. Hard rods on discrete lattices

Density functional theory (DFT)
F = Flp,(s)]
(Free energy is a unique functional of the density distribution

over the lattice sites: p,(s) = n,(s)/site | i.e.
the functional does not depend on the external potential V,(s))

F=F'+ F" =p"') > pls)logp(s)—1) + F*

—

ideal gas contribution

There is a constructive procedure to obtain good approximations for F*[p]

Dimensional crossover:

« imagine cavities which can hold exactly one rod
p / yod

/ °

/ ® ) e o
/ /
Excess free energy of such a cavity is known exactly: pF

ex,0D __ 0D
=P

« F%[p]mustdeliver ®" if density distributions are restricted to
such a cavity !



I. Hard rods on discrete lattices: 0D excess free energy

« packing fraction m < 1 =filling probability of cavity
LSS

[
[:3. - Here, n = p, + p, < 1

/

— @
@

« excess chemical = excess free energy needed to put one rod into cavity

potential 1
o= —Blegle™™)
H,_  : energy (Hamiltonian) for placing particle into cavity

oo 1f cavity i1s filled
0 1if cavity i1s empty

lp

us = —B 'log(1—m)

* is called ,potential distribution theorem*
It looks like the free energy from the partition function for 1 rod in a

statistical environment.

« thermodynamic relation:

o« _ dd”

> @ =n + (1-n)log(1-n)



. Hard rods on discrete lattices: LC functional - 1D

We will show that for hard rods (1D) this will generate the exact free energy functional!

Example: One component, L = 3
There are 3 cavities:

g(/o s #? g(/o o o o/? /(/o ° o o/ :ﬂ
s o o . o o o .
12 3

Only the largest (maximal) cavity is relevant, others are contained

in it.
Packing fraction n=p0p * P+ P;
Free Energy ®” = 1 + (1-n)log(l—n)

Note that such a cavity could be anywhere in the system
(not just at the points s =1,2,3) .

Trial functional: ~ BF[p] = >, @ (n'"(s))

(1) —_ \"
n'(s) =2 P ®o 600 0 000
That is a weighted density which sums over all densities at points s’ 9
since associated rods at s’ cover the point s!



. Hard rods on discrete lattices: LC functional - 1D

BF[pl = > @™ (n"(s)) 1

stencil

Not yet OK. The sum over s means that you go over the 1D lattice with a
stencil that cuts out three consecutive pomts When you apply this to the

maximal cavity: 4@ . .ﬂ
/
BF [pe] =@(®)+ @ 5)+ @ ¢ 9+ ¢)+d™(9)
v v v vy

need to be ... ...eliminated

Elimination can be done with:

prlp] = 2 @ (n"(s) = 2 __ " (n"(s))

n(o)(S)Z 0, © o0 © 0 o o 0 0 o

N
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. Hard rods on discrete lattices: LC functional - 1D

That's it! The functional
BFp] = 2, @P(n"(s)) - 2

IS not only correct for all OD cavities, but for all density distributions!
(Percus 1976, 1989 using way more difficult arguments)

o0

(" (s))

§=—00

Consequences: For a homogenous fluid we obtain

Bu = logp—Llog(1—Lp) + (L—1)log(1-(L—1)p)

1-(L—1)p
1-Lp

Bp = log

Clearly, chemical potential and pressure are diverging when p - L
(close-packing limit) L

(Lafuente and Cuesta, JPCM 2002, PRL 2004)
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I. Hard rods on discrete lattices: LC functional - 1D
One dimension and many components
Example: M=2 components with L =3 and L =2

It helps to imagine that species 2 is slightly thicker:

The maximal cavity is this one:

/:Eg%./ L - vee

a4 np S

stencil

Therefore, we can generalize the weighted densities

s s [

n(l)(S) — ZS’ZS—L1+1 pl,s' + ZS’ZS—L2+1 pZ,S’ e o o @C#) o b # o o
s—1 s—1 s

n(O)(S) = Zs’:s—L]+1 pl,s’ + ZS’:S—L2+1 p2,s’ ¢ & o @# hd b # o o

S

and our functional still does the job! (Try yourself graphically with the stencil!)
0 12

Folpl = > @®(n"(s) = X @™(n"(s))



. Hard rods on discrete lattices: LC functional - D>1

Two dimensions (and more ...)

