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Abstract. This paper introduces theAssistive Kitchenas a comprehensive demonstration and challenge sce-
nario for technical cognitive systems. We describe its hardware and software infrastructure. Within theAssistive
Kitchenapplication, we select particular domain activities as research subjects and identify the cognitive capabil-
ities needed for perceiving, interpreting, analyzing, and executing these activities as research foci. We conclude
by outlining open research issues that need to be solved to realize the scenarios successfully.

I. Introduction
Cognitive technical systemsare systems that are equipped

with artificial sensors and actuators, integrated into physical
systems, and act in a physical world. They differ from other
technical systems in that they havecognitive capabilitiesin-
cluding perception, reasoning, learning, and planning that turn
them into systems that“know what they are doing”[4]. The
cognitive capabilities will result in systems of higher reliabil-
ity, flexibility, adaptivity, and better performance and systems
that are easier to interact and cooperate with.

The cluster of excellence COTESYS (Cognition for Tech-
nical Systems)1 considers the assistance of elder people to
be a key application where technical cognitive systems could
profoundly impact the well-being of our society. Therefore,
COTESYS investigates the realization of anassistive kitchen
(Figure 1), a ubiquitous computing, sensing, and actuation
environment with a robotic assistant as one of its primary
demonstration scenarios. The Assistive Kitchen aims at

• supporting and assisting people in their household chores
through physical action;

• enhancing the cognitive capabilities of people doing
household work by reminding them; and

• monitoring health and safety of the people.
To achieve these objectives, the Assistive Kitchen is to

• perceive, interpret, learn, and analyze models of house-
hold chore and activities of daily life (ADLs); and

• represent the acquired models such that the Assistive
Kitchen can use them for activity and safety monitoring,
health assessment, and for adapting itself to the needs
and preferences of the people.

The Assistive Kitchen includes an autonomous robotic
agent that is to learn and perform complex household chores.
The robot must perform housework together with people or at
least assist them in their activities. This requires safe opera-
tion in the presence of humans and behaving according to the
preferences of the people they serve.

Clearly, assistive kitchens of this sort are important for sev-

0(1) The research reported in this paper is partly funded by the German
cluster of excellence COTESYS (Cognition for Technical Systems). (2) More
information including videos and publications about theAssistive Kitchencan
be found at ias.cs.tum.edu/assistivekitchen. (3) Due to space limitations this
paper does not contain an outline of our research agenda towards realizing the
scenarios and nor does it give a comprehensive discussion of related work.

1The research agenda of the COTESYS cluster of excellence is decribed
in a companion paper [5] contained in this collection.

eral reasons. First, they are of societal importance because
they can enable persons with minor disabilities including sen-
sory, cognitive, and motor ones to live independently and to
perform their household work. This will increase the quality
of life as well as reduce the cost of home care.

Assistive kitchens and living environments also raise chal-
lenging research problems. One of these problems is that
performing household chores is a form of everyday activity
that requires extensive commonsense knowledge and reason-
ing [1]. Another challenge is the low frequency of daily activ-
ities, which requires embedded systems and robotic agents to
learn from very scarce experience. Besides, household chores
include a large variety of manipulation actions and composed
activities that pose hard research questions for current robot
manipulation research. The management of daily activities
also requires activity management that is very different from
that commonly assumed by AI planning systems.

II. Assistive Kitchen Infrastructure
We start with the hardware and software infrastructure of

the kitchen — the implementational basis that defines the pos-
sibilities and restrictions of the demonstration scenarios.

A. The Hardware Infrastructure
The hardware infrastructure consists of a mobile robot and

networked sensing and actuation devices that are physically
embedded into the environment.

A. 1. The Autonomous Mobile Robot
Currently, an autonomous mobile robot with two arms with

grippers acts as a robotic assistant in the Assistive Kitchen
(see Figure 1). The robot is a RWI B21 robot equipped with a
stereo CCD system and laser rangefinders as its primary sen-
sors. One laser range sensor is integrated into the robot base
to allow for estimating the robot’s position within the environ-
ment. Small laser range sensors are mounted onto the robot’s
grippers to provide sensory feedback for reaching and grasp-
ing actions. The grippers are also equipped with RFID tag
readers that support object detection and identification. Cam-
eras are used for longer range object recognition and to allow
for vision-based interaction with people.

