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Figure 1: Exact mass properties for objects under varying density enable a number of applications: approximation of non-linear density
fields, fitting parameterized density for specified mass attributes and the analytic evaluation of objective functions in L2|∞ Lloyd relaxations.

Abstract
We propose concepts to utilize basic mathematical principles for computing the exact mass properties of objects with varying
densities. For objects given as 3D triangle meshes the method is analytically accurate and at the same time faster than any
established approximation method. Our concept is based on tetrahedra as underlying primitives, which allows for the object’s
actual mesh surface to be incorporated in the computation. The density within a tetrahedron is allowed to vary linearly, i.e.,
arbitrary density fields can be approximated by specifying the density at all vertices of a tetrahedral mesh. Involved integrals
are formulated in closed-form and can be evaluated by simple, easily parallelized, vector-matrix multiplications. The ability to
compute exact masses and centroids for objects of varying density enables novel or more exact solutions to several interesting
problems: besides the accurate analysis of objects under given density fields, this includes the synthesis of parameterized density
functions for the make-it-stand challenge or manufacturing of objects with controlled rotational inertia. In addition, based on
the tetrahedralization of Voronoi cells we introduce a precise method to solve L2|∞ Lloyd relaxations by exact integration of the
Chebyshev norm. In the context of additive manufacturing research, objects of varying density are a prominent topic. However,
current state-of-the-art algorithms are still based on voxelizations, which produce rather crude approximations of masses and
mass centers of 3D objects. Many existing frameworks will benefit by replacing approximations with fast and exact calculations.

CCS Concepts
• Computing methodologies → Volumetric models; Shape analysis;

1. Introduction

When it comes to estimating masses or computing gravitational
centers for objects of varying density almost everywhere dis-
cretized approximations are used. Often their accuracy is not even
questioned. Surprisingly, it is neither a very complex problem nor
bound to numerical trade-offs between computation cost and accu-
racy. As used in finite element methods (FEM) [RR96, RNV07],
our techniques are based on tetrahedra as the underlying geom-
etry primitive. Density fields are accurately represented by spec-

ifying the density at the four vertices. The analytically derived
closed-form integrals for mass properties are expressed with simple
matrix-vector multiplications. In Section 2 we derive the concept,
demonstrate its versatile applicability in Section 3 and conclude in
Section 4 with numerical comparisons and quantitative evaluations.

1.1. Contributions

In our paper, we briefly review the mathematical basis that allows
for accurate solutions of mass and mass-center integrals of objects
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with varying density. It is simple as computations for tetrahedra
with constant density are easily extended towards varying density.
It is precise due to the use of a tet-mesh itself as input and therefore
avoiding aliasing bias from discretization, as it is common in state-
of-the-art applications using axis-aligned voxelizations. It is fast as
computations can be implemented as matrix-vector multiplications,
suitable for vectorized or GPU execution. It is versatile because the
framework is not limited to density and can be extended to integrate
arbitrary linear properties over a volume.

Our application framework, introduced in Section 3, can be sum-
marized with the following main contributions: • Arbitrary Ob-
jects: The solutions, known for tetrahedra, can be straightforward
generalized to arbitrary polyhedra. We can accurately determine
mass properties for any tetrahedralized input object in specified
density fields. • Optimizing Density: We can also invert the prob-
lem and optimize a parameterized density field for an object and
given mass properties. • Approaching non-linearity: Arbitrary
non-linear functions can be approximated in a Taylor-like piece-
wise linear fashion, limited in accuracy only by the tetrahedraliza-
tion’s resolution. • Additive manufacturing: Combining the for-
mer two contributions, we eventually propose to 3D-print objects
of non-linear density with optimized mass properties for balance
or rotation-aligned inertia momentum. • Expressing energy func-
tions: As the method is not bound to only physical characteristics,
we extend a Lloyd relaxation procedure based on L2 Voronoi cells,
using the concept to replace the cells energy integral with an accu-
rate closed form solution for an L∞ objective function.

1.2. Related Work

Over the last few years, 3D printing not only attracted the do-it-
yourself hobbyist community but also gained popularity in vari-
ous industrial applications. Nowadays, additive manufacturing pro-
cesses go way beyond stacked layers of plastic and support a
wide range of multiple or mixed materials, even including metals.
Its widespread use, e.g. in the medical [YDS∗18] or automotive
[LBA∗17] industry, keep this a relevant research topic.

Hence the general interest of the computer graphics community for
analyzing and processing 3D geometry, research in this field also
spawned state-of-the-art algorithms aiming at 3D manufacturing.
The procedure introduced by Prévost et al. [PWLSH13] allows 3D
models to be balanced in a specific position by shifting the ob-
ject’s center of gravity over a safe-area on which the object even-
tually stands. Optimized weight distribution is achieved by carving
out the object’s interior and deformations of the hull, if necessary.
Advancements of this technique optimize objects to have rotation-
symmetric weight distributions and allow them to spin like toy-tops
[BWBSH14]. Multistable balancing states are accomplished by us-
ing movable masses [PBJSH16]. However, established techniques
for mass property optimization are still based on approximations of
the actual volume and mass distribution using quantized voxeliza-
tions. The approach by Musialski et al. [MAB∗15] utilizes offset
surfaces for shape and mass property optimization but also relies
on binary material distribution. Even publications specialized on
varying density for manufacturing [WAWS17, KWW19] discretize
their density field with marching cubes [LC87] or octrees [Mea82]
combined with dithering techniques.

