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Abstract. We propose a novel approach to experience collection for autonomous
service robots performing complex activities. This approach enables robots to
collect data for many learning problems at a time, abstract it and transform it into
information specific to the learning tasks and thereby speeding up the learning
process. The approach is based on the concept of hierarchical hybrid automata,
which are used as transparent and expressive representational mechanisms that
allow for the specification of these experience related capabilities independent
of the program itself. The suitability of the approach is demonstrated through
experiments in which a robot doing household chore performs experience-based
learning.

1 Introduction

Our vision is to build general purpose service robots that do not have to be prepro-
grammed for every task variation and every new environment. Such robots should be
capable of improving and adapting themselves doing training on the job. If their jobs
are complex activities such as household chore they have to do these optimizations in
little training time and with sparse experience. In such settings being effective in the
collection of experiences is an essential precondition for successful robot learning. To
achieve training time efficiency robots must decompose their overall learning task into
sets of modular and specific learning tasks that address detected flaws in their behav-
ior. Learning task specific experiences for these subtasks that capture the interaction
of the robot’s behavior and the context conditions have to be collected concurrently.
Finally, collected experiences must be stored, managed and transformed into abstract
descriptions that speed up the learning process.

An instance of this vision is a household robot (see figure 1) equipped with default
plans for setting the table, cleaning etc. It has basic skills for manipulating and navigat-
ing as well as default plans, general purpose plans that are developed to be applicable
in a variety of environments and to be stable and robust in most cases, for its high-level
tasks. However, the plans can fail or operate suboptimally if the robot’s lower-level rou-
tines are not adapted to the specific environment. For example, when objects are to be
taken out of cupboards or drawers the robot might encouter difficulties in a new kitchen,
e.g. when it hasn’t positioned itself appropriately for the manipulation task.

The robot can recognize such failures and locate its source and execution context
inside the program. So when it detects that the manipulation task fails strikingly often, it
puts it on the agenda of problems that have to be learned. The experience for all of those



Fig. 1. Kitchen scenario with a simulated B21 robot equipped with a camera, laser and
sonar sensors.

unsolved learning problems are then gathered while it performs its household chores.
One of the difficulties here is that experience sometimes is only desired in a certain con-
text. For example, when the robot detects that the navigation routine performs different
while it is cleaning the floor (presumably because the floor is wet), it is only interested
in experience about the navigation routine while cleaning the floor. Other navigation
tasks are of no interest at all in this situation.

As learning takes place at various levels of abstractions, it does not suffice to sim-
ply log all sensor data and control signals. The learning systems also need informa-
tion about the program state, such as variable values. For example, to learn informa-
tive causal models of gripping actions the learning mechanism might need information
about the scene — its clutteredness and the existence of reaching corridors. Or it might
need information about which hand was used and why, or the position where the robot
intended to grasp the cup. This data is learning task specific and typically not contained
in the low-level sensor and control data.

To account for the robot’s behavior being a result of its interaction with the environ-
ment, meaningful learning experience can only be obtained with a context-specific ex-
perience acquisition. We also need a compact and powerful behavior abstraction by seg-
menting continuous behavior into states that are meaningful with respect to the learning
task. Furthermore, the abstraction of experience for learning should be possible on dif-
ferent levels.

In this paper we propose hierarchical hybrid automata (HHA) as a basic mechanism
to fulfill these criteria. We propose HHAs to collect experience and learn from it that
allow for

– the modular specification of experience collection independent of primary activ-
ity. This is necessary, because the interesting points in the control program can be
distributed within the code and because our control program is modified by plan
transformations.

– anchoring experience collection into the control program such that program execu-
tion automatically effectuates state transitions in the automaton.



– the specification of the problem specific data to be recorded, such as properties of
objects being grasped or context conditions such as clutter.

– abstraction of behavior into learning problem specific information, for example the
duration of the activation of a state or the number of failures encountered.
Our approach is implemented in RPL (Reactive Plan Language) (McDermott, 1993),

a programming language for reactive plans implemented as a set of LISP macros. It pro-
vides high-level programming constructs like loops and conditionals as well as process
control (parallel execution, mutual exclusion, etc.). The constructs for acquiring expe-
rience are embedded in a language called RoLL (Robot Learning Language), which is
based on RPL.

