0.22 74

Geostatistical ~ 0.34 0.23 70

BMA 0.36 0.27 68

1 Based on 90% prediction intervals.

models. The lower ports 39 and 40 are both located in a layer
which has not been pumped in the calibration setup. These pump-
ing tests thus provide new information on the heterogeneity in
hydraulic conductivity, which is not yet fully resolved by the cali-
brated parameterizations. This is also apparent from the relatively
high posterior variance of the tomograms (right column of Fig. 6) in
the vicinity of these two ports.

5.2. Discussion

The results of the BMA analysis based on the observed data have
shown that the zonated model ranks first in all measurement con-
figurations tested here. There are two possible reasons for a model
to win the contest: either it scores because of its simplicity, or
because of its fit to the data (or because of both, which character-
izes a most plausible model in the spirit of Occam’s razor). To
investigate which of these reasons are in effect here, we pursue
three complimentary lines of discussion.

First, we have a more detailed look at model performance. The
zonated model with its structure derived from the visible layering
of the sandbox produces an acceptably small error in all data set
sizes. There is no sign of over-fitting the data, since the RMSE stays
almost constant over increasing data set size. The much more par-
simonious homogeneous model performs worst among the alter-
native parameterizations. Thus, its poor BMA model ranking
result clearly stems from a significant mismatch between pre-
dicted and observed drawdown, which cannot be compensated
by the minimum complexity of the model. The smallest errors
are produced by the much more flexible geostatistics-based mod-
els. The most complex model, however, cannot improve signifi-
cantly on its less complex interpolated variant. This indicates
that the additional complexity cannot be exploited in the inversion
to achieve a better fit. Thus, the zonated model seems to provide
sufficient flexibility (but no more than that) at the right places to
score in both disciplines, goodness-of-fit and parsimony.

As second line of discussion, we compare the model weight dis-
tribution based on the observed data with the model weight distri-
bution obtained in the justifiability analysis (Section 4.2). From the
justifiability analysis, we know that the zonated model can be well
identified with a weight of 75% if it truly is the data-generating
model. When using the actually observed data, it obtains practi-
cally the same weight (76%) in the same experimental setup. Thus,
the zonated model lives up to its full potential, which is a strong
indication that it is in fact close to the observed system response.

To cover this interpretation, we hypothesize for a moment that
this conclusion is not true, and that the underlying system is actu-
ally closer to the more complex interpolated model. For that case,
the justifiability analysis predicts that the weight for the interpo-
lated model should be roughly twice the weight of the zonated
model. This expectation, however, is not reflected in the ranking
based on the observed data. Apparently, the interpolated model
does not live up to its potential determined in the justifiability
analysis. We attribute this to a significant mismatch with regard
to the observed data, and disregard our alternative hypothesis.
Again, we find that the zonated model is not only favored due to
its simplicity.

We verify this with a third test. We introduce another competi-
tor into the model set which is similarly parsimonious as the
zonated model, but uses an apparently wrong (i.e., geologically
uninformed) structure. We define this additional model as zonated
parameterization with 24 rectangular zones, distributed regularly
and equispaced over the model domain (4 columns x 6 rows).
While this zonation is at least oriented horizontally along the main
axis of the visible layering in the sandbox, it does not benefit from
our knowledge about the actual geometry of the layers. The model
weights obtained when replacing the geologically informed
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zonation with the geologically uninformed variant are shown in
Fig. 7b. The uninformed variant is outperformed by all three alterna-
tive models for all data set sizes. When using more than three
pumping tests in the inversion, the interpolated model achieves
an absolute majority of the weights, and the weight of the unin-
formed zonation model is reduced to less than 5%. Here, even the
homogeneous model receives a weight higher than its prior model
weight when using one or two pumping tests in the inversion. This
reflects that the interpolated model still lacks justifiability under
these experimental setups as demonstrated in the justifiability anal-
ysis. The uninformed variant of the zonated model provides a degree
of flexibility similar to the informed variant, but this flexibility is
allowed at the wrong places. We again conclude that the zonated
model with its structure derived from the visible packing pattern
scores because it combines low complexity with good performance.

To sum up, we have thoroughly investigated the factors con-
tributing to the success of the geologically-informed zonated
model in the ranking and conclude that it meets both criteria that
make up the Bayesian tradeoff, goodness-of-fit and parsimony (i.e.,
relatively small variance in its predictions). This model therefore
wins the competition through the eyes of Occam’s razor. On the
other hand, we have illustrated that a zonation-based model which
is not informed by the apparent layering will not be able to com-
pete with either the simpler homogeneous medium approach or
the more flexible geostatistics-based approaches.

Finally, we have compared the skills of the individual models
and the model-weighted average in a validation setup. Results
have shown that the zonated model represents a compromise solu-
tion between accuracy, prediction uncertainty and predictive cov-
erage. In this specific experimental setup, the winner of the model
competition even outperforms the BMA-weighted average.

6. Summary and conclusions

In this study, we address the question which complexity of a
model is justified given a specific amount of calibration data.
Model complexity as such can be defined in various ways, ranging
from simple parameter counting over factor analysis to concepts
that also account for data-parameter sensitivity. We propose to
use Bayesian model averaging (BMA) to measure complexity and
to identify the justified degree of complexity, because BMA is a
multi-model approach that implicitly follows the principle of par-
simony and avoids over-fitting of the data. BMA determines the
optimal tradeoff between goodness-of-fit and complexity based
on Bayes’ theorem. We lay a special focus on the characteristics
of this tradeoff by investigating the shift in justified complexity
with an increasing amount of calibration data.

We suggest a two-step BMA procedure to identify the optimal
balance between data requirements and model complexity: First,
a model justifiability analysis is performed in a synthetic setup to
determine the maximum level of complexity that could possibly
be justified with the given type and amount of experimental data.
This analysis allows us to assess the complexity aspect of the BMA
tradeoff isolated from the performance aspect. Second, the stan-
dard BMA analysis is performed to assess the adequacy of each
model based on the observed data. Results are then interpreted
in light of the findings from the model justifiability analysis. This
two-step procedure answers the question, whether the model
ranking first in the BMA analysis is really the best choice given
the current set of models, or if it is only optimal given the currently
too limited amount of data which does not justify a more complex
model among the set of considered models, although the more
complex one would actually be closer to the observed system
response. Further, the justifiability analysis can reveal whether
two models that receive the same posterior weight in the standard

BMA procedure are actually very similar in their predictions or
whether the same weight just indicates a similar overall
goodness-of-fit.

A main contribution of our study is the proposed procedure for
the first step, the model justifiability analysis. We want to system-
atically test whether, given a specific experimental setup, BMA is
able to identify the respective true underlying complexity. To
achieve this, we let each of the alternative models generate many
random synthetic data sets, mimicking the measurement configu-
ration of the experimental setup that produces the real data. The
standard BMA analysis is then performed based on these synthetic
data sets and the resulting BMA weights are averaged per
data-generating model. By looping over the model set, we populate
what we call a model confusion matrix. This matrix expresses how
likely it is to identify any specific model from the set of considered
models if it was actually the true one, given the current experimen-
tal setup. If a specific degree of model complexity can be
self-identified with significance, we call it justifiable through the
eyes of BMA.

We have illustrated our suggested approach with an application
to groundwater model calibration via hydraulic tomography. The
drawdown in a synthetic sandbox aquifer induced by several
pumping tests is simulated with a groundwater model. Four alter-
native parameterizations of hydraulic conductivity are considered,
which differ in complexity by orders of magnitude: a homoge-
neous model with one effective parameter, a zonated model
inspired by the visible layering in the sandbox with a few zones
(here: 19), a model based on interpolation between pilot points
(here: 120), and a geostatistical model that allows all cells (here:
12,480) to vary randomly according to the prescribed geostatistical
model.

Results of our two-step procedure have shown that, given the
synthetic data from up to six pumping tests, the geostatistical
model is not yet justified through the eyes of BMA. Only the
lower-complexity models can be self-identified and therefore jus-
tified sufficiently well. When using the actually observed data,
the zonated model with its structure derived from the visible lay-
ering of the sandbox ranks first in all investigated experimental
setups. The zonated model wins the model competition because
it shows a sufficiently small degree of complexity (which results
in a sufficiently small predictive variance), and it shows a good
quality of fit. Thus, it scores with respect to both counterparts of
the Bayesian tradeoff. The zonated model is therefore the most
adequate representation of the true system (at least on the basis
of drawdown data) out of the considered models. This finding is
in line with the expectation that sharp layer boundaries can be
well approximated by the zonated model with its structure derived
from the visible layering. The geostatistics-based models also have
their merits according to non-negligible model weights, probably
because they are flexible enough to image mixing effects at those
boundaries. It is important to note, however, that a zonation which
is not inspired by the true layering will not be able to compete with
geostatistics-based approaches. We have finally assessed the per-
formance of the different parameterizations in a validation setup.
The geologically-informed zonation represents a compromise solu-
tion between accuracy, prediction uncertainty and predictive
coverage.

