
Making Robot Learning Controllable: A Case Study in Robot Navigation

Alexandra Kirsch, Michael Schweitzer, Michael Beetz

Abstract

In many applications the performance of learned robot con-
trollers drags behind those of the respective hand-coded ones.
In our view, this situation is caused not mainly by deficien-
cies of the learning algorithms but rather by an insufficient
embedding of learning in robot control programs. This pa-
per presents a case study in which ROLL, a robot control
language that allows for explicit representations of learn-
ing problems, is applied to learning robot navigation tasks.
The case study shows that ROLL’s constructs for specify-
ing learning problems (1) make aspects of autonomous robot
learning explicit and controllable; (2) have an enormous im-
pact on the performance of the learned controllers and there-
fore encourage the engineering of high performance learn-
ers; (3) make the learning processes repeatable and allow for
writing bootstrapping robot controllers. Taken together the
approach constitutes an important step towardsengineering
controllers of autonomous learning robots.

Introduction
Implementing competent autonomous robot control systems
that can accomplish large spectra of dynamically changing
and interacting tasks is very difficult. The realization and
maintenance during their development requires the control
systems to be equipped with, and make ample use of au-
tonomous learning mechanisms. Unfortunately, the perfor-
mance of learned routines typically drags substantially be-
hind the performance of handcoded ones, at least if the con-
trol tasks are complex, interact, and are dynamically chang-
ing.

In our view, this situation is caused not primarily by de-
ficiencies of learning algorithms but rather by an insuffi-
cient embedding of learning into robot control. For a robot
to learn effectively and successfully it does not suffice to
merely apply the right learning algorithm. Rather, the robot
must also be able to recognize the experiences relevant for
learning, to actively acquire specific experiences to acceler-
ate learning and to select informative experiences and throw
away misleading ones. We know from data mining applica-
tions that the realizations of these tasks have an tremendous
impact on the performance of learning and data mining ap-
plications.

Beetz et al. [2004] have proposed ROLL (Robot Learning
Language, formerly called RPLLEARN), an extension to the

robot control and plan language RPL, that allows program-
mers to specify such mechanisms declaratively and modular-
ily as part of the control program. ROLL introduces experi-
ences, distributions and abstractions thereof, learning tasks,
and learned routines as first class objects into the language.
It also provides transparent and modular specification mech-
anisms for them. Using ROLL, a programmer can spec-
ify an experience class relevant for a given learning task by
adding a perception mechanism for it, a routine for perform-
ing physical actions to gather such experiences, a critic that
decides whether or not an experience is informative. Using
the last specification, a robot can recognize an experience in
which it collided with an object, which is not informative for
learning the dynamics of the robot.

In this paper we evaluate some of the claims made by
Beetz et al. [2004] by applying the extended language
to learning an example class of navigation tasks for au-
tonomous robot soccer. In the context of this case study,
we will discuss whether changing the parameters and the
mechanisms that are made explicit in ROLL have substan-
tial impact on the performance of learned routines. We will
also investigate whether the changes can be made modular-
ily and transparently and whether the language extensions
encourage theengineeringof autonomously learning con-
trollers through a seamless integration of programming and
learning.

The case study demonstrates the huge potential of control
languages that support learning for the realization of more
competent controllers that are easier to develop and main-
tain.

In the remainder of this paper we proceed as follows. Sec-
tion briefly introduces some of the language constructs pro-
vided by ROLL that are used for our case study. In section
we present a case study demonstrating the language ROLL.
Thereafter we compare several navigation routines that were
implemented with ROLL. Finally we discuss related work
and conclude with section .

The Robot Learning Language ROLL

Before we start with our case study, let us first describe the
computational model for the interpretation of ROLL con-
trollers and then the key language constructs provided by
ROLL for the embedding of learning mechanisms.



The Interpretation Model of R OLL
The extended robot control language ROLL assumes that
ROLL controllers are executed by an interpretation model
that has the structure and components depicted in figure 1.
The main parts of the system are theperformance element
that controls the robot, thecritic that executes the learning
task specific perception mechanisms, thelearning element
that reasons about and modifies the performance element in
order to improve its behavior. To do so, the learning element
uses a database of experiences and a library of learning al-
gorithms as its resources. Finally, the computational model
includes aproblem generatorthat allows the robot to acquire
relevant experiences actively. In the remainder of this sec-
tion we will briefly sketch the functionality of the individual
components of the interpretation model.

