4
MONTE CARLO METHODS

4.1 Introduction

The Monte Carlo method was developed by von Neumann, Ulam, and
Metropolis at the end of the Second World War to study the diffusion of
neutrons in fissionable material. The name ‘Monte Carlo’, chosen because of
the extensive use of random numbers in the calculation, was coined by
Metropolis in 1947 and used in the title of a paper describing the early work at
Los Alamos [Metropolis and Ulam 1949].

Statisticians had used model sampling experiments to investigate problems
long before this time, The English statistician W. S. Gossett (‘Student’) [1908]
estimated the correlation coefficients in his ‘t’ distribution with the help of a
sampling experiment, and Lord Kelvin’s assistant generated 5000 random
trajectories to study the elastic collisions of particles with shaped walls [Kelvin
1901]. The novel contribution of von Neumann and Ulam [1945] was to
realize that determinate mathematical problems could be treated by finding
a probabilistic analogue which is then solved by a stochastic sampling
experiment.

These sampling experiments involve the generation of random numbers
followed by a limited number of arithmetic and logical operations, which are
often the same at each step. These are tasks that are well suited to a computer
and the growth in the importance of the method can be linked to the rapid
development of these machines. The arrival of the MANIAC computer at Los
Alamos in 1952 prompted the study of the many-body problem by Metropolis
et al. [1953] and the development of the Metropolis Monte Carlo method
[Wood 1986], which is the subject of this chapter.

As always, there are those who cannot wait for technology. Buffon, the
eminent eighteenth-century French naturalist, discovered a beautiful theorem
in geometrical probability. If a needle of length /is thrown at random onto a set
of equally spaced parallel lines, d apart (where d > [), the probability of the
needle crossing a line is 2//znd. In 1901, the Italian mathematician Lazzerini
performed a simulation by spinning round and dropping a needle 3407 times.
He estimated 7 to be 3.1415929 [Pedoe 1958]. We shall use this as an example
of a simple Monte Carlo integration in the next section. From this exhausting
beginning the method has grown to the point where it is, arguably, ‘the most
powerful and commonly used technique for analysing complex problems’
[Rubinstein 1981].

As outlined in Chapter 2, the Metropolis Monte Carlo method aims to
generate a trajectory in phase space which samples from a chosen statistical
ensemble. There are several difficulties involved in devising such a prescription
and making it work for a system of molecules in a liquid. So we take care to
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introduce the Monte Carlo method through some simple examples in the
following sections.

4.2 Monte Carlo integration

4.2.1 Hit and miss

We can illustrate the use of the MC technique as a method of integration by
returning to the evaluation of z. This can be done by finding the area of a circle
of unit radius. The circle, centred at the origin and inscribed in a square, is
shown in Fig. 4.1.

—-— 1 A

Fig. 4.1 The geometry for the hit and miss integration to find the area of the circle.

A number of trial shots are generated in the square OABC. At each trial two
independent random numbers are chosen from a uniform distribution on
(0,1). These numbers are used as the coordinates of a point, (examples are
marked as crosses in the figure). The distance from the random point to the
origin is calculated. If this distance is less than or equal to one, the shot has
landed in the shaded region and a hit is scored. If a total of 7,,,,, shots are fired
and 7, hits scored then

. 4 x Area under the curve CA _ Ay,
Area of the square OABC 1,

4.1)

The key to this method is the generation of 2t,,,, random numbers from a
uniform distribution. Random number generators are simple programs and
their construction and performance are discussed in Appendix G.

The estimate of this area will depend on the numbers of trials; in fact the
error in the estimate is O(t 4, )/?). The results from a hit and miss experiment are
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shown in Fig. 4.2; the correct value for the area of the circle is, of course, = and
after 107 shots the MC estimate is 3.14173 correct to four figures. To calculate
another decimal place would require an order of magnitude increase in the
number of shots. It is straightforward to devise a similar hit-and-miss
experiment to simulate Buffon’s needle. In Fig. 4.2 an estimate of = obtained in
this way has been included. After 107 shots the result is 3.140472 (only accurate
to three figures), confirming that Lazzerini had a lucky afternoon.
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Fig. 4.2 The cumulative estimate of = as a function of the number of MC shots by hit-and-miss
area of a circle (triangles) and the Buffon needle experiment (squares).

4.2.2 Sample mean integration

Hit and miss integration is conceptually easy to understand but the sample
mean method is more generally applicable and offers a more accurate estimate
for most integrals [Hammersley and Handscomb 1964; Rubinstein 1981]. In
this case the integral of interest

F= '[ ™ dx f(x) @42)
is rewritten as
= | P ax(I™
F = L dx (p(x)>p(x) 4.3)

where p(x) is an arbitrary probability density function. Consider performing a
number of trials z, each consisting of choosing a random number {, from the
distribution p(x)in the range (x,, x,). Then

N
F=Ggyms “y
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where the brackets represent an average over all trials. A simple application
would be to choose p(x) to be uniform, i.e.

p(x) = X3 S X < X, (4.5)

(x2 —x1)

and then the integral F can be estimated as

Fa X2%1) 3 1. (4.6)

max t=1
To apply this approach to the estimation of n we consider the equation for the
circle in the first quadrant, f(x) = (1 —x*)~!/2, with x between x, = 0 and
x, = 1. In a typical experiment the estimate of n after 10 trials using eqn (4.6)
is 3.14169.

For the simple one-dimensional integration, eqn (4.2), the MC technique is
not competitive with straightforward numerical methods such as Simpson’s
rule (the Simpson’s rule estimate of © with only 10* function evaluations is
3.141593). However, for the multidimensional integrals of statistical mechan-
ics, the sample mean method, with a suitable choice of p(x), is the only sensible
solution. To understand this, we consider the evaluation of the configurational
integral Z = [drexp(—B7"), (eqn (2.26)), for a system of, say, N = 100
molecules in a cube of side L. Even a crude Simpson’s rule integration might
require 10 function evaluations for each of the 300 coordinates, so as to span
the range (—4L,%L). This total of 103°° function evaluations is quite
infeasible. Moreover, the overwhelming proportion of these would give a zero
result since the Boltzmann factor is extremely small (zero for hard spheres)
whenever molecules overlap significantly. The sample mean approach to this
integral, using a uniform distribution, might proceed as follows. A trial 7 is
carried out:

(a) pick a point at random in the 300-dimensional configuration space, by
generating 300 random numbers, on (—%L,4L), which, taken in
triplets, specify the coordinates of each molecule;

(b) calculate the potential energy, ¥"(r), and hence the Boltzmann factor
for this configuration.

This procedure is repeated for niany trials and the configurational integral is
estimated using
N T

2 exp (=7 (1)). 4.7)

max t=1

Zyyr™

In principle, the number of trials 7 ,, may be increased until Z ,, ris estimated
to the desired accuracy. We would not expect to have to conduct 103°°
function evaluations, as for Simpson’s rule, but again a large number of the
trials would give a very small contribution to the average. An accurate
estimation of Z . for a dense liquid using a uniform sample mean method is
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beyond the capabilities of current computers, although methods of this type
have been used to examine the structural properties of the hard sphere fluid at
low densities [Alder, Frankel, and Lewinson 1955]. The difficulties in the
calculation of Z,,, apply equally to the calculation of ensemble averages
such as

_Jdrotexp(=p7) _ :;1 o (t)exp (-7 (7))
fdrexp(—p7") Tf exp(—B(0)

t=1

<D nyr (4.8)

if we attempt to estimate the numerator and denominator separately by using
the uniform sample mean method. However, at realistic liquid densities the
problem can be solved using a sample mean integration where the random
coordinates are chosen from a non-uniform distribution. This method of
‘importance sampling’ is discussed in the next section.