The rest of the paper is organized as follows. First we give an informal overview
of our procedure before we explain the more technical aspects of our approach, which
comprises an introduction to hierarchical hybrid automata, the anchoring of these au-
tomata in the control program, the differentiation between “data ” and “experience”, and
the integration of HHA in the whole learning process. After that we give experimental
support for our proposition that experience acquisition independent of the primary con-
trol program plays a vital role in robot learning. Finally, we present related work and a
conclusion.

2 Overview

In this section we describe our general approach of acquiring experience and learning in
an informal way. Technical details are explained in the next section. For an illustration
see Figure 2.

The first step is to define the required experience by specifying execution episodes
and data associated with it. We model this information as an experience automaton,
which is a hierarchical hybrid automaton where the episodes are modeled as discrete
states with continuous behavior.

For not only specifying, but really getting the desired experience, the experience
automaton must be anchored to the control program in such a way that it starts accepting
an interpretation stream when the program task matching the automaton starts. Because
the behavior that generates the episodes emerges from different parts of the program,
it is not practicable to add the automaton code at the specific places in the program.
Rather, we run a process parallel to the primary activity that is anchored in the control
program and in this way can detect state transitions and observe the desired data.

The automaton returns experiences, i.e. data traces structured along the definition of
the specified automaton. These experiences contain all information for understanding
the interaction of the program and the environment needed for the respective learning
task. In Figure 2 the experience data is structured according to the automaton structure
and possible data sources are the robot’s internal variables (indicated as bars) and exter-
nal variables (indicated as zigzagging lines). After the acquisition, the experiences are
stored in a database which facilitates the retrieval, but also purification of the data with
data mining tools.

Before starting the learning process, the experience must usually be converted to
more abstract features. This can be regarded as a transformation of the hierarchical
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Fig. 2. Overall procedure for learning with RoLL.

hybrid automaton of the experience acquisition process to a more abstract form. Fig-
ure 2 illustrates this by showing the possible abstraction steps, changing the automaton
structure (the data of the two automata in the middle are combined into one) and com-
bining data (as in the data of the third automataon, where robot and environment data
is merged).

Finally, the whole learning process can be regarded in the light of HHA. We can
build models of the robot’s control program with probabilistic hierarchical hybrid au-
tomata (PHHA). PHHA are HHA with the difference that state transitions are not ac-
tivated by conditions, but rely on a probability distribution. After learning from the
experience, the model experience can be replenished with the probability distributions
of state transitions.

With the techniques presented here, we can for example observe the activity of
lifting an object whose weight is greater than 2 kg. The respective automaton would be
active as soon as a gripping action starts and the gripped object fulfills the specification.
During the execution of the action, several interesting pieces of data can be observed,
e.g. the required time, failures or if both grippers are used or only one.

3 Technical Approach

In this section we explain our approach in more detail. First, we define hierarchical
hybrid automata. We then show how HHA are anchored to the control program, so that
they can be used for defining experience. What we mean by experience compared to



data is explained thereafter. We conclude by describing the rest of the learning process
in the context of HHA.

3.1 Hierarchical Hybrid Automata

A hybrid system includes continuous change as it is observed in environment vari-
ables and discrete change, like the actions performed by a robot. The concept of hy-
brid systems and analytical methods are well-defined and understood(Alur et al., 1993;
Alur, Henzinger, and Ho, 1996). We use a hierarchical notion of hybrid automata similar
to the one presented by Alur et al. (2001).

Here we define a hierarchical hybrid automaton (HHA) as a tupleH = 〈V , flow,M, T , act, cond〉,
where V is a finite set of variables, flow is a function describing the continuous change
inside the automaton, M denotes a set of modes or sub-automata, T is a transition
relation between modes, act is an action function effecting changes in the variable as-
signments, and cond is function assigning a predicate to each transition in T .

The state of an automaton is described by the current program state (the set of
currently active (sub-)automata) and the current data state (the current variable assign-
ment).

Figure 3 shows a hybrid automaton H with two subautomata M1 and M2. The
automaton has two variables V = {var1, var2}. The flow function is given for each
automaton as well as the action and condition functions for the transitions.

H var1
var2

M1

flow: flow1

M2

flow: flow2

cond
action

flow: flow

Fig. 3. Hierarchical hybrid automaton.