Agent Program

E
nv

iro
nm

en
t

Percept

Performance
Element

Control
Signals

Critic

Learning
Element

Problem
Generator

da
ta

ba
se

of
ex

pe
rie

nc
es

le
ar

ni
ng

sy
st

em
s

Figure 1: Overview of a learning agent after (Russell &
Norvig 1995)

Theperformance elementrealizes the mapping from per-
cepts into the actions that should be performed next. It con-
tains code pieces, calledcontrol tasksthat might not yet be
executable or optimized. These are the code pieces to be
learned. Thus the ROLL interpreter might have to inter-
pret a control task that has not yet been learned, using the
ROLL specification of the learning problem. In this case,
it automatically activates the learning process including the
collection of the necessary experiences, and continues with
the interpretation after the learning process has generated an
executable code piece for the control task.

The critic is best thought of as a learning task specific
abstract sensor that transforms raw sensor data into infor-
mation relevant for the learning element. To do so the critic
monitors the collection of experiences and abstracts them
into a feature representation that facilitates learning. The
critic also generates feedback signals or rewards that as-
sess the robot’s performance during an episode. Finally, the
episodes are stored and maintained in a relational database
system coupled with a datamining toolset as resources for
learning. The current ROLL version uses MySQL1 as its
database system and Weka2 for data mining.

The learning elementuses experiences made by the robot
in order to learn the routine for the given control task. To
do so, the learning element selects a subset of experiences

1http://www.mysql.com/
2http://sourceforge.net/projects/weka/

from the episode database and transforms these experiences
into input data for the learning algorithm to be applied. The
learning element also specifies the appropriate parameteri-
zation of the learning mechanism, the bias, to perform the
learning task effectively. Finally, the learning element spec-
ifies how the result of the learning process is to be trans-
formed into a piece of code that can be executed by the per-
formance element.

Theproblem generatoris called with an experience class
and returns a control routine that, when executed, will gen-
erate an experience of the respective class. The new param-
eterizations are generated as specified in the distribution of
parameterizations of the experience class.

Learning-specific Constructs of ROLL

In order to write a ROLL controller, a programmer has to
specify control tasks that are to be learned, experiences that
are needed to learn a routine for the tasks, abstractions of
experiences that are better correlated with the concepts to
be learned, and learning algorithms, their parameterization,
conversions of experiences into input data of the algorithm
and the transformations of the algorithm output into pieces
of the control program. For each of these aspects ROLL pro-
vides modular and transparent means for their specification.

To specify the experiences for a learning task we must
code how the experiences are to be recognized, how they
can be actively acquired by performing control routines, and
what the distribution of experiences should be. The perfor-
mance of learned routines often improves as the distribution
of experiences matches the expected distribution of control
tasks which they are learned for. To facilitate learning the
programmer can also define suitable abstractions or “fea-
ture languages”. The experiences are stored in an episode
database automatically.

experience class 〈name〉
with feature language 〈feature language〉

abstraction 〈abstraction〉
distribution 〈distribution〉
methods 〈detect-method〉, 〈collect-method〉

A learning problem consists of two parts: the experi-
ences and a learning element. The experiences are extracted
from a database. This gives the programmer the freedom
to choose from the gathered experiences only those that are
most suited for the particular problem. For this purpose we
use an abstract language that was designed for data cleaning
(Galhardaset al. 2001). This language is an extension of
SQL and provides, among others, constructs for matching,
clustering, and merging of data. Thus a set of experiences of
an experience class can be used for different learning prob-
lems. The learning element contains the choice of a learning
algorithms and its parameterization for the learning prob-
lem.

learning problem 〈name〉
experiences 〈experience set〉
learning element 〈learning element〉

Given a set of experiences a robot learning problem is es-
sentially the application of an appropriately parameterized
learning algorithm, the transformation of the abstracted ex-
periences into the input format of the learning algorithm,



and the generation of code that is executable within the con-
troller and solves the control task from the output of the al-
gorithm.