4.3 Importance sampling

Importance sampling techniques choose random numbers from a distribution
p(x), which allows the function evaluation to be concentrated in the regions of
space that make important contributions to the integral. Consider the
canonical ensemble. In this case the desired integral is

(&) nyr= JdEp (D) ()

i.e. theintegrand is f = p 5, -o. By sampling configurations at random, from a
chosen distribution p we can estimate the integral as

(Y wyr= LA PNyT/P ) wiaise 4.9

For most functions &/ (I'), the integrand will be significant where p 1 is
significant. In these cases choosing p = p , rshould give a good estimate of the
integral. In this case

(A ) nyr= <M>m;,|s- ‘ (4.10)

(This is not always true and sometimes we choose alternative distributions
p(I) (see Section 7.2.2).)

Such a method, with p = p ., was originally developed by Metropolis
et al. [1953]. The problem is not solved, simply rephrased. The difficult job is
finding a method of generating a sequence of random states so that by the end
of the simulation each state has occurred with the appropriate probability. It
turns out that it is possible to do this without ever calculating the normalizing
factor for p v, 1, i.e. the partition function (see eqns (2.11)-(2.13)).

The solution is to set up a Markov chain of states of the liquid, which is
constructed so that it has a limiting distribution of p 5. A Markov chainis a
sequence of trials that satisfies two conditions:
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(a) The outcome of each trial belongs to a finite set of outcomes,
{r,Is, ..., ...}, called the state space.

(b) The outcome of each trial depends only on the outcome of the trial that
immediately precedes it.

Two states I',, and I, are linked by a transition probability =,,,, which is the
probability of going from state m to state n. The properties of a Markov chain
are best illustrated with a simple example. Suppose the reliability of your
mainframe computer follows a certain pattern. If it is up and running on one
day it hasa 60 per cent chance of running correctly on the next. If, however, it is
down, it has a 70 per cent chance of also being down the next day. The state
space has two components, up (}) and down (}), and the transition matrix has

the form
! ofs 0‘4
= < 03 07 ) @1y

1f the computer is equally likely to be up or down to begin with, then the initial
probability can be represented as a vector, which has the dimensions of the
state space

pV = (0?5 0?5) . 4.12)

The probability that the computer is up on the second day is given by the
matrix equation

p® = pWMzr = (045, 0.55) 4.13)
i.e. thereis a 45 per cent chance of running a program. The next day would give
p® = pPn = pVrn = pV a2 = (0.435, 0.565), 4.14)

and a 43.5 per cent chance of success. If you are anxious to calculate your
chances in the long run, then the limiting distribution is given by

p = lim pMag*, 4.15)

T

A few applications of eqn (4.15) show that the result converges to p = (0.4286,
0.5714). 1t is clear from eqn (4.15) that the limiting distribution, p, must satisfy
the eigenvalue equation

pR=1p _ (4.16a)

Y PonTomn = Pn (4.16b)

with eigenvalue unity. = is termed a stochastic matrix since its rows add to one

Y M = 1. (4.17)
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It is the transition matrix for an irreducible Markov chain. (An irreducible or
ergodic chain is one where every state can eventually be reached from another
state.) More formally, we note that the Perron-Frobenius theorem [Chung
1960; Feller 1957] states that an irreducible stochastic matrix has one left
eigenvalue which equals unity, and the corresponding eigenvector is the
limiting distribution of the chain. The other eigenvalues are less than unity and
they govern the rate of convergence of the Markov chain. The limiting
distribution, p implied by the chain is quite independent of the initial condition
pY (so don’t worry if your machine is likely to be down today).

In the case of a liquid, we must construct a much larger transition matrix,
which is stochastic and ergodic (see Chapter 2). In contrast to the previous
problem, the elements of the transition matrix are unknown, but the limiting
distribution of the chain is the vector with elements p,, = p v, (L) for each
point I,, in phase space. It is possible to determine elements of 7 which satisfy
eqns (4.16) and (4.17) and thereby generate a phase space trajectory in the
canonical ensemble. We have considerable freedom in finding an appropriate
transition matrix, with the crucial constraint that the elements of the matrix
should be independent of @, A useful trick in searching for a solution of
eqn (4.16) is to replace it by the unnecessarily strong condition of ‘microscopic
reversibility”:

Pm Tnn = PnTpm - (4.18)

Summing over all states m and making use of eqn (4.17) we regain eqn (4.16)

me Ty = an Tym = pnznnm = Pn . (419)

A suitable scheme for consiructing a phase space trajectory in the canonical
ensemble involves choosing a transition matrix which satisfies eqns (4.17) and
(4.18). The first such scheme was suggested by Metropolis et al. [1953] and is
often known as the asymmetrical solution. If the states m and n are distinct, this
solution considers two cases

Tran = %mn Pn Z Pm m#n (4.20a)
T = Cun(Pn/Pm)  Pn<Pm  MFnN. (4.20b)

It is also important to allow for the possibility that the liquid remains in the
same state,

Tum = 1= Y Ty (4.20¢)

n#m
In this solution & is a symmetrical stochastic matrix, (a,,, = %), often called
the underlying matrix of the Markov chain. The symmetric properties of & can
be used to show that for the three cases (p,, = pm Pm < Pm and p,, > p,) the
transition matrix defined in eqn (4.20) satisfies eqns (4.17) and (4.18). It is worth
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stressing that it is the symmetric property of a that is essential in satisfying
microscopic reversibility in this case. Non-symmetrical & matrices which
satisfy microscopic reversibility or just the weaker condition, eqn (4.16), can be
constructed but these are not part of the basic Metropolis recipe [Owicki and
Scheraga 1977a]. Finally, this solution only involves the ratio p,/p,, and is
therefore independent of Q)

There are other solutions to eqns (4.17) and (4.18). The symmetrlcal solution
[Wood and Jacobson 1959; Flinn and McManus 1961; Barker 1965], is often
referred to as Barker sampling;

nmn = amnpn/(pn + pm) m # n (4'21a)
T = 1 — z T - _ (4.21b)
ntm

Equation (4.21) also satisfies the condition of microscopic reversibility.

If states of the fluid are generated using transition matrices such as eqns
(4.20) and (4.21), then a particular property, (., obtained by averaging
over the 7,,,, trials in the Markov chain is related to the average in the canonical
ensemble [Chung 1960, p. 99; Wood 1968a]

(Y nvr = Dpun + O(1112) 4.22)

As mentioned in Chapter 2, we usually restrict simulations to the configur-
ational part of phase space, calculate average configurational properties of the
fluid, and add the ideal gas parts after the simulation.

Since there are a number of suitable transition matrices, it is useful to choose
a particular solution which minimizes the variance in the estimate of (/) .
Suitable prescriptions for defining the variance in the mean, ¢%( (& ),,,), are
discussed in Chapter 7. In particular the ‘statistical inefficiency’ s (Section 6.4.1)

s= lim 7,,,06? ({ Dun)/0*(H) (4.23)
tl’llll-‘w
measures how slowly a run converges to its limiting value. Peskun [1973] has
shown that it is reasonable to order two transition matrices,

n, <N, (424)

if each off-diagonal element of =, is less than the corresponding element in 7.
If this is the case, then

s({H,m1) 2 s({ A ),m)) (4.25)

for any property /. If the off-diagonal elements of = are large then the
probability of remaining in the same state is small and the sampling of phase
space will be improved. With the restriction that p,, and p, are positive, eqns
(4.20) and (4.21) show that the Metropolis solution leads to a lower statistical
inefficiency of the mean than the Barker solution.