The robot can manipulate objects and its environment using
its two industrial strength Amtec Powercube arms with simple
grippers. While the arms and grippers are not very dexterous
they permit the execution of simple manipulation actions such
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Fig.1: The Assistive Kitchen containing a robot and a variety of sensors.

as getting plates and glasses out of the cupboard and putting
them onto the table.2

A. 2. Room Infrastructure
The sensor-equipped kitchen environment (see Figure 1)

disposes of global environment sensors, sensor-equipped fur-
niture, web-enabled appliances, “smart” objects, and instru-
mentations for people acting in the environment [6]. In this
section we will look at these components in more detail.

Global Sensors of the Kitchen.We have mounted a set
of static off-the-shelf cameras positioned to cover the kitchen
area with high resolution in critical working areas. With these
cameras, actions of the people and robots can be tracked from
different locations to allow for more accurate positioning and
pose estimation. In addition, laser range sensors are mounted
at the walls for covering large parts of the kitchen. They pro-
vide accurate and valuable position data for the people present
in the environment and their movements within the kitchen.

Sensor-equipped Furniture.The pieces of furniture in the
Assistive Kitchen are also equipped with various kinds of sen-
sors. For example, we have cupboards with long-range RFID
tag readers that enable the cupboards to “know” the identi-
ties of the RFID tagged objects that are currently in the cup-
board. Additionally, the cupboards are equipped with magnet-
ical contact sensors that sense whether the cupboard doors are
open or closed. Another example is a table which contains
several integrated capacitive sensors as well as short-range
RFID readers. The capacitive sensors report the capacitance
of different areas on the table, when an object is placed there,
while the RFID readers provide exact information on what ob-
ject was placed there.

Web-enabled Kitchen Appliancessuch as the refridgerator,
the oven, the microwave, and the faucet, allow for remote and
wireless monitoring and control.

”Smart” Objects In addition, kitchen utensils, tools and
small appliances are equipped with integrated sensors. For
example, we use a knife (see Figure 2) instrumented with a

2Robot platforms contributed by other members of the COTESYS clus-
ter includeJustin (dexterous manipulation, www.robotic.dlr.de) andJohn-
nie/Lola(full body motion, www.amm.mw.tu-muenchen.de).

6DOF force/torque sensor that allows us to record the force
trajectories over extended periods of time. Because the shapes
of the force trajectories are characteristic for the physical
properties of the objects, we can learn object specific force
profiles and use them to classify the objects being cut.

Fig.2: Knife with embedded force sensors networked within
the wireless sensor network.

Another smart object is a sensor-instrumented coffee ma-
chine, its capabilites being extended from that of a normal
kitchen appliance. The integrated sensors provide information
whether the filter unit is open or closed and wether a coffee fil-
ter is installed, whether the machine is switched on or off, the
amount of water in the water container, etc.

Instrumentation of PeopleSmall ubiquitous devices offer
the possibility to instrument people acting in the environment
with additional sensors. In our case, we have built a glove
equipped with an RFID tag reader (see Figure 3) that enables
us to identify the objects that are manipulated by the person
wearing it. In addition, the person is equipped with tiny iner-
tial measurement units that provide us with detailed informa-
tion about the person’s limb motions.

Another body worn sensory device to be used in the Assis-
tive Kitchen demonstration scenario is the gaze-aligned head
mounted camera which allows the estimation of the attentional
state of people while performing their kitchen work.3

3The gaze-aligned head mounted camera is currently developed by Neu-
rologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München,
which participates in the COTESYS excellence cluster (www.forbias.de/).



B. Cognitive Sensor Networks
The sensors in the Assistive Kitchen are connected into dis-

tributed sensor networks (see Figure 3), which are enhanced
with cognitive capabilities. To this end the sensors are wire-
lessly connected to small ubiquitous computing devices (like
Gumstix) and to personal computers that perform state esti-
mation and data-mining tasks. This way, activity data can be
collected and abstracted into models in a distributed manner.
Cognitive capabilities of the network include the estimation
of meaningful states from sensor data, the continual acquisi-
tion, update, and use of activity models, and the estimation of
context conditions that allow for the simplification of recogni-
tion tasks. Because of these capabilities cognitive sensor net-
works always have up-to-date models of objects, situations,
and activities, which enable the networks to provide a contin-
ual service for answering queries about the environment and
the activities that take place in it.