In summary, our results suggest that aquifer characterization
via hydraulic tomography does not necessarily justify a geostatis-
tical description of aquifer heterogeneity. Instead, geology-based
zonation might be a more robust choice, but only if reliable infor-
mation about the layering is available. In practice, such a zonated
model could even be further equipped with prior knowledge by
prescribing correlations between layers/zones of similar material.
Pursuing the idea of combining the “best of two worlds” beyond
a linear combination of predictive distributions as done by BMA,
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a combination of a zonated model with a geostatistical description
of small-scale heterogeneities within the zones (see, e.g., Fienen
et al., 2008) could prove useful and most plausible in practical
applications. Further, multi-point geostatistics or multi-modal
marginal distributions might have larger geological reality, but
they are also conceptually more complex. Future research should
target the question whether such models would objectively be
favored in a BMA analysis given a realistically available amount
of data, and under which data types they would be favored. Since
the main difference in model behavior would be connectivity, we
expect that choosing such a type of model is more beneficial when
predicting solute transport than when predicting flow conditions.

The proposed model justifiability analysis is a very general
upgrade of the BMA procedure, as it is applicable to any type of
models and data. Given a sufficient budget of computation time,
the two-step BMA procedure is expected to facilitate the interpre-
tation of the resulting model ranking tremendously, especially in
field-scale applications. This is open to be tested in future studies.
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Abstract Bayesian model averaging (BMA) ranks the plausibility of alternative conceptual models
according to Bayes' theorem. A prior belief about each model’s adequacy is updated to a posterior model
probability based on the skill to reproduce observed data and on the principle of parsimony. The posterior
model probabilities are then used as model weights for model ranking, selection, or averaging. Despite the
statistically rigorous BMA procedure, model weights can become uncertain quantities due to measurement
noise in the calibration data set or due to uncertainty in model input. Uncertain weights may in turn com-
promise the reliability of BMA results. We present a new statistical concept to investigate this weighting
uncertainty, and thus, to assess the significance of model weights and the confidence in model ranking. Our
concept is to resample the uncertain input or output data and then to analyze the induced variability in
model weights. In the special case of weighting uncertainty due to measurement noise in the calibration
data set, we interpret statistics of Bayesian model evidence to assess the distance of a model’s performance
from the theoretical upper limit. To illustrate our suggested approach, we investigate the reliability of soil-
plant model selection following up on a study by Wohling et al. (2015). Results show that the BMA routine
should be equipped with our suggested upgrade to (1) reveal the significant but otherwise undetected
impact of measurement noise on model ranking results and (2) to decide whether the considered set of
models should be extended with better performing alternatives.

1. Introduction

Conceptual uncertainty has been widely recognized as a main source of uncertainty in environmental model pre-
dictions [e.g., Burnham and Anderson, 2003; Murphy et al., 2004; Refsgaard et al., 2006; Rojas et al., 2008; Renard
et al., 2010]. Especially for complex, coupled systems, reliable prognoses are hardly possible with a single-model
approach. When working with a single model, only the uncertainty due to forcings and parameters of that single
model can be assessed (within-model variance). The uncertainty due to the very choice of the most adequate
representation of the system is neglected, leading to a severe underestimation of the overall predictive uncer-
tainty. In an attempt to account for the uncertainty in model building, a set of plausible competing models
should be considered instead. In such multimodel approaches, weights are assigned to each conceptual model
based on goodness of fit and, often, on some penalty for complexity. With these weights, an averaged estimate
can be obtained (model averaging) or a specific model may be selected on an objective basis, if there is clear
evidence for this model to be the most adequate one in the set (model selection). In addition to within-model
variance, conceptual uncertainty in the current set of models can be quantified as between-model variance. By
reporting alternative system representations, the modeler’s and decision maker’s confidence in model predic-
tions is significantly increased and the potential bias in modeling is reduced.

Bayesian model averaging (BMA) [Draper, 1995; Hoeting et al., 1999] is a formal statistical approach that han-
dles multiple models. It ranks alternative conceptual models according to their plausibility. The approach is
based on Bayes' theorem, which updates a prior belief about the adequacy of each model in the set to a
posterior probability by judging each model’s performance in reproducing a calibration data set. The poste-
rior probabilities are used as model weights. The individual predictive probability distributions of each
model in the set are combined in a weighted average. This weighted average yields a robust estimate that
typically outperforms the individual models in predictive coverage. BMA implicitly follows the principle of

SCHONIGER ET AL.

ASSESSING THE UNCERTAINTY IN BAYESIAN MODEL WEIGHTS 7524



@AG U Water Resources Research 10.1002/2015WR016918

parsimony or Occam'’s razor [Gull, 1988], so that the posterior model weights will reflect an optimal compro-
mise between model complexity and goodness of fit. BMA is a very general framework in that it can be
applied to any type of model or application in the same systematic procedure, yielding reproducible and
objectively comparable results. This is a major step toward a more rigorous quantification of model predic-
tion uncertainty, which strengthens the basis for management tasks and for risk assessment.

Technically, BMA involves the evaluation of Bayesian model evidence (BME), which is the likelihood of the
observed data integrated over each model’s parameter space. This integral typically cannot be solved analyti-
cally, and numerical solutions come at the price of high computational cost. Efficient alternatives in the form of
mathematical approximations to the analytical BMA equations have therefore become popular, such as the
Kashyap information criterion (KIC) [Neuman, 2003], the Bayesian information criterion (BIC) [Schwarz, 1978; Raf-
tery, 1995], or the Akaike information criterion (AIC) [Akaike, 1973], to name the most frequently applied ones.
Various studies have, however, revealed that these approximations yield contradicting results for model ranking
[see, e.g. Ye et al, 2008; Tsai and Li, 2008; Ye et al., 2010; Rojas et al., 2010a; Singh et al., 2010; Morales-Casique
et al, 2010; Foglia et al., 2013]. In a rigorous intercomparison study [Schoniger et al,, 2014], the approximations
have been benchmarked against reference solutions in both a synthetic and a real-world test case. Results have
shown that these criteria differ in how strongly they penalize model complexity, and as a consequence, differ in
their values for posterior model weights or even in the ranking of the models. For nonlinear models, the true
weighting according to Bayes’ theorem can only be reliably obtained from brute-force Monte Carlo integration.

BMA has been applied by researchers for various modeling tasks in the field of water resources. Disciplines
include, but are not limited to, climate change modeling [e.g., Najafi et al., 2011], hydrological modeling
le.g., Ajami et al., 2007; Vrugt and Robinson, 2007; Wohling and Vrugt, 2008], hydrogeological modeling [e.g.,
Rojas et al., 2008; Poeter and Anderson, 2005; Ye et al., 2010; Neuman, 2003; Ye et al., 2004], and soil-plant
modeling [Wohling et al., 2015].

Some recent studies have investigated and commented on the impact of different data set sizes and data
types on the outcome of BMA weights [Rojas et al., 2010b; Lu et al., 2012; Refsgaard et al., 2012; Xue et al., 2014;
Wohling et al., 2015]. It has been found that model ranking can vary significantly with the size and composition
of the data set and that the performance of the model-averaged predictions in validation clearly depends on
the data chosen for calibration. These findings emphasize the importance of choosing an appropriate calibra-
tion data set. BMA evaluates to which degree the competing models agree with the observed data (to which
degree the models are fit for purpose), and not to which degree they actually represent the underlying system.
Acknowledging that the purpose changes with varied calibration data sets (at least in the eyes of BMA) calls
for a further analysis whether the obtained weights are representative and robust for the application at hand.

Since BME and hence BMA weights are a function of the observed data, they not only depend on the data
set chosen for calibration, but also on the very outcome of random measurement error for all individual
data values. It clearly follows that there is an inherent uncertainty attached to the model weights, since they
inevitably vary under different outcomes of measurement errors. Carrera and Neuman [1986] found that
model ranking changed with an increase in the assumed level of measurement error, but did not investi-
gate this fact any further. To our knowledge, there have been no studies yet that investigate the uncertainty
in BMA weights due to measurement noise. We refer to this uncertainty as weighting uncertainty. Weighting
uncertainty, once recognized and acknowledged, triggers the need to extend the BMA concept.

In the current study, we introduce such an extension. With our new statistical concept, we will assess the robust-
ness of model weights against measurement noise and the related confidence in model ranking. We propose to
investigate the robustness against measurement errors by perturbing the observed data with a data type-specific
random measurement error and by analyzing the resulting variability in the obtained weights. If this variability is
small, it can be concluded that the obtained weights are representative and not artifacts of the specific outcome
of measurement errors. Model ranking, model selection, or model averaging based on this calibration data set can
then be regarded as robust. In contrast, a large variability might indicate a strong sensitivity to the exact observed
measurement values including their errors. This means that model selection should not be based on the current
measurement design, since small changes in measurement values within the plausible range as defined by the
assumed measurement error standard deviation could lead to a contradicting proposition for model choice. Also,
model averaging of predictive distributions would be questionable on the basis of unreliable model weights. In
this study, we focus on the robustness of model ranking as a direct result of uncertain model weights.
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Generally speaking, we take a frequentist perspective upon the variability of BMA results by randomizing
measurement error in the observed data. This enables us to quantify the inherent uncertainty caused by
measurement noise, which would otherwise not become obvious from the existing BMA analysis. Frequent-
ist properties of the posterior have been assessed in many different contexts [see, e.g., Carlin and Louis,
2000], but to our knowledge not yet within the BMA framework.