118 MONTE CARLO METHODS

Valleau and Whittington [1977a] stress that a low statistical inefficiency is
not the only criterion for choosing a particular =. Since the simulations are of
finite length, it is essential that the Markov chain samples a representative
portion of phase space in a reasonable number of moves. All the results derived
in this section depend on the ergodicity of the chain (i.. that there is some non-
zero multi-step transition probability of moving between any two allowed
states of the fluid). If these allowed states are not connected the MC run may
produce a low s but in addition a poor estimate of the canonical average. When
the path between two allowed regions of phase space is difficult to find, the
situation is described as a bottleneck (see Fig. 2.1). These bottlenecks are
always a worry in MC simulations but are particularly troublesome in the
simulation of two-phase coexistence [Lee et al. 1974], in the simulation of
phase transitions [ Evans, Tildesley, and Sluckin 1984], and in simulations of
ordinary liquids at unusually high density.

Where a comparison has been made between the two common solutions to
the transition matrix, eqns (4.20) and (4.21), the Metropolis solution appears to
lead to a faster convergence of the chain [Valleau and Whittington 1977b].
The Metropolis method becomes more favourable as the number of available
states at a given step increases and as the energy difference between the states
increases. (For two-state problems such as the Ising model the symmetric
algorithm may be favourable [Cunningham and Meijer 1976]). In the next
section we describe the implementation of the asymmetric solution.

4.4 The Metropolis method

To implement the Metropolis solution to the transition matrix, it is necessary
to specify the underlying stochastic matrix a. This matrix is designed to take
the system from state m into any one of its neighbouring states n with equal
probability. There is considerable freedom in choosing a and the only
constraint is that o, = a,,,.. A useful but arbitrary definition of a neighbouring
state is illustrated in Fig. 4.3. This diagram shows six atoms in a state m; to
construct a neighbouring state n one atom (i) is chosen at random and
displaced from its position r* with equal probability to any point r} inside the
square #%. This square is of side 26r,,, and is centred at r]". In a three-
dimensional example, £ would be a small cube. On the computer there are a
large but finite number of new positions, N ,, for the atom i and in this case a,,,
can be simply defined as

Omn = 1/N o r'e®
Oy = 0 x! ¢ X. (4.26)

With this choice of &, eqn (4.20) is readily implemented. At the beginning of
an MC move an atom is picked at random and given a uniform random
displacement along each of the coordinate directions. The maximum displace-
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Fig.4.3 State nis obtained from state m by moving atom i with a uniform probability to any point
in the shaded region &.

ment, Jr,,,,, is an adjustable parameter that governs the size of the region %
and controls the convergence of the Markov chain. The new position is
obtained with the following code. RANF(DUMMY) is a library function for
generating a uniform random number on (0, 1); a dummy argument is required
by FORTRAN-77 syntax. DRMAX is the maximum displacement or,

max*

RXINEW = RX(I) + ( 2.0 * RANF ( DUMMY ) - 1.0 ) * DRMAX
RYINEW = RY(I) + ( 2.0 * RANF ( DUMMY ) - 1.0 ) * DRMAX
RZINEW = RZ(I) + ( 2.0 * RANF ( DUMMY ) - 1.0 ) * DRMAX

The appropriate element of the transition matrix depends on the relative
probabilities of the initial state m and the final state n. There are two cases to
consider. If 6¥7,, = ¥,,— ¥, <0 then p, > p,, and eqn (4.20a) applies. If
0% um > 0 then p, < p,, and eqn (4.20b) applies. (The symbol ¥, is used as a
shorthand for ¥"(I,).) The next step inan MC move is to determine ¥ ,,,. The
determination of 47, does not require a complete recalculation of the
configurational energy of the mth state, just the changes associated with the
moving atom. For example (see Fig. 4.4) the change in potential energy is
calculated by computing the energy of atom i with all the other atoms before
and after the move

N N
3V ym = ( Y ourp)- 3 v(r}'})) @.27)
i=1 j=1
where the sum over the atoms excludes atom i. In calculating the change of
energy, the explicit interaction of atom i with all its neighbours out to a cutoff
distance r, is considered. The contribution from atoms beyond the cutoff could
be estimated using a mean field correction (see Section 2.8), but in fact the
correction for atom i in the old and new positions is exactly the same and does
not need to be included explicitly in the calculation of §7,,.
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\

Fig. 4.4 State n is generated from state m by displacing atom i from r to r.

If the move is downhill in energy (67, < 0), then the probability of state n
is greater than state m and the new configuration is accepted. The method of
choosing trial moves ensures that the transition probability x,, = o, the
value required by eqn (4.20a).

If the move is uphill in energy (67", > 0), then the move is accepted with a
probability p,/p,, according to eqn (4.20b). Again the factor «,,, is automati-
cally included in making the move. This ratio can be readily expressed as the
Boltzmann factor of the energy difference:

ﬁ". — ZE”}TCXP( - ﬁVn) - €xp (_ BVn) €Xp (— BéVnm) = exp ( _ BaVnm) )

Pm  Zyyrexp(—B7 ) exp(—B7)

(4.28)

To accept a move with a probability of exp(— 67 ,..), a random number ¢ is
generated uniformly on (0, 1). The random number is compared with
exp(— PO ). If it is less than exp( — p67,,) the move is accepted. This procedure
is illustrated in Fig. 4.5. During the run, suppose that a particular uphill move,

exp(—po7")

K &2
Always
accept
Accept \
X &
0 Y o 114

Fig. 4.5 Accepting uphill moves in the MC simulation.



THE METROPOLIS METHOD 121

07 m is attempted. If at that point a random number ¢, is chosen (see Fig. 4.5),
the move is accepted. If £, is chosen the move is rejected. Over the course of the
run the net result is that energy changes such as 7, are accepted with a
probability exp (— f67",,). If the uphill move is rejected, the system remains in
state m in accord with the finite probability =,,,, of eqn (4.20c). In this case, the
atom is retained at its old position and the old configuration is recounted as a
new state in the chain. This procedure can be summarized by noting that we
accept any move (uphill or downhill) with probability min (1, exp (— f67",,)),
where min has the same meaning as the FORTRAN MIN function.

A complete MC program for a fluid of Lennard-Jones atoms is given
in F.11. Here, we show the typical code for the heart of the program,
the acceptance and rejection of moves. In this code, DELTV is the energy
difference 6%, between the states. One point to note is that we must guard
against a trial move which results in significant molecular overlap, since a very
large value of 67, might cause underflow problems in the computation of
exp (— B6Y ,m). We do this by testing 67", (DELTVB below). If it is too large
(say > 75) then the move is immediately rejected. This also results in a saving
of time, since exponentiation is usually an expensive operation.