Known methods for computing exact mass properties of polyhedral
bodies [Mir96] are restricted to constant density. Like ours, they
are based on integrals over the volume and surface of an object. A
later revision [Ebe02] made the concept feasible for implementa-
tion. The varying density of polyhedral bodies, however, was first
studied in the field of geophysics and concluded with the focus on
gravitational fields [Han99, D’U14] but not general mass proper-
ties. Our approach to computing accurate masses and mass centers
under varying density relies on a tetrahedral decomposition of the
input object. TetGen [Si15] is a tetrahedralization tool for polyhe-
dral manifolds based on a Voronoi/Delaunay tessellation. Most re-
cently, TetWild [HZG∗18] introduced another fast and robust way
to tetrahedralize any given 3D triangle soup, providing many ad-
justable parameters to the user. Our results for examples and appli-
cations are based on the outputs of both tools but often specifically
on TetGen since it is able to preserve the original input surface.
However, any other tet-meshing pipeline will generate equally suit-
able input as well.

As mentioned with TetGen, tetrahedralization is closely related to
Voronoi- and Delaunay graphs. In our Section 3.5 we introduce
a novel approach on Lloyd relaxations (based on Voronoi tessella-
tions) using the L∞ norm. Ray et al. proposed to compute meshless
Voronoi [RSLL18] and restricted power diagrams [BAR∗21] on the
GPU, however, both only in the common L2 space. It definitely is
a promising task to explore combinations of their diagrams and our
take on L∞ relaxations.

2. Concept

Our goal is to approach mass properties for polyhedral manifolds
of varying densities with analytical tools. In order to compute the
mass, the center of mass, or other related quantities in a field of
varying density that is bounded by a triangle mesh we use closed-
form solutions for a tetrahedralization, induced by the given mesh
surface. These kinds of approaches are admittedly standard in FEM
but so far rarely have been used in computer graphics. Therefore,
this section briefly summarizes all important formulas and intro-
duces the geometric concept that allows for computing these quan-
tities exactly for linearly varying density fields inside a tetrahedron.
Appendix A features detailed derivations of the resulting equations.

2.1. Problem Statement

Input Mesh Voxel Tetrahedra

Figure 2: 2D example: Voxelizations are common approximations
to determine mass properties under varying density. Tetrahedra al-
low for accurate representations using precise analytic results.
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Mesh data structures are the straightforward and, therefore, most
common way to store and represent 3D manifolds. Under constant
density, mass properties like the center of mass or an inertia mo-
mentum can be easily computed directly on a mesh using the diver-
gence theorem. With varying density, however, a volume bounded
by arbitrarily shaped polyhedra cannot be directly integrated. A
common fallback solution is to approximate the object shape by
decomposition into feasible volume entities, usually voxels. How-
ever, as illustrated with the 2D example in Figure 2, the success and
precision of the approximation will always be limited by the chosen
resolution (for space and values), even hierarchical concepts can
only reduce sampling artifacts but not fully avoid them. In contrast,
our solution for the computation under varying density is based on
the simple idea of an alternative volume representation, namely, the
tetrahedron. As illustrated on the right in Figure 2 with a trivially
triangulated 2D shape, every 3D shape with a polygonal surface can
be decomposed using tetrahedra. With tetrahedra, the mesh’s true
shape can be used in all computations and, therefore, corresponding
results are free of discretization and aliasing bias.

2.2. Geometry Integration

Computing mass properties for the general tetrahedron T , specified
in Figure 3, is trivial for constant density: E.g. with di = 1 the mass
is equal to the tet-volume and the center of mass is equal to its
centroid. However, as the density attributes at each vertex can be
individually specified, expressing a linear density field inside the
tetrahedron, the computation of mass and mass center changes. In-
stead, as in FEM [RR96, RNV07], we utilize a simple basis case
in a linear density field, for which the integration is solved ana-
lytically. A linear combination of four base cases (one per vertex)
already gives the desired properties for a general tetrahedron.

v0

v1
v2

v3

T =
(
v0 v1 v2 v3

)T

=


x0 y0 z0 d0
x1 y1 z1 d1
x2 y2 z2 d2
x3 y3 z3 d3


Figure 3: A general tetrahedron T with varying density, defined
by its four vertices vi. In addition to their geometrical dimensions
(x,y,z) each vertex is attributed with a fourth density dimension d.
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Figure 4: The basis case for an integrable tetrahedron with dD = 1
and dA,B,C = 0. The density gradient over the extent of h is visual-
ized with fading blue. −→w indicates the center of mass vector.

2.3. Mass Properties for Arbitrary Tetrahedra

Mass Due to linearity, the mass for a tetrahedron with four dif-
ferent density values at its vertices can be simply expressed as the
mean of these values times the volume, formulated in Equation 1.

MT = VT
dA +dB +dC +dD

4
(1)

Center of Mass As expressed in Equation 2, the mass center com-
putes as a weighted sum of vertex positions and their normalized
density values. An extended derivation for the combination of the
four base cases to this general form is included in Equation 12.

CT =
1
5
(A+B+C+D

+
A ·dA+B ·dB +C ·dC +D ·dD

dA +dB +dC +dD

) (2)

3. Application

With the presented approach one can now calculate the mass and
further mass properties of tet-meshes with arbitrary density fields
efficiently and exactly. The power of the approach will be demon-
strated in three different application scenarios: E.g., as a fast and
accurate replacement for widespread voxel-based approximations
of arbitrary objects’ mass properties. Further, it can be used to opti-
mize the density distribution inside an object to obtain a given cen-
ter of mass or a stable rotation axis, potentially even with non-linear
density fields. By introducing a closed-form solution, our concept
even allows us to formulate an objective function in a volumetric
Lloyd relaxation process, which was so far not analytically feasible.

3.1. Mass Properties of Arbitrary Objects

With the techniques, introduced in Section 2, to compute mass
and center of mass for general tetrahedra, we can generalize this
concept further and approach arbitrary polyhedral manifolds: Ob-
jects are partitioned into tetrahedra, mass properties are determined
individually, and results eventually recombined. Any tetrahedral
mesh is suitable as input for our method; if the model is not al-
ready available as tetrahedral mesh, it can easily be generated us-
ing freely available tools like TetGen [Si15] or TetWild [HZG∗18].
Appendix C proves the concept to be invariant of the actual tetra-
hedralization.