The hierarchical structure of the automata is not only an appropriate tool to describe
robot behavior, but also enables us to provide this description on an arbitrary level of
abstraction. The behavior of the automaton H can either be described by the composi-
tional behavior of its subautomata or by its flow function alone. The flow function of an
automaton can always be regarded as the result of the flow functions of its subautomata
and their interactions, albeit it might not be computable.

3.2 Anchoring of HHA

In order to use HHA as a means of specifying experience, we need to anchor the au-
tomaton in the control program. This means that certain changes in the control program
must effectuate a state transition in the automaton.



Figure 4 illustrates the two possible sources for state transitions in automata: (1) changes
inside the program like the beginning or end of a subplan; and (2) changes in the envi-
ronment. For implementing these anchoring mechansims we need means of detecting
and reacting to environment changes and we must have insight into the control program
and its current execution status.

environment

inv: some-fluent=true

raw experience

program

Fig. 4. Description of the HHA structure for raw experience acquisition. The arrows
indicate how the experience automaton can be anchored in the automaton defined by
the robot program and in the environment process.

Both requirements are provided by RPL. Continuous flow of environment variables
is captured in so-called fluents. Fluents are variables whose continuous change can be
noticed by program constructs such as (wait-for {conditions}), which blocks the pro-
cess until the fluent condition is true.

RPL plans or programs run in tasks, which can have subtasks, for example the con-
struct (seq a b), which executes a and b sequentially, represents a task with two sub-
tasks. The task network is available in every part of the program and can be traversed
at runtime by following links between sub- and supertasks. Thus, arbitrary tasks can be
addressed by specifying the path from the current to the desired task. Another way is to
label tasks with an explicit name and address them directly by this identifier.

In the language we propose, both kinds of anchoring — in the world and in the
program — are supported. Anchoring in the world can be obtained direcly by specifying
an RPL fluent, for example

(person-in-kitchen-automaton
: invariant {person-in-kitchen})

For anchoring in the control program, the possibilities of RoLL exceed those of
RPL in that not only unique tasks can be addressed, but also classes of tasks occurring
several times, like the execution of a certain plan:

(plan-automaton
: invariant (: plan-execution grip ))



As we have defined hybrid automata in a hierarchical way, we can nest automaton
specifications arbitrarily:

(place-object-automaton
: invariant (: plan-execution place-object)
:children ((grip-automaton

: invariant (: plan-execution grip ))
(release-automaton

: invariant (: plan-execution release ))))

3.3 Experience

We consider experiences not just as a set of data, but as a data trace of an HHA. In this
way we preserve the execution context of the acquired data and thus make it more in-
formative. After showing how to anchor HHA to control programs, we will now present
how data is associated to HHA.

Figure 5 shows how data can be associated with a hierarchical automaton structure.
Every automaton has two events: its beginning and its end. Data can be obtained at any
of these events. Furthermore, we can record data continuously while an automaton is
active.

The available data consists of the global variables including state variable fluents,
local variables in active RPL processes and arbitrary combinations or abstractions of
this data. For easier access later on, each recorded piece of data is provided with a
unique name.

H pose
velocity

Hinterval → velocity

Hbegin → pose Hend → pose

Fig. 5. Visual illustration of experience data acquisition. The robot’s pose is to be
recorded at the beginning and end of execution and during the execution interval the
robot’s velocity is recorded continuously.

As an example, let us have a look at the experience acquisition for learning the hand
to be employed for gripping. Some relevant information might be the original robot
pose, the object’s original pose, the hand used by the robot, the goal pose of the object,
the time needed for performing the sub-tasks and the whole task, and the accuracy the
goal position of the object is reached with. We specify the data information within the
hierarchical structure of the automaton specification:

(place-automaton
: invariant (: plan-execution place-object)
:begin

(( object-goal (pose (: local goal place-automaton)))
(used-arm (:local hand place-automaton)))



:children
((grip-automaton

: invariant (: plan-execution grip )
:begin

(( robot (pose {robot}))
(object (pose (: local object place-automaton)))
(time {timestep}))

:end ((time {timestep})))
(release-automaton

: invariant (: plan-execution release)
:begin (( time {timestep}))
:end

(( reached (pose (:local object place-automaton)))
(time {timestep})))))

3.4 Learning in the Context of HHA

After defining an experience automaton, its anchoring in the program and the data to
be acquired, RoLL generates code that is run in parallel to the control program and
experience is acquired every time the automaton is active, triggered by events in the
control program and in the environment.