Navigation with Bézier Curves: A Case Study
In the domain of robot soccer, the navigation is a funda-
mental issue. We consider mobile robots with a simple dif-
ferential drive which we can control with an an abstract in-
terface that allows for the drive control in terms of a de-
sired rotational velocityv and translational velocityω of the
robot. Steering differential drives for complex navigation
tasks with high performance is very difficult. As described
and justified by experimental results in (Beetzet al. 2004)
we perform learning tasks in a simulator with the robot dy-
namics learned from the real physical robots.

Figure 2: The navigation problem using Bézier curves

In robot soccer it often does not suffice to reach a position,
but positions must be reached in orientations that facilitate
subsequent actions. Thus we consider navigation tasks that
are specified by the current robot position and orientation
〈x, y, ϕ〉 and the intended one〈xg, yg, ϕg〉 and use cubic
Bézier curves for specifying the trajectories to be followed
(figure 2). Witht ∈ [0, 1] a cubic B́ezier curve is defined as

B(t) = (1− t)3P0 + 3t(1− t)2P1 + 3t(t − 1)P2 + t3P3.
ThePi are called control points. For the navigation prob-

lem P0 is the starting position andP3 is the goal position.
With the orientation given atP0, P1 is determined by the
distance toP0, for P3 andP2 respectively. So for us a B́ezier
curve is determined by the two distancesd0 andd1.

control routine navigation (〈xg, yg, ϕg〉)
trajectory := calculate-bezier-curve (〈x, y, ϕ〉, 〈xg, yg, ϕg〉)
do

trajectory-point := pop(trajectory)
do

get-next-command (〈x, y, ϕ〉, trajectory-point)

until at-point(trajectory-point)
until at-point(〈xg, yg, ϕg〉)

Figure 3: Overview of our navigation routine.

We decompose the navigation problem into two subprob-
lems as shown in figure 3: (1) Finding a suitable Bézier
curve. We call this the high-level navigation problem.

(2) Navigating from a point on the curve to the next tra-
jectory point. This we refer to as the low-level navigation
problem.

To keep the case study simple, we abstract away from
other parameters that influence the performance of the navi-
gation routine such as the density of trajectory points on the
Bézier curve. They have small impact on performance and
we keep them constant in our experiments.

Finding a Trajectory

In our case study we have investigated three different ap-
proaches for the implementation of the functioncalculate-
bezier-curve: a fully programmed one that performs an ex-
haustive search through all possible solutions; a heuristic
one, and a learned one.

The fully programmed function produces very good re-
sults, but is too slow to be used at execution time. The
heuristic solution calculatesd0 andd1 independently, based
on the angle deviation of each point with respect to the line
of sight between the two points. A third solution is to learn
the functioncalculate-bezier-curve by experience. Unfortu-
nately, there is a strong dependency between the parameters
d0 andd1. Therefore we split the problem into two learning
tasks: one to determine onlyd0, the other one to determine
d1 as a function ofd0.

Low-Level Navigation

In this section, we explain the solution of the low-level nav-
igation problem in more detail. We demonstrate the explicit
specification of a learning problem and show different alter-
natives for solving the navigation task.

The low-level navigation is simpler than the original nav-
igation problem in that the target points are rather close, so
that the goal angle can be omitted. The orientation of the
overall navigation task is achieved by following the Bézier
curve.
(1) Parameterization of the Experience Abstrac-
tion. The choice of abstractions determines how concisely
situations and tasks can be represented and how strongly the
characterizations of situations and tasks correlate with the
concepts to be learned. The abstraction has a strong effect
on the performance of the learning process.

Two possible feature languages with their respective ab-
stractions are shown in table 1. The first one describes the
distance between the start and goal point and the angle of
the start point relative to the line of sight. In the second pos-
sibility an arc is drawn between the start and goal point with
the orientation vector at the start point as a tangent. Here the
abstraction is described in terms of the radiusrc of this arc.
(2) Parameterization of the Experience Distribution. It
is often useful to specify more than one distribution for ob-
taining a broader variety of experiences. Therefore we de-
fine the relevant parameters for the distribution first.

distribution parameters nav distribution
〈x, y, ϕ〉start: constant 〈-5.0, -2.5, 0.0〉
ϕend: constant 90.0
rotation: range 〈1.0, 180.0〉
translation: range 〈0.0, 1.0〉



features 1 features 2

ϕ d
goal

0

rc
ϕ

0

ϕ
0

ϕ
0

goald
2

d←
√

(xg − x)2 + (yg − y)2

ϕ0←
∣∣∣∣ϕ− arctan

(
xg − x

yg − y

)∣∣∣∣ rc ←
√

(xg−x)2+(yg−y)2

2 sin ϕ0

d× ϕ0 → v × ω (AB 1) rc → v × ω (AB 2)

abstraction 1 abstraction 2

Table 1: Different parameterizations for feature language
and abstraction.