DELTV = VNEW - VOLD
DELTVB = BETA * DELTV

IF ( DELTVB .LT. 75.0 ) THEN
IF ( DELTVB .LE. 0.0 ) THEN

v = V + DELTV
RX(I) = RXINEW
RY(I) = RYINEW
RZ(1) = RZINEW
NACCPT = NACCPT + 1

ELSEIF ( EXP { - DELTVB ) .GT. RANF ( DUMMY ) ) THEN

v = V + DELTV
RX(I) = RXINEW
RY(I) = RYINEW
RZ(I) = RZINEW
NACCPT = NACCPT + 1

ENDIF
ENDIF
NTRIAL = NTRIAL + 1
. accumulate averages ...
So far we have said little about the maximum allowed displacement of the

atom, 6r,,,,,, which governs the size of the trial move. If this parameter is too
small then a large fraction of moves are accepted but the phase space of the

liquid is explored slowly, i.e. consecutive states are highly correlated. If OF .y 1S
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too large then nearly all the trial moves are rejected and again there is little
movement through phase space. In fact ér,,, is often adjusted during the
simulation so that about half the trial moves are rejected. This adjustment can
be handled automatically using the following code, which adjusts the
maximum displacement every NADIJST trial moves.

IF ( MOD ( NTRIAL, NADJST ) .EQ. O ) THEN
RATIO = REAL ( NACCPT ) / REAL ( NADJST )
IF ( RATIO .GT. 0.5 ) THEN

DRMAX = DRMAX * 1.05
ELSE

DRMAX = DRMAX * 0.95
ENDIF
NACCPT = 0

ENDIF

It is not clear that an acceptance ratio of 0.5 is optimum. A reported study of
the parameter dr,,,, [Wood and Jacobson 1959] suggests that an acceptance
ratio of only 0.1 maximizes the root mean square displacement of atoms as a
function of computer time. The root mean square displacement is one possible
measure of the movement through phase space and the work suggests that a
small number of large moves is most cost effective. Few simulators would have
the courage to reject nine out of ten moves on this limited evidence and an
acceptance ratio of 0.5 is still common. This issue highlights a difficulty in
assessing particular simulation methods. The work of Wood and Jacobson
was performed on 32 hard spheres, at a particular packing fraction, on a first
generation computer. There is no reason to believe that their results would be
the same for a different potential, at a different state point on a different
machine. The MC technique is time-consuming and since most researchers are
more interested in new results rather than methodology there has been little
work on the optimization of parameters such as or,,, and the choice of
transition matrix.

In the original Metropolis method one randomly chosen atom is moved to
generate a new state. The underlying stochastic matrix can be changed so that
several or all of the atoms are moved simultaneously [Ree 1970; Ceperley,
Chester, and Kalos 1977]. 6¥",, is calculated using a straightforward
extension of eqn (4.27) and the move is accepted or rejected using the normal
criteria. Chapman and Quirke [1985] have performed a simulation of 32
Lennard-Jones atoms at a typical liquid density and temperature. In this study,
all 32 atoms were moved simultaneously, and an acceptance ratio of & 30 p"er
cent was obtained using 6r,,, & 0.36. Chapman and Quirke found that
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equilibration (see Chapter 5) was achieved more rapidly by employing multi-
particle moves rather than single-particle moves. The relative efficiency of
multi-particle and single-particle moves, as measured by their ability to sample
phase space in a given amount of computer time, has not been subjected to
systematic study.

A common practice in MC simulation is to select the atoms to move
sequentially (i.e. in'order of atom index) rather than randomly. This cuts down
on the amount of random number generation and is an equally valid method
of generating the correctly weighted states [Hastings 1970]. The length of a
MC simulation is conveniently measured in ‘cycles’, i.e. N trial moves whether
selected sequentially or randomly. The computer time involved in a MC cycle
is comparable (although obviously not equivalent) to that in a MD time step.

The simulation of hard spheres is particularly easy using the MC
method. The same Metropolis procedure is used, except that, in this case, the
overlap of two spheres results in an infinite positive energy change and
exp (— 0¥ ) = 0. All trial moves involving an overlap are immediately
rejected since exp (— 67 ,,) would be smaller than any random number
generated on (0, 1). Equally all moves that do not involve overlap are
immediately accepted. As before in the case of a rejection the old configuration
is recounted in the average.

The importance sampling technique only generates states that make a
substantial contribution to ensemble averages such as the energy. In practice
we cannot sum over all the possible states of the fluid and so cannot calculate
Zyyr.Consequently, this is not a direct route to the ‘statistical’ properties of the
fluid such as A, S, and u. In the canonical ensemble there are a number of ways
around this problem, such as thermodynamic integration and the particle
insertion methods (see Section 2.4). It is also possible to use umbrella sampling
to calculate free energy differences (see Chapter 7). Alternatively the problem
can be tackled at root by conducting simulations in the grand canonical
ensemble (Section 4.6).

4.5 Isothermal-isobaric Monte Carlo

An advantage of the MC method is that it can be readily adapted to the
calculation of averages in any ensemble. Wood [1968a, b; 1970] first showed
that the method could be extended to the isothermal-isobaric ensemble. This
ensemble was introduced in Section 2.2, and in designing a simulation method
we should recall that the number of molecules, the temperature, and the
pressure are fixed while the volume of the simulation box is allowed to
fluctuate. The original constant-NPT simulations were performed on hard
spheres and disks, but McDonald [1969, 1972] extended the technique to
cover continuous potentials in his study of Lennard-Jones mixtures. This
ensemble was thought to be particularly appropriate for simulating mixtures
since experimental measurements of excess properties are recorded at constant
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pressure and theories of mixing are often formulated with this assumption.
The method has also been used in the simulation of single-component fluids
[Vorontstov-Vel'yaminov, El'y-Ashevich, Morgenshtern, and Chakovskikh
1970] and in the study of phase transitions [Abraham 1982]. It is worth
recalling that at constant N, P, T we should not see two phases coexisting in
the same simulation cell, a problem which bedevils the simulation of phase
transitions in the canonical ensemble.

In the constant-N PT ensemble the configurational average of a property &/
is given by

jw dV exp(— BPV) V”jds A (s) exp(— BY (s))
D npr= 2

4.29)
ZNPT

Ineqn (4.29), Z .- is the appropriate configurational integral eqn. (2.30)and V/
is the volume of the fluid. Note that in this equation we use a set of scaled
coordinates s = (sy, §,, . . .,s,) where

s=L"r. (4.30)

In this case the configurational integral in eqn (4.29) is over the unit cube and
the additional factor of ¥ *comes from the volume element dr. (In this section
the simulation box is assumed to be a cube of side L = V*/3; the arguments can
be easily extended to non-cubic boxes.)

The Metropolis scheme is implemented by generating a Markov chain of
states which has a limiting distribution proportional to

exp(—B(PV+7¥(s) + NInV)

and the method used is a direct extension of the ideas discussed in Section 4.4.
A new state is generated by displacing a molecule randomly and/or making a
random volume change from V,, to V, )

S? = S:"+ O5max (2§— 1)
V, =V, +6Voa (26—-1). (4.31)

Here, as usual, ¢ is a random number generated uniformly on (0, 1), while §isa
vector whose components are also uniform random numbers on (0, 1) and 1 is
the vector (1, 1,1). 85n., and 8V,,,, govern the maximum changes in the
scaled coordinates of the particles, and in the volume of the simulation
box, respectively. Their precise values will depend on the state point studied
and they are chosen to produce an acceptance ratio of 35-50 per cent
[McDonald 1972]. These values are initial guesses and can b€ automatically
adjusted by the program, although in this case there are two independent
maximum displacements and many different combinations will produce a
given acceptance ratio.
Once the new state n has been produced the quantity 6H is calculated,

6H,, = 8V, + P(V,— V,) = NB ™ In(V,/V,). (4.32)
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6H,, is closely related to the enthalpy change in moving from state m to state n.
Moves are accepted with a probability equal to min (1, exp (— f6H,,,)) using
the techniques discussed in Section 4.4. A move may proceed with a change in
particle position or a change in volume or a combination of both.