MO = ∑
Ti∈O

MTi

CO =
1

MO
∑

Ti∈O
MTi CTi

(3)

For an object O and a given density-field, one can now compute
the accurate mass MTi and center of mass CTi for all tetrahedra
Ti ∈ O using Equation 1 and Equation 2, respectively. These cal-
culations can be executed very efficiently, using fast matrix-vector
multiplications. As formulated in Equation 3, the object’s overall
mass is obtained by simple summation and the center of mass as
mass-weighted dot-product. Further, one may extend the deriva-
tion, as described by Tonon [Ton04], for the inertia tensor ΘTi of a
general tetrahedron with specified density values of the individual
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vertices. Following the rules for rigid bodies and the parallel axis
theorem, one can derive further mass properties, e.g., the moment
of inertia as formulated with the inertia tensor ΘO in Equation 4,
where I3 is the 3×3 identity matrix and ⊗ the outer product.

ĈTi = CTi −CO

ΘO = ∑
Ti∈O

ΘTi +MTi

(
|ĈTi |

2I3− ĈTi ⊗ ĈTi

) (4)

3.2. Optimizing Density Fields

Now, that an object’s center of mass can be determined for a given
density field, one can invert the problem and fit a density field to
an object where the mass properties are given. As an exemplary
use case, we approached the make-it-stand challenge described by
Prévost et al. [PWLSH13] to balance objects in a given pose. The
center of mass has to be within certain boundaries of a projected
surface polygon on which the object is supposed to be balanced.
However, a solution to this problem is limited by the following con-
straints: i) Negative mass is reasonable only in theoretical fields of
physics, so we limit our model to the realm of positive density for
now. ii) Zero density is a special case that can be modeled with
our concept, e.g., with di = 0. iii) The shape of an object together
with constraints (i) and (ii) will put some limits on the achievable
location of an object’s center of mass, e.g., it simply cannot pass a
certain point.
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Figure 5: Left: The parameterization of a simplified density field
d(x) with parameters r,s and t. Right: Embedding of the object,
with angles α, β and offset ox.

Rather than optimizing the per-vertex density directly, let’s first
consider a simplified density field as illustrated in Figure 5. We uti-
lize two planes, that separate volumes of constant minimum dmin
and maximum density dmax respectively, sandwiching a slice of
volume of width r with linearly growing density ∈ [dmin,dmax]. To
simplify many computation steps we fix the density field to be axis
aligned, i.e. the planes are parallel to the yz plane. As accommo-
dation for this fixed orientation of the field, the optimization needs
to rotate and to translate the object accordingly instead. To realize
the arbitrary location of the bisection-planes in the density func-
tion, we have to prepare our input mesh by intersecting some of the
tetrahedra, see Appendix B for details. The energy to be minimized
is formulated as the Euclidean distance E = |C −CO| between a
target point C and the object’s current center of mass CO when em-
bedded in the density field, obviously with respect to the object’s
rotated and translated state.

The optimization energy is smooth and in some sense probably dif-
ferentiable but deriving gradients is left for future work. In our ex-
periments, we used Powell’s method [Pow64] to minimize the ob-
jective function.

α, β angles for tilt and rotation of the object
ox object center offset on the x-axis
r width of the density range
s steepness of the density gradient
t constant density offset

Table 1: Parameters of the density field, shown in Figure 5, to be
determined by the optimization.

Results Figure 6 compares our balanced objects to cross-sections
of Prévost et al. Their proposed method found a solution to make
the three spheres stand, by carving out the voxelized interior and
deforming the object. To move the mass center of the Spheres into
the balance region, the top sphere is shrunk and the bottom sphere
is enlarged. For the MrHumpty figure to stand upside down, the
belly is enlarged and half the interior carved out to compensate
for the off-axis legs. In our results, the objects remain untouched
as they are only embedded in an optimized density field. As our
output geometry incorporates the input, error measures like the
Hausdorff-Distance are simply 0.

Our first experiment meets the same conditions as Prévost et al.
where the center of gravity only has to be on the central vertical
axis of the bottom sphere so that the object is in balance. For our
next experiment we chose the center of mass to also be located
centered in the bottom sphere, but 10% of the sphere’s radius below
its horizontal equator-line. Due to this low center of gravity, the
standing spheres would roll into this position on their own.

α ox r s
Spheres (b) −1.666670 −0.278929 0.404357 13.418110
Spheres (s) −0.513042 −0.453811 0.565776 26.173806
MrHumpty 1.104747 0.244073 0.562282 2.614978

Table 2: The parameters for the density function, specified in Fig-
ure 5 and Table 1, optimized for balancing the objects, shown in
Figure 6 with β = 0 and t = 1.

Our optimization managed to define density fields for which the ob-
ject’s center of mass is exactly on the specified axis or target point
respectively. The results have regions of constant minimum and
maximum density with a tilted and shifted gradient between them.
Due to the symmetry of the objects, the angle β is zero. To approach
somewhat reasonable manufacturing limits, we set t = 1 (=̂ dmin).
The other found parameters are given in Table 2. Results of this
comparison should be seen as a theoretical proof of concept, as
this rather unconstrained optimization leads to quite high values
for the gradient steepness s. Density differences of this multitude
are ill-suited for current single-material manufacturing techniques.
Additive multi-material techniques, on the other hand, could ap-
proximate smooth gradients like this, e.g., using dithering.