From such a resampling analysis, we determine distributions of BME for each model. We can then compare
these distributions to a theoretically optimal distribution. The theoretically optimal distribution is defined by a
perfect model that has no other sources of misfit to the data than measurement noise. With this comparison,
we can assess how far off the model set is from the theoretically optimal model, similar to a performance met-
ric proposed by Abramowitz and Gupta [2008]. Knowing this distance is of great value to modelers to decide
whether the modeling task can be carried out satisfactorily with the models at hand, or whether more effort
should be invested in improving the model set and/or extending it with better performing models.

While the impact of measurement noise in the calibration data set on the outcome of model ranking is our pri-
mary motivation to extend the BMA routine, our concept is generally able to also handle any other source of
uncertainty for BMA weights that can be addressed by a resampling analysis. Such other sources of uncertainty
could be, e.g., noisy measurements of model input or forcings or conceptual uncertainty in boundary condi-
tions. Input uncertainty is especially relevant in the field of hydrology due to the large variability of precipitation
in time and space. Different approaches have been proposed to account for input uncertainty, parameter
uncertainty, and model structural uncertainty in an integrated manner, such as the Bayesian total error analysis
(BATEA) [Kavetski et al., 2006; Kuczera et al, 2006] and the integrated Bayesian uncertainty estimator (IBUNE)
[Ajami et al., 2007]. BATEA quantifies a full posterior predictive distribution considering the mentioned sources
of uncertainty. It differs from our extended BMA approach in that it does not pursue the idea of model ranking
or multimodel combination. Hence, it does not provide any insights on the impact of the different sources of
uncertainty on model weights. The IBUNE approach combines multiple models into a weighted prediction, but
obtains the model weights from a non-Bayesian scheme. Further, IBUNE handles input uncertainty by marginal-
ization, as opposed to our extended BMA routine which explicitly aims at evaluating the variability in weights
due to a specific source of uncertainty (be it in calibration data, forcings, or boundary conditions). We therefore
see our proposed extended BMA routine as a valuable addition to the existing pool of methods for an inte-
grated assessment of modeling uncertainty, because it elegantly combines the advantages of a fully Bayesian
predictive uncertainty quantification with those of a Bayesian multimodel framework.

As main contributions of this study, we (1) propose a numerical framework to determine weighting uncer-
tainty due to uncertain model input or output data, (2) demonstrate different options to visually assess the
confidence in model ranking, and (3) provide a measure for the distance in performance of a model from
the theoretical upper limit imposed by noise in the calibration data set. These contributions strengthen the
basis of scientific model hypothesis testing.

The paper is organized as follows: after introducing our notation of model predictions and probability distri-
butions in section 2.1, we present the statistical framework of BMA in section 2.2 and discuss the interpreta-
tion of BMA weights and BME values in section 2.3. We introduce our proposed extension to consider
weighting uncertainty in section 2.4. Section 2.5 explains how to determine the upper limit in model per-
formance under measurement noise in output data. In sections 2.6 and 2.7, we compare several alternatives
to interpret the results of the resampling analysis. Section 3 features an application of our analysis tools to
soil-plant model selection, following up on the BMA analysis performed by Wohling et al. [2015]. We discuss
the observed impact of weighting uncertainty on model ranking in section 4. Finally, we summarize our
findings and implications in section 5.

2. Methodology

2.1. Notation of Models and Predictions
Let us consider N,,, competing conceptual models M, which produce model predictions ¢, as a function of
O, and c:

2=M () =F? (O, 0), 1)
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with @ including nondeterministic variables such as uncertain model parameters uy, uncertain model input
v, natural (stochastic) noise w (aleatory uncertainty), and adjustable model structural errors ey (epistemic
uncertainty), depending on the modeling task and the choices of the modeler. Prior knowledge about
these variables can be specified in the form of probability distributions: p(u|Mx), p(v), p(w), and p(e|My),
with p(-|-) representing a conditional probability distribution. Note that we refer to model input in a broader
sense, including time-variant or constant forcings and boundary conditions. Model predictions ¢, are fur-
ther a function of deterministic variables ¢, such as fixed input values or nonadjustable parameters. If there
are nondeterministic components (i.e., if @ is not of length zero), a predictive distribution p(¢|Mj) will arise
instead of deterministic predictions ¢,.

We assume that the system state y;,,. is known from observations y, up to a measurement error €,:

Yo = Vitrue + €o- (2)

Assumptions on the characteristics of the measurement noise can be formulated as p(e€). The model M will
predict the system state as:

V=M (©)), 3)

with y, being the subset of ¢, that is used in model calibration. We distinguish between the prior predictive
distribution p(¢|My) and the posterior predictive distribution p(¢ely,, M) after calibration with the observed
data set y,. The Bayesian updating step to obtain posterior estimates based on a prior belief and the evi-
dence in the calibration data is described in section 3.4. The expected value of the prior or posterior predic-
tive distribution is denoted as E[@|M] or E[ply,, Mk, respectively. The variance of these distributions is
denoted by V[p|M] (before calibration) and V[¢ly,, Mi] (after calibration).

2.2, Existing BMA Framework

The BMA equations are presented in detail in Draper [1995] and Hoeting et al. [1999], so that we will only
briefly outline the existing BMA routine here. Note that model weights and weighted statistics are always
conditional on the set of considered models. This is different from the interpretation of BME itself, as we will
explain in section 2.3.

The model-averaged posterior predictive distribution of ¢ after calibration on y, can be expressed as

Nin

p(olye)=>_ P(@lyo, Mk) P(Mily,), @)
k=1

with P(Mly,) being posterior model weights.

The model-averaged posterior mean of ¢ is obtained by

Nin
Elelys]= _ Elplyo, MP(Mily,), 5)
=1
and its posterior variance by
Np, N )
Viglyo]=> _ Volyo, MP(Mkly,) +  (El@1yo, Ml ~El@y,])*P(Mkly,), ©)
=1 k=1

with the first term representing within-model variance (due to the uncertainty encoded in the probability
distributions of ®) and the second term representing between-model variance (conceptual uncertainty
within the set M of considered models). Both terms result from applying the law of total variance with
respect to the conceptual uncertainty within M.

All the above equations require knowledge of the model weights (posterior probability of each model My),
which are given by Bayes’ theorem as
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p(Y,|Mi)P(My) '
(Y, M)P(M)

P(Mkly,)= @)

P(My) is the prior probability (prior belief) that model M is the most adequate one in the set before consid-
ering the calibration data set y,. The BME term p(y,|Mx) as introduced in section 1 quantifies the marginal
(average) likelihood of the observed data given the model’s parameter and input space [e.g., Kass and Raf-
tery, 1995]:

p(vo|Mk>=L P(Yo My, ©)p(OIM ) O @

p(®|M) denotes the prior distribution of the model inputs and parameters, defined on the domain Q. p
(Yo |Mk, Ox) is the likelihood of a realization of model M to have generated the observed data set y,. For a
comparison of available techniques to evaluate the BME term, be referred to Schoniger et al. [2014]. Here
we perform a brute-force MC integration over each model’s parameter and input space to obtain the BME
values. Finally, the denominator in equation (7) normalizes the model weights such that they sum up to
one.

2.3. Interpretation of BME and Posterior Model Weights

BME is an objective measure of the total likelihood that a specific model has generated the observed data
and is not conditional on any set of competing models under consideration. This measure allows an objec-
tive comparison of model performance for a given data set and a specific definition of likelihood (i.e., for a
specific assumption of measurement error statistics). BME is “future-proof” [Skilling, 2006] in that future
models can be compared to the current one (by using the same data set y, and likelihood formulation)
without having to recalculate BME for the current model(s) under consideration. This does not hold for pos-
terior model weights, as they are conditional on the set of models under consideration due to their joint
normalization to sum up to one.

The ratio of BME for two competing models is equal to the Bayes factor [Kass and Raftery, 1995]. The Bayes
factor BF(Mk, M) is defined as ratio between the posterior and prior odds of model My being the more
adequate one in comparison to model M;:

BF (M. My = P (Mil¥o) POVY) _ p(Y M) o

P(Mily,) P(Mk)  p(yo|M))

The Bayes factor is a measure for significance in Bayesian hypothesis testing. It quantifies the evidence (liter-
ally, as in Bayesian model evidence) of hypothesis M against the null-hypothesis M,.

Jeffreys [1961] provided a rule of thumb for the interpretation of Bayes factor values on a log;o-scale. Later,
Raftery [1995] slightly modified these grades of evidence with respect to 2InBF (M, M;) for easier compari-
son with approximate BME values obtained from information criteria (see section 1). Following the interpre-
tation of Jeffreys [1961], a Bayes factor of 1-3 represents evidence in favor of My that is “not worth more
than a bare mention,” a factor of up to 10 represents “substantial” evidence, a factor between 10 and 100
resembles “strong” evidence and, finally, a Bayes factor greater than 100 can be considered “decisive” evi-
dence, i.e., it can be used as a threshold to reject models based on poor performance in comparison to the
best performing model in the set. These thresholds should be seen as suggestions that can be of help in
any specific application. Ultimately, it is the modeler’s decision to define a confidence level at which they
trust to reject a model or to choose a single best one out of the set. We will use the thresholds suggested
by Jeffreys [1961] for illustration in our application (section 3).

2.4. Extension of BMA Framework to Account for Weighting Uncertainty

Weighting uncertainty exists if the model weights depend on any uncertain quantity w. If both the calcu-
lated BME value and the derived model weights change with random outcomes of the uncertain quantity,
they have to be viewed as random variable functions of w.