The experiences collected in this way, however, are usually not suitable for learning
directly. In order to get a good generalization the data must be transformed into an ab-
stract feature language. In the context of HHA this abstraction can be formulated as a
transformation of automata. This contains splitting and combining modes from the orig-
inal experience automaton and the calculation of feature values out of raw experience
data (for an illustration see figure 2).

Another issue apart from abstraction is the storage of experiences. Experiences as
we have seen can come in a variety of abstractions (there can be several abstraction steps
before learning). Intermediate-level abstractions are often suited for different learning
problems, so that it is often useful to store them for later use in different problems.
Figure 6 illustrates this procedure.

We store experiences in a database (instead of a file for example) for several rea-
sons. The first is that the data is better accessible, especially if only parts of the stored
experience are required. Secondly, we can employ data mining algorithms for cleaning
and filtering collected experience. Finally, in a database we can manage experiences
over longer time scales. It is possible to add new experiences or remove old ones, and
with the help of time stamps experiences can be classified by their reliability, giving
new ones more weight than older ones.

After abstracting the experience, the learning process can take place. RoLL is not
designed for a special learning algorithms, so that arbitrary learning systems like neural
networks or decision trees can be used. The output of the learning process is a functions
that is integrated into the control program and can be used at once.

The resulting function can also be interpreted as a state transition function of a prob-
abilistic hierarchical hybrid automaton (see figure 2). A PHHA is the same as an HHA,
but the transition condition function is replaced by a probability distribution giving the
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Fig. 6. Experience processing steps. Here only two abstraction steps are shown (raw to
abstract and abstract to learning experience), but more steps are possible.

transition probabilities to the successor nodes. This PHHA is a model of the robot’s
behavior while acting in the determined environment.

4 Evaluation

In the introduction, we motivated our work on experience acquisition by the task of
learning on a robot during its usual activity with scarce experience. In contrast to our
proposed paradigm, most robot learning is done with artificially acquired data. One of
the reasons is that special code for data acquisition must be added, so only a small
piece of code is adapted to data acquisition, then the data is recorded and the learning is
performed, so that the acquisition code can be removed and the control program remains
readable.

We ran an experiment to show the benefits of learning from experience acquired
during the robot’s activity in contrast to artificially obtained data by learning the time
prediction model of our kitchen robot’s navigation routine. The experiment was per-
formed in iterations defined in the following way:
1. perform the plan “set the table”, thereby acquire learning experience (one run in-

cludes about seven navigation tasks)
2. record experience of 30 randomly generated navigation tasks
3. train two regression trees: one with the “natural” and one with the artificial experi-

ence
4. perform the plan “set the table” again, thereby comparing the two learned models

with a programmed prediction function
Figure 7 shows the first 15 iterations of this procedure. The line with vertical bars

shows the results of the programmed prediction function. Note that this line would be
exactly horizonal if the robot’s actions were deterministic. But we see that the naviga-
tion tasks and the time needed to fulfill them in the plan vary slightly. The curve with
triangle-shaped dots indicates the result of learning with artificially generated experi-
ence. With a training set of 450 experiences, the learned model is significantly worse
than the programmed model. The line with diamond-shaped dots indicates the result
of learning with experience observed during plan execution. Here the quality of the
prediction is about the same or slightly better than the programmed one after only 15
iterations, i.e. 15 observations of setting the table or 105 training examples.



After 15 iterations we replaced the set the table plan by a plan for cooking. This
plan contains more navigation tasks of a very short range, which are uncommon in
setting the table. As expected, the error of the regression tree that was only trained with
experience from the set the table plan was very high when presented with the new plan.
But after about 15 more iterations the experience of the new plan was integrated in
the regression tree so that it could again beat the programmed model. Not surprisingly,
the change in plan didn’t cause any performance decay for the other regression tree. In
the meantime, we had acquired 900 experience sets of randomly generated navigation
tasks. But still the performance could not compete in the least with the programmed
model or the learned model with realistic experience.

iteration

1 5 10 15 20 25 30

mean relative error

0.1

0.2

0.3

0.4

Fig. 7. Comparison of learning with artificial experience in contrast to experience ac-
quired during normal execution. The line with the vertical bars indicates the result of a
programmed function. The line with the diamond-shaped points is the result of learning
with natural experience, whereas the line with triangle-shaped points gives the error of
the learning process with artifically generated experience.