3.3. Optimizing Non-Linear Fields

Section 2.3 introduced our concept for density fields with a gener-
alization to define geometry-independent density values per vertex.
This allows for the approximation of arbitrary non-linear fields, as
illustrated with the examples in Figure 7: The Bunny is embedded
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Unstable Input Prévost et al. Ours (balanced) Ours (standing) Prévost et al. Ours
Figure 6: An unstable input of three spheres and a figure which is supposed to stand upside down. Prévost et al. [PWLSH13] managed
to balance the objects by deforming them, caving out the interior and shifting the center of mass over a defined safe-region. Our balanced
version of the spheres can also be balanced on a small flattened face, the standing version will roll into this position on its own, due to its
low center of gravity. Varying density is sufficient to balance the objects, deformation is not required. As reference for Table 2, the spheres
are scaled to have a diameter of 1 and MrHumpty has a hand-to-hand width of 2.

in a spherical sinusoidal density function, the density in the Femur
decreases from surface to core with a Gaussian slope. Tet-mesh
vertices become 3D sampling positions for the 3D density field,
however, gradients within each tetrahedron are still linear. Never-
theless, this piecewise linear Taylor approximation of a non-linear
field is C0 continuous everywhere (C∞ within a tetrahedron). The
accuracy of this representation is only limited by the resolution of
the tetrahedral mesh, which can be specified in common tetrahe-
dralization tools.

Hull Interior Hull Interior

Figure 7: Examples of non-linear density fields, sampled at vertex
positions. Tetrahedralizations created with TetWild on default set-
tings for the Bunny and with a smaller edge-length for the Femur.

Advanced applications, specifying more than a single center of
mass, may require density fields, more sophisticated than linear
gradients. An approach related to the make-it-stand concept pro-
posed the challenge to make objects spinnable [BWBSH14] by
moving mass centers to a specified rotation axis. This is not only a
desirable criterion for toy tops or yo-yos but is also of great value
in any mechanical process involving rotating movements to reduce
the wear and tear of involved components. Engineering such me-
chanical components often comes with tight constraints on avail-
able space and does not allow for arbitrary placement of counter-
weights. Figure 8 illustrates an example with the rockerarm object,
which is to be mounted on rotary bearings. With constant density,
the native center of gravity and inertia tensor are off-axis due to the
obvious asymmetry of the object.

d(v) = sin(|p− v| · k)+1 (5)

For this object, the optimized density field results in a center of
mass located on the rotation axis along with a parallel principle
inertia momentum axis. The density field is parameterized with the
non-linear density function d(v) (Equation 5), where v is a tet-mesh
vertex, p a 3D coordinate and k a scalar factor.

side on-axis

top bottom

Figure 8: The rockerarm is a prominent example for an asymmetric
object with rotary mount. Due to imbalance, the native center of
mass is not located on the rotation axis. With optimized density,
our center of mass is located on the rotation axis and the principle
inertia momentum axis is parallel to the rotation axis.

Results Optimizing for a specific center of mass, as in Section 3.2,
is not trivial but possible, dependent on given constraints. Addi-
tionally fitting a principle inertia momentum axis, however, can be
challenging as the density distribution for a certain center of mass
may be in conflict with the optimal density for the momentum axis.
A field parameterization with more degrees of freedom than ours
(Equation 5) might be more suitable for optimization but unreason-
able for practical results. Our results are shown in Figure 8 with an
optimized center of mass (green). The density parameters are:

p =

 0.509475
−0.699066
1.328176

 and k = 7.853375

The principle inertia momentum axis was met with accuracy
of < 1◦, the center of mass is actually precisely located on the
specified target rotation axis.
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3.4. 3D Printing of Varying Density

For some objects, we demonstrate both synthetic results as well
as 3D printouts. One has to mention that 3D printing hard-
ware for varying density is still in an early development state
[Onl20, LFF∗20, HKD∗20] and the range of available densities is
limited. On recent Prusa FDM printers, however, it is possible to
alter the extrusion rate while printing. The first step is to obtain the
G-code for an object with a regular infill pattern. In order to approx-
imate the optimized density field, we modify the line thickness to
vary along printed segments by accordingly adjusting the relative
extrusion rate in the G-code slice by slice.

constant optimized

Figure 9: Modifying the extrusion rate allows for printing den-
sity gradients. The bar on top is a cross-section of an object
10×10×100 mm in size, scanned with a photocopier. Pictures of
the rockerarms (62.9×33×17.6 mm) were taken in front of a light-
source to highlight the different density distributions. A live demo
is featured in our supplemental video.

Figure 9 shows a 3D printed example of a simple bar with in-
creasing density. The varying amount of printed material alters the
translucency of the object. The 3D printed rockeram of Figure 8
with optimized density for an on-axis center of mass and a paral-
lel principle inertia momentum axis leads to significantly smoother
spinning as can be seen in the accompanying video.

3.5. Lloyd Relaxation with the L∞ norm

The last proposed application scenario makes use of the closed-
form integral solution of measures on volumes of varying density
to approach Lloyd relaxations under non-standard norms. All
calculations are done on the actual shape of the Voronoi cells
avoiding any voxelization, which reduces artifacts and speeds up
the computation.

Lloyd’s algorithm [Llo82] is an iterative optimization procedure,
that is proven to converge to Centroidal-Voronoi-Tessellations
(CVT) under the L2 norm [DEJ06]. The iteration alternates two
steps: I. Compute a Voronoi diagram for a given set of points.
II. Reposition each point to the centroid of its Voronoi cell. This
can also be formulated as an optimization task, minimizing the dia-
gram’s global energy function. Since the native L2 cells are all con-
vex, the computation of new centroids is quite simple. However,
in many meshing applications, Lp or even L∞ are more desirable
[LL10], due to their more rectangular or cubical cell shapes. For Lp
norms (p > 2), the Voronoi cells are no longer always convex and
the diagram becomes very impractical to handle or even generate
since there is (to the best of our knowledge) no software library,

that is able to compute Lp or L∞ Voronoi tessellations. In mesh-
ing applications [LL10, SRUL16] the diagram itself is actually not
relevant, but only the site positions are of interest [RSLL18]. We
propose a way to compute Lloyd relaxed site positions with the
L∞ metric, also called the Chebyshev distance: First, cell geometry
and topology are borrowed from an L2 tessellated diagram, which
comes with the convenience of convex-only cell shapes. Then we
use our method and compute a cell’s mass, reinterpreted as the en-
ergy which is to be minimized by a new cell center.