Since BME is the likelihood of a model to have generated the observed data set, averaged over its parame-
ter and input space (equation (8)), it is a function of the observed data values. The observed data values y,,
in turn, are conceptualized as the sum of true system states and a realization of random measurement error
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(equation (2)). BME thus depends on the random outcome of measurement noise and becomes a random
variable function of w=e.

Model weights could also become random variables due to sources of uncertainty captured in the definition
of p(®|My). Instead of integrating over all relevant types of uncertainty (e.g., parameter uncertainty, input
uncertainty, etc.) to obtain a single BME value per model (equation (8)), one could choose to investigate the
variability in model weights due to any specific source of uncertainty by determining a BME value for differ-
ent outcomes of the corresponding uncertain variable.

As an example, we might wish to assess the variability in model weights due to uncertain inputs v. In that
case, we would remove v from @, when evaluating the BME integral and determine BME as a random vari-
able function of w=v. In the following, ®, will refer to only those components which are marginalized over
to obtain a BME value, while @ will refer to the uncertain variable whose impact on model weights shall be
investigated.

We propose to quantify weighting uncertainty by running a resampling analysis within a Monte Carlo
framework. We repeatedly draw from the assumed distribution p(w) to generate an ensemble of N, realiza-
tions. As a general statistical analysis tool, this type of resampling strategy is referred to as parametric boot-
strap [e.g., Davison and Hinkley, 1997]. For each random realization of @ drawn from p(w), the
corresponding BME value is determined by integration over the model’s (remaining) parameter and input
space Oy (equation (8)). Model weights are then determined from equation (7). Repeating this analysis for
the different realizations of @ drawn from p(w) yields distributions of BME values and model weights. Based
on these distributions, we assess the (non)robustness of the BMA ranking against random outcomes of the
uncertain variable .

2.5. Theoretical Upper Limit for Model Performance due to Measurement Noise in Output Data

In the specific case of measurement noise in output data (i.e., in the calibration data set), a theoretical limit
for model performance exists. We propose to identify this limit by determining a distribution of BME for a
theoretically optimal model (TOM). We define the observed data set as TOM, since it shows a perfect fit (zero
bias) while using a minimum number of parameters (exactly zero, equivalent to zero variance). Jaynes
[2003] calls this the sure thing hypothesis. Refer to Appendix A for an explanation how the sure thing
hypothesis would perform in a BMA analysis, if it was actually formulated as an alternative model. Here we
do not include the TOM into the actual model ranking, but use it only as an upper limit to the BME scale:
the TOM represents the best possible performance in presence of measurement error.

We determine the theoretically optimal distribution of BME under measurement noise as the distribution of
likelihoods of the observed data set given the perturbed data sets (details on the numerical implementation
are provided in section 3.5). Instead of again using the parametric bootstrap approach to obtain this distri-
bution, we could also make use of an analytical expression for the case of independent and identically dis-
tributed Gaussian measurement errors: the TOM performance (expressed as log-BME) is then a distribution
of the weighted sum of normal squared residuals, and is therefore defined by the chi-square distribution
[e.g., Hald, 1998] with the number of degrees of freedom being equal to the size of the calibration data set
N;. Hence, the upper limit of performance as represented by the TOM is imposed by the presence of mea-
surement noise, but the limit does not depend on the actual level of measurement error variance, because
the chi-square distribution is only a function of the data set size.

2.6. Measures to Compare Resulting BME Distributions

The BME distributions of the competing models can be compared with each other or (in the special case of
addressing measurement noise in output data) with the optimal distribution of BME (obtained for the TOM)
either by visual inspection of probability density graphs, or by quantitative measures. Since likelihoods tend
to span a very large range of values and typically show a skewed distribution with the largest mass close to
zero, we analyze the differences in distributions of log-BME instead. The interpretation of BME on a log-
scale is also more intuitive, because on that scale it is comparable to the sum of squared errors that would
be typically evaluated during calibration (see definition of likelihood function in equation (14)). Further,
approximations to the true BME value by information criteria act on this scale (see section 1). Probability
density functions of log-BME, p(Y) with Y=log,, (BME), can be obtained from the ensemble of Ny BME val-
ues per model by kernel density estimation [e.g., Bowman and Azzalini, 19971.
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The difference between probability distributions can be quantified with various distance measures which
differ in their properties and interpretation. We discuss three alternatives in the following. As a quantitative
measure for the distance between distributions of log-BME, one could determine the distance Dy,oqe
between the modes Y of the respective log-BME densities, with ¥ = maxy p(Y):

Drmode (Mics M) =Yy, =Y 1y, (10)

As an alternative, the dissimilarity of the two probability density functions can be quantified with the
Kullback-Leibler (KL) divergence [Kullback and Leibler, 1951] Dy;:

B ) g

(m
p(YIM)

DKL(Mk,M,):Jp(Y\Mk) In(

The KL divergence is frequently applied in the context of information theory as a measure for the informa-
tion lost by approximating one probability density function with a different one (see, e.g., Nearing et al.
[2013] for an application to crop modeling).

Similar to the difficulties in interpreting BME values (section 2.3), these distance measures do not have an
intrinsic meaningful scale to them. A dimensionless measure with fixed bounds between zero (minimum
distance) and one (maximum distance) might provide a more intuitive basis to judge model performance.
The Hellinger distance [Hellinger, 1909] is such a relative measure. It is defined as

Dr(My, My)=+/1=BC(p(Y|My). p(Y|M)), (12)

with BC representing the Bhattacharyya coefficient [Bhattacharyya, 1943]:

BC(p<Y|Mk>,p(Y\M,>>=J' VO MOp(YIM)dY. (13)

The Hellinger distance enables a modeler to compare arbitrary models (including the TOM) with respect to
arbitrary data sets, with the minimum distance (i.e., for completely identical distributions) being zero, and
the maximum distance (i.e., no overlap at all) being one. Using the Hellinger distance to assess the distance
between a model and the TOM is similar to the approach of Abramowitz and Gupta [2008], who define a
slightly different distance measure based on the overlap of the predictive distributions of competing mod-
els. While their primary intention is to assess the independence of competing models (i.e., their dissimilar-
ity), they also mention that one could use such a measure to assess the model performance against the
observed data set.

2.7. Comparison of Resulting BME Values Through Bayes Factors

Independently from the chosen measure to quantify the overlap between BME distributions, this overlap
itself might be misleading: we do not know whether the overlap actually occurs for individual realizations
of the uncertain variable o, or whether the overlap is artificial in the sense that it reflects BME values based
on different samples (and thus we would never actually see this overlap in model ranking no matter what
the outcome of the uncertain variable was). To distinguish between those cases, one can again use the
Bayes factor (equation (9)) and apply it to the BME values corresponding to an individual realization j from
the ensemble of j=1... N4z randomly drawn samples of the uncertain variable.

Note that this procedure directly applies to BME values instead of their log-transform. The resulting distribu-
tion of Bayes factors for the ensemble of samples then also spans a wide range of values, so that we again
report them in log;g-space. This does not impact the comparison of performance, but only helps in visual-
ization, as opposed to taking the logarithm of BME before estimating probability density functions. The
closer the log-BF distribution of a model stays to a Bayes factor value of one (or log-BF of zero), the closer it
is to the compared model. In other words, two models are not distinguishable when they obtain similar
BME values.

From a hypothesis testing perspective, a modeler could ask at which significance level they should reject a
model against a competing model or against the TOM. This significance level can be determined from the
cumulative distribution function of log-BF, using the cumulative density value that corresponds to a Bayes
factor of, e.g., 100 (decisive evidence) [Jeffreys, 1961]. Such a significance test is our preferred tool to dis-
cover performance differences between models and to monitor improvements in model building. The
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suggested way to report such findings is that “on an x% significance level, we can/cannot conclude from
the available data that there is decisive Bayesian evidence against model Y when compared to model Z.”

3. Application to Soil-Plant Model Selection

In this section, we apply the proposed extended BMA routine to soil-plant model selection. Our goal is to
assess the plausibility of four competing crop models which predict different aspects of the soil water bal-
ance and of plant growth. We first give a brief overview of soil-plant modeling in section 3.1. We then
describe the field site, the experimental setup, and the considered models in section 3.2. In section 3.3, we
provide details about the data used to calibrate the models. The numerical implementation of the existing
BMA framework is outlined in section 3.4, and the additional implementation steps of our suggested exten-
sion are explained in section 3.5. Results from the BMA analysis, first without and then with our suggested
extension, are presented in section 4.

3.1. Approaches to Soil-Plant Modeling

Soil-plant interactions are a field of intensive research [see, e.g., Molz, 1981] because they govern exchange
fluxes of water, nutrients and energy at the land surface. To adequately capture those feedback processes
between the land surface and the atmospheric boundary, integrative approaches are needed that represent
the soil-plant-atmosphere system as a continuum. Various different modeling approaches have been
applied to address this challenge [e.g., Bonan et al., 2002; Priesack and Gayler, 2009; Niu et al., 2011; Greve
et al, 2013]. These modeling approaches vary significantly in how detailed vegetation and soil processes
are resolved. Typically, land surface schemes that are coupled to atmospheric models for climate studies
consider surface vegetation processes in detail, but lack a detailed representation of subsurface hydrologi-
cal processes and soil-plant interactions. Agricultural models (crop models) for simulating water and nitro-
gen budgets, on the other hand, act on a much smaller scale and typically represent soil processes and root
water uptake in more detail [Gayler et al., 2013].