Fig.3: Sensor networks in the Assistive Kitchen.

Cognitive sensor networks can estimate states and recog-
nize events that are meaningful in the application domain but
must be obtained by combining, interpreting, and abstracting
the sensor data of different sensors over time. For example,
mounting RFID tags and acceleration sensors to kitchen uten-
sils allows the environment to recognizeforce-dynamic states
such as an object being picked up, carried, or put down. The
recognition of force-dynamic states is essential for segment-
ing activities into meaningful subactions. The networks can
also learn about places that play particular roles in the activi-
ties that are monitored. The system can learn where the people
prepare food or where food is stored, etc.

C. Middleware Software Infrastructure
A critical factor for the successful implementation of the as-

sistive kitchen is the middleware software infrastructure that
has to provide a simple, reliable, uniform, and flexible inter-
face for communicating with and controlling different physi-
cally distributed sensors and actuators.

We use and extend the open-source Player/Stage/Gazebo
(P/S/G) software library to satisfy these requirements for the
sensor-equipped environment as well as the robotic agent.
Player provides a simple and flexible interface for robot con-
trol by making available powerful classes of interface abstrac-
tions for interacting with robot hardware, in particular sen-

sors and effectors. These abstractions enable the programmer
to use devices with similar functionality with identical soft-
ware interfaces, thus increasing the code transferability. An
enhancedclient/server modelfeaturing auto-discovery mech-
anisms as well as permitting servers and clients to communi-
cate between them in a heterogeneous network, enables pro-
grammers to code their clients in different programming lan-
guages. Programmers can also implement sophisticated algo-
rithms and provide them as Player drivers. By incorporating
well-understood algorithms into our infrastructure, we elimi-
nate the need for users to individually re-implement them.

Using the P/S/G infrastructure a robot can enter a sensor-
equipped environment, autodiscover the sensors and the ser-
vices they provide and use these sensors in the same way as it
uses its own sensors.

D. Simulation and Visualization
We have developed a simulation of the kitchen and robot

acting as robotic assistant using the Gazebo toolbox for 3D,
physic-based robot simulation. The simulator is realistic
along many dimensions. In particular, the simulator will use
sensing and actuation models that are learned from the real
robots. The simulator is coupled to the cognitive sensor net-
work. Thereby the simulator can be automatically initialized
and updated according to the sensing data of the network.

Fig.4: The Assistive Kitchen and its simulation.

The use of these simulation tools promotes the research in
assistive kitchen technology in various ways. First, the simu-
lator supports generalization: we can model all kinds of robots
in our simulation framework. We will also have different
kitchen setups, which requires us to develop control programs
that can specialize themselves for different robots and envi-
ronments. The simulator allows us to run experiments fast
and with little efforts and under controllable context settings.
This supports the performance of extensive empirical studies.

III. Demonstration Scenarios
The demonstration scenarios are organized along two di-

mensions (see Figure 5). The first dimension is the domain
tasks and activities under investigation. The second one are
the cognitive aspects of perception, interpretation, learning,
planning, and execution of these activities.

A. Activities/Scenario Tasks
We start by looking at three scenario tasks in the context of

household chores: setting the table, cooking, and performing
household chores for an extended period. These tasks chal-
lenge cognitive systems along different dimensions, which we
will discuss in the remainder of this Section.
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Fig.5: Dimensions of demonstration scenarios.

Table setting refers to the arrangement of tableware, cut-
lery, and glasses on the table for eating. Table setting is a
complex transportation task that can be performed as a single
thread of activity.

There are various aspects of table setting that make it to a
suitable challenge for cognitive systems:• the commonsense
knowledge and reasoning needed are to perform the task com-
petently;• the task itself is typically specified incompletely
and in a fuzzy manner; and• the task can be carried out and
optimized in many ways.