The Energy Term For the goal to minimize the L∞ energy within
a cell, let us briefly recapitulate how the Chebyshev distance d∞ is
defined. As formulated in Equation 6, the distance between two
points p and q is the maximum of their absolute differences over
all dimensions, in the 3D case x,y and z:

d∞(p,q) = max
k∈[x,y,z]

|qk− pk| (6)

EC =
∫

P∈C
d∞(CC,P)

= ∑
i∈[±x,±y,±z]

∑
T∈Fi

Mi
T

(7)

Equation 7 formulates the energy EC of a cell C as the total Cheby-
shev distance of all points P∈C to the cell’s centroid CC. However,
there are infinitely many points P ∈ C, so the energy function can
only be evaluated with a nontrivial integral over the cell volume.

Pi d∞(CC,Pi)

Pj

d∞(CC,Pj)

CC

∫
=∑

T ∈ F+y

T ∈ F+x

T ∈ F−y

T ∈ F−x

Figure 10: 2D visualization of the equivalent energy terms of
Equation 7 with an integral over the Chebyshev distances of all
points in a cell or the sum over its tetrahedral fragments with den-
sity gradients.

As illustrated in Figure 10 (in 2D), this integral becomes feasible
as a finite sum of analytical solutions. To achieve this, a cell is
split into six fragments Fk (k ∈ [±x,±y,±z]), as illustrated in Fig-
ure 12. This effectively separates all points P within the cell with
respect to their maximum difference-dimension (Chebyshev). Due
to the separation into the six fragments, the d∞(CC,P) distance di-
mension conveniently coincides with the corresponding geometric
dimension k, i.e., the distance linearly increases along one of the
coordinate axes. As the hull of a Voronoi cell might be complex,
the six fragments are tetrahedralized using a trivial triangulation of
their hull faces and the cell center itself. The inner sum in Equa-
tion 7 accumulates masses Mk

T of all tetrahedra T in a fragment
Fk as defined in Equation 1. The Chebyshev distance is simply en-
coded as the density dimension along the coordinate axes for our
computation. The outer sum accumulates the density- (or Cheby-
shev distance-) weighted volumes of the six fragments, resulting
in the cell’s L∞ energy. The cell center is finally repositioned to
minimize the computed L∞ energy using the L-BFGS-B algorithm
[BLNZ95, ZBLN97] for bound constrained minimization.
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(a) (b) (c) (d) (e) (f)
Figure 11: Results after 50 Lloyd relaxations: A unit-cube on the left and two Clipped-Voronoi-Diagrams [YWLL13] in the middle and on
the right (Cutouts in blue). Examples (a),(c) and (e) used the L2 norm to reposition their sites in each step, the examples (b),(d) and (f) show
results using the L∞ norm, generating close to cube-like cells. Despite different relaxation norms, all results are visualized as L2 tessellations.

Figure 12: Voronoi cells under the L∞ norm before and after the
relaxation. Saturation visualizes the L∞ energy, increasing in each
dimension. A centroid in a cubical cell minimizes this energy.

Results Although cell energies are only optimized on an individ-
ual basis, the relaxation iteration also leads to a global decrease
of the diagram’s energy, analogously to the L2 case. With our re-
formulation of the objective function, the second part of the Lloyd
relaxation (repositioning of cell centers) becomes feasible for the
L∞ norm. The initialization of each iteration is still based on a
computable L2 Voronoi tessellation, which turned out to be suffi-
cient as the relaxation still converges. Considering the shape of an
L2 Voronoi cell while optimizing the centers for the L∞ energy,
this optimization is not a full L∞ relaxation but a convenient al-
ternative. If an L∞ tessellation was available, the relaxation would
probably converge even faster and would also allow for individu-
ally oriented cells. Nevertheless, considering the alternatives, e.g.,
labeling underlying high-resolution voxel grids, it is an improve-
ment in terms of both accuracy and performance.
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Figure 13: L∞ relaxation plots of the cube from Figure 11b over
50 iterations. Left: Average movement of all cell centers in one
iteration, given in percent of the optimal cell’s diagonal. Right: Av-
erage L∞ energy of all cells, given in percent of an optimal cell’s
L∞ energy, which is why the result converges to 100%.

The plots in Figure 13 show convergence results of the cube (Fig-
ure 11b) throughout 50 Lloyd relaxation steps. The Movement plot
shows the average distance traveled by all sites (cell centroids) in
the Voronoi diagram during each relaxation step. This distance is
given in percent of an optimal cubical cell’s diagonal. The average
cell-energy, shown in the Energy plot, is computed for each cell
as illustrated in Figure 12 by separating a cell into six fragments

and accumulating the density-weighted volume. It is expressed in
percent of an optimal cubical cell’s L∞ energy. Therefore, the con-
vergence towards 100% indicates that our cells approach the antic-
ipated optimal cubical cell shape.

4. Discussion

This section presents the results of the proposed application sce-
narios for our concept. Benefits over traditional methods in terms
of performance and accuracy are quantitatively discussed with nu-
merical results. After an outlook on potential extensions and future
work, we conclude with a roundup of our main contributions.