As expected from very differently elaborate modeling approaches, the prediction accuracy of soil-plant
models varies substantially. In particular, differences in representing the dynamic plant processes lead to
large differences in prediction quality [Wohling et al., 2013]. In a study using a model ensemble of the Noah-
MP multiphysics land-surface scheme, Gayler et al. [2014] reported large variability in the performance of
the individual models to simulate water and energy fluxes. Priesack et al. [2006] showed that the choice
between competing crop models has a strong influence on predictions of carbon and nitrogen turnover.
This conceptual choice between competing models also influences predictions of environmental impacts
on crops [Biernath et al., 2011].

Various studies have revealed that competing soil-plant models possess different structural deficiencies
which depend on the actual field site conditions [Nearing et al., 2012; Wohling et al., 2013; Houska et al.,
2014]. Therefore, model choice cannot be confidently done prior to the application, but must be performed
based on an actual calibration data set from the specific site of interest. This calls for an approach such as
BMA. Wohling et al. [2015] have presented a first application of BMA to soil-plant modeling which provided
many valuable insights into model structural deficiencies of four selected crop models. Wohling et al. [2015]
further investigated the impact of different data types (evapotranspiration rate, soil moisture content, and
leaf area index) and different subsets and combinations thereof on the outcome of model weights. They
found that model ranking can vary significantly with varied calibration data sets.

We continue these investigations in this study with a focus on the impact of measurement noise in the cali-
bration data set. Our goal is to assess the variability in model weights due to measurement noise, and the
resulting consequences on model ranking.

3.2. Description of Soil-Plant Models and Field Site

In this study, the same four alternative models as in Wohling et al. [2015] are used to predict latent heat flux
(actual evapotranspiration, ET,), leaf area index (LAI, the leaf area per square meter ground surface), soil
moisture, and drainage at a field site at the Swabian Alb (48.510°N and 9.810°E, 690 m a.s.l.) in South-West
Germany. On this field, wheat is grown on a shallow and stony Rendzina soil with a solum thickness of 0.2-
0.3 m. Soil management practice includes fertilization and crop protection as usual in conventional farming
in this region. The complete information about the site properties can be found in Wizemann et al. [2015].
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The vegetation components of the four different crop models are combined with identical routines for sim-
ulating soil water movement [Simunek et al., 1998], soil hydraulic properties [Van Genuchten, 1980, soil car-
bon and nitrogen turnover [Johnsson et al, 1987], and soil heat and nitrogen transport [Hutson and
Wagenet, 1992] to simulate vertical transport of water, solute and heat in the unsaturated zone, organic
matter turnover, and crop growth. The four crop models are CERES-WHEAT (subsequently abbreviated
CERES) [Ritchie et al., 1988], SPASS [Wang and Engel, 2000; Gayler et al., 2002], SUCROS2 (subsequently
abbreviated SUCROS) [van Laar et al.,, 19971, and GECROS [Yin and van Laar, 2005] and are used as imple-
mented in the modular model system Expert-N 3.0 [Priesack et al., 2006].

Distinct differences exist between the four models in simulating root water uptake and root development,
leaf-area growth, photosynthesis, and stomatal resistance. Since these four models have been used in sev-
eral simulation studies before [Wohling et al., 2013; Gayler et al., 2014; Wohling et al., 2015], the reader is
referred to these studies for detailed information on the individual model structures. In brief, SPASS and
CERES use similar routines for root growth and root water uptake, while SUCROS and GECROS do not allow
as much flexibility in the vertical root distribution. The leaf area growth, photosynthesis, and plant internal
distributions of assimilates and nitrogen are simulated in most detail by GECROS, while SPASS is a hybrid
model composed of parts from CERES and SUCROS.

Consistent with our earlier modeling approach [Wohling et al., 2015], we assume two horizontal soil layers
in all our simulations. As uncertain parameters in that modeling scheme, we use the same ones as identified
in the cited previous works. These are five common soil hydraulic parameters for each of the two horizons
and three to four crop model parameters, specific to each model. Specifically, the hydraulic parameters to
be calibrated are the saturated water content 0, (m*/m?>), the van Genuchten shape parameters of the water
retention function o and n, the saturated hydraulic conductivity K; (cm/d), and the pore-connectivity param-
eter | [Van Genuchten, 1980]. The crop parameters for the CERES and SPASS models are the maximum root
extension rate o, (cm/d), the specific root length density 1z (m/kg), the maximum water uptake rate per root
length &, (cm*/cm/d), and the specific leaf weight /, (kg/(ha leaf area)). In SUCROS, &, is not considered,
because the model does not use a parameter for the maximum water uptake rate. The GECROS crop param-
eters used for calibration are the specific leaf area s,, (m?/(g leaf)), the critical root weight density wg, (g/m?/
(cm depth)), the minimal leaf nitrogen n,=0.01¢/s/q (9 nitrate)/m?), and the slope of the maximum carbox-
ylation rate versus leaf nitrogen Ayc max (umol/s/(g nitrate)).

The uncertainty in input data is comparably small for this specific application because the meteorological
data were measured on-site. Hence, we treat model inputs v as deterministic (i.e., they belong to the set of
deterministic variables ¢, cf. section 2.1). Further, there is no stochastic component w in the modeled sys-
tem. For the soil-plant models considered here, structural error models have not yet been developed and
will hence not be considered. This leaves us with @,=uy (cf. section 2.1), and model predictions are
obtained as predictive distributions due to the uncertainty in parameters uy.

3.3. Data Used for Calibration of the Four Soil-Plant Models

We use the same data to calibrate the four models as in Wohling et al. [2015], obtained from field experi-
ments by Wizemann et al. [2015] during a growing season of winter wheat (October 2008 to August 2009).
The site was equipped with an eddy-covariance tower to measure energy and water fluxes between canopy
and atmosphere. £T, data were gap-filled as described by Wizemann et al. [2015] and aggregated to weekly
averages of daily values for use in model calibration. Soil moisture measurements were taken at two differ-
ent depths (i.e, 5 and 15 cm) using TDR probes and aggregated to daily values. LAl was measured at five
subplots in biweekly intervals until grain maturity. LAl averages from the five subplots were used for model
calibration.

The four soil-plant models are simultaneously calibrated on different data types, i.e., on either eight obser-
vations of LAl (scenario 1), on 16 weekly averages of daily actual ET, rates (scenario 2), or on both data types
at the same time (scenario 3). More details on calibration strategies of these four competing models can be
found in Wohling et al. [2013, 2015]. Based on these different calibration scenarios, we investigate to which
extent the impact of measurement noise on model ranking depends on the calibration variable.

The measurement error standard deviation for each LAl observation was determined from replicated field
measurements. For ET,, 15% of the average measured value is assumed as measurement error standard
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deviation to cover the combined effect of inaccuracies in eddy covariance measurements and deficiencies
in reconstruction and aggregation of diurnal variations.

For the time period analyzed in this study, there were no drainage observations available. The four models
could also be calibrated on soil water content, which is of great value to constrain the uncertainty in the
water balance, but was shown to be of lesser importance for the purpose of model selection than LAl and
ET, [Wohling et al., 2015]. This finding is related to the fact that all four models share the Richards’ equation
to simulate water movement through the soil. In this study, we focus on model selection in light of LAl and
ET, data and do not consider observations of soil water content.

3.4. Numerical Implementation of Existing BMA Routine

To set up the Monte Carlo framework for calibration and for model ranking, we have generated an ensem-
ble of predictions based on N,,c random realizations of parameters for each of the four soil-plant models.
Uncertain parameters were drawn randomly from uniform priors p(uk|My). The prior bounds were chosen
to coincide with mostly physically motivated parameter limits [Wohling et al., 2013]. From a convergence
analysis not shown here, we determined the final ensemble sizes which varied between 90,000 and 250,000
realizations per model.

We define the likelihood function p(y,|Mx, @) in equation (8) (representing the distribution of measure-
ment error) as normal distribution with covariance matrix R:

- 1 .
P(Yol My ) =21 2RI 2exp| = - (Yo =¥ R (%o =¥i) |- (14)

R is a diagonal matrix of size N; (length of the calibration data set) XN;, with measurement error variances
that are specific to each data type as described in the previous section.

To obtain posterior (calibrated) predictive distributions p(¢|y,, Mk), the prior realizations uy; with
i=1...Npyc, are weighted with their respective likelihood p(yo|Mk7 uk‘,-) to have generated the calibration
data set y,. This Bayesian updating procedure to calibrate models is referred to as weighted bootstrap
[Smith and Gelfand, 1992].

BME is determined as the ensemble average of likelihoods (equation (8)), and posterior model weights are
then obtained by normalization (equation (7)), assuming uniform (equal) prior model weights. The choice of
neutral prior model weights is based on the verdict of a previous study [Wohling et al., 2013] that none of
the four competing models is clearly to be favored or rejected as adequate model to simulate soil-plant-
atmosphere interactions at this specific field site, before testing against site-specific calibration data.