Now different distributions can be defined by setting the
values of the non-constant parameters. The values of a pa-
rameter can be obtained systematically, randomly or by a
list of fixed values. If not stated otherwise, the parameters
are assumed to be independent, although distributions over
combinations of parameters can be defined as well.

distribution medium curves of type nav distribution
rotation: systematic range 〈20.0, 60.0〉 step 1.0
translation: systematic range 〈0.2, 1.0〉 step 0.05

Instead of defining experience distributions, it is possible
that the robot use experiences aquired during its operation.
In robot soccer, we can use the experiences made during
games.
(3) Methods for Recognizing Experiences.To collect ex-
periences the robot has to recognize them and detect fail-
ures during their acquisition. In our example an experience
starts at a certain point and terminates when the robot has
reached a certain turning angle. Furthermore we check if
the robot has gone out of the field or exhausted the given
time resources.

The methods for gathering experiences are usually
straightforward, so one doesn’t have to experiment with
them the way one does with the other parameters like ex-
perience abstraction or distribution.
(4) Parameterization of the Experience Extraction. As
described in section , a learning problem is defined by a set
of experiences and a learning element. The experiences are
extracted from an episode database.

Table 2 shows the specifications of two possible sets of
experiences. The first one is trivial and uses all the available
experiences. The second one is more sophisticated in that it
selects only fast examples. The tablematch-nav is obtained
by applying a matching operator as described in (Galhardas
et al. 2001) on the stored examples, so that similar routes
are grouped together.

CREATE MATCHING match-nav
FROM nav-exp ne1, nav-exp ne2
LET distance = pathSimilarity(ne1.id, ne2.id)
WHERE distance < maxDist(ne1.id, ne2.id, δ)
INTO match-exp

ES 1
def-experience-set all-experiences

SELECT id
FROM nav-exp

ES 2

def-experience-set fast-experiences
SELECT DISTINCT time,id
FROM (SELECT time,id,id1 FROM ‘nav-exp‘ ne

JOIN ‘match-exp‘ me ON ne.id=me.id2) t1
JOIN (SELECT MIN(time) mt,id1 FROM ‘nav-exp‘ ne

JOIN ‘match-exp‘ me ON ne.id=me.id2
GROUP BY id1) t2

ON t1.time=t2.mt AND t1.id1=t2.id1;

Table 2: Different parameterizations for experience set.

(5) Parameterization of the learning element. Now hav-
ing chosen the experiences that are to be used for learning,
we only have to describe the parameters of the learning ele-
ment. One parameterization could be

learning element nav learning element
use system SNNS
with parameters

hidden units: 5
cycles: 50
learning function: Rprop

(6) Parameterization of the amount of program-
ming. Often learning alone is not enough to solve com-
plex problems. For instance, our learning approach to the
low-level navigation has one fundamental drawback. It is
hard to decide whether a navigation routine is better than
another. There can be cases when a routine is fast, but in-
accurate. Depending on the situation the robot must have
access to navigation routines with different qualities. Any
learned low level navigation routine can only be optimized
under one criterion.

Instead of learning completely different routines, we can
reformulate the learning problem by inverting the abstrac-
tion:

abstraction nav abstraction
v × ω → rc

(AB 3)

Here we know our translational and rotational velocities
and are interested in the arc the robot will go with these pa-
rameters. The learned function can now be used for a search
algorithm. We optimized the function so that the robot goes
as fast as possible while rotating as little as possible. But it
would be easy to write functions with different criteria.