To account for incomplete task specifications, agents must
use their experience or inquire in order to find out who sits
where and whether people prefer particular plates, cups, etc.
Other missing information can be found in the world wide
web such as which kinds of plates and cutlery are needed and
where they should be placed.

Aspects to be considered for the optimization of the activ-
ity include the the position where the robot should stand to
place the objects on the table, the decision if objects should be
stacked or carried individually, etc. Also, the task requires the
execution of macro actions such as approaching the cupboard
in order toopen it and get out the plates. Agents also have to
consider subtle issues in action selection, such as whether or
not to interrupt the carrying action in order to close the door
immediately or later. Finally, actions require substantial dex-
terity. Putting objects on table where people are sit requires
the robot to perform socially acceptable reaching actions.

Cooking is the activity of preparing food to eat. Unlike
setting the table, cooking requires the selection, measurement
and combination of ingredients in an ordered procedure. The
performance of a cooking activity is measured in terms of the
quality and taste of the meal and its timely provision.

Cooking involves the transformation of food, the control of
physical and chemical processes, the concurrent execution of
different activities, the use of tools and ingredients, and mon-
itoring actions. Concurrent activities have to be timed such
that all parts of the meal are done at the desired time. Cooking
comprises many different methods, tools and combinations of
ingredients — making it a difficult skill to acquire.

Prolonged House Keeping and Household Choresare spe-
cific activities related to or used in the running of a household.
The activities include cooking, setting the table, washing the
dishes, cleaning, and many other tasks.

Performing household chores illustrates well the flexibility
and reliability of human everyday activity. An important rea-
son is the flexible management of multiple, diverse jobs. Hu-

mans as well as intelligent agents usually have several tasks
and activities to perform simultaneously. They clean the liv-
ing room while the food sits on the oven. At any time, inter-
rupts such as telephone calls, new errands and revisions of old
ones might come up. In addition, they have regular daily and
weekly errands, like cleaning the windows.

Since doing the household chores is a daily activity and
done over and over again, agents are confronted with the same
kinds of situations many times, they learn and use reliable
and efficient routines for carrying out their daily jobs. Per-
forming their daily activities usually does not require a lot of
thought because routines are general. This generality is neces-
sary since jobs come in many variations and require agents to
cope with whatever situations they encounter. The regularity
of everyday activity also requires agents to handle interrup-
tions that occur while carrying out their routines. Routines,
like cleaning the kitchen, are often interrupted if a more ur-
gent task is to be performed, and continued later on. There-
fore, agents have to remember where they put things in order
to find them again later.

A main factor that contributes to the efficiency of everyday
activity is the flexibility with which different routines can be
interleaved. Agents often work on more than one job at a time.
Or, they do jobs together — operating the washing machine in,
and getting stored food from, the basement.

People can accomplish their household chores well — even
in situations they have not encountered yet — for two rea-
sons: they have general routines that work well in standard
situations and they are, at the same time, able to recognize
non-standard situations and adapt their routines to the specific
situations they encounter. Making the appropriate adaptations
often requires people to predict how their routines would work
in non-standard situations and why they might fail.

B. Scenarios
For these activities the following scenarios are investigated.

B. 1. Understanding Human Household Chore: Acquisition
and Use of Activity Models

In the first demonstration scenario the task is to observe the
activity in the kitchen in order to acquire abstract models of
the activity. The models are then to be used to

• answer queries about the activity,
• monitor activity and assess its execution,
• generate visual summaries of a cooking activity includ-

ing symbolic descriptions, and
• detect exceptional situations and the need for help.
In order to do so, the system is required to answer questions

including the following ones: What are meaningful subactiv-
ities of “setting the table” and why? Which eating utensils
and plates have to be used for spaghetti and how should they
be arranged? Does John prefer a particular cup? Where do
people prepare meals? How do adults set the table as opposed
to kids? and why? Why does one put down the plates before
bringing them to the table? (To close the door of the cup-
board.) What happens after the table is set? Where are the
forks kept? What is the fork used for?

The models needed for answering these questions are to be
acquired (semi-)automatically from the world wide web, from
observing people, and by asking for advice.