3.5. Numerical Implementation of BMA Routine Extension

For this specific application, we are interested in the impact of measurement noise in the calibration data
set on the outcome of model weights and of model ranking. We thus address the issue of weighting uncer-
tainty caused by noise in the calibration data set and implement the extended BMA routine as proposed in
section 2.4 to account for the uncertainty in w=e. Treating this source of uncertainty first is also a natural
first step in extending the existing BMA routine, because assumptions on the error in the observations of
model output variables already enter the existing BMA analysis through the definition of the likelihood
function. For other case studies or other systems (e.g., rainfall-runoff models), input uncertainty might be of
higher importance and could be treated with our suggested extension as well (cf. section 2.4).

We extend the existing BMA routine to explicitly account for measurement noise by perturbing the
observed data with random realizations of measurement error in a parametric bootstrap approach. We use
exactly the same assumptions for measurement error as in the definition of the likelihood function (equa-
tion (14)). We now add random realizations of measurement error according to the specified distribution:

Yo=Y, te, (15)
with € ~ (0, R).

If we knew the exact outcome of measurement error for the original data set, we would have to subtract
that noise before adding the random noise (but then again, this would make the whole weighting uncer-
tainty analysis dispensable). In absence of further knowledge, however, the assumption of (on average) zero
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Figure 1. Schematic illustration of resampling analysis within a numerical Monte model weights (equation  (7)).
Carlo framework for BMA. Repeating this analysis for all per-

turbed data sets yields distributions
of BME values and model weights. Based on these distributions, we assess the (non)robustness of the
BMA ranking against random outcomes of measurement error.

Repeating the BMA analysis for a number of N, perturbed data sets results in Nyc XNy evaluations of likeli-
hood per model, with Ny, being the prior ensemble size. Typically, the number of perturbations N, required
for convergence is much smaller than the prior ensemble size (see, e.g., remarks by Leube et al. [2012] in the
context of Preposterior Data Impact Assessment). Also, the BMA analysis routine which needs to be
repeated N, times is typically much less computationally demanding than the model runs to generate pre-
dictions from the prior ensemble. Therefore, our suggested extension of the BMA routine only requires a
small additional amount of computational power if the BMA analysis has already been performed in a
Monte Carlo framework. The latter is highly recommended to obtain accurate model ranking results
[Schoniger et al., 2014].

We generate 10,000 perturbed data sets of LAl (calibration scenario 1) and ET, (calibration scenario 2), and
50,000 data sets that consist of perturbed LAl and ET, data (calibration scenario 3). Note that we do not
assume any correlation between measurement errors of LAl and ET, in scenario 3. We have determined the
required number of samples from a convergence analysis not shown here. We choose relatively large
ensembles of perturbed data sets here to ensure stable statistics of BME. In practice, smaller ensembles
would still give an indication to which extent BMA weights suffer from noise in the observation data for the
application at hand.

For each perturbed data set, we repeat the BMA analysis and store the resulting BME values to determine
distributions of Bayes factors and distance measures between the models and the TOM (the original unper-
turbed data set) as proposed in sections 2.6 and 2.7. We obtain all probability density functions from kernel
density estimation based on the ensembles of log-BME or log-BF, using Gaussian kernels with an optimal
kernel width [Bowman and Azzalini, 1997].
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Figure 2. Model weights, model predictions, and BMA-weighted predictions of LA, ET,, and drainage. (a) Prior state of knowledge, (b) posterior state after calibration on LAl data, (c) pos-
terior state after calibration on ET, data, and (d) posterior state after calibration on both LAl and ET, data.

It is important to note that explicitly accounting for measurement noise as source of uncertainty for model
weights is not “double accounting” for measurement noise. Assumptions on the distribution of measure-
ment error already enter the BMA procedure through the definition of the likelihood function, which is
required to determine BME from equation (8). The likelihood function acknowledges that a model predic-
tion which deviates from the observation in a plausible range (defined by the assumed distribution of noise)
is not inherently false, but could be correct with a corresponding probability. However, the whole BMA anal-
ysis builds on the actually observed data set, so that matching the observed data will produce the highest
likelihood. Our approach now takes a frequentist perspective on this by asking the question: What would
be the outcome of the model weights, if it was based on a set of repeated measurements with a new ran-
dom outcome of measurement error, i.e., if the maximum likelihood prediction was shifted?

4. Results and Discussion

4.1. Individual Model Performance Before and After Calibration

The prior (uncalibrated) and resulting posterior (calibrated) mean predictions for LAI, ET,, and drainage as
obtained from the four competing crop models are shown in Figure 2. These model means represent the
expected value over the model’s prior or posterior predictive distributions, respectively (see section 3.4)
Note that we obtain predictive distributions instead of deterministic predictions because we consider
parameter uncertainty within the models.

We provide measurement numbers instead of dates, but measurements span the same time period and are
approximately equally spaced in time, so that their interactions become obvious. For example, the low ET,
predicted by GECROS before calibration (Figure 2a) toward the end of the season (measurement number
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14) results in a peak of drainage (measurement number 332) which is only predicted by GECROS. The other
models predict a higher ET, and therefore a higher loss of water to the atmosphere. Observations and their
assumed standard errors (=one standard deviation) are also marked in Figure 2.

All of the models follow the general trend of increasing LAl and ET, values in spring, with highest values at
the peak of the cropping season and decreasing values at senescence, and some weather-related short-
term variations which are more pronounced in ET, rates than in LAI Thus, all four models are in general
able to represent the dynamics of the featured soil-plant-atmosphere system well. However, differences in
model performance are obvious from the prior predictive distributions at specific data points in time, e.g.,
GECROS neither reproduces the ET, peak in measurements number 11 and 12 nor the low LAl values at the
beginning of the season. These differences partly diminish during calibration, depending on the chosen cal-
ibration scenario.

4.2. Model Ranking Based on Existing BMA Routine

The resulting model weights based on the different calibration scenarios as defined in section 3.3 are shown
on the very left side of Figure 2. These weights were determined and discussed in the study of Wohling
et al. [2015]. In general, Wohling et al. [2015] found that the BMA-weighted prediction achieved a better fit
to the observed data than the individual models.

The specific impact of the model weights per calibration scenario on the respective BMA mean and the
spread of the BMA-weighted model ensemble (as measured by 95% credible intervals of the model-
averaged predictions) can be seen in Figure 2. For example, one can observe the influence of GECROS on
the overall BMA prediction: GECROS obtains a nonnegligible weight only when calibrated on LAl alone (Fig-
ure 2b). Only then, one can find the peak in drainage (measurement number 332) again within the posterior
credible intervals of the BMA-weighted multimodel ensemble, which is shaded in gray in Figure 2. Despite
its very small model weight, GECROS is obviously able to significantly influence the model-averaged predic-
tions here. However, credible intervals provide a measure for the spread of the multimodel ensemble; a
closer look at the probability density of the prediction would reveal that only a very small fraction of the
BMA ensemble actually predicts such a spike in drainage.

Wohling et al. [2015] identify two reasons why GECROS obtains a very small or even negligible posterior
model weight in the calibration scenarios considered here: First, GECROS shows a strong trade-off in the
simultaneous fit to ET, and LAl data, i.e,, it fails in accurately predicting ET, when calibrated on LAl only, and
vice versa. Second, it shows a larger prediction bias in all data types than the other three models. The
authors hypothesize that the worse performance might be related to the shallow soil under consideration,
because, for a different field site with a deep loess soil, GECROS performed better [Wohling et al., 2013].
These findings indicate that the assessment of competing crop models should be repeated for different
sites and conditions before making a final judgment about the usefulness of each model for future
applications.

The reduction in uncertainty (the shrinkage of credible intervals of the model-averaged predictions) clearly
depends on the calibration scenario: it is highest if the respective variable has been used for calibration,
and lowest if not. Prediction uncertainty is similarly small when calibrating on both LAl and ET, simultane-
ously. The predictive uncertainty in drainage can be significantly reduced by calibration on either LAI, or
ET,, or both. All three calibration scenarios lead to much more pronounced dynamics in the posterior pre-
dictions. The peak flows, however, still show large credible intervals, which is due to the fact that the water
balance has not been further constrained by soil moisture measurements in the calibration scenarios con-
sidered here. Refer to Wohling et al. [2015] for a discussion of results when using soil moisture measure-
ments for calibration.

4.3. Variability in Model Weights due to Measurement Noise in Output Data

From the resampling analysis described in sections 2.4 and 3.5, we obtain a set of 10,000 model weight
combinations in the case of the calibration scenarios 1 (only perturbed LAl data) and 2 (only perturbed ET,
data) and 50,000 combinations in the case of calibration scenario 3 (perturbed LAl and perturbed ET, data).

Figure 3 illustrates the resulting variability in posterior model weights. Figure 3a shows 50 arbitrarily
picked outcomes of model weights based on calibration scenario 1 that could result from using this exper-
imental setup (i.e., the chosen measurement locations and times to collect LAl data) to perform BMA.
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Figure 3. Variability in posterior model weights resulting from resampling analysis. (a) Arbitrarily chosen sets of model weight outcomes
during perturbation of LAl data (calibration scenario 1). Mean model weights (crosses), 50% confidence intervals (boxes), and 95% confi-
dence intervals (whiskers) after (b) 10,000 perturbations based on calibration scenario 1, (c) 10,000 perturbations based on calibration
scenario 2 (using ET, data), and (d) 50,000 perturbations based on calibration scenario 3 (using both LAl and ET, data).