Experimental Results
In this section we present experimental results that were ob-
tained by combining the different parameters explained in
the previous section. The following table gives an overview
of our solutions.

solution 1 2 3 4
abstraction AB 1 AB 1 AB 1 AB 3

experience set ES 1 ES 1 ES 2 ES 2
programming none none little yes

high-level heuristic learned learned learned
Experiments. In our experiments we gave the robot sev-
eral navigation tasks where it had to reach a point with a
certain orientation. Only runs that reached the point within
a given radius were considered successful. The successful



(a) Solution 1 (b) Solution 2

(c) Solution 3 (d) Solution 4

Figure 4: Comparison of different parameterizations. In each case the left diagram shows the accuracy of the goal angle, the
right one the time difference compared to a completely programmed routine, which is drawn in light grey.

runs were then categorized along two lines: the accuracy the
desired orientation was achieved with and the time needed.

In section we described a fully programmed routine that
provides good solutions, but is intractable for real-time ap-
plications. Since in our simulation the computation time for
finding a solution can be disregarded, we consider this rou-
tine as the best possible solution and therefore compare our
(partly) learned solutions to this reference routine.

The diagrams for the accuracy in figure 4 give the angle
deviation at the goal point. At the rightmost side the cases
are denoted when the routine didn’t reach the point at all.

In the time diagrams the time difference of two routines is
shown. When comparing two identical routines, the diagram
shows two bars of equal height at the origin. The faster a
routine, the more bars of its color are on the right hand side.
In the time comparison, runs are considered successful only
when the accuracy is better than45◦.
Results. In the first trial we used the simple heuristic ap-
proach for calculating the B́ezier curve. For the low-level
navigation we used abstraction AB1 and all experiences
without filtering. Figure 4(a) shows the performance of this
configuration. This routines does very poorly. It is practi-
cally always slower than our reference routine and it often
differs from the desired goal angle by more than90◦.

The second solution only differs from the first in the cal-
culation of the B́ezier curve. This time the parameters are
learned from experiences. The result of this configuration is
shown in figure 4(b). We see a slight improvement in accu-
racy, although it is still far from satisfactory. Similarly the
programmed method still runs faster in almost every case,
although the difference is smaller now.

In the third experiment we only used the fastest examples
and a little programming was added, so that the robot turns
at the beginning of the trajectory when the turning angle to-
wards the goal point was near180◦. This time the effect is
more notable. Now most of the points are reached with an
acceptable angle deviation. Furthermore the time statistics
have shifted significantly. It is sometimes faster or not much
slower than the reference routine.

Figure 5: Trajectories of solution 2 (light gray) and 3.

The performance gain can also be seen when comparing
the navigated trajectories. Figure 5 shows a navigation task
performed by solution 2 and 3. Whereas the former can’t
follow the desired B́ezier curve at all and takes a long way
round, the latter approach follows the trajectory perfectly.

Finally we implemented a combined approach of pro-
gramming and learning as described in section . As shown
in figure 4(d), the performance almost reaches the level of
the programmed one.

Discussion
Let us now discuss some of the issues of tightly embedding
learning into autonomous robot control. (1) Section shows
that aspects of autonomous robot learning can be specified
in ROLL explicitly and transparently. Section shows that
the specification of these aspects has a large impact on the
performance of learned routines. In most learning robot
controllers these aspects are adressed mainly implicitly or
not at all. Turning them into pieces of code of the control
program substantially improves the engineering methodolgy
for learning robot conbtrollers. (2) The specifications listed
in section are complete. Taken together they specify the
complete learning process including experience acquisition,
feature abstraction, monitoring of experience collection, pa-
rameterization of the learning algorithm. The learning prob-
lem specifications are therefore completely executable by
the ROLL interpreter. (3) ROLL allows for the specification



and simultaneous experimentation with different variants of
the learning problem. It thereby encourages and simplifies
the experimentation and the empirical comparison of differ-
ent variants. (4) We have also seen the seamless transition
between, and a mixing of, learning and programming. Pro-
grammed code pieces can be simply substituted by specifi-
cations of learning problems that are also executable in the
respective context.

In our view, these are critical functionalities that robot
control languages must provide in order to allow us pro-
grammers to implement learning robot controllers for com-
plex and dynamically changing tasks that can compete in
terms of performance with their hand-coded counterparts.
We believe that such programming language functionality is
necessary to further promote the application of autonomous
learning mechanisms in robot control.

Related Work
We are not aware of any work where aspects of learning
problems are systematically changed and compared on the
scale of our work. Empirical evaluation is an important is-
sue in robotics. CLIP/CLASP (Andersonet al. 1995) is a
macro extension of LISP, which supports the collection of
experimental data and its empirical analysis. Other interest-
ing approaches for the comparison of components in robot
control systems are found in the work of Guttman and Fox
[1998; 2002]. However, they only treat very selected and
restricted aspects of robot control.