Eppenga and Frenkel [1984] have pointed out that it may be more
convenient to make random changes in In V rather than in V itself, A random
number d(In V') is chosen uniformly in some range (—d(n V),,,, 8(In V),...),
the volume multiplied by exp (6(In ')) and the molecular positions scaled
accordingly. The only change to the acceptance/rejection procedure is that the
factor N in eqn (4.32) is replaced by N + 1.

One important difference between this ensemble and the canonical en-
semble is that when a move involves a change in volume the density of the
liquid changes. In this case the long-range corrections to the energy in states m
and n are different and must be included directly in the calculation of 6%, (see
Section 2.8).

In the general case, changing the volume is computationally more expensive
than displacing a molecule. For a molecule displacement there are at most
2(N —1) calculations of the pair potential in calculating 6¥",,,. In general, a
volume change in a pair-additive fluid requires the recalculation of all the
4N(N — 1) interactions. Fortunately, for the simplest potentials, the change in
¥" with volume can be calculated by scaling. As an example, consider the
configurational energy of a Lennard-Jones fluid in state m:

Vim=4ey ¥ ( L:sm>12_462 L (ZMEE'f)G

i j>i ij i j>i

=y UL y(®) 4.33)

Here we have divided up the potential into its separate twelfth-power and
sixth-power components. If the only change between the states m and n is the
length of the box then the energy of the new state is

Lm 12 L 6
~/f,,=~/f;,12’<~L:> +~/f§,?>(f':->

12 6
8V = 0V Y = V},}ﬂ[ (%) —1]+~/f§f>[ (—i—'ﬁ) —1}. (4.34)

This calculation is extremely rapid and only requires that the two components
of the potential energy, ¥ !? and ¥~ ‘®, be stored separately. If the potential
cutoff is taken to scale with the box length (i.e. 7, = s_L with s_constant) then
the separate terms ¥ ({2 and ¥} scale just like ¥"!? and ¥"® respectively.
If in addition to a box-length change a molecule is simultaneously displaced,
then there are two contributions

OV = 0¥ dis 4 5y Yo (4.35)

and
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where 6772 is given by eqn (4.34) and

Thus the energy change on displacement is obtained using the new box-length
L, (think of scaling the box, followed by moving the molecule).

This simple prescription for the calculation of 6%, relies on there being
justone characteristic length in the potential function. This may not be the case
for some complicated pair potentials, and it is also not true for most molecular
models, where intramolecular bond lengths as well as site-site potentials
appear. For an interaction site model, simple scaling would imply a non-
physical change in the molecular shape. For these cases the calculation of
67733 is expensive and so volume changes must be carried out much less
frequently than the displacement of a particle [Owicki and Scheraga 1977b].
In a constant-NPT simulation of 125 H,0 molecules, Jorgensen [1982]
attempted to change the volume of the box once every sixth cycle. The range
for a possible volume move was ~ + 50 A3, The code for a constant-NPT
simulation is given in program F.12,

By averaging over the states in the Markov chain it is possible to calculate
mechanical properties such as the volume and the enthalpy, and various
properties related to their fluctuations. In common with the constant-N VT
simulation, this method only samples important regions of phase space and it
is not possible to calculate the ‘statistical’ properties such as the Gibbs free
energy. During the course of a particular run the virial can be calculated in the
usual manner to produce an estimate of the pressure. This calculated pressure
(including the long-range correction) should be equal to the input pressure, P,
used in eqn (4.32) to generate the Markov chain. This test is a useful check of a
properly coded constant-NPT program.

From the limited evidence available, it appears that the fluctuations of
averages calculated in a constant-N PT MC simulation are greater than those
associated with the averages in a constant-N V'T simulation. However, the error
involved in calculating excess properties of mixtures in the two ensembles is
comparable, since they can be arrived at more directly in a constant-NPT
calculation [McDonald 1972].

Finally, constant-pressure simulations of hard disks and spheres, [Wood
1968b, 1970], can be readily performed using the methods described in this
section. Wood [1968b] has also developed an elegant method for hard-core
systems where the integral over exp (— BPV') in eqn (4.29) is used to define a
Laplace transform. The simulation is performed by generating a Markov chain
in the transform space using a suitably defined pseudo-potential. This method
avoids direct scaling of the box; details can be found in the otiginal paper.

4.6 Grand canonical Monte Carlo

In grand canonical ensemble MC (GCMC) the chemical potential is fixed
while the number of molecules fluctuates. The simulations are carried out at
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constant u, V, and 7, and the average of some property & is given by

N%;)(N!)‘l VNZN [ds o/ (s)exp(—~ B¥ (s))
o Ourr

(4.37)

where z = exp(Bu)/A® is the activity, A is defined in eqn (2.24)and Q 4vrin eqn
(2.32). Again it is convenient to use a set of scaled coordinates s = (s,,s, ..., s N
defined as in eqn (4.30) for each particular value of N. In common with the
other ensembles discussed in this chapter only the configurational properties
are calculated during the simulation and the ideal gas contributions are added
at the end. A minor complication is that these contributions will depend on
{N>,yr» which must be calculated during the run. N is not a continuous
variat;le (the minimum change in N is one), and the sum in eqn (4.37) will not be
replaced by an integral,

In GCMC the Markov chain is constructed so that the limiting distribution
is proportional to

exp(—B(¥(s)—Nu)—InN!'-3NInA+ N V). (4.38)

A number of methods of generating this chain have been proposed. A
method applied in early studies of lattice systems [Salsburg, Jacobson, Fickett,
and Wood 1959; Chesnut 1963], uses a set of variables (c;, ¢, . . . ), each taking
the value O (unoccupied) or 1 (occupied), to define a configuration. In the
simplest approach a trial move attempts to turn either a ‘ghost’ site (c; = 0)
into a real site (c; = 1) or vice versa. ,

This method has been extended to continuous fluids by Rowley, Nicholson,
and Parsonage [1975] and used more recently by Yao, Greenkorn, and Chao
[1982]. In this application real and ghost molecules are moved throughout the
system using the normal Metropolis method for displacement. This means
that ‘ghost’ moves are always accepted because no interactions are involved. In
addition there are frequent conversion attempts between ‘ghost’ and real
molecules. Unfortunately a ‘ghost’ molecule tends to remain close to the
position at which its real precursor was destroyed, and is likely to re-
materialize, at some later step in the simulation, in this same ‘hole’ in the liquid.
This memory effect does not lead to incorrect results [Barker and Henderson
1976], but may result in a slow convergence of the chain. The total number of
real and ghost molecules, M, must be chosen so that if all the molecules became
real ¥” would be very high for all possible configurations. In this case the sum
ineqn (4.37) can be truncated at M. This analysis makes it clear that,in GCMC
simulations, we are essentially transferring molecules between our system of
interest and an ideal gas system, each of which is limited to a maximum of M
molecules. Thus the system properties are measured relative to those of this
restricted ideal gas; if M is sufficiently large this should not matter.