Obviously, there is a large variability in model weights and model ranking, which is summarized statisti-
cally in Figure 3b. While the mean model weights under the impact of measurement noise convey a rela-
tively clear model ranking in favor of CERES, with SPASS ranking second and GECROS clearly ranking last,
this model ranking does not prove to be reliable: given different outcomes of measurement error, the fre-
quentist confidence intervals for the model weights show that SPASS could also be ranking first, CERES
could obtain a smaller model weight than SUCROS, and so forth. This means that under the given mea-
surement noise assumptions, model ranking could also be turned upside-down. The only exception is
GECROS, which shows a very small uncertainty in its very small weight. In this case, the modeler would
concede that this experimental setup is not a reliable basis for model selection or model averaging. Note
that the mean model weights determined from the resampling analysis (Figure 3b) do not coincide with
the original weighting based on the unperturbed data set (Figure 2b) due to the extreme nonlinearity in
the likelihood function.

Similar conclusions are drawn from the resampling analysis based on calibration scenarios 2 (using ET,
data) and 3 (using both LAl and ET, data). The resulting variability in posterior model weights is shown in
Figures 3c and 3d, respectively. The ambiguity in model ranking between SPASS and CERES is even larger
than in the case of calibration on LAI data alone. In the case of calibration on ET, data, SPASS ranks first in
the majority of perturbations, while for calibration on both data types, there is a very large overlap even in
50% confidence intervals. Further, the 95% confidence interval of model weights for GECROS significantly
widens when using ET, data for calibration.

These differences in model ranking between different calibration scenarios are due to different model struc-
tural deficiencies that become evident in light of varied calibration data types as discussed by Wohling et al.
[2015]. Differences in the amount of weighting uncertainty can also be caused by the different assumptions
on the distribution of measurement error. In the case of LAl data, measurement error statistics have been
derived from replicated field measurements and are as such expected to be realistic (see section 3.3). For
ET,, measurement error statistics are chosen such that different potential sources of error are covered.
These assumptions could be further scrutinized in order to obtain most realistic estimates of weighting
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Figure 4. Variability in posterior model weights resulting from resampling analysis based on calibration scenario 1 (using LAl data) with (a)
realistic measurement error variance, (b) reduced measurement error variance, and (c) increased measurement error variance.

uncertainty. Also, model structural errors could be introduced to clearly distinguish the mismatch between
model predictions and ET, data that is due to model bias from the mismatch attributed to random mea-
surement errors.

To illustrate the influence of the assumed measurement error variance on model ranking statistics, we
repeat the analysis for calibration scenario 1 (using LAl data) with decreased measurement error variance
(half of the measurement error variance that was actually determined from replicated field measurements,
see section 3.3), and with increased measurement error variance (twice the actually determined measure-
ment error variance). The decrease or increase in measurement error variance affects both the generation
of random realizations of measurement error for the resampling analysis, as well as the definition of the like-
lihood function (equation (14)) that is needed to determine BME (equation (8)). The covariance matrix R is
now replaced by R*= 1R in the case of reduced measurement noise and by R*=2R in the case of increased
measurement noise. Results are shown in Figures 4b and 4c, respectively, and can be compared to the base
case of realistic measurement error variance in Figure 4a (equal to Figure 3b). As expected, model choice
becomes more clear in the case of reduced measurement noise (or increased information in the data val-
ues). The mean model weights determined in the resampling analysis are more extreme, i.e., weights above
50% increase, weights below 50% decrease. The only exception is the very small mean model weight for
GECROS which increases from 0.01 to 0.02. Also, the 50% confidence intervals of model weights shrink. In
contrast, model choice becomes more ambiguous in the case of increased measurement noise (or less infor-
mation in the data values), which can be seen from less extreme mean model weights and wider confi-
dence intervals.

The impact of measurement noise on model ranking statistics further depends on the size and information
content of the data set. In theory, the impact of measurement noise would average out over (infinitely
many) repeated measurements or over a long time series of calibration data measured in a stationary sys-
tem. Neither of these two conditions holds in our application, so that individual data points provide a vari-
able information content for model ranking [see Wohling et al., 2015]. Since it would not be possible to
separate the influence of increasing information content (in additional data points which sample a different
state of the nonstationary system) from the decreasing impact of measurement noise (in additional data
points which sample the same state and only differ in the outcome of measurement error), we do not inves-
tigate the influence of increasing time series length on model ranking under measurement noise in this
study.

4.4. Confidence in Model Ranking in Presence of Measurement Noise in Output Data

The confidence in model selection can be analyzed with the help of Bayes factors (equation (9)) for pairwise
competing models (i.e., SPASS against CERES, SPASS against GECROS, SPASS against SUCROS, CERES against
GECROS, and so on). For each perturbed data set y, ;, we obtain nine Bayes factors for each of the models
against each of the other models. The probability density functions of log-BF over all N, perturbed LAl data
sets (calibration scenario 1) are plotted in an N, XN, matrix in Figure 5. This type of graph allows us to
assess the pairwise ranking of each model compared to each of the other models. For example, we can
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Figure 5. Distributions of log;o(Bayes factor) for pairwise competing models based on calibration scenario 1 (using LAI data). The second
plot in the first row, e.g., shows the distribution of log;o(Bayes factor) in favor of CERES against SPASS. Gray lines indicate equally strong
evidence for both models. Orange and red lines indicate thresholds for strong and decisive evidence (according to Jeffreys [1961]) in favor
of one model against the other.

extract the information that CERES indeed achieves in almost all cases a higher BME value than SUCROS,
because its Bayes factor (second column, fourth row in Figure 5) is greater than one (or log-BF greater than
zero, indicated by the gray line) for most of the probability mass. The orange and red lines indicate signifi-
cance levels as suggested by Jeffreys [1961] and discussed in section 2.3. Here in more than 50% of the ana-
lyzed cases (perturbed data sets), SUCROS could be rejected against CERES based on strong evidence. This
might, however, not be convincing enough for a modeler to completely discard SUCROS from the model
set. In contrast, a large fraction of Bayes factors of CERES against GECROS prove a decisive evidence (log-BF
values greater than two in the second column, third row of Figure 5). Similarly, such a matrix of log-BF prob-
ability density functions could be constructed based on the calibration scenarios 2 and 3 (not shown here).

In general terms, this matrix allows the modeler to analyze the reliability in pairwise model ranking in great
detail and thus provides a valuable tool for model selection, model building, and planning of experiments.

A decrease or increase in measurement noise tends to lead to stronger or weaker evidence in favor of the
best model, respectively. This is in agreement with the findings presented in section 4.3. On the other hand,
the distribution of Bayes factors strongly depends on the actual choice of competing models and of the
data set (including its measurement errors). Any more general conclusions about the influence of measure-
ment error variance on the confidence in model selection are therefore difficult to derive.

4.5. Comparison of Differences in Performance Between Models and TOM

Based on BME Distributions

As explained in section 2.5, we can not only compare models against each other to decide if they should be
discarded from the model set, but we can also compare their performance to the best possible performance
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Figure 6. Distributions of log,o(BME) obtained by the competing models and by the theoretically optimal model (TOM) based on (a) cali-
bration scenario 1 (using LAl data) with realistic measurement error variance, (b) calibration scenario 1 with reduced and increased mea-
surement error variance, (c) calibration scenario 2 (using ET, data), and (d) calibration scenario 3 (using both LAl and ET, data).

as represented by the theoretically optimal model (TOM). This optimal performance is limited by the pres-
ence of measurement noise in the calibration data set. In Figure 6a, we show the resulting probability den-
sities of log-BME for all four competing models as well as for the TOM based on calibration scenario 1
(using LAl data).

The relatively large overlap between the distributions of log-BME for CERES with the theoretically optimal
distribution (TOM) is reassuring, because it indicates that the model achieves a BME performance score very
close to the actual upper limit. This can be interpreted as evidence that CERES provides adequate predic-
tions, given the uncertainty in observing the available system response (measurement noise in the LAI
data). In the case of reduced measurement noise, the distance in performance between the TOM and the
individual models grows. This is exemplarily shown in Figure 6b for the best and worst performing models
CERES and GECROS, respectively. The opposite is the case for increased measurement noise, i.e., it is more
difficult to distinguish the models from the TOM because of the low information content in the measure-
ments. Also, the distance between the competing models is reduced.

The resulting probability densities of log-BME for the four competing models and for the TOM based on
calibration scenarios 2 (using ET, data) and 3 (using both LAl and ET, data) are shown in Figures 6c and
6d, respectively. Note that the distribution of the TOM widens, because the upper limit of performance is a
function of data set size (see section 2.5), and data set size increases with each calibration scenario (8 LAI
data points, 16 ET, data points, and 24 data points in the case of both data types). As already discussed
with regard to the variability in model weights, the different calibration scenarios reveal different overlaps
between the models. When calibrating on ET, data, e.g., SPASS now shows the largest overlap with the dis-
tribution of the TOM, and GECROS and SUCROS show a significant overlap with each other.
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Figure 7. Comparison of log,o(BME) distributions (cf. Figure 6) obtained by the four models with the log;o(BME) distribution obtained by
the theoretically optimal model (TOM) based on calibration scenario 1 (using LAl data). (a) Distance between the modes, (b) Kullback-
Leibler divergence, and (c) Hellinger distance.