Fig.6: Sensing, reaching, and grasping activities using tiny
inertial measurement units (left). Estimating the pose of peo-
ple by accurately matching digital human models into image
sequences (right).

B. 2. Self-modelling and -adapting Assistive Kitchens
Maps or environment models are resources that the As-

sistive Kitchen uses in order to accomplish its tasks more
reliably and efficiently. Acquiring a model of an assistive
kitchen is very different from environment mapping done by
autonomous robots. For mapping the Assistive Kitchen the
robot can make use of the sensors of the environment. There is
also various semantic information associated with RFID tags
in the environment and the sensors are services providing in-
formation about themselves and their use.

Here, we consider mapping to be the following task:Given
(1) a sensor-equipped kitchen where appliances and other
pieces of furniture might or might not be tagged with RFID
tags that have information associated with them (such as their
size) and (2) a stream of observations of activities in this
kitchen acquired by the various sensorsacquirea semantic,
3D object map of the kitchen.

In contrast to many other robot mapping tasks where the
purpose of mapping is the support of navigation tasks, the
kitchen map is to be a resource for understanding and car-
rying out household chores. To this end, the map needs to
have a richer structure, explicitly reference task relevant ob-
jects such as appliances, know about the concept of containers
and doors, such as cabinets and drawers.

The maps also have to contain sensors of the environment
and their locations in order to semantically interpret the sensor
data. For example, the mapper has to estimate the position and
orientation of a laser range sensor using its own motions and
their effects on the sensor data, in order to infer that the sensor
can be used for determining its own position and how. Or, the
robot has to locate an RFID tag reader, for example using the
estimated position of its gripper and observing which of the
sensors reports the RFID identifier of its gripper. Knowing
that its gripper is inside a cabinet it can infer that the respective
sensor can be used to sense what is inside this cabinet.

By observing the activity in the kitchen the system can also
infer the function of objects. For example, that a particular
cabinet is used to store the plates and glasses and that the cut-
lery is kept in a particular drawer. Finally, the geometry of the
environment and recognized activities are used to finetune the
sensors for particular activity recognition tasks.

B. 3. Action and Motion Primitives
People doing their household activities perform very com-

plex movements smoothly and effortlessly, and improve such
movements with repetition and experience. Such activities

like putting the dishes in the cupboard, or setting the table,
are simple for people but present challenges for robots.

Consider picking up a cup from the table and placing it in
the cupboard. Any person will turn and walk towards the cup,
while simultaneously stretching the arm and opening the hand.
Then the hand will grasp the cup firmly, and lift it. It will ap-
ply just the right amount of force, because through experience,
the person has learned how much a cup should weigh. If the
cup were heavier as expected, this would be detected and cor-
rected immediately. Then, taking the cup close the body for a
better stability, the person will walk to the cupboard, open the
door with the other hand, and place the cup inside.

Several noteworthy things take place. First, the motions
used to get the cup are similar to the ones used for reach-
ing and picking up other objects. Such movements can be
formed by combining one or more basic movements, called
motion primitives. These primitives can be learned by obser-
vation and experimentation. Each one of this primitives can
be parametrized to generate different movements. Second, it
is known that noise and lag are present in the nervous system,
which affect both sensing and motor control. But people man-
age despite this limitations to have elegant and precise con-
trol of our limbs. A robot with a traditional controller would
have great difficulties carrying out simple movements in such
conditions. Humans deal with this problem by building for-
ward and reverse models for motor control [7]. Third, during
a movement, any abnormal situation is quickly detected and a
corrective action is taken.

In this demonstration scenario, we would like a robot to
exhibit a similar capabilities. The robot will observe the ac-
tivities of people, obtain motion primitives from them, and
improve them through own experimentation. Models of ac-
tivity are also learned for reaching and grasping movements,
and include information regarding the effects of the control
commands. This allows the robot make predictions and de-
tect abnormal situations when the sensory data differs from
the expected values.

B. 4. Planning and Learning Macro Actions
The next higher level of activities in the kitchen are macro

actions. We consider macro actions to be the synchronized
execution of a set of action primitives that taken together per-
form a frequent macro activity in the task domain. These ac-
tivities are so frequent that the agents learn high-performance
skills from experience for their reliable and flexible execution.
Examples for such macro activities are opening a tetrapak and
filling a cup with milk, opening a cabinet to take a glass, or
buttering a bagel.