Most workers now adopt the original method of Norman and Filinov
[1969]. In this technique there are three different types of move:
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(a) a molecule is displaced;
(b) a molecule is destroyed (no record of its position is kept);
(c) a molecule is created at a random position in the fluid.

Displacement is handled using the normal Metropolis method. If a molecule is
destroyed the ratio of the probabilities of the two states is (N is the number of
molecules initially in state m)

3

NA
o = exp (= f5¥ ) exp(— B) =~ 439)

which in terms of the activity is
;’—" = exp(— B0V +In(N/2V)) = exp(— BOD,m). (4.40)

Here we have defined the ‘destruction function’ §D,,,. A destruction move is
accepted with probability min(l, exp(— D,,)) using the methods of
Section 4.4. Finally, in a creation step, similar arguments give

;L"- = exp(— B0 m+In(zV/N + 1)) = exp(— B6C,m)  (441)
(defining the ‘creation function’ 6C,,,) and the move is accepted or rejected
using the same criteria.

In this scheme there is the danger of using an underlying stochastic matrix
which is unsymmetric with respect to creation/destruction. The condition of
microscopic reversibility can be satisfied by making the probability of an
attempted creation, «°, equal to the probability of an attempted destruction, a?
[Nicholson and Parsonage 1982, p. 154]. The method outlined allows for the
destruction or creation of only one molecule at a time. Except at low densities,
moves which involve the addition or removal of more than one molecule
would be highly improbable and such changes are not cost effective [Norman
and Filinov 1969].

Although o must equal o° there is some fréedom in chosing between
creation/destruction and a simple displacement, a™ Again Norman and
Filinov [1969] varied o™ and found that «™ = a9 = a® = 1/3 gave the fastest
convergence of the chain, and these are the values commonly employed. Thus
moves, destructions, and creations are selected at random, with equal
probability.

Typically, the configurational energy, pressure, and density are calculated as
ensemble averages during the course of the GCMC simulations. The beauty of
this type of simulation is that the free energy can be calculated directly,

A/N = =PV /<N r (442)

and using eqn (4.42) it is possible to determine all the ‘statistical’ properties of
the liquid.
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Variations on the method described in this section have been employed by a
number of workers. The Metropolis method for creation and destruction can
be replaced by a symmetrical algorithm. In this case the decisions for creation
and destruction are respectively

1

N
create if (1 + +

-1
T (ﬁWm.,)> 2¢

and
_ zV -1
destroy if < 1+ N <P ([ié“/f,,,,,)> =¢
with £ generated uniformly on (0, 1).
Adams [1974, 1975] has also suggested an alternative formulation which
splits the chemical potential into the ideal gas and excess parts:

# = ﬂex +#id
=(u*+kTIn (N> ,,)+kTIn(A/V)
=kTB+kTln(A3/V). (4.43)

Adams performed the MC simulation at constant B, V, and T, where B is
defined by eqn (4.43). u can be obtained by calculating { N } ,,rduring the run
and using it in eqn (4.43). The technique is completely equivalent to the normal
method at constant z, V, and T.

There are a number of technical points to be considered in performing
GCMC. In common with the constant-NPT ensemble, the density is not
constant during the run. In these cases the long-range corrections must be
included directly in the calculation of 6¥",,. The corrections should also be
applied during the run to other configurational properties such as the virial. If
this is not done, difficulties may arise in correcting the pressure at the end of the
simulation: this can affect the calculation of the free energy through eqn (4.42)
[Barker and Henderson 1976; Rowley, Nicholson, and Parsonage 1978].

A problem which is peculiar to GCMC is that, when molecules are created
or destroyed, the array indices which identify the molecule need to be
reordered. This problem can be handled neatly using the following technique
[Nicholson 1984]. In this simple illustration, we consider a simulation which
begins with six molecules and where we expect a maximum of ten. An array
LOCATE is the key to which molecules are ‘alive’ at the current step of the
simulation. At the first step LOCATE looks like

I 1 2 3 4 5
LOCATE(]) 1 2 3 4 5

6
6
L @
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If molecule 3 is destroyed the array is updated and 3 is moved to the ‘dead’ area
of the array.

I 1 2 3 4 5
LOCATE() 1 2 4 5 6 3 0 0 0 O

N=5 ®

If a new molecule is created it is given the index LOCATE(N + 1) i.e. the array
would remain unchanged but N would be increased by one.

1 1 2 3 4 5 6 7 8 9 10
LOCATE)) t 2 4 5 6 3 0 0 0 O

N=6 (©

Suppose a second new molecule is created. In this case LOCATE(N +1) =0
so the new molecule index is set to N + 1 and N is then increased by one.

1 1 2 3 4 5 6 7 8 9 10
LOCATE() 1t 2 4 5 6 3 7 0 0 O

N=17 (d)

At any stage in the program it is easy to search over all the molecules actually
present by running over a loop with upper index N as follows:

DO 10 I =1, N

IATOM = LOCATE(I)
RXI = RX(IATOM)
RYI = RY(IATOM)
RZI = RZ(IATOM)

.. calculate energy etc. ...

10 CONTINUE

In the Norman and Filinov method, the new molecule 3, which is in
LOCATE(6) at the end of step (c), has coordinates RX(3), RY(3), RZ(3), which
are chosen at random and which are not related to the original coordinates of
molecule 3 at step (a). The code for creation and destruction attempts in
GCMC is given in program F.13 and the code for updating and tidying the
array LOCATE is given in program F.14.
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Grand canonical simulations are more complicated to program than those
in the canonical ensemble. The advantage of the method is that it provides a
direct route to the ‘statistical’ properties of the fluid. For example, by
determining the free energy of two different solid structures in two in-
dependent GCMC simulations we can say which of the two structures is
thermodynamically stable at a particular y and 7. GCMC is particularly useful
for studying inhomogeneous sysiems such as monolayer and multilayer
adsorption near a surface [Whitehouse, Nicholson, and Parsonage 19837 or
the electrical double-layer [Carnie and Torrie 1984; Guldbrand, Jonsson,
Wennerstrom, and Linse 1984]. In these systems the surface often attracts the
molecules strongly so that when a molecule diffuses into the vicinity of the
surface it may tend to remain there throughout the simulation. GCMC
additionally destroys particles in the dense region near the surface and creates
them in the dilute region away from the surface. In this way it should
encourage efficient sampling of some less likely but allowed regions of phase
space as well as helping to break up metastable structures near the surface.

GCMC simulations of fluids have not been used widely. The problem is that
as the density of the fluid is increased the probability of successful creation or
destruction steps becomes small. Creation attempts fail because of the high
risk of overlap. Destruction attempts fail because the removal of a particle
without the subsequent relaxation of the liquid structure results in the loss of
attractive interactions. Clearly this means that destructions in the vicinity of a
surface may be infrequent and this somewhat offsets the advantage of GCMC
in the simulation of adsorption [ Nicholson 1984]. To address these problems,
Mezei [1980] has extended the basic method to search for cavities in the fluid
which are of an appropriate size to support a creation. Once these cavities are
located, creation attempts are made more frequently in the region of the cavity.
In the Lennard-Jones fluid at 7* = 2.0, the highest density at which the
system could be successfully studied was increased from p* = 0.65 (conven-
tional GCMC) to p* = 0.85 (extended GCMC). The techniques for preferen-
tial sampling close to a molecule or a cavity are discussed in Section 7.3.