These results show that it is advisable to draw learning experience directly from the
normal activity. Because the control programs are very complex for sophisticated robot
activity it is not practicable to introduce special code for experience acquisition. The
RoLL features for experience acquisition solve this problem by adding the acquisition
code without change of the control program.

5 Related Work

Currently, data for learning is collected in two ways: (1) protocolling continuously every
sensor input and control output during the program execution or (2) adding special code
to the control program that specifies which data is to be recorded when.

The first approach is put into practice in the XAVIER project (O’Sullivan, Haigh,
and Armstrong, 1997) of Carnegie Mellon University. Here all the data is recorded at



runtime and replayed for analysis later. This approach is not feasible for agents with
many state variables because of the high storage demands. More importantly, the con-
text information and the robot’s local variable values are lost, so that intermediate-level
experience like which position the robot intended to head for in order to grasp an object.

The Common Lisp Instrumentation Package (CLIP) (Anderson et al., 1994) is a
LISP package facilitating the second approach, i.e. adding extra code for every kind
of experience. This approach is not adequate for our robot, which changes its control
program by transforming its plans. The first problem would be that the program is
harder to understand and therefore harder to transform because of the code pieces that
don’t have any influence on the plan’s performance. The second drawback is that the
acquisition code might be lost or mutilated during the plan transformation.

Reinforcement learning (RL) has been used to learn complex tasks embedded in-
side the agent program. In this paradigm complex problems are not analyzed and taken
apart, but learned as one problem. This makes the solution an opaque part of the pro-
gram that cannot be modified further. An instance of RL was presented in (Geipel and
Beetz, 2006), where an attack of the opponent goal involving several players in robotic
soccer is learned by means of RL. Because the RL algorithm has no semantic informa-
tion about the actions involved, all actions are weighed equally. Therefore the learning
process needed a very large number of experiences and the results varied considerably
in different experimental runs. In contrast, we would collect experiences of situations
when the robot has played passes and has scored goals successfully. With these ex-
periences we would learn models that answer questions like “How should a pass be
played?” or “In which situations can passes be played most effectively?”

The modeling of embedded systems with hybrid automata was explored by Williams
et al. (Williams et al., 2003). In this work, the behavior of space explorers is modeled
as a hybrid system, which is then used to detect and prevent failures during execution.

Fox and Long (2006) use hybrid automata for the definition of the plan language
PDDL+, because they provide a rich, well-under stood framework for modeling contin-
uous behavior.

6 Conclusion

Whereas a lot of work is done on robot learning, embedding learning into the operation
of autonomous agents has received surprisingly little attention. It will not be possible to
build autonomous robots acting for a longer period of time in demanding environments
without prividing them with integrated learning mechanisms, so that they will be able
to acquire their experiences when needed and to learn with little experience.

No one would attempt to solve a task like cooking pasta as one monolithic problem,
because the state space is gigantic. But complex tasks in real-world scenarios cannot be
achieved in a stable and robust way without learning. The solution is to devide the prob-
lem in small sub problems and learn those (or at least parts of them). A consequence of
this procedure is that many learning problems have to be solved with a small number
of experiences. However, solving large numbers of learning problems is only feasible
by automating the process including experience acquisition and integrating the learn-
ing results into the control program. Besides, a service robot will not have the time to



gather experience for every learning problem separately. Instead, the experience must
be obtained during its normal operation.

These requirements make automatic experience acquisition a hard problem. The
main challenges are recognition of interesting experience, specification of experience
without modifying the main code, feature extraction for learning, and storage and man-
agement of experience.

In this paper we have presented an approach to specify experience in the frame-
work of hierarchical hybrid automata. We have shown how automata are anchored in
the control program so that there is no need to modify the main code. Nevertheless, the
automaton has access to all local variables in the main program, thereby making it pos-
sible to access intermediate-level information about the robot’s intentions and internal
state and beliefs. Running in parallel to the primary activity, experience is gathered and
stored automatically. Before the learning process starts, experience is abstracted, again
in the context of HHA. The final process of learning and integrating the result has been
mentioned briefly.

We have presented empirical evidence that learning small problems during the robot’s
normal activity leads to better learning results and thereby better robot behavior.
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