4.1. Results

As mentioned in Section 1.2, voxelizations or octrees are currently
the most common method to approximate mass properties for
objects in fields of varying density. Table 3 documents compar-
isons of our exact tetrahedron-based method to octrees of different
depths. Our results provide the ground truth reference, to which
the octree approximations are compared. Timings for the octrees
include the build-up phase and traversal to compute the results.
The most demanding parts in the build-up are in/out-tests, to
decide if a cell is to be split again. To be comparable, we included
the time to create the tet-mesh inputs for our method from basic
surface meshes. Delaunay tetrahedralizations are computed with
TetGen [Si15], using the -Y option which preserves the source
mesh, so that our method and the octree have the exact same
input. Both, octree and our method, are implemented in Python
using vectorized NumPy arrays where possible for optimized
efficiency. Although our method is well suited to be implemented
in parallelized GPU code, all timings are measured on a single
CPU core. The measurements show that, not only compared to the
very deep but also for the small octree of only 4 levels, our method
is multitudes faster even including the input tetrahedralization.

Timings and performance aside, the probably most valuable take-
away is the analytical accuracy of the results. Our method estab-
lishes actual ground truth results for mass properties under varying
densities. Figure 14 plots the mass-property-errors of octree ap-
proximations (Figure 15) converging against our results, as we in-
crease their depth and therefore accuracy. Featured errors of mass
εM , center of mass εC, and the inertia tensor εΘ are formally speci-
fied in Equation 8.
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Input TetGen Ours (tet) Octree (depth 4) Octree (depth 8)
Object #vin # fin #t time (s) time (s) #n4 time (s) εC (%) εM (%) #n8 time (s) εC (%) εM (%)

buddha 99370 198736 364531 3.0942 0.1982 2047 5.8286 0.4362 0.8117 730647 637.780 0.0027 0.0432
casting 5096 10224 15827 0.1200 0.0064 1719 1.3123 4.1531 12.1164 911551 480.849 0.7120 0.9831
fandisk 2877 5750 8556 0.0678 0.0035 1505 0.9744 1.0598 0.5505 433740 217.282 0.0329 0.0872
fertility 241607 483226 848832 7.9802 0.4155 1854 10.3933 0.3387 1.3620 695297 996.629 0.0118 0.1219
maxplanck 49132 98260 164562 1.3608 0.0790 1759 4.9667 0.1952 0.0457 561597 446.385 0.0225 0.0765
nefertiti 1009118 2018232 3301743 32.8039 1.7506 1677 56.4184 0.4852 0.6365 570914 2756.926 0.0010 0.0085
rockerarm 10044 20088 31131 0.2560 0.0119 2148 1.7444 0.4042 3.1069 818778 469.041 0.0728 0.1308
trefoil 10240 20480 37473 0.3160 0.0244 2221 1.9554 0.0952 0.4600 825107 448.259 0.0008 0.1352

Table 3: A practical performance comparison to octree approximations, where our method generated the reference mass properties. Input
objects are listed with number of vertices and faces. They are uniformly scaled to a unit-height of 1 with density linearly increasing from
bottom (dmin = 0) to top (dmax = 1). Tet-inputs are listed with number of tets, time to generate with TetGen using the -Y option. Octree results
are from two different depths, listing the number of nodes, the computation time (build + traversal) and two error measures (Equation 8).
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Figure 14: By increasing the depth of an octree (# levels on the
x-axis), the approximations converge against our analytic results.
The plot shows the time in seconds to build and traverse the tree,
the number of nodes in the tree, the mass center error εC, the mass
error εM and inertia tensor error εΘ. Dashed lines show timings
for our computation based on tets and the time it took for TetGen
[Si15] to tetrahedralize the input.

εC = |Coctree−Ctet|

εM =
|Moctree−Mtet|

Mtet

εΘ = ∑
i∈[x,y,z]

|Θi
octree−Θ

i
tet|

|Θi
tet|

(8)

In theory, a voxel grid of infinite resolution or an octree of infinite
depth would give correct and unbiased mass property results. We
use this capacity to show that octree results converge against our
analytic results by increasing their depth and accuracy. The error-
plots do not converge monotonically due to aliasing artifacts, for
some lower levels the approximations are more accurate by chance.

4.2. Conclusion

We propose novel application scenarios for object’s mass
properties under varying densities. Easy to use ana-
lytical solutions make approximations obsolete, which
are still common in recent state-of-the-art applications
[PWLSH13, BWBSH14, PBJSH16, WAWS17, KWW19]. Our
concept is fast, lightweight, easy to implement, and suitable for
vectorized or parallelized frameworks. We demonstrate possible

2 3 4 5

6 7 8 tet
Figure 15: Visualization of the octrees used in Figure 14. With in-
creasing depth (2-8) of the tree, the approximations for mass prop-
erties converge against our analytic results based on the real mesh.

use cases where our method can be utilized straightforward:
Masses, mass centers, and inertia tensors of arbitrary manifolds
in given density fields are computed accurately. We formulate an
optimization to determine a parameterized density field for an
object and specified mass properties like a center of gravity or
inertia tensor. Our proposed modification of the Lloyd relaxation is
a novel L2|∞ hybrid that allows us to imitate real L∞ relaxations,
which is a leap forward compared to the existing approximative
alternatives. While our approach may find direct application in
established research topics as meshing, spatial tessellation and
simulation [HZG∗18, RSLL18], we also see great potential in the
young scientific field of additive manufacturing and hope to inspire
many further research [WAWS17, YDS∗18, KWW19].
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Appendix A: In-Depth Derivations

This appendix completes the derivations of the closed-form equa-
tions for mass and center of mass calculations used in Section 2.