4.7 Molecular liquids

4.7.1 Rigid molecules

In the MC simulation of a molecular liquid the underlying matrix of the
Markov chain is altered to allow moves which usually consist of a combined
translation and rotation of one molecule. Chains involving a number of purely
translational and purely rotational steps are perfectly proper but are not
usually exploited in the simulation of molecular liquids. (There have been a
number of simulations of idealized models of liquid crystals and plastic
crystals where the centres of the molecules are fixed to a three-dimensional
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lattice. These simulations consist of purely rotational moves [see e.g.
Luckhurst and Simpson 1982; O’Shea 1978].)

The translational part of the move is carried out by randomly displacing the
centre of mass of a molecule along each of the space-fixed axes. As before the
maximum displacement is governed by the adjustable parameter 6r,,,. The
orientation of a molecule is often described in terms of the Euler angles defined
in Section 3.3.1. A change in orientation can be achieved by taking small
random displacements in each of the Euler angles of molecule i.

d):' = d);” + (261 - 1)5¢max (4448)
07 =07 + (2¢, — 1)466,,,, (4.44b)
'/I:l ='/I:” + (263 - 1)6¢max (4'440)

where d¢,..,, 66,,..., and 3y, are the maximum displacements in the Euler
angles.
In an MC step the ratio of the probabilities of the two states is given by

Pn _ €Xp(— B(¥+ 0¥ ,n))dr'd Q"
Pm CXp(—ﬂ'Vm)dl’mdﬂm
The appropriate volume elements have been inc}vuded to convert the
probability densities into probabilities. dQ™ = [] dQ" and dQI =
i=1
sin 0"dO"dy"d¢/Q for molecule i in state m. Q is a constant which is 8 n?
for non-linear molecules. In the case of linear molecules, the angle | is not
required to define the orientation,and Q = 4x. The volume elements for states
mand n have not previously been included in the ratio p,/p,, (see eqn (4.28)), for
the simple reason that they are the same in both states for a translational move,
and cancel. For a move which only involves one molecule i

(4.45)

o _ exp(— gy )0
p —exp( ﬂéVnm Sino;".

m

(4.46)

The ratio of the sines must appear in the transition matrix =,,, either in the
acceptance/rejection criterion or in the underlying matrix element a,,,. This
last approach is most convenient. It amounts to choosing random displace-
ments in cosf; rather than in 6;

cosO} = cosf7" + (2¢, — 1)d(cos 6),,, (4.47)

and adopting the usual Metropolis recipe of accepting or rejecting with a
probability of min (1, exp(— ¥ ,,)). Including the sin@ factor in the
underlying chain avoids difficulties with 67" = 0 analogous to the problems
mentioned in Section 3.3.1. Equations (4.44a), (4.44c), and (4.47) move a
molecule from one orientational state into any one of its neighbouring
orientational states with equal probability and fulfil the condition of
microscopic reversibility.
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It is useful to keep the angles which describe the orientation of a particular
molecule in the appropriate range ( — n, 7) for { and ¢, and (0, =) for 8. This is
not essential, but avoids unnecessary work and possible overflow in the
subsequent evaluation of any trigonometric functions. This can be done by a
piece of code which is rather like that used to implement periodic boundary
conditions. If DPHIMX is the maximum change in ¢, and TWOPI stores the
value 27,

PHINEW = PHIOLD + ( 2.0 * RANF ( DUMMY ) - 1.0 ) * DPHIMX
PHINEW = PHINEW - ANINT ( PHINEW / TWOPI ) * TWOPI

with similar code for . In the case of eqn (4.47), it is necessary to keep cosf in
the range (—1,1);

COSNEW = COSOLD + ( 2.0 * RANF ( DUMMY ) - 1.0
COSNEW = COSNEW - ANINT ( COSNEW / 2.0 ) * 2.0

) % DCOSMX
Note that when the ANINT function is not zero the molecule is rotated by .
An alternative method for rotating the molecules was originally proposed
by Barker and Watts [1969] in their MC simulation of water. It involves
selecting a molecule and rotating it by a random amount 8y (selected uniformly
in the usual way) about one of the three space-fixed axes chosen at random. For
example we consider a fluid of linear molecules (these ideas can be readily
extended to non-linear molecules). In this case it is more convenient to
represent the molecular orientation by a unit vector e fixed in the molecule.
The orientation of molecule i is represented by a vector with components

eix = COS ¢,’ Sin Bi
e;, =sin¢;sin0;
e, =cosf;. (4.48)

A new configuration is generated using

el =A el (4.49)
where
1 0 0
A, = 0 cosdy sindy (4.50)

0 —sindy cosdy

and the equation corresponds to a rotation of 3y about the space-fixed x axis.
There are similar equations for rotations about the y and z axes,

coséy 0 —sindy
A= 0 1 0 4.51)
sindy 0 cosdy
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and
cosdy sindy O
A, = (-— sindy cosdy O ) (4.52)
0 0 i

The advantage of this method is that the orientation of the molecule can be
stored as one or more vectors. For interaction site model fluids, this means that
the expensive evaluation of trigonometric functions can be avoided com-
pletely. This is not the case with methods that involve changes in the Euler
angles. Similar formulae apply when quaternions are used to represent
molecular orientations [Vesely 1982].

A third method for changing the orientation of a molecule has been
suggested by Jansoone [1974]. The new trial orientation, e}, is chosen
randomly and uniformly on a region of the surface of a sphere with the
constraint that

l—elelf<d«l. (4.53)

d controls the size of the maximum displacement and a sensible first guess for
this parameter is 0.2. There are a number of methods for generating a random
vector on the surface of a sphere (see Appendix G.3). These can be easily
combined with the method for generating randomly and uniformly in a
restricted region (see Appendix G.4) to produce a simple algorithm which will
generate orientations with the constraint eqn (4.53). Examples of code for
these three methods of generating a new orientation are given in program
F.15.

One difficulty with MC methods for molecular fluids is that there are usually
a number of parameters governing the maximum translational and orien-
tational displacement of a molecule during a move. As usual these parameters
can be adjusted automatically to give an acceptance rate of ~ 0.5, but there is
not a unique set of maximum displacement parameters which will achieve this.
A sensible set of values is best obtained by trial and error for the particular
simulation in hand.

The MC method is particularly useful for simulating hard-core molecules.
The complicated MD schemes mentioned in Section 3.6.2 can be avoided and
the program consists simply of choosing one of the above schemes for moving
a molecule and an algorithm for checking for overlap. The heart of a simple
MC program for hard dumb-bells is given in F.16.