It is still true that the set of points with nonzero density in a
maximal cavity corresponds to the set of points ,covered by a rod*

Example: Rods with size 2 x 3

-+ O -

° ® © © o o o o ®
o @ @ o o o o o o o o o ® e o
o @ @ © o o o o o o o o @ @ o o

Thus we generalize the weighted density 7' maximal cavity

W (s) = Z ° ¢ Z@ ®: (sum over densities at the
® @ points depicted) 13
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. Hard rods on discrete lattices: LC functional - D>1

Two dimensions (and more ...)

The trial functional would then be

,,,,,,,,,,,,,,,,,,,,,, - stencil
BF*[p] = Zs:(sx,sy)(DOD(n(l’l)(s)) c®®
e ® ®
Apply this to the maximal cavity (move the stencil ®®

over the cavity density distribution).
The thus generated extra terms can all be eliminated by
extending the functional to:

BFex[p] _ Zs:(sx,sy)q)OD(n(l,l)(s))_Zs:(sx,sy) (DOD(n(O,l)(s))_zs:(Sws})q)0D<n(1,0)(s)) + Zs:(sxysy) q)OD(n(O,O)(S))
n(O,l)(s) — Z e o

X
+
[
@
X

X
O]
X

M= ) v 2ee
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. Hard rods on discrete lattices: LC functional - D>1

Two dimensions (and more ...): summary

So, the general form of the Lafuente-Cuesta functional on hypercubic
lattices is given by

BE® = D Dy ..D, @ (n(s))

d number of dimensions
D f(..,o,..) = f(..,1,...)—f(...,0,...)  difference operator

n'“%(s)  weighted densities (c,=0,1)

(o, a,) . M s,—1+a, s;,—1+a, . M a
n (S) - Zle stlzsl_Lf'“zsrd:Sd_Lg pp,s' - szlwp * pp(s)
\ discrete convolution
M number of parallelepiped species
L? = (L7 ,LY] vector of parallelepiped side lengths of species p
s = {5, ,Sq) lattice position vector
wi(s) weight function for species p
a = (o, ,0, weight function index 15



. Hard rods on discrete lattices: LC functional - D>1

Two dimensions (and more ...)

Unfortunately, these functionals in 2D and 3D are not exact anymore...
Reasons? ,Correlations” in 2-particle cavities

Example: Correlated 2-particle cavity for rods with length 2 x 1

S/ / S/

e o o ?

°®* *" holds E
®@® o

Consequently terms in the free energy should depend on
o

e and @ ® separately

vl

/
/|
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But the OD-functional delivers only
o o ®
+ - -

® coT @ @ o . .
...but they might offer a good picture of the model to start with!
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. Hard rods on discrete lattices: LC functional

Results: 3D - rods with length 1x1xL

—(p,+p5)/2
order parameter: Q = s (pzp p3) Q>0: 1 is majority species

Q<0: 1 is minority species

FMT SIM
« nematic transition always with * nematic transition for (L=7):
one majority species for L>4 one minority species L=5

one majority species (L=5,6)
 strong first order transition
(similar to continuum hard rods) * very weak first order transition
(unlike continuum hard rods):
strong fluctuations

0.8+~

e L=2(GCMC)

0.6

- _ (FMT)
“packing” is o4r ° L:g(((;fﬁ)c ' -
well described 0_2' A L=25(GCMC)

— (FMT) 17
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. Hard rods on discrete lattices

Results: 3D - rods with length 1x1xL

Phase diagram

: LC functional

. In simulations:
no density gap detectable!
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