MT (D) =
∫ hD

0
ABC ·

(
r

hD

)2

·
(

1− r
hD

)
dr

= ABC
∫ hD

0

r2

h2
D
·
(

1− r
hD

)
dr

= ABC · hD

12
= ABC · hD

3︸ ︷︷ ︸
VT

·1
4

(9)

Figure 4 illustrates an exemplary basis case with density dD = 1 and
0 at the three other vertices. Since the density is normalized, it is not
surprising that the density integral over the volume in Equation 9
results in a quarter of the tetrahedron’s volume VT . Thus, when
combined for a general tetrahedron embedded in an arbitrary den-
sity field, the mass MT computes as the tetrahedron volume times
the mean of all four density values, as formulated in Equation 10.

https://ultimaker.com/en/resources/52670-infill
https://www.sublimelayers.com/2019/05/dynamic-infill-density-in-new-kisslicer.html
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https://www.sublimelayers.com/2019/05/dynamic-infill-density-in-new-kisslicer.html
https://www.cnckitchen.com/blog/gradient-infill-for-3d-prints
https://hal.inria.fr/hal-01927559
https://doi.org/10.1145/3272127.3275092
https://doi.org/10.1145/3272127.3275092
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MT = dA ·MT (A)+dB ·MT (B)+dC ·MT (C)+dD ·MT (D)

= dA ·VT ·
1
4
+dB ·VT ·

1
4
+dC ·VT ·

1
4
+dD ·VT ·

1
4

= VT
dA +dB +dC +dD

4

(10)

Equation 11 formulates the volume integration of the mass center
CT (D) for the shown base case, using a scaled center vector −→w .

CT (D) = D+
1

MT (D)

∫ hD

0
ABC(r) ·

(
1− r

hD

)
·~w(r)dr

= D+
1

MT (D)

∫ hD

0
ABC ·

(
r

hD

)2

·
(

1− r
hD

)
·~w · r

hD
dr

= D+
1

ABC · hD
12

ABC ·~w
∫ hD

0

(
r

hD

)3

·
(

1− r
hD

)
dr

= D+~w · 12
hD
· hD

20
= D+~w · 3

5

= D+

(
A+B+C

3
−D

)
· 3

5

=
1
5
(A+B+C+D+D)

(11)

The center of mass CT in Equation 12 for the general tetrahedron
computes as the combination of the individual base case mass cen-
ters, weighted and normalized by the individual density values at
the four vertices, respectively.

CT =
dA ·BT (A)+dB ·BT (B)+dC ·BT (C)+dD ·BT (D)

dA +dB +dC +dD

=


dA
dB
dC
dD

 ·


1
5 · (A+A+B+C+D)
1
5 · (A+B+B+C+D)
1
5 · (A+B+C+C+D)
1
5 · (A+B+C+D+D)

 · 1
dA +dB +dC +dD

=


dA
dB
dC
dD

 ·



A+B+C+D
A+B+C+D
A+B+C+D
A+B+C+D

+


A
B
C
D


 · 1

5 ·∑di

=

∑di · (A+B+C+D)+


dA
dB
dC
dD

 ·


A
B
C
D


 · 1

5 ·∑di

=
1
5

(
A+B+C+D+

A ·dA +B ·dB +C ·dC +D ·dD

dA +dB +dC +dD

)
(12)

Appendix B: Tet-Split

To model the density function described in Section 3.2, the object is
bisected using split-planes. As the input is already tetrahedralized,
there might be tetrahedra that are only partially in one or the other
region. This potentially violates the constraints of Section 3.2, e.g.,
if a tetrahedron would cross the 0-density limit. Therefore, such
tetrahedra with vertices on both sides of a split-plane have to be
cut. Figure 16 illustrates the four possible cases, how a plane may
intersect a tetrahedron. The splits result in geometry that is always
further tetrahedralizable, hence triangular prisms, quad-based pyra-
mids or trivial tetrahedra. Affected tetrahedra in the input are easily
identified by checking if they match one of these cases. After the
cut, corresponding tetrahedra are replaced by subdivided geometry.

1[0]3
3[0]1

}
→ 3v|12e|4t 2[0]2→ 4v|17e|6t

1[1]2
2[1]1

}
→ 2v|8e|3t 1[2]1→ 1v|4e|2t

Figure 16: Up to symmetry or ration, there are four cases, how
tetrahedra are split by a plane. Resulting geometry is again tetra-
hedralizable. The left-hand numbers account for vertices separated
by, or lying within the plane (in brackets). Right-hand numbers list
the number of new vertices, edges and tets created by the split.



D. Bukenberger and H. Lensch / Tetrahedra of Varying Density 11

Appendix C: Proof of Concept

This appendix aims to demonstrate the validity of our approach, especially proving mass properties of polyhedra to be invariant of the used
tetrahedralization. Therefore, we assemble the simple scenario shown in Figure 17: An axis-aligned box is (w.l.o.g.) centered on the x-axis
with the 〈AEHD〉 quad face parallel to the yz-plane and the 〈BFGC〉 quad at a distance h to the origin at x0. The density gradually increases
over the x dimension dependent on the density function d(x) = s ·x+ t. Box-related equations are denoted with an overset box-symbol �, the
tetrahedra equivalents are marked with a triangle-symbol4.
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Tr = 〈ABDE〉 ∈ ←−T

Tg = 〈DEGH〉 ∈ ←−T

Tc = 〈BEFG〉 ∈ −→T

Tm = 〈BCDG〉 ∈ −→T

Ty = 〈BDEG〉 ∈ T̃

Figure 17: To prove our concept, we construct an axis-aligned box and simple but general tetrahedralization. The five tetrahedra are assigned
to the three integrable base-classes introduced in Figure 18. Colors red, green, cyan, magenta and yellow correspond to the indices used in
upcoming equations to refer to the individual tetrahedra.

Setup

For the constructed box scenario, it is fairly easy to determine its mass and mass center via integration as formulated in Equation 13 and
Equation 14, respectively. The cross-section-area of the box is formally expressed as a function ΦB(x) over the integration domain, which is
constant and, for simplicity, assumed to be 1.