The MC method has been used successfully in the canonical ensemble for
simulating hard-core molecules [Streett and Tildesley 1978, Wojcik and
Gubbins 1983] and more realistic linear and non-linear molecules [ Barker and
Watts 1969; Romano and Singer 1979]. Simulations of molecular fluids have
also been attempted in the isothermal-isobaric ensemble [Owicki and
Scheraga 1977b; Eppenga and Frenkel 1984]. To our knowledge there have
been no simulations of molecular liquids in the grand canonical ensemble.
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4.7.2 Non-rigid molecules

Non-rigidity introduces new difficulties into the MC technique. The problem
in this case is to find a suitable set of generalized coordinates to describe the
positions and momenta of the molecules. Once the generalized momentum
coordinates have been established, the integrations over the momenta can be
performed analytically which will leave just the configurational part of the
ensemble average. However, the integration over momenta will produce
complicated Jacobians in the configurational integral, one for each molecule
(see Section 2.10). The Jacobian will be some function of the generalized
orientational variables, 6, ¢ which describe the overall orientation of the
molecule and the bond bending and torsion angles which describe the internal
configuration. A simple example of this type of term is the sin§; in the
configurational integral for rigid molecules, which comes from the integration
over the momenta (p,);. As we have already seen in Section 4.7.1, these
Jacobians are important in calculating the ratio p,/p,, used in generating the
Markov chain in the Metropolis method or, correspondingly, in designing the
correct underlying stochastic matrix. For non-rigid molecules, correctly
handling the Jacobian terms is more difficult. '

This problem can be solved satisfactorily for the class of non-rigid molecules
where the overall moment of inertia is independent of the coordinates of
internal rotation (e.g. iso-butane, acetone) [Pitzer and Gwinn 1942].
Generalized coordinates have also been developed for a non-rigid model of
butane, which does not fall into this simple class [Ryckaert and Bellemans
1975; Pear and Weiner 1979], but the expressions are complicated and become
increasingly so for longer molecules.

One way of working with generalized coordinates is as follows. In butane
{see Section 1.3), it is possible to constrain bond lengths and bond bending
angles, while allowing the torsional angle to change according to its potential
function. The movement of the molecule in the simulation is achieved by
random movements of randomly chosen atoms subject to the required
constraints [Curro 1974]. An example of such a technique is shown for butane
in Fig. 4.6.

A typical MC sequence might be (assuming that each move is accepted):

(a) atom 1 is moved by rotating around the 2-3 bond;

(b) atoms 1 and 2 are moved simultaneously by rotating around the 3-4
bond,;

(c) atom 4 is moved by rotating around the 2-3 bond.

Moves (a) and (c) involve a random displacement of the torsional angle ¢, in
the range ( — =, 7). The entire molecule is translated and rotated through space
by making random rotations of atoms around randomly chosen bonds. We
can also include an explicit translation of the whole molecule, and an overall
rotation about one of the space-fixed axes. The disadvantage of this simple
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Fig. 4.6 A possible method for moving a chain molecule (butane), subject to bond length and
angle constraints, in an MC simulation.

approach at high density is that a small rotation around the 1-2 bond can cause
a substantial movement of atom 4, which is likely to result in overlap and a
high rejection rate for new configurations.

If we consider the case of the simplified butane molecule introduced in
Sections 1.3.3 and 2.10, then a trial MC move might consist of a translation and
rotation of the whole molecule and a change in the internal configuration
made by choosing a random increment in d(cos#), d(cos#’), and d¢ (see Fig.
1.8). To avoid the artefacts associated with the constraint approximation, the
Markov chain should be generated with a limiting distribution proportional to

exp(— B(¥ + %)) = exp(— B(¥ + +kgTIn[2 + sin?6 + sin26'])).
(4.54)

If 6 and @' stay close to their equilibrium values throughout, it might be
possible to introduce only a small error by neglecting the constraint potential
¥, in eqn (4.54). The constraint term becomes more complicated and
important in the case of bond-angle constraints. For this reason there have
been few Metropolis MC simulations of long-chain flexible molecules. The
technique of choice is constraint dynamics, using quadratic bond-angle
potentials to avoid the metric term in the potential (see Section 3.4).

There have been a considerable number of studies of polymer systems using
the MC method [Binder 1984]. Single chains can be simulated using crude MC
methods. In this technique a polymer chain of specified length is built up
randomly in space [Lal and Spencer 1971] or on a lattice [Suzuki and Nakata
1970]. A chain is abandoned if a substantial overlap is introduced during its
construction. When a large number N of chains of the required length have
been produced, the average of a property (such as the end-to-end distance) is
calculated from '
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M=

sAiexp(—Bv7)
(o y =21 (4.55)
._Zl exp(—B77)

where the sums range over all the N polymer chains. The approach is
inapplicable for a dense fluid of chains. A more conventional MC method,
which avoids this problem, was suggested by Wall and Mandel [1975]. In a
real fluid a chain is likely to move in a slithering fashion: the head of the chain
moves to a new position and the rest of the chain follows like a snake or lizard.
This type of motion is termed ‘reptation’ [de Gennes 1971]. A successful MC
algorithm would mimic this motion. The ‘slithering snake’ mode! was
originally applied to a polymer on a two-dimensional lattice and a simple
example is shown in Fig. 4.7.
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Fig. 4.7 The slithering snake polymer on a two-dimentional lattice. The configurations are
generated in order (a), (b), (c), and (d).

A polymer of eight segments is simulated. One end of the molecule is chosen
at random to be the head (H) while the other is the tail (T). The head is moved
to a new position on the lattice, all the other atoms move one site along the
chain and the tail position becomes vacant. In Fig. 4.7(b) the proposed head
move is rejected, since the chains are not allowed to overlap. The resulting
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configuration, which is identical to the previous one, is included in the
averaging, and the simulation proceeds. We can see that random selection of
the head and tail is important, since otherwise the system might become locked
with the head unable to move. In Fig. 4.7(c), head and tail have been
interchanged, and the proposed move is accepted, since the tail position of the
chain will be empty when the move is complete. Although this example
illustrates the method for a single polymer chain, it is easily extended to a dense
fluid of chains, since only one atom moves in generating each new
configuration. ‘

Such ‘reptation MC’ algorithms have been applied to chains on a three-
dimensional lattice [Wall, Chin, and Mandel 1977] and to continuum fluids
[Brender and Lax 1983]. Bishop, Ceperley, Frisch, and Kalos [1980] have
developed a reptation algorithm which is suitable for a chain with arbitrary
intermolecular and intramolecular potentials in a continuum fluid. The
method exploits the Metropolis solution to the transition matrix to asymptoti-
cally sample the Boltzmann distribution. In the case studied by Bishop and co-
workers, the model consists of N chains each containing n, atoms. All the
atoms in the fluid interact through the repulsive part of the Lennard-Jones
potential, vRLI(r), eqn (1.10a); this interaction controls the excluded volume of
the chains. In addition, adjacent atoms in the same chain interact through a
modified harmonic potential,

-05koiin[l—(r/6,)*)] O0<r<a,

4.56
os) r>ay (4.56)

vH(r) = {
where, typically, ¢, = 1.95¢ and k = 20. Each chain is considered in turn and
one end is chosen randomly as the head. The initial coordinates of the atoms in
the ithchain are (r;;, r;5,. . . ,r;, ). A new position is selected for the head, atom
N,

r=r;, +dr. 4.57)

The direction of r is chosen at random on the surface of a sphere, and the
magnitude Jr is chosen according to the probability distribution
exp(— fvH(r)) using a rejection technique (see Appendix G). Thus, the
intramolecular bonding potential is used in selecting the trial move (other
examples of introducing bias in this way will be seen in Chapter 7). The chain
has a new trial configuration (r;,,r;3,. . ., r;,, ). The change in non-bonded
interactions in creating a new configuration is calculated by summing over all
the atoms

n,
0V ym = Z URU(Il’ia_l"D"vRu(ll’ia - ryl)
a=2

£33 RU(r 1) = R (r —ra ). (4.58)

j#ia=1
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Non-bonded interactions from chain i and from all other chains j are included
here. 6", is used to decide whether the move should be accepted or rejected
according to the Metropolis criteria. As usual, rejected moves are recounted.
The approach works well; there are no geometrical constraints to take into
account in this example, all the atoms being free to move under the influence of
the potentials.