We use the language ROLL, because it provides most of
the concepts we are interested in. There are several other
programming language we have considered for this pur-
pose, but that didn’t quite satisfy our requirements. Thrun
(Thrun 2000) has proposed CES, a C++ software library
that provides probabilistic inference mechanisms and func-
tion approximators. Unlike our approach a main objective
of CES is the compact implementation of robot controllers.
Programmable Reinforcement Learning Agents (Andre &
Russell 2001) is a language that combines reinforcement
learning with constructs from programming languages such
as loops, parameterization, aborts, interrupts, and memory
variables. This leads to a full expressive programming lan-
guage, which allows designers to elegantly integrate actions
that are constrained using prior knowledge with actions that
have to be learned. None of these projects addresses the
problem of better learning by acquiring and selecting the
data used for learning.

Conclusion
Proper embedding and parameterization of learning mecha-
nisms is a necessary precondition for successful robot learn-
ing. In this paper we have performed a case study that has
supported this point. We have used ROLL, an extension of
the robot control language RPL that allows for the explicit
and transparent specification of learning problems, their em-
bedding into robot control, and the parameterization of the
learning mechanisms. Using ROLL we could make aspects
of learning explicit that are typically neglected or only im-
plicitly modeled in robot control. The parameters that we

have controlled using ROLL include state space transfor-
mations, reformulations of the learning problems, filtering
experiences, and reasoning about the performance of learn-
ing mechanisms. In our experiments we could enhance the
learning performance significantly through adequate choice
of the parameter settings.

We have also seen that the explicit specification of learn-
ing problems has additional benefits. The declarativity of
ROLL’s control structures has substantially improved the
readability of the program and made the solutions to learn-
ing problems understandable. Thus learning problems can
be carried over to similar problems or other robot platforms
with minimal modifications. Parameterizations of learning
problems can be compared easily, which leads to a faster
development of high quality solutions.

We have further seen that a smooth interlinkage of clas-
sical programming and learning algorithms yields solutions
that can neither be achieved by learning nor programming
alone. With an integration of learning into programming,
robot controllers can be developped more quickly and more
robustly.

References
Anderson, S.; Hart, D.; Westbrook, J.; and Cohen, P. 1995.
A toolbox for analyzing programs.International Journal
of Artificial Intelligence Tools4(1):257–279.
Andre, D., and Russell, S. 2001. Programmable reinforce-
ment learning agents. InProceedings of the 13th Con-
ference on Neural Information Processing Systems, 1019–
1025. Cambridge, MA: MIT Press.
Beetz, M.; Schmitt, T.; Hanek, R.; Buck, S.; Stulp, F.;
Schr̈oter, D.; and Radig, B. 2004. The agilo robot soccer
team experience-based learning and probabilistic reasoning
in autonomous robot control.Autonomous Robots.
Beetz, M.; Kirsch, A.; and M̈uller, A. 2004. RPL-LEARN:
Extending an autonomous robot control language to per-
form experience-based learning. In3rd International Joint
Conference on Autonomous Agents & Multi Agent Systems
(AAMAS).
Galhardas, H.; Florescu, D.; Shasha, D.; Simon, E.; and
Saita, C.-A. 2001. Declarative data cleaning: Language,
model, and algorithms. InProceedings of the 27th VLDB
Conference.
Gutmann, J.-S.; Burgard, W.; Fox, D.; and Konolige, K.
1998. An experimental comparison of localization meth-
ods. InProc. of the IEEE/RSJ International Conference on
Intelligent Robots and Systems.
Gutmann, J.-S. Fox, D. 2002. An experimental compar-
ison of localization methods continued. InProc. of the
IEEE/RSJ International Conference on Intelligent Robots
and Systems.
Russell, S., and Norvig, P. 1995.Artificial Intelligence: A
Modern Approach. Englewood Cliffs, NJ: Prentice-Hall.
Thrun, S. 2000. Towards programming tools for robots that
integrate probabilistic computation and learning. InPro-
ceedings of the IEEE International Conference on Robotics
and Automation (ICRA). San Francisco, CA: IEEE.