�
MB =

∫ x0+h

x0

ΦB(x) · (sx+ t)dx

=
∫ x0+h

x0

sx+ t dx

=
h
2
(hs+2(sx0 + t))

(13)

�
CB =

1
MB

∫ x0+h

x0

ΦB(x) · (sx+ t) ·−→w ·
(x− x0

h

)
dx

=−→w 1
h
2 (hs+2(sx0 + t))

∫ x0+h

x0

(sx+ t)
(x− x0

h

)
dx

=−→w 2
h(hs+2(sx0 + t))

h
6
(2hs+3(sx0 + t))

=−→w 2hs+3(sx0 + t)
3hs+6(sx0 + t)

(14)

Mass

To demonstrate equality of our approach to the box-solution, we first gather all the tetrahedra-related components. Equation 15 lists the
independent masses of the tetrahedra, using the assumption of the box’s cross-section to have an area of 1. The volume of the individual
tetrahedra in this configuration compute as Vrgcm = 1

6 and Vy =
1
3 . They scale linearly if the box elongates along the x-axis, thus include the

factor h. Further, we utilize the simplifications that d0 = sx0 + t and dh = s(x0 +h)+ t.

Mr = Vr
dA+dB+dD+dE

4
=

h
24

(3d0 +dh)

Mg = Vg
dD+dE+dG+dH

4
=

h
24

(3d0 +dh)

Mc = Vc
dB+dE+dF+dG

4
=

h
24

(d0 +3dh)

Mm = Vm
dB+dC+dD+dG

4
=

h
24

(d0 +3dh)

My = Vy
dB+dD+dE+dG

4
=

h
24

4(d0 +dh)

(15)

4
MB = Mr +Mg +Mc +Mm +My

=
h

24
(2(3d0+dh)+2(d0+3dh)+4(d0+dh))

=
h

24
(12d0 +12dh)

=
h
2
(sx0 + t + s(x0 +h)+ t)

=
h
2
(hs+2(sx0 + t)) =

�
MB �

(16)

Masses of the individual tetrahedra (Eq. 15) summed up (Eq. 16) prove equality to the integrated box-mass (Eq. 13).
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Center of Mass

In Equation 14 the center of mass integral results as a scaled vector −→w , parallel to the x-axis and scaled dependent on the density function.
However, the center of mass for a general tetrahedron is formulated in Equation 2 solely based on its vertices. To eventually express the
equality of the box- and tetrahedralized solutions, we first reformulate the center of mass for tetrahedra in a similar −→w vector-dependent
way. Therefore, we establish the three basic integrable tetrahedra cases shown in Figure 18.
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20
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(
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u
2

)
M̃+

x0+h∫
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|(1− τ)u× τv|
·w̃τ · (s · x+ t)

dx

=
(

O+
u
2

)
M̃+ w̃ · |u×v|h

6
3hs+5(sx0+t)

10
Figure 18: The three basis classes of integrable tetrahedra, exemplary with the x-axis as the integration domain. The density gradient over
the extent of h is visualized in blue. Faces and edges orthogonal to the integration dimension, are highlighted in orange. For them the density
is constant. The green arrows indicate the center of mass vectors −→w ,←−w and w̃. Equations are formulated using τ = x−x0

h .
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h

120
(hs+5(sx0 + t))

CcMc = EMc +3−→w c ·BFG
h
3

4hs+5(sx0 + t)
20

= EMc +3−→w c ·
h

120
(4hs+5(sx0 + t))

CmMm = DMm +3−→w m ·BCG
h
3

4hs+5(sx0 + t)
20

= DMm +3−→w m ·
h

120
(4hs+5(sx0 + t))

CyMy =
D+E

2
My + w̃y · |u× v|h

6
3hs+5(sx0 + t)

10
=

D+E
2

My + w̃y ·
4h

120
(3hs+5(sx0 + t))

(17)

We approach the center of mass analogously to the mass itself and first establish the component-wise results for the individual tetrahedra in
Equation 17, however, using the vector-based formulations expressed in Figure 18.

4
CB =

1
4
MB

(CrMr +CgMg +CcMc +CmMm +CyMy)

=
1
4
MB

 Mrg(B+G)+(3←−w r +3←−w g) · h
120 (hs+5d0)

+ Mcm(E +D)+(3−→w c +3−→w m) · h
120 (4hs+5d0)

+ D+E
2 My + w̃y · 4h

120 (3hs+5d0)

 =
1
4
MB

 Mrg ·2−→w −6−→w · h
120 (hs+5d0)

+ Mcm0+6−→w · h
120 (4hs+5d0)

+ 0
2 My +

−→w · 4h
120 (3hs+5d0)


=

1
4
MB

−→w

 2Mrg−6 h
120 (hs+5d0)

+ 6 h
120 (4hs+5d0)

+ 4 h
120 (3hs+5d0)

 =
1
4
MB

−→w

 5 h
60 (3d0 +dh)−3 h

60 (hs+5d0)

+ 3 h
60 (4hs+5d0)

+ 2 h
60 (3hs+5d0)


=−→w 1

h
24 (12d0 +12dh)

h
60

(25d0 +5dh +15hs) =−→w 25d0 +5dh +15hs
30d0 +30dh

=−→w 25(sx0 + t)+5(s(x0 +h)+ t)+15hs
30(sx0 + t)+30(s(x0 +h)+ t)

=−→w 2hs+3(sx0 + t)
3hs+6(sx0 + t)

=
�
CB �

(18)

In Equation 18 we sum up individual results from Equation 17 and compact the term. Therefore, we use the facts that
←−
Mr =

←−
Mg and

−→
Mc =

−→
Mm, respectively. Furthermore, we can combine mass center w-vectors and express them with the axis-aligned box-vector −→w . The

solution again proves equality to the box’s mass center derived in Equation 14.