Here the challenge is to compose macro actions from co-
ordinated action primitives such that the resulting behavior is
skillful, flexible, reliable, and fluent without noticeable tran-
siting between the subactions [8]. Another challenge is that
such macro actions must be learned from very little experi-
ence — compared with other robot learning tasks [3].

The learning of macro actions is an application ofaction
aware controlwhere the agents learn performance and pre-
dictive models of actions and use these models for planning,
learning, and executing macro actions. The construction of
such macro actions requires the application of transforma-



tional learning and planning methods and the combination of
symbolic and motion planning with learned dynamic models.

B. 5. Self-adapting High-level Controller
Robotic agents can not be fully programmed for every ap-

plication. Thus, in this demonstration scenario we realize
robot control programs that specialize to their respective robot
platform, work space, and tasks (see Figure 7).

set the table
. . .
pick-up-obj
go2pose
grip-obj
. . .

. . .

Fig.7: Self-adaptation of different robots in different kitchens.

Specifically we realize a high-level control program for set-
ting the table. The program learns from experience where to
stand when taking a glass out of the cupboard, how to best
grasp particular kitchen utensils, where to look for particular
cutlery, etc. This requires the control system to know the pa-
rameters of control routines and to have models of how the
parameters change the behavior [2]. Also, the robots are re-
quired to perform their tasks over extended periods of time,
which asks for very robust control.

B. 6. Learning to Carry out Abstract Instructions
The final scenario discussed in this paper is the acquistion

of new high-level skills. Let us consider the setting of a table
as an illustrative example (see Figure 8). Upon receiving “set
the table” the robot retrieves instructions from webpages such
as ehow.com. These instructions are typically sequences of
steps to be executed in order to carry out the activities success-
fully. The challenges of this execution scenario are: (1) trans-
late the abstract instructions into an executable robot control
program, (2) supplement missing information through obser-
vations of kitchen activities, (3) transform the action sequence
into an activity structure that can be carried out more reliably,
efficiently, and flexibly. Instructions typically abstract away
from these aspects of activity specification.

task
set the table

knowledge base

ehow.com
Cyc

abstract general plan

optimized adapted plan
• parametrization

– preferred dinnerware
– preferred seating

location
• transformation

– stack plates
– use tray

activity recognition
sensor equipped kitchen

executable plan

in
sim

ulation

Fig.8: Learning to set the table.

Let us now look at some of the hard challenges in this
scenario. First, translating abstract instructions into a work-
ing robot control program requires answers to the following
research questions. (1) How can the plan libraries of au-
tonomous household robots be specified so generally, reliably,
transparently, and modularily that a robot can compose (al-
most) working plans from abstract instructions? In order for
newly composed sequences of plan steps to work it helps if
the indivual plan steps are specified as “universal plans”, that
is they achieve – if necessary – all preconditions needed for
producing the desired effects. (2) Debugging newly created
plans from instructions requires the robot to predict what will
happen if it executes the new plan, to identify the flaws of the
plan with respect to its desired behavior, and to revise the plan
in order to avoid the predicted flaws. (3) Optimizing tasks
like table setting also requires the technical cognitive system
to observe people setting the table, to infer the structure of the
activity and reason about why people do not follow the ab-
stract instructions like a robot but perform the task the way
they do. This way the robot would learn that people stack
plates when carrying them in order to minimize the distance
they have to walk. The robot would then transform its plan
analogously and test whether this change of activity structure
would result in improved performance.

IV. Concluding Remarks
This paper has presented assistive kitchens as demonstra-

tion pletforms for cognitive technical systems that include var-
ious research challenges for cognitive systems. In particular,
we expect the investigation of cognitive capabilities in the
context of human everyday activity, which has received sur-
prisingly little attention in previous research efforts, to sub-
stantially promote the state-of-the-art of cognition for tech-
nical systems. We refer to a longer version of this paper —
currently in preparation — for more detailed discussion of the
research issues and the related research in this area.
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