The remaining distance or room for model improvement between the individual models and the TOM can be
measured through the distance between the modes of the distributions (Figure 7a), through the KL divergence
(Figure 7b), or through the Hellinger distance (Figure 7c) as discussed in section 2.6. Due to the respective
changes in the distributions under varied measurement noise (Figure 6b), those distances increase with
decreased measurement error variance, and decrease with increased measurement noise. Note that the TOM
does not appear in this figure because its distance to itself would be zero. The distance measures are exemplarily
shown here for calibration scenario 1, and could be analogously calculated for the other calibration scenarios.

The different distance measures reveal different aspects of model performance. With all three measures,
CERES clearly has the lowest and GECROS the largest distance from the optimal performance. However,
SPASS and SUCROS show a very similar distance only when looking at the distribution modes and the rela-
tive Hellinger distance between the distributions, but show a substantially different KL divergence. Recall
that determining the KL divergence involves taking the log-transform of probability densities, which
increases the relative importance of small probabilities. Since we analyze probability density functions of
log-BME, which in turn emphasizes small BME values, the KL divergence might lead to inconclusive results.

4.6. Comparison of Differences in Performance Between Models and TOM Based on Bayes Factors

As explained in section 2.7, BME values can also be compared directly by using Bayes factors. We determine
log-BF values for each combination of BME values based on a specific outcome of measurement noise, and
thus capture actual differences in performance (in BME) between the TOM and the individual models. Nega-
tive values indicate that the model has obtained a larger BME score for a specific perturbed data set than
the TOM, positive values state that the model performs worse. The cumulative distribution functions of log-
BF are shown in Figure 8a. Based on these distribution functions, we compare the competing models in the
spirit of hypothesis testing. The significance level at which a model can be rejected with decisive evidence
corresponds to the cumulative density value that cuts the red line in Figure 8a. It can be seen that the best
performing model CERES can only be rejected against the perfect model at a significance level of about
50% (i.e., for about 50% of the analyzed perturbed data sets). The worst performing model GECROS, in con-
trast, can be rejected with decisive evidence at a significance level of about 6%.

Figure 8b shows the cumulative distribution functions in the case of decreased or increased measurement
noise for the best and worst performing models CERES and GECROS, respectively. In line with the related
findings presented in section 4.3, a model can be rejected with decisive evidence at a lower significance
level if the noise in the data is smaller. If measurement noise plays a larger role, the significance level rises
accordingly.

5. Summary and Conclusions

Bayesian model averaging (BMA) ranks competing conceptual models according to their plausibility in light
of a specific calibration data set. Model selection or model averaging can then be performed based on the
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Figure 8. Distributions of log;o(Bayes factor) obtained by the competing models in favor of the theoretically optimal model (TOM) based
on calibration scenario 1 (using LAl data) with (a) realistic measurement error variance and (b) reduced and increased measurement error
variance. Gray lines indicate equally strong evidence for the TOM and for the respective model. Orange and red lines indicate thresholds
for strong and decisive evidence (according to Jeffreys [1961]) in favor of the TOM against the respective model.

obtained weights. The BMA procedure requires the evaluation of Bayesian model evidence (BME), which is
the likelihood of the calibration data averaged over a model’s probability space. BME itself is a function of
the calibration data and thus, implicitly, also a function of the outcome of measurement error in this specific
data set. Acknowledging this dependence, it needs to be assessed whether or not the obtained model
weights are robust against measurement noise. Robust model weights are desired, no matter what the goal
of applying the BMA approach is—be it model selection or model averaging. In this study, we have focused
on model ranking as a direct result of model weights.

If model weights turn out to vary considerably under measurement noise for a specific application, this
compromises the reliability in model ranking and triggers the need for data collection techniques with
increased accuracy or with a more efficient measurement design. A more efficient measurement design
could be found by optimal design strategies [Atkinson et al., 2007] that evaluate the benefit of using differ-
ent data types or data points (in space and time) with regard to an optimality criterion. Each proposed
design should be evaluated with regard to the decisiveness in model ranking [e.g., Atkinson and Fedorov,
1975] while explicitly considering the impact of random outcomes of measurement noise as proposed in
this study.

Not only noise in the calibration data, but also other sources of uncertainty such as uncertain observations
or conceptualizations of model input (forcings) or additional stochastic model components turn model
weights into uncertain quantities. We have provided a statistical framework that accounts for the resulting
variability in model weights from a frequentist perspective. It rests on a brute-force Monte Carlo approach
that hosts the BMA routine. Applying the parametric bootstrap method, we resample the uncertain variable
(e.g., measurement noise in input or output data or the outcome of a stochastic model for model structural
error) by drawing random realizations from its assumed distribution. We then repeat the BMA analysis for
every sample and obtain statistics of BME and model weights. These statistics can be analyzed with regard
to the confidence in model ranking. For example, determining statistics of the Bayes factor allows to assess
the significance (or spread) in pairwise model ranking. It provides a basis for deciding whether a model can
be reliably selected or discarded from the set, or whether the considered source of uncertainty for model
weights is simply too dominant to make an informed decision.

Our suggested upgrade is general and comes at little additional computational costs, so that the extended
BMA routine can be used for an in-depth assessment of uncertainty in model choice in a wide range of dis-
ciplines. In the practical application to soil-plant model selection presented here, we have exclusively
focused on measurement noise in the calibration data as source of uncertainty for model weights, because
an assumption about its statistics is required anyway in the BMA analysis to define the likelihood function.
Our results have shown that, in all calibration scenarios investigated here, model weights vary significantly
under the impact of measurement noise in the observed data. Since we have not considered model-specific
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structural errors in the BMA analysis, it remains an open question for future research how the interplay
between structural error models and measurement noise influences the robustness of model weights.

In the specific case of measurement noise in output data, a theoretical limit to model performance exists.
We propose to assess a model’s distance from this theoretically optimal performance by treating the origi-
nal unperturbed data set as the theoretically optimal model (TOM). We have discussed various ways to mea-
sure this distance and again recommend to use statistics of Bayes factors. Assessing a model’s performance
in presence of measurement noise with our suggested approach helps to decide, whether more effort
should be invested in improving the existing models and/or extending the set with better performing mod-
els, or whether, first of all, more accurate data are needed to make differences between the models and the
TOM more evident.

Our approach could also be applied to other modeling tasks with significant errors in measurements of driv-
ing forces or with uncertainty in boundary conditions. The extended BMA routine could reveal the impact
of these additional sources of uncertainty for model weights on model ranking results. The relevance of
weighting uncertainty due to input uncertainty remains to be investigated in future case studies.

To sum up, we draw the following conclusions from this study:

1. Uncertainty in model input or output data induces uncertainty in model weights, which we refer to as
weighting uncertainty.

2. Weighting uncertainty can severely compromise the confidence in model ranking.

3. Weighting uncertainty needs to be accounted for in a model ranking framework, e.g., by our suggested
extension.

4. The extended BMA routine provides a solid basis for data worth analysis and optimal design of experi-
ments toward maximum confidence in model ranking.

Acknowledging the existence of weighting uncertainty triggers the question how this uncertainty is propa-
gated to model-averaged predictions. While in this study, we have proposed a conceptual and numerical
framework to reveal the frequentist variability in model weight outcomes, the theoretical extension of the
Bayesian total predictive variance formulation to account for weighting uncertainty will be derived in a
follow-up study. In particular, we will attempt to resolve the difficulty of mingling frequentist confidence
intervals with Bayesian credible intervals.

Appendix A: On the Handling of the Sure Thing Hypothesis
in Bayesian Model Averaging

Establishing the observed data set as a model in the spirit of the sure thing hypothesis [Jaynes, 2003] is of
no use for predictive purposes and therefore intuitively not an adequate competitor to any conceptual
model. This seems to contradict the concept of BMA, because one might think that such a model would
always win against any competing conceptual predictive model since it obviates the trade-off between bias
and variance [e.g., Burnham and Anderson, 2003]. The sure thing hypothesis would obtain the maximum
possible likelihood value (in this case equal to BME, because there is no probability space to integrate over),
which depends only on the shape of the likelihood function (i.e., on the assumed statistical distribution of
measurement error). This apparent inconsistency can be resolved as follows: before actually observing the
data set (i.e, in foresight), there is no way one could come up with the one sure thing hypothesis; instead,
there are infinitely many competing hypotheses one would have to consider with the same justification, i.e.,
the number of measurement points to the power of the number of possible values that the measurements
can assume (which is infinity for continuous variables). To have comparable predictive capabilities to com-
peting conceptual models, the model hypothesis thus needs to be rephrased: “There are this many data
points to predict, and each of them has that many possible outcomes—the observed data set will be one
of those combinations.” To account for the multiple alternative subhypotheses, the model prior for the sure
thing hypothesis would have to be divided by the total number of equally likely subhypotheses, which
will then reduce its posterior model weight below the model weights of any competing conceptual model
(in this case actually to zero, since the prior is 1/Ny, - 1/00=0, when assuming equal prior weights 1/N,, for
all conceptual models). In conclusion, the sure thing hypothesis in hindsight is unfair and must not be con-
sidered in the BMA competition. The sure thing hypothesis in prediction mode (in foresight) has infinite
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variance, and would in fact lose any BMA race. In this study, we are only concerned with the BME score that
the sure thing hypothesis would achieve given randomly perturbed data sets, and do not include it into the
actual model ranking